JP2007002123A - Fine chitosan particle - Google Patents

Fine chitosan particle Download PDF

Info

Publication number
JP2007002123A
JP2007002123A JP2005184805A JP2005184805A JP2007002123A JP 2007002123 A JP2007002123 A JP 2007002123A JP 2005184805 A JP2005184805 A JP 2005184805A JP 2005184805 A JP2005184805 A JP 2005184805A JP 2007002123 A JP2007002123 A JP 2007002123A
Authority
JP
Japan
Prior art keywords
chitosan
chitin
less
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184805A
Other languages
Japanese (ja)
Other versions
JP4976662B2 (en
Inventor
Takanori Yamanami
隆徳 山南
Shinya Tsuchida
真也 土田
Kazue Ieda
和重 家田
Mitsutaka Seki
光孝 関
Masayuki Kobayashi
誠幸 小林
Hiroshi Ise
浩志 伊勢
Takashi Kobayashi
丘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2005184805A priority Critical patent/JP4976662B2/en
Publication of JP2007002123A publication Critical patent/JP2007002123A/en
Application granted granted Critical
Publication of JP4976662B2 publication Critical patent/JP4976662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To economically provide fine chitosan particles useful as a material for compounding with one or more polymers or the like. <P>SOLUTION: Fine chitosan particles are characterized by being produced from a living thing without passing through a dissolution process and having a deacetylation degree of ≥60%, 1 mass% solution viscosity of 1.5 to 1,000 mPa s, and a ≤100 μm diameter particle content of ≥90%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、キトサン微粒子に関し、特にキトサン以外の高分子化合物との複合化に有用なキトサン微粒子に関する。   The present invention relates to chitosan fine particles, and particularly to chitosan fine particles useful for complexing with a polymer compound other than chitosan.

キトサンは、天然に存在することが知られている多糖であるが、工業的にはエビ、カニなどの甲殻類から分離されるキチンを脱アセチル化することによって生産されている。このキトサンは生分解性高分子化合物や植物活性調整剤として実用されている。   Chitosan is a polysaccharide that is known to exist in nature, but is industrially produced by deacetylating chitin separated from crustaceans such as shrimp and crab. This chitosan is practically used as a biodegradable polymer compound or a plant activity regulator.

また、キトサンは製膜性、抗菌性、保水性および凝集能などの機能を有する機能性高分子化合物として各方面で実用されており、特に、最近では各種基材に、これら機能を付与することができる安全な機能付与剤としての応用が進んでいる。例えば、実際に、各種フィルム、不織布、繊維製品への抗菌性、脱臭性付与コーティング材として広範に利用されている。現在、キトサンの最大の用途は所謂サプリメント用であり、80メッシュパス(粒径約200μm)粉末が流通している。   Chitosan has been put into practical use in various fields as a functional polymer compound having functions such as film-forming properties, antibacterial properties, water retention and aggregating ability. Application as a safe function-imparting agent that can be used is progressing. For example, it is widely used as a coating material for imparting antibacterial and deodorizing properties to various films, nonwoven fabrics, and textile products. Currently, chitosan is used for so-called supplements, and 80 mesh pass (particle size: about 200 μm) powder is in circulation.

キトサンは、キチンと同様に高分子化合物の中でも特に難粉砕性の物質であり、現状市販されている乾式粉砕機では、サプリメント用に流通している80メッシュパス程度に粉砕することが限度であり、高分子化合物との複合化に好適である粒径100μm以下のキトサン微粒子を得ることは極めて困難であった。   Chitosan, like chitin, is a particularly difficult-to-grind substance among high molecular compounds, and with currently available dry grinders, the limit is that it can be ground to about 80 mesh passes distributed for supplements. It was extremely difficult to obtain chitosan fine particles having a particle diameter of 100 μm or less, which is suitable for complexing with a polymer compound.

