JP2007002184A - Garbage-carbonizing apparatus - Google Patents

Garbage-carbonizing apparatus Download PDF

Info

Publication number
JP2007002184A
JP2007002184A JP2005186987A JP2005186987A JP2007002184A JP 2007002184 A JP2007002184 A JP 2007002184A JP 2005186987 A JP2005186987 A JP 2005186987A JP 2005186987 A JP2005186987 A JP 2005186987A JP 2007002184 A JP2007002184 A JP 2007002184A
Authority
JP
Japan
Prior art keywords
combustion
air
garbage
temperature
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005186987A
Other languages
Japanese (ja)
Inventor
Hideto Shinpo
秀人 新保
Koji Matsukawa
浩司 松川
Kikuo Murayama
菊男 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005186987A priority Critical patent/JP2007002184A/en
Publication of JP2007002184A publication Critical patent/JP2007002184A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a garbage-carbonizing apparatus hardly causing backflow of carbonization gas, keeping the combustion of the gas within a prescribed temperature range, and achieving efficient charge of the combustion energy. <P>SOLUTION: The garbage-carbonizing apparatus 1 comprises a container 11 for storing the garbage 10, a carbonization heater 21 (a carbonization means) for carbonizing the garbage stored in the interior of the container 11 by heating the container 11, a combustion part 3 having a combustion heater 31 for burning the gas by charging the energy to the carbonization gas G1 generated at the carbonization step, a blower 42 for blowing combustion air A1 for burning the carbonization gas G1 to the combustion part 3, thermometers T4 to T6 for measuring the combustion temperatures under combustion, and a controlling part 5 for controlling the combustion heater 31 and the blower 42 by using the combustion temperatures measured by the thermometers T4 and the like as indexes. The controlling part 5 controls the blower 42 so as to send the combustion air A1 of the gas volume previously determined according to an energy charge rate E to be charged by the combustion heater 31 to the combustion part 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生ごみを低酸素濃度下で加熱して炭化処理する生ごみ炭化装置に関する。   The present invention relates to a garbage carbonizing apparatus that heats and garbage carbonizes garbage under a low oxygen concentration.

従来から、生ごみを炭化処理する生ごみ炭化装置が知られている。この種の装置は、炭化室において酸素を遮断または供給制限した状態で生ごみを一定温度以上に加熱して熱分解(乾留)させ、これにより、生ごみを最終的に減量及び減容された固形物、すなわち炭化物に変える。生ごみの炭化の過程において、まず水分が蒸発し、その後、温度上昇とともに有機物が分解して種々の可燃性ガスを含むガス(乾留ガス)が発生する。最終的には炭素主体の炭が生成される。この炭は吸着剤や土壌改良剤として利用が可能である。生ごみ炭化装置は、原理的に、木材や油脂、プラスチックスなどの処理も可能である。炭化による処理は、コンポスト化や乾燥減容化等の生ごみ処理方法と比べて処理物の質に対する制限が少ない。   Conventionally, a garbage carbonization apparatus for carbonizing garbage is known. In this type of equipment, the garbage is heated to a certain temperature or more and thermally decomposed (dry distillation) in a state where oxygen is cut off or restricted in the carbonization chamber, so that the garbage is finally reduced in volume and volume. Change to solid, ie carbide. In the process of carbonization of garbage, first, moisture evaporates, and then the organic matter is decomposed as the temperature rises to generate gas containing various combustible gases (dry distillation gas). Eventually, carbon-based charcoal is generated. This charcoal can be used as an adsorbent or a soil conditioner. Garbage carbonization equipment can in principle treat wood, oils and fats, and plastics. The treatment by carbonization has fewer restrictions on the quality of the treated product compared with the garbage treatment methods such as composting and drying volume reduction.

他方、炭化処理に伴って発生する乾留ガスは、有害物を含むこともあり、通常、燃焼装置により燃焼処理されて排出される。炭化処理温度と発生ガスの関係は処理対象物の成分に大きく依存する。代表的な乾留ガスの燃焼反応は次の如くである。メタン:CH+2O=CO+2HO、一酸化炭素:2CO+O=2CO、水素:2H+O=2HO。また、各燃焼反応に応じた燃焼熱が発生する。 On the other hand, the dry distillation gas generated in association with the carbonization treatment may contain harmful substances and is usually burned by a combustion device and discharged. The relationship between the carbonization temperature and the generated gas largely depends on the components of the object to be processed. A typical dry distillation gas combustion reaction is as follows. Methane: CH 4 + 2O 2 = CO 2 + 2H 2 O, CO: 2CO + O 2 = 2CO 2 , hydrogen: 2H 2 + O 2 = 2H 2 O. Further, combustion heat corresponding to each combustion reaction is generated.

上述のように、生ごみ炭化装置において乾留ガスの燃焼に酸素(空気)が必要であり、その必要量はガス量に応じて理論的に決定される(理論空気量)。実際の燃焼では、理論空気量の一定倍率(空気比)の空気量を供給することによって、燃焼空気量不足を防止して不完全燃焼を防止し、未燃ガスやばいじん等の大気汚染物質の排出を防止している。   As described above, oxygen (air) is required for combustion of the dry distillation gas in the garbage carbonization apparatus, and the required amount is theoretically determined according to the gas amount (theoretical air amount). In actual combustion, by supplying an air volume at a constant magnification (air ratio) of the theoretical air volume, the combustion air volume is prevented from becoming insufficient and incomplete combustion is prevented, and air pollutants such as unburned gas and dust Preventing discharge.

また、生ごみ炭化装置が廃棄物焼却炉として位置付けられる場合、ダイオキシンの発生抑制の観点からガスの燃焼温度を、例えば800℃以上に保持する必要がある。可燃性ガスの発生量が多い場合には、可燃性ガスの燃焼熱によって燃焼温度を高く維持できるが、可燃性ガスの発生量が少ない場合には、燃焼温度を800℃以上の所定範囲に保持するために加熱ヒータや助燃装置等によりエネルギを投入する必要がある。   Moreover, when the garbage carbonization apparatus is positioned as a waste incinerator, it is necessary to maintain the gas combustion temperature at, for example, 800 ° C. or more from the viewpoint of suppressing the generation of dioxins. When the amount of flammable gas generated is large, the combustion temperature can be kept high by the combustion heat of the flammable gas, but when the amount of flammable gas generated is small, the combustion temperature is maintained within a predetermined range of 800 ° C. or higher. In order to achieve this, it is necessary to input energy by a heater, a combustion aid, or the like.