キトサンの機能付与を目指した複合化方法に、キトサン粒子と他の高分子化合物との複合化がある。この複合化方法は、キトサンを一旦溶液にしなければならないという制約がなく、汎用性に優れている。例えば、低融点のポリエチレン溶融物中にキトサン粒子を混合することによって簡便にキトサン・ポリエチレン複合体を得ることができる。また、高分子化合物溶液にキトサン粒子を混合した溶液から常法に従ってキトサン粒子含有粒子、繊維、膜などを得ることができる。
特開平9−221502号公報 特開昭63−20302号公報 特開昭55−133401号公報
As a compounding method aiming at imparting a function of chitosan, there is a compounding of chitosan particles with other polymer compounds. This complexing method is excellent in versatility because there is no restriction that chitosan must be once in solution. For example, a chitosan-polyethylene composite can be easily obtained by mixing chitosan particles in a low melting point polyethylene melt. In addition, chitosan particle-containing particles, fibers, membranes and the like can be obtained from a solution obtained by mixing chitosan particles in a polymer compound solution according to a conventional method.
JP-A-9-221502 JP 63-20302 A JP-A-55-133401

上記キトサン粒子を使用する複合方法は、基本的に複合する相手に対する制約が少なく、汎用性が広い点で大きなメリットはあるが、複合化されたキトサン粒子と相手の高分子化合物との間に充分な化学的な結合がなく、単に物理的、電気的な力で複合化されているに過ぎないことが多い。このため複合材の表面に存在するキトサン粒子の脱落が問題になる。   The above-mentioned compounding method using chitosan particles is basically free from restrictions on the partner to be compounded and has a great advantage in terms of wide versatility, but it is sufficient between the compounded chitosan particle and the partner polymer compound. In many cases, there is no chemical bond, and it is simply combined by physical and electrical forces. For this reason, dropping off of chitosan particles existing on the surface of the composite material becomes a problem.

また、キトサン粒子含有コーティング材においては、サプリメント用に流通している80メッシュパス程度のキトサン粉末を使用すると、コーティング皮膜表面があまりにも凹凸化してしまうため、特に皮膜表面を凹凸を有する表面としたい場合などの極めて限られた用途にしか使用できない。   In addition, in the chitosan particle-containing coating material, when chitosan powder of about 80 mesh pass distributed for supplements is used, the coating film surface becomes too uneven, and thus the coating surface is particularly desired to have an uneven surface. It can be used only for extremely limited purposes.

また、経口的に人体内に入る可能性のある用途、例えば、食品用途がキトサン粒子においても最終製品の最も重要な用途であることを考え合わせると、キチン含有生物原料からキトサン微粒子まで、一貫してキチンまたはキトサンを溶解することなく、キトサン微粒子を製造することが好ましい。また、この方が経済的である場合が多い。
従って、本発明の目的は、他の高分子化合物などとの複合化材料として有用なキトサン微粒子を経済的に提供することである。
In addition, considering the applications that can enter the human body orally, for example, food applications are the most important uses of end products in chitosan particles, it is consistent from chitin-containing biomaterials to chitosan microparticles. Thus, it is preferable to produce chitosan fine particles without dissolving chitin or chitosan. Also, this is often more economical.
Accordingly, an object of the present invention is to economically provide chitosan fine particles useful as a composite material with other polymer compounds.

上記目的は以下の構成の本発明によって達成される。
1.原料生物から一回も溶解工程を経ずに製造された脱アセチル化度60%以上、1質量%溶液粘度が1.5mPa・s以上1,000mPa・s以下かつ粒径100μm以下の粒子が90%以上であることを特徴とするキトサン微粒子。
2.粒径50μm以下の粒子が90%以上である前記1に記載のキトサン微粒子。
3.粒径50μm以下の粒子が90%以上かつ1μm以下の粒子が10%以下である前記1に記載のキトサン微粒子。
The above object is achieved by the present invention having the following constitution.
1. 90 degree particles having a degree of deacetylation of 60% or more and a 1% by mass solution viscosity of 1.5 mPa · s or more and 1,000 mPa · s or less and a particle size of 100 μm or less produced from the raw material organism without passing through the dissolution process are 90%. % Chitosan microparticles characterized by being above.
2. 2. The chitosan fine particles according to 1 above, wherein the particles having a particle size of 50 μm or less are 90% or more.
3. 2. The chitosan fine particles according to 1, wherein particles having a particle size of 50 μm or less are 90% or more and particles having a particle size of 1 μm or less are 10% or less.