また炭化処理装置において、炭化によって発生したガスの燃焼後の排気ガスの温度を所定の温度範囲に収めるため、ガスを燃焼する燃焼室に温度計を配置し、その温度計の指示温度に応じて排気通路に設けた送風機の風量を変化させるものが知られている(例えば、特許文献1参照)。
特開2001−81473号公報
Further, in the carbonization apparatus, in order to keep the temperature of the exhaust gas after combustion of the gas generated by carbonization within a predetermined temperature range, a thermometer is disposed in the combustion chamber in which the gas is combusted, and according to the indicated temperature of the thermometer. What changes the air volume of the air blower provided in the exhaust passage is known (for example, refer to Patent Document 1).
JP 2001-81473 A

上述した生ごみ炭化装置を、エネルギ消費を抑える観点から見た場合、燃焼温度を下げてしまう過剰の空気量供給を避けると共に、燃焼温度を所定範囲に保つためのエネルギ供給を最小限とするのが望ましい。しかしながら、炭化処理する生ごみの成分が毎回一定とは限らないので、炭化の過程で発生するガス量(可燃性ガス量)が処理毎や処理中に大きく変動することがあり、これに対応するため、過剰のエネルギ投入が余儀なくされる。例えば、生ごみ中には多くの水分が含まれており、炭化炉の昇温過程では含水量に応じた水蒸気が発生する。この水蒸気量は燃焼に必要な空気量よりも多いことがあり、空気供給のための風量設定が、もしも燃焼に必要な酸素量の供給だけの観点から行われている場合に、水蒸気による風量が空気供給のための風量を上回ってしまい、水蒸気の流れが燃焼空気の取り入れ口に逆流してしまう。そこで、この逆流を回避するため、予め風量を大きく設定しておくと、結果として無駄なエネルギを消費してしまうことになる。   When the above-mentioned garbage carbonization apparatus is viewed from the viewpoint of suppressing energy consumption, it is possible to avoid supply of an excessive amount of air that lowers the combustion temperature and to minimize energy supply for keeping the combustion temperature within a predetermined range. Is desirable. However, since the components of the garbage to be carbonized are not always constant, the amount of gas generated during the carbonization process (amount of combustible gas) may fluctuate greatly during or during the treatment. Therefore, excessive energy input is forced. For example, a large amount of moisture is contained in the garbage, and steam corresponding to the water content is generated in the temperature raising process of the carbonization furnace. This amount of water vapor may be larger than the amount of air required for combustion, and if the air volume for air supply is set only from the viewpoint of supplying the amount of oxygen necessary for combustion, the air volume due to water vapor is As a result, the air flow exceeds the air volume for supplying air, and the flow of water vapor flows backward to the intake port of the combustion air. Thus, if a large air volume is set in advance in order to avoid this backflow, useless energy is consumed as a result.

また、一般の燃焼管理においては燃料供給量を調整して燃焼温度を一定に保つが、生ごみ炭化装置の場合、可燃性ガスからなる燃料の供給元である炭化室の熱容量が大きいこともあり燃料供給量(ガス発生量)を瞬時にコントロールすることは困難である。従って、可燃性ガスを燃焼する側で加熱したり、温度を下げたりして燃焼温度を所定範囲に保つ必要がある。そこで、上述した特許文献1においては、温度計の指示に応じて送風機の風量を変化させるようにしているが、温度計の指示だけでは、温度変化が可燃性ガスの発生量の変化によるものか、加熱手段によるものか判別できなく、結果的に投入エネルギの無駄を発生することになる。   In general combustion management, the fuel supply amount is adjusted to keep the combustion temperature constant. However, in the case of a garbage carbonizer, the heat capacity of the carbonization chamber, which is the supply source of fuel made of combustible gas, may be large. It is difficult to instantaneously control the fuel supply amount (gas generation amount). Accordingly, it is necessary to keep the combustion temperature within a predetermined range by heating the combustible gas on the combustion side or lowering the temperature. Therefore, in Patent Document 1 described above, the air volume of the blower is changed in accordance with the instruction of the thermometer. However, whether the temperature change is due to the change in the amount of combustible gas generated only by the instruction of the thermometer. Therefore, it cannot be determined whether it is due to the heating means, and as a result, wasted energy is wasted.

本発明は、上記課題を解消するものであって、乾留ガス逆流がなく、ガスの燃焼温度を所定温度範囲に維持できると共に効率的な燃焼エネルギ投入を実現できる生ごみ炭化装置を提供することを目的とする。   The present invention solves the above-described problems, and provides a garbage carbonizing apparatus that can maintain a combustion temperature of a gas within a predetermined temperature range without causing a reverse flow of dry distillation gas and can realize efficient combustion energy input. Objective.

上記課題を達成するために、請求項1の発明は、生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、前記制御手段は、前記加熱手段が投入するエネルギ投入率に応じて予め定めた風量の燃焼空気を前記燃焼手段に送風するように前記送風手段を制御するものである。   In order to achieve the above object, the invention of claim 1 is generated in the process of carbonization, a container for storing garbage, a carbonization means for heating the container and carbonizing the garbage stored in the container, and A combustion means having a heating means for injecting energy into the gas to be burned, a blowing means for blowing combustion air for burning the gas to the combustion means, and measuring a combustion temperature during the combustion A garbage carbonizing apparatus comprising: a temperature measuring means for controlling the heating means and a blower means using the combustion temperature measured by the temperature measuring means as an index, wherein the control means The blowing means is controlled so as to blow combustion air having a predetermined air volume in accordance with the energy input rate supplied by the heating means to the combustion means.

請求項2の発明は、生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、前記燃焼手段における燃焼空気を取り入れる空気入口での燃焼空気温度を測定する入口温度測定手段を備え、前記制御手段は、前記入口温度測定手段により測定した燃焼空気の入口温度が予め定めた温度となるように、前記送風手段による燃焼空気の風量を制御するものである。   The invention according to claim 2 is a method for supplying energy to a container for storing garbage, a carbonization means for heating the container and carbonizing the garbage stored in the container, and a gas generated in the carbonization process. Combustion means having heating means for burning the gas, blower means for blowing combustion air for burning the gas to the combustion means, temperature measurement means for measuring the combustion temperature during combustion, and the temperature A garbage carbonization apparatus comprising: control means for controlling the heating means and the air blowing means using the combustion temperature measured by the measurement means as an index, and combustion air at an air inlet for taking in combustion air in the combustion means Inlet temperature measuring means for measuring temperature is provided, and the control means controls the air blowing means so that the inlet temperature of the combustion air measured by the inlet temperature measuring means becomes a predetermined temperature. And controls the flow rate of the combustion air.

請求項3の発明は、生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、前記燃焼手段における燃焼空気を取り入れる空気入口での燃焼空気温度を測定する入口温度測定手段を備え、前記制御手段は、前記加熱手段が投入するエネルギ投入率に応じて予め定めた風量と、前記入口温度測定手段により測定した燃焼空気の入口温度が予め定めた温度となるように制御される風量とのいずれか大きい方で前記送風手段を制御するものである。   According to a third aspect of the present invention, there is provided a container for storing garbage, a carbonizing means for heating the container and carbonizing the garbage stored in the container, and supplying energy to a gas generated in the carbonization process. Combustion means having heating means for burning the gas, blower means for blowing combustion air for burning the gas to the combustion means, temperature measurement means for measuring the combustion temperature during combustion, and the temperature A garbage carbonization apparatus comprising: control means for controlling the heating means and the air blowing means using the combustion temperature measured by the measurement means as an index, and combustion air at an air inlet for taking in combustion air in the combustion means Provided with an inlet temperature measuring means for measuring the temperature, and the control means has a predetermined air volume according to an energy input rate input by the heating means and a fuel measured by the inlet temperature measuring means. And controls said air blowing means, whichever is greater and the air volume inlet temperature of the air is controlled to a predetermined temperature.

請求項1の発明によれば、加熱手段が燃焼温度を指標にして制御され、その加熱手段が投入するエネルギ投入率に応じて予め定めた風量の燃焼空気を燃焼手段に送風するので、エネルギ効率良く安定に燃焼温度を維持した燃焼を行うことができる。例えば、一般にエネルギ投入率が低い場合には可燃性ガスによる発熱によって燃焼温度が維持されているので風量(燃焼用空気)を大きくする。このように、空気比が最適となるような運転条件におけるエネルギ投入率と風量の関係を予め算出しておき、運転時のエネルギ投入率が変化した場合、その値に応じた風量調整を行うことにより、可燃性ガス発生の変動に対応して必要最低限のエネルギ消費のもとで安定した運転を行うことができる。   According to the first aspect of the present invention, the heating means is controlled using the combustion temperature as an index, and combustion air having a predetermined amount of air is blown to the combustion means in accordance with the energy input rate input by the heating means. Combustion can be performed while maintaining the combustion temperature well and stably. For example, generally, when the energy input rate is low, the combustion temperature is maintained by the heat generated by the combustible gas, so the air volume (combustion air) is increased. In this way, when the relationship between the energy input rate and the air flow rate under the operating condition that optimizes the air ratio is calculated in advance, and the energy input rate during operation changes, the air flow rate is adjusted according to that value. Thus, stable operation can be performed with a minimum amount of energy consumption in response to fluctuations in the generation of combustible gas.

請求項2の発明によれば、燃焼空気入口での空気温度を検知することにより水蒸気や可燃性ガスなどの乾留ガスが所定のガス流れとは逆向きに流れる逆流の発生を事前に検知できるので、必要最低限の風量でエネルギ効率良くガスの燃焼処理を行うことができる。   According to the second aspect of the present invention, by detecting the air temperature at the combustion air inlet, it is possible to detect in advance the occurrence of reverse flow in which dry distillation gas such as water vapor or combustible gas flows in the direction opposite to the predetermined gas flow. In addition, the gas combustion process can be performed with energy efficiency with the minimum necessary air volume.

請求項3の発明によれば、例えば、水分の多い生ごみを投入した場合に発生するエネルギ投入率からだけでは判断が難しいガスの逆流と、燃焼空気入口での空気温度からだけでは判断が難しい可燃性ガスの増加との両方に対応して、安定したエネルギ効率の良い燃焼ができる。つまり、ガスの逆流や不完全燃焼を起こすことのない必要最低限の風量のもとで燃焼運転を行うことができる。また、最適条件のもとで燃焼運転ができるので、炭化処理時間も短縮できる。   According to the invention of claim 3, for example, it is difficult to make a judgment only from the backflow of gas, which is difficult to judge only from the energy input rate generated when the garbage containing a lot of water is introduced, and the air temperature at the combustion air inlet. Stable and energy-efficient combustion is possible in correspondence with both increase in combustible gas. That is, the combustion operation can be performed under the minimum necessary air volume that does not cause backflow of gas or incomplete combustion. In addition, since the combustion operation can be performed under optimum conditions, the carbonization time can be shortened.

以下、本発明の一実施形態に係る生ごみ炭化装置について、図面を参照して説明する。図1は、本発明の生ごみ炭化装置1を示す。生ごみ炭化装置1は、電力を動力源とした縦型の装置であり、下部に炭化部2、その上に乾留ガスG1を燃焼する燃焼部3、その上に燃焼処理されたガスを排気する排気部4、及び外部から電力供給を受けて炭化から排気までの処理を制御する制御部5を備えている。   Hereinafter, a garbage carbonization apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a garbage carbonizing apparatus 1 of the present invention. The garbage carbonization apparatus 1 is a vertical apparatus using electric power as a power source, and a carbonization part 2 is formed at a lower part, a combustion part 3 for combusting a dry distillation gas G1 thereon, and a combustion-treated gas is exhausted thereon. The exhaust part 4 and the control part 5 which receives the electric power supply from the outside and controls the process from carbonization to exhaust are provided.