4.ジェットミルあるいはボールミルによって粉砕して得られた前記1〜3の何れか1項に記載のキトサン微粒子。
5.ボールミルあるいはジェットミルによる粉砕原料が、ボールミルあるいはジェットミル以外の少なくとも1種の粉砕機で粉砕したキトサン粉末である前記4に記載のキトサン微粒子。
6.粉砕原料が、1質量%溶液粘度が1,000mPa・s以下のキトサンである前記4または5に記載のキトサン微粒子。
4). 4. The chitosan fine particles according to any one of 1 to 3 obtained by pulverizing with a jet mill or a ball mill.
5. 5. The chitosan fine particles according to 4 above, wherein the raw material pulverized by a ball mill or a jet mill is chitosan powder pulverized by at least one pulverizer other than the ball mill or jet mill.
6). 6. The chitosan fine particles according to 4 or 5 above, wherein the pulverized raw material is chitosan having a 1% by mass solution viscosity of 1,000 mPa · s or less.

本発明によれば、他の高分子化合物などとの複合化材料として有用なキトサン微粒子を経済的に提供することができる。
すなわち、本発明者らは、前記複合材からのキトサン粒子の脱落防止、コーティング皮膜表面の平滑化について種々検討したところ、粒径100μm以下の粒子が90%以上であるキトサン微粒子がその目的に最適であり、キチン含有生物原料からキトサン微粒子まで一貫してキチンまたはキトサンを溶解することなく、以上のような粒径のキトサン得るためには、微粉化前のキトサンの1質量%溶液粘度1,000mPa・s以下であることが望ましく、さらにキトサン本来の機能保持にはキトサンの脱アセチル化度が60%以上であることが重要であることを見出した。
According to the present invention, chitosan fine particles useful as a composite material with other polymer compounds and the like can be economically provided.
That is, the present inventors have made various studies on the prevention of dropping off of the chitosan particles from the composite material and the smoothing of the coating film surface. Chitosan fine particles having a particle size of 100 μm or less and 90% or more are optimal for the purpose. In order to obtain chitosan having a particle size as described above without uniformly dissolving chitin or chitosan from chitin-containing biological raw materials to chitosan fine particles, a 1% by weight solution viscosity of chitosan before micronization is 1,000 mPa It has been found that it is preferably s or less, and it has been found that it is important that the degree of deacetylation of chitosan is 60% or more for maintaining the original function of chitosan.

次に好ましい実施形態を挙げて本発明をさらに詳しく説明する。
現状工業的に生産されているキチンは、カニ、エビ、シャコなどの甲殻、あるいはイカの甲を原料としている。本発明者らは、キチンを一旦塩酸、硫酸などで酸加水分解してこれらキチン含有生物原料中に存在するキチンより多少でも低分子量化したキチンとし、このキチンを出発物質に、過酸化水素、次亜塩素酸などの酸化剤で酸化分解する方法;塩酸、硫酸などで酸加水分解する方法;電子線照射方法;ピンミル、ハンマーミル、ボールミル、ジェットミルなどの各種粉砕機で機械的応力を付加する方法などの単独または組み合わせで低分子量化して得られたキチンであって、これを脱アセチル化してキトサンとしたもののうちで、1質量%溶液粘度が1.5mPa・s以上1,000mPa・s以下であるキトサンが、低分子量化前のキトサンより格段に粉砕性に優れていることを見出し、さらに1質量%溶液粘度が1.5mPa・s以上500mPa・s以下であるキトサンが特に生分解性および生理活性などに優れていることを見いだした。
Next, the present invention will be described in more detail with reference to preferred embodiments.
Currently, industrially produced chitin is made from shells such as crabs, shrimps and giant clams, or squid shells. The inventors of the present invention once chitin acid hydrolyzed with hydrochloric acid, sulfuric acid or the like to obtain chitin having a molecular weight lower than that of chitin present in these chitin-containing biomaterials. Method of oxidative decomposition with oxidizing agents such as hypochlorous acid; Method of acid hydrolysis with hydrochloric acid, sulfuric acid, etc .; Method of electron beam irradiation; Mechanical stress is applied by various grinding machines such as pin mill, hammer mill, ball mill, jet mill, etc. Among the chitins obtained by reducing the molecular weight by a single method or a combination of the above, and deacetylating them into chitosan, the 1% by mass solution viscosity is 1.5 mPa · s or more and 1,000 mPa · s. The following chitosan was found to be much more excellent in grindability than chitosan prior to molecular weight reduction, and the 1% by mass solution viscosity was 1.5 mPa · s to 500 It has been found that chitosan is less Pa · s is excellent like especially biodegradable and bioactive.