さらに概要を述べると、生ごみ炭化装置1は、生ごみ10を収納する容器11と、容器11を加熱して容器内部に収納した生ごみ10を炭化処理する炭化ヒータ21(炭化手段)と、炭化の過程で発生する乾留ガスG1にエネルギを投入してそのガスを燃焼させる燃焼ヒータ31(加熱手段)を有した燃焼部3(燃焼手段)と、乾留ガスG1を燃焼させるための燃焼空気A1を燃焼部3に送風する送風機42(送風手段)と、燃焼中の燃焼温度を測定する温度計T4,T5,T6(温度測定手段)と、温度計T4等によって測定された燃焼温度を指標にして燃焼ヒータ31及び送風機42を制御する制御部5(制御手段)と、を備えている。以下、詳細を説明する。   More specifically, the garbage carbonization apparatus 1 includes a container 11 that accommodates the garbage 10, a carbonization heater 21 (carbonization means) that heats the container 11 and carbonizes the garbage 10 stored inside the container, Combustion section 3 (combustion means) having a combustion heater 31 (heating means) for supplying energy to dry distillation gas G1 generated in the carbonization process and combusting the gas, and combustion air A1 for burning dry distillation gas G1 The index is based on the combustion temperature measured by the blower 42 (air blowing means) for blowing the air to the combustion unit 3, the thermometers T4, T5, T6 (temperature measuring means) for measuring the combustion temperature during combustion, the thermometer T4, etc. And a control unit 5 (control means) for controlling the combustion heater 31 and the blower 42. Details will be described below.

炭化部2は、断熱壁20a及び前扉20bを備えて密閉空間(炭化室)を形成し、その密閉空間の内部に、炭化のためのエネルギを投入する炭化ヒータ21、及び炭化中の生ごみの温度を測定するための温度計T1を備えている。断熱壁20aは、密閉空間から燃焼部3に連通する連通ダクト60を備えている。また、前扉20bは、前扉20bの開閉状態を確認する近接スイッチSWと、前扉20bの不安全な開閉を防止して危険防止を行うと共に確実な密閉を確保するためのソレノイドロックSLとを備えている。容器11は、内部に生ごみ10又は処理後の炭化物を収納した状態で、前扉20bを開いて密閉空間に入れ出しされる。温度計T1は、容器11の近傍に配置されている。連通ダクト60は、容器11の内部に接続され、容器11の内部で発生する乾留ガスG1を燃焼部3に向けて送り出す。   The carbonization part 2 includes a heat insulating wall 20a and a front door 20b to form a sealed space (carbonization chamber), and a carbonization heater 21 that inputs energy for carbonization into the sealed space, and garbage during carbonization. The thermometer T1 for measuring the temperature of is provided. The heat insulating wall 20 a includes a communication duct 60 that communicates with the combustion unit 3 from the sealed space. The front door 20b includes a proximity switch SW for confirming the open / closed state of the front door 20b, and a solenoid lock SL for preventing unsafe opening and closing of the front door 20b to prevent danger and ensuring a reliable sealing. It has. The container 11 is put into and out of the sealed space by opening the front door 20b in a state where the garbage 10 or the treated carbide is housed therein. The thermometer T1 is disposed in the vicinity of the container 11. The communication duct 60 is connected to the inside of the container 11 and sends out the dry distillation gas G <b> 1 generated inside the container 11 toward the combustion unit 3.

燃焼部3は、断熱壁30によって外気と断熱した状態で、上述の連通ダクト60に連結された乾留ガス経路61、乾留ガス経路61を囲むようにコイル状に形成した燃焼ヒータ31、乾留ガス経路61の下流側に設けた燃焼触媒32、及び乾留ガス経路61の略中央部と燃焼触媒32の前後にそれぞれ設けた温度計T4,T5,T6を備えている。乾留ガス経路61は、炭化部2からの乾留ガスG1を燃焼させながら排気部4へと導く。また、空気配管71が乾留ガス経路61の入口側に接続されている。空気配管71は、燃焼部3の入口における燃焼空気温度を測定する入口温度計T3を備えている。空気配管71は、乾留ガス経路61に燃焼空気A1を供給するものであり、空気配管70から分岐している。空気配管70は、外気吸入口を装置下方に持つ。   The combustion unit 3 is in a state where it is insulated from the outside air by the heat insulating wall 30, the dry distillation gas path 61 connected to the communication duct 60, the combustion heater 31 formed in a coil shape so as to surround the dry distillation gas path 61, and the dry distillation gas path Combustion catalyst 32 provided on the downstream side of 61, and thermometers T4, T5, T6 provided respectively in the approximate center of dry distillation gas path 61 and in front of and behind combustion catalyst 32, respectively. The dry distillation gas path 61 guides the dry distillation gas G1 from the carbonization part 2 to the exhaust part 4 while burning it. An air pipe 71 is connected to the inlet side of the dry distillation gas path 61. The air pipe 71 includes an inlet thermometer T3 that measures the combustion air temperature at the inlet of the combustion unit 3. The air pipe 71 supplies the combustion air A <b> 1 to the dry distillation gas path 61 and branches from the air pipe 70. The air pipe 70 has an outside air intake port below the apparatus.

排気部4は、温度計T7を備えた希釈室41、希釈室41に配管63で接続された送風機42と予備の送風機43(これは通常停止されている)、これらの送風機に配管64,65によってそれぞれ接続されたサイレンサ44、及びサイレンサに接続された排気筒45を備えている。希釈室41には、乾留ガス経路61の出口側、及び空気配管72が接続されている。空気配管72は希釈室41に希釈と冷却用の冷却空気A2を供給する。空気配管72は、空気配管70から分岐している。また、上述の空気配管70から分岐した空気配管73が、排気筒45の内部に冷却用及び希釈用の空気を導入するため接続されている。なお、空気配管70の外気吸入口の近くには外気温度を測定する温度計T8が備えられている。また、送風機43は、停電等の緊急時にバックアップ電源により駆動して緊急排気を行うためのものである。   The exhaust unit 4 includes a dilution chamber 41 having a thermometer T7, a blower 42 connected to the dilution chamber 41 by a pipe 63 and a spare blower 43 (which is normally stopped), and pipes 64 and 65 to these blowers. Are provided with a silencer 44 connected to each other and an exhaust pipe 45 connected to the silencer. An outlet side of the dry distillation gas path 61 and an air pipe 72 are connected to the dilution chamber 41. The air pipe 72 supplies the dilution chamber 41 with cooling air A2 for dilution and cooling. The air pipe 72 branches from the air pipe 70. An air pipe 73 branched from the air pipe 70 described above is connected to introduce cooling and dilution air into the exhaust tube 45. A thermometer T8 for measuring the outside air temperature is provided near the outside air inlet of the air pipe 70. The blower 43 is used for emergency exhaust by being driven by a backup power source in an emergency such as a power failure.

次に、生ごみ炭化装置1の動作を、乾留ガスG1の流れに沿って説明する。炭化部2において、容器11に収納された生ごみ10が、容器11の外部から無酸素状態又は貧酸素状態のもとで炭化ヒータ21によって加熱され、加熱された生ごみ13から乾留ガスG1が発生する。乾留ガスG1は、連通ダクト60を通って、燃焼部3の乾留ガス経路61に導かれる。乾留ガスG1の一方向の流れは、乾留ガスG1の発生に伴う正圧、及び又は送風機42による負圧によって形成される。   Next, operation | movement of the garbage carbonization apparatus 1 is demonstrated along the flow of dry distillation gas G1. In the carbonization unit 2, the garbage 10 stored in the container 11 is heated from the outside of the container 11 by the carbonization heater 21 in an oxygen-free state or an anoxic state, and the dry distillation gas G <b> 1 is generated from the heated garbage 13. appear. The dry distillation gas G1 is guided to the dry distillation gas path 61 of the combustion unit 3 through the communication duct 60. The one-way flow of the dry distillation gas G1 is formed by the positive pressure accompanying the generation of the dry distillation gas G1 and / or the negative pressure by the blower 42.

乾留ガス経路61に導かれた乾留ガスG1は、乾留ガス経路61内部において燃焼ヒータ31によって加熱され、空気配管71から供給される燃焼空気A1と混合されて、乾留ガス経路61及び触媒32を通過する間に燃焼される。燃焼したガスは、乾留ガス経路61に接続された希釈室41において、空気配管72から供給される冷却空気A2と混合されて希釈と冷却が行われ、送風機42、サイレンサ44等を介して大気中に排気ガスG2として放出される。制御部5は、これらの一連の処理を行うため各部を制御する。   The dry distillation gas G1 guided to the dry distillation gas path 61 is heated by the combustion heater 31 in the dry distillation gas path 61, mixed with the combustion air A1 supplied from the air pipe 71, and passes through the dry distillation gas path 61 and the catalyst 32. It is burned during. The burned gas is mixed with the cooling air A2 supplied from the air pipe 72 in the dilution chamber 41 connected to the dry distillation gas path 61 to be diluted and cooled, and then into the atmosphere via the blower 42, the silencer 44, and the like. Is discharged as exhaust gas G2. The control unit 5 controls each unit to perform a series of these processes.

次に、図1に加えて、図2、図3を参照して、生ごみ炭化装置1における制御部5によるエネルギ効率を向上する制御について説明する。図2は、生ごみ炭化装置1における乾留ガスG1発生量の時間変化の例を示し、図3は、図2に示した乾留ガスG1発生の条件と同様の条件のもとで、生ごみ炭化装置1において風量を制御した場合としない場合の燃焼ヒータ31のエネルギ投入率Eの時間変化の例を示す。なお、エネルギの投入率Eは、投入し得る最大エネルギ値やその90%値、あるいは所定の燃焼温度を維持するために必要なエネルギ値に対する、稼働中に投入しているエネルギの割合として定義される。燃焼エネルギとして電力を用いる場合、電力値や電流値によってエネルギ及びエネルギ投入率Eを表現することができる。   Next, in addition to FIG. 1, with reference to FIG. 2, FIG. 3, the control which improves the energy efficiency by the control part 5 in the garbage carbonization apparatus 1 is demonstrated. FIG. 2 shows an example of the change over time of the amount of dry distillation gas G1 generated in the garbage carbonization apparatus 1, and FIG. 3 shows the garbage carbonization under the same conditions as the conditions for the generation of dry distillation gas G1 shown in FIG. The example of the time change of the energy input rate E of the combustion heater 31 when not controlling the air volume in the apparatus 1 is shown. The energy input rate E is defined as the ratio of the energy input during operation to the maximum energy value that can be input, its 90% value, or the energy value necessary to maintain a predetermined combustion temperature. The When electric power is used as the combustion energy, the energy and the energy input rate E can be expressed by the electric power value and the current value.

生ごみ10を炭化する際に発生する乾留ガスG1の発生量は、図2に示す曲線aのように、生ごみを加熱する処理時間tの経過とともに増大し、その後、減少する。このように発生量が時間変化する乾留ガスG1に対して、送風量を制御することなく常時一定の風量のもとで送風機42を稼働させると、燃焼部3において燃焼ヒータ31が投入するエネルギの投入率Eは、図3に示す曲線bのように、図2における曲線aを上下反転したような曲線を描いて時間変化する。   The amount of dry distillation gas G1 generated when carbonizing the garbage 10 increases as the processing time t for heating the garbage increases as shown by a curve a in FIG. 2, and then decreases. In this way, when the blower 42 is operated under a constant air volume without controlling the air flow rate for the dry distillation gas G1 whose generation amount changes with time, the energy of the energy input by the combustion heater 31 in the combustion unit 3 is increased. The charging rate E changes over time by drawing a curve obtained by inverting the curve a in FIG. 2 up and down like the curve b shown in FIG.

乾留ガスG1の発生量が少ない炭化処理の初期段階や後期段階において、乾留ガスG1の発生量が多い場合の風量と同じ風量で送風機42を稼働させることは、送風機42を稼働させるためのエネルギが必要なことはもとより、多量の燃焼空気A1によって燃焼部3における乾留ガス経路61内部の熱を奪い去ることから、燃焼ヒータ31の投入エネルギが増大する結果を招くことになる。これは、乾留ガス経路61内部の燃焼温度は、例えば、ダイオキシンの発生抑制等の観点から800℃以上に保持するという前提による。   Operating the blower 42 with the same air volume as when the carbonization gas G1 is generated in the initial stage or the later stage of the carbonization treatment with a small amount of the carbonized gas G1 generated is the energy for operating the fan 42. In addition to being necessary, the heat inside the dry distillation gas path 61 in the combustion section 3 is taken away by a large amount of combustion air A1, resulting in an increase in the input energy of the combustion heater 31. This is based on the premise that the combustion temperature in the dry distillation gas path 61 is maintained at 800 ° C. or higher from the viewpoint of, for example, suppressing the generation of dioxins.

そこで、エネルギ効率を向上するため、生ごみ炭化装置1において、制御部5は、燃焼ヒータ31が投入するエネルギ投入率Eに応じて予め定めた風量の燃焼空気A1を燃焼部3に送風するように送風機42を制御する。生ごみ炭化装置1において、例えば、「エネルギ投入率Eが低い場合には乾留ガスG1の中の可燃性ガスによる発熱によって燃焼温度が維持されているので風量(燃焼空気A1の量)を大きくする」というように、空気比が最適となる運転条件におけるエネルギ投入率Eと風量の関係を予め算出しておき、運転時のエネルギ投入率Eが変動した場合、その変動値に応じた風量調整を行う。   Therefore, in order to improve energy efficiency, in the garbage carbonizing apparatus 1, the control unit 5 blows the combustion air A 1 having a predetermined amount of air to the combustion unit 3 according to the energy input rate E input by the combustion heater 31. The blower 42 is controlled. In the garbage carbonizing apparatus 1, for example, “when the energy input rate E is low, the combustion temperature is maintained by the heat generated by the combustible gas in the dry distillation gas G1, so the air volume (amount of combustion air A1) is increased. ”, When the relationship between the energy input rate E and the air flow rate under the operating conditions where the air ratio is optimum is calculated in advance, and the energy input rate E during operation fluctuates, the air flow rate is adjusted according to the fluctuation value. Do.

このような風量制御を伴った燃焼処理を行うと、図3に示す曲線cのように、燃焼ヒータ31のエネルギ投入率Eを大幅に引き下げることができる。すなわち、生ごみ炭化装置1は、燃焼ヒータ31のエネルギ投入率Eに反映される可燃性ガス発生量の変動に対応して、必要最低限のエネルギ消費のもとでエネルギ効率良く、所定の燃焼温度を維持した燃焼を安定に行うことができる。   When the combustion process with such air volume control is performed, the energy input rate E of the combustion heater 31 can be greatly reduced as shown by the curve c shown in FIG. That is, the garbage carbonization apparatus 1 responds to the fluctuation of the amount of combustible gas generated reflected in the energy input rate E of the combustion heater 31 and efficiently performs predetermined combustion with a minimum amount of energy consumption. Combustion while maintaining temperature can be performed stably.

再び、図1を参照して、生ごみ炭化装置1における乾留ガスG1の逆流防止について説明する。上述したように、乾留ガスG1が、連通ダクト60を通って、燃焼部3の乾留ガス経路61に導かれる一方向の流れは、乾留ガスG1の発生に伴う正圧、及び又は送風機42による負圧によって形成される。また、空気配管71から乾留ガス経路61に供給される燃焼空気A1の流れは、送風機42が排気するガスの流れによる負圧によって形成される。もし、送風機42による負圧が乾留ガスG1の発生に伴う正圧を相殺できなければ、乾留ガスG1が空気配管71に逆流することになる。この逆流は、安全管理上、未然に防止する必要がある。   With reference to FIG. 1 again, the backflow prevention of dry distillation gas G1 in the garbage carbonization apparatus 1 will be described. As described above, the one-way flow in which the dry distillation gas G1 is guided to the dry distillation gas path 61 of the combustion unit 3 through the communication duct 60 is a positive pressure accompanying the generation of the dry distillation gas G1 and / or a negative pressure by the blower 42. Formed by pressure. The flow of the combustion air A1 supplied from the air pipe 71 to the dry distillation gas path 61 is formed by a negative pressure due to the flow of gas exhausted by the blower 42. If the negative pressure generated by the blower 42 cannot offset the positive pressure associated with the generation of the dry distillation gas G1, the dry distillation gas G1 flows back into the air pipe 71. It is necessary to prevent this backflow for safety management.

そこで、燃焼部3における燃焼空気を取り入れる空気入口に設けた温度計T3によって燃焼空気温度を測定する。制御部5は、入口温度の温度計T3により測定した燃焼空気の入口温度が予め定めた温度以上とならないように、送風機42を制御して燃焼空気A1の風量を調整する。すなわち、燃焼空気入口温度をモニタすることにより、乾留ガス経路61内部の圧力が増大して逆流発生気味となる兆候を、燃焼空気入口温度の上昇によって把握することができる。燃焼空気入口温度が予め設定した温度以上となった時に、送風機42による風量を上昇させることによって、例えば、含水率が高い生ごみ10の処理のように水蒸気圧が急激に上昇する場合においても、乾留ガスG1の逆流を防止することができる。このような方法により送風機42を制御すると、少なくとも乾留ガスG1の逆流に関する不具合の発生がなく、送風機42を最小風量の状態で運転ができ、生ごみ炭化装置1のエネルギ効率が向上する。   Therefore, the combustion air temperature is measured by a thermometer T3 provided at the air inlet for taking in the combustion air in the combustion section 3. The controller 5 controls the blower 42 so as to adjust the air volume of the combustion air A1 so that the inlet temperature of the combustion air measured by the inlet temperature thermometer T3 does not exceed a predetermined temperature. That is, by monitoring the combustion air inlet temperature, it is possible to grasp the sign that the pressure inside the dry distillation gas passage 61 increases and the reverse flow is likely to occur by the increase in the combustion air inlet temperature. When the combustion air inlet temperature is equal to or higher than a preset temperature, by increasing the air volume by the blower 42, for example, even when the water vapor pressure rapidly increases as in the treatment of garbage 10 having a high water content, Backflow of the dry distillation gas G1 can be prevented. When the blower 42 is controlled by such a method, at least there is no occurrence of problems related to the backflow of the dry distillation gas G1, the blower 42 can be operated with the minimum air flow, and the energy efficiency of the garbage carbonizing apparatus 1 is improved.

次に、図4を参照して、生ごみ炭化装置1における上述した燃焼ヒータ31のエネルギ投入率Eに基づく送風機42の制御と、温度計T3による燃焼空気入口温度に基づく逆流防止のための送風機42の制御を組み合わせた制御を説明する。上述のエネルギ投入率Eに基づく送風機42の制御では、例えば、水蒸気の大量発生による逆流が起こる可能性を解消できず、燃焼空気入口温度に基づく送風機42の制御では燃焼空気A1の不足が起こる可能性を解消できない。従って、この両制御方法によって決められた風量の大きい方を実現するように送風機42の運転を行えば、これらの可能性を解消でき、乾留ガスG1の逆流や不完全燃焼を起こすことなく、必要最低限の風量で、燃焼ヒータ31のエネルギ効率良く、生ごみ炭化装置1を運転できる。   Next, referring to FIG. 4, the blower 42 for controlling the blower 42 based on the energy input rate E of the combustion heater 31 described above in the garbage carbonizing apparatus 1 and for preventing the backflow based on the combustion air inlet temperature by the thermometer T3. The control which combined 42 control is demonstrated. In the control of the blower 42 based on the energy input rate E described above, for example, the possibility of backflow due to a large amount of water vapor cannot be eliminated, and in the control of the blower 42 based on the combustion air inlet temperature, the combustion air A1 may be insufficient. Can not eliminate the sex. Therefore, if the blower 42 is operated so as to realize the larger air volume determined by these two control methods, these possibilities can be eliminated, and it is necessary without causing backflow or incomplete combustion of the dry distillation gas G1. The garbage carbonizing apparatus 1 can be operated with the minimum air volume and the energy efficiency of the combustion heater 31.

すなわち、生ごみ炭化装置1の制御部5は、エネルギ投入率Eに応じて予め定めた風量と、燃焼空気A1の入口温度が予め定めた温度となるように制御される風量とのいずれか大きい方で送風機42を制御することとする。ここで、送風機42は、その回転数をインバータ制御されており、インバータによる制御周波数と風量が比例するものとする。図4に、生ごみ処理の時間tに対して、送風機42を制御する制御周波数の変化の例を示している。   That is, the control unit 5 of the garbage carbonizing apparatus 1 has either the air volume determined in advance according to the energy input rate E or the air volume controlled so that the inlet temperature of the combustion air A1 becomes a predetermined temperature. The air blower 42 is controlled by one side. Here, it is assumed that the rotation speed of the blower 42 is inverter-controlled, and the control frequency by the inverter is proportional to the air volume. FIG. 4 shows an example of changes in the control frequency for controlling the blower 42 with respect to the garbage processing time t.

図4において、破線から成る曲線eは、例えば、燃焼空気入口温度に基づく送風機42の制御周波数の時間変化を示し、実線から成る曲線dは、エネルギ投入率Eに基づく送風機42の制御周波数の時間変化を示す。曲線dは、全般的に曲線eよりも高い制御周波数(従って大きい風量)を示しているが、時間t=t1〜t2において、燃焼空気入口温度に基づく送風機42の制御周波数(曲線e)の方が高くなっている。この時間t=t1〜t2においては、風量がより大きくなる曲線eに基づく送風機42の制御が行われる。   In FIG. 4, a curve e consisting of a broken line shows a time change of the control frequency of the blower 42 based on the combustion air inlet temperature, for example, and a curve d consisting of a solid line shows the time of the control frequency of the blower 42 based on the energy input rate E. Showing change. The curve d generally shows a higher control frequency (and hence a larger air flow) than the curve e, but at the time t = t1 to t2, the control frequency (curve e) of the blower 42 based on the combustion air inlet temperature. Is high. During the time t = t1 to t2, the blower 42 is controlled based on the curve e in which the air volume becomes larger.

上述のような送風機42の制御を行った具体例を説明する。図1に示すような電気式の生ごみ炭化装置において、風量制御をインバータによって行い、次の(1)(2)に示すような制御を行ったところ良好な燃焼状態を実現できた。
(1)燃焼空気入口温度が50℃以上でインバータ設定値を5Hz上昇させる。
(2)燃焼ヒータの通電率(E)と風量を表1に従って制御する。
A specific example of controlling the blower 42 as described above will be described. In the electric garbage carbonization apparatus as shown in FIG. 1, when the air volume control was performed by an inverter and the control as shown in the following (1) and (2) was performed, a good combustion state was realized.
(1) When the combustion air inlet temperature is 50 ° C. or higher, the inverter set value is increased by 5 Hz.
(2) The energization rate (E) and air volume of the combustion heater are controlled according to Table 1.

Figure 2007002184
Figure 2007002184

なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、乾留ガスG1の燃焼のための加熱手段として燃料ガスや燃料油を用いて行う場合においても、その燃料の投入率などを上述のエネルギ投入率Eとして用いて、送風機42を制御して上記同様の効果を得ることができる。   The present invention is not limited to the above-described configuration, and various modifications can be made. For example, even when fuel gas or fuel oil is used as a heating means for combustion of the dry distillation gas G1, the blower 42 is controlled by using the fuel input rate as the above-described energy input rate E and the above. Similar effects can be obtained.

本発明の一実施形態に係る生ごみ炭化装置の模式的構成図。The typical block diagram of the garbage carbonization apparatus which concerns on one Embodiment of this invention. 同上炭化装置におけるガス発生量の時間変化の例を示すグラフ。The graph which shows the example of the time change of the gas generation amount in a carbonization apparatus same as the above. 同上炭化装置において風量を制御した場合としない場合のヒータ通電率の時間変化の例を示すグラフ。The graph which shows the example of the time change of the heater energization rate when not controlling with the air volume in the carbonization apparatus same as the above. 同上炭化装置における送風機制御周波数の時間変化の例を示すグラフ。The graph which shows the example of the time change of the air blower control frequency in a carbonization apparatus same as the above.

符号の説明Explanation of symbols

1 生ごみ炭化装置
2 炭化部
3 燃焼部(燃焼手段)
4 排気部
5 制御部(制御手段)
10 生ごみ
11 容器
21 炭化ヒータ(炭化手段)
31 燃焼ヒータ(加熱手段)
42 送風機(送風手段)
A1 燃焼空気
G1 乾留ガス
T3 温度計(入口温度測定手段)
T4,T5,T6 温度計(温度測定手段)
DESCRIPTION OF SYMBOLS 1 Garbage carbonization apparatus 2 Carbonization part 3 Combustion part (combustion means)
4 Exhaust section 5 Control section (control means)
10 Garbage 11 Container 21 Carbonization heater (carbonization means)
31 Combustion heater (heating means)
42 Blower (Blower means)
A1 Combustion air G1 Dry distillation gas T3 Thermometer (Inlet temperature measurement means)
T4, T5, T6 thermometer (temperature measuring means)

Claims (3)

生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、
前記制御手段は、前記加熱手段が投入するエネルギ投入率に応じて予め定めた風量の燃焼空気を前記燃焼手段に送風するように前記送風手段を制御することを特徴とする生ごみ炭化装置。
A container for storing garbage, a carbonization means for heating the container and carbonizing the garbage stored in the container, and a heating means for injecting energy into a gas generated during the carbonization to burn the gas A combustion means having a combustion means, a blower means for blowing combustion air for burning the gas to the combustion means, a temperature measurement means for measuring a combustion temperature during the combustion, and a combustion measured by the temperature measurement means A garbage carbonizing apparatus comprising a control means for controlling the heating means and the air blowing means using temperature as an index,
The garbage carbonizing apparatus, wherein the control means controls the blowing means so as to blow a predetermined amount of combustion air to the combustion means in accordance with an energy input rate inputted by the heating means.
生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、
前記燃焼手段における燃焼空気を取り入れる空気入口での燃焼空気温度を測定する入口温度測定手段を備え、前記制御手段は、前記入口温度測定手段により測定した燃焼空気の入口温度が予め定めた温度となるように、前記送風手段による燃焼空気の風量を制御することを特徴とする生ごみ炭化装置。
A container for storing garbage, a carbonization means for heating the container and carbonizing the garbage stored in the container, and a heating means for injecting energy into a gas generated during the carbonization to burn the gas A combustion means having a combustion means, a blower means for blowing combustion air for burning the gas to the combustion means, a temperature measurement means for measuring a combustion temperature during the combustion, and a combustion measured by the temperature measurement means A garbage carbonizing apparatus comprising a control means for controlling the heating means and the air blowing means using temperature as an index,
An inlet temperature measuring means for measuring a combustion air temperature at an air inlet for taking in combustion air in the combustion means is provided, and the control means has an inlet temperature of the combustion air measured by the inlet temperature measuring means at a predetermined temperature. Thus, the garbage carbonization apparatus characterized by controlling the air volume of the combustion air by the said ventilation means.
生ごみを収納する容器と、前記容器を加熱して容器内部に収納した生ごみを炭化処理する炭化手段と、前記炭化の過程で発生するガスにエネルギを投入してそのガスを燃焼させる加熱手段を有した燃焼手段と、前記ガスを燃焼させるための燃焼空気を前記燃焼手段に送風する送風手段と、前記燃焼中の燃焼温度を測定する温度測定手段と、前記温度測定手段によって測定された燃焼温度を指標にして前記加熱手段及び送風手段を制御する制御手段と、を備えた生ごみ炭化装置であって、
前記燃焼手段における燃焼空気を取り入れる空気入口での燃焼空気温度を測定する入口温度測定手段を備え、
前記制御手段は、前記加熱手段が投入するエネルギ投入率に応じて予め定めた風量と、前記入口温度測定手段により測定した燃焼空気の入口温度が予め定めた温度となるように制御される風量とのいずれか大きい方で前記送風手段を制御することを特徴とする生ごみ炭化装置。
A container for storing garbage, a carbonization means for heating the container and carbonizing the garbage stored in the container, and a heating means for injecting energy into a gas generated during the carbonization to burn the gas A combustion means having a combustion means, a blower means for blowing combustion air for burning the gas to the combustion means, a temperature measurement means for measuring a combustion temperature during the combustion, and a combustion measured by the temperature measurement means A garbage carbonizing apparatus comprising a control means for controlling the heating means and the air blowing means using temperature as an index,
An inlet temperature measuring means for measuring a combustion air temperature at an air inlet taking in combustion air in the combustion means;
The control means includes a predetermined air volume according to an energy input rate input by the heating means, and an air volume controlled so that the inlet temperature of the combustion air measured by the inlet temperature measuring means becomes a predetermined temperature. The garbage carbonization apparatus characterized by controlling the said ventilation means in any one which is larger.
JP2005186987A 2005-06-27 2005-06-27 Garbage-carbonizing apparatus Withdrawn JP2007002184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186987A JP2007002184A (en) 2005-06-27 2005-06-27 Garbage-carbonizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186987A JP2007002184A (en) 2005-06-27 2005-06-27 Garbage-carbonizing apparatus

Publications (1)

Publication Number Publication Date
JP2007002184A true JP2007002184A (en) 2007-01-11

Family

ID=37688075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186987A Withdrawn JP2007002184A (en) 2005-06-27 2005-06-27 Garbage-carbonizing apparatus

Country Status (1)

Country Link
JP (1) JP2007002184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511288B1 (en) 2023-09-19 2024-07-05 株式会社正朋 Pyrolysis Machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511288B1 (en) 2023-09-19 2024-07-05 株式会社正朋 Pyrolysis Machine

Similar Documents

Publication Publication Date Title
JP2005247992A (en) Biomass gasification system and operating method therefor
JP2012220185A (en) Method and industrial furnace for using residual protective gas as fuel gas
JP2009299947A (en) Thermal storage type gas treatment furnace
JP2006152193A (en) Method and device for gasification treatment
JP2004277464A (en) Apparatus for carbonization treatment of organic material-containing sludge
JP2007002184A (en) Garbage-carbonizing apparatus
US20130294474A1 (en) Gasification melting furnace and method for treating combustible material using the same
JP4784174B2 (en) Garbage carbonization equipment
JP2008133751A (en) Purification device and method thereof
JP3162060U (en) Carbonization ashing equipment
JP2005298586A (en) Method for carbonizing organic material-containing sludge
JP2006232943A (en) Apparatus for carbonizing garbage
JP2006232945A (en) Garbage carbonization apparatus
JP4266879B2 (en) Gasification furnace and combined recycling equipment
JP3937232B2 (en) Carbonization equipment
JP3029250B2 (en) Garbage carbonization equipment
JP2006232944A (en) Garbage carbonization apparatus
JP2013104258A (en) Asphalt pavement waste material regenerating device
KR20100100137A (en) Hot wind drying system and a drying method using a circulation of the waste gas
JP2003024920A (en) Apparatus for treating woody waste and operation method therefor
JP2024048836A (en) Carbonization System
JP2003327404A (en) Hydrogen manufacturing apparatus and its operation method
JP3463037B2 (en) Integrated system for waste plastic processing and fuel cell power generation
JP2003346844A (en) Integrated waste plastic treatment and fuel cell power generation system
JP2003302017A (en) Pressure-reduced incineration method and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090619