このことは前記キチンから得た低分子量化キトサン、あるいは上記低分子量化処理をしないキチンから脱アセチル化した従来の比較的高分子量のキトサンに上記キチン低分子量化方法と同様な方法を施し、低分子量化したキトサンについても同様である。キチン並びにキトサンはともに難粉砕性物質でこれまで原料中のキチンから目的のキトサンまで、該キチンまたはキトサンを溶解する工程を経ずにキトサン微粒子を製造することは困難であった。   This is achieved by applying a method similar to the above-described chitin molecular weight reduction method to the low molecular weight chitosan obtained from the chitin or the conventional relatively high molecular weight chitosan deacetylated from the chitin not subjected to the low molecular weight treatment. The same applies to chitosan having a molecular weight. Chitin and chitosan are both difficult-to-grind substances, so far it has been difficult to produce chitosan fine particles from chitin in the raw material to the target chitosan without going through the step of dissolving the chitin or chitosan.

特に原料中のキチンから目的のキトサンまで、該キチンまたはキトサンを溶解する工程を経ずに粒径100μm以下の粒子が90%以上であるキトサン微粒子乾燥粉体、その中でも粒径50μm以下の粒子が50%以上であるキトサン微粒子乾燥粉体を製造することは極めて困難であった。   In particular, from chitin in the raw material to the target chitosan, chitosan fine particle dry powder in which particles having a particle size of 100 μm or less are 90% or more without passing through the step of dissolving the chitin or chitosan, among which particles having a particle size of 50 μm or less It was extremely difficult to produce chitosan fine particle dry powder of 50% or more.

これに対し上記方法で低分子量化したものを粉砕原料とし、これをボールミルあるいはジェットミルを使用することにより粒径50μm以下の粒子が90%以上であるキトサン微粒子乾燥粉体が得られた。さらにジェットミルでは平均粒子径3.6μm、粒径10μm以下100%であり、粒径1μm以下の粒子が5%以内の極微粒子キトサン乾燥体粉末を得ることができた。このキトサンの1質量%溶液粘度は3mPa・sであった。また、粘度測定後のキトサン溶液をガラス板状に流延し乾燥したところ、高分子化合物の1指標となるフィルムが得られた。得られたキトサン微粒子は脱臭剤として脱臭速度および能力とも従来のキトサン粒子より明らかに優れていた。   On the other hand, a powder obtained by reducing the molecular weight by the above method was used as a pulverized raw material, and a ball mill or jet mill was used to obtain a chitosan fine particle dry powder having a particle size of 50 μm or less of 90% or more. Furthermore, in the jet mill, an extremely fine chitosan dry powder having an average particle size of 3.6 μm, a particle size of 10 μm or less and 100%, and a particle size of 1 μm or less within 5% could be obtained. The 1% by mass solution viscosity of this chitosan was 3 mPa · s. Moreover, when the chitosan solution after measuring the viscosity was cast into a glass plate and dried, a film serving as one index of the polymer compound was obtained. The obtained chitosan fine particles were clearly superior to conventional chitosan particles in terms of deodorization rate and ability as a deodorizer.

ジェットミル、ボールミル以外の例えばハンマーミル、ピンミルなどの衝撃型粉砕機では、粒径50μm以下の粒子が90%以上である微粒子キチン乾燥粉体を効率よく得ることはできなかった。キトサン粉体中に粒径100μm以上の粒子が10%以上あると、他の高分子化合物との複合体を形成した場合、その表面の平滑性に欠ける点が大きくなり、商品価値が低下する。また、1μmの粒子が5%以上あるところまで粉砕することは経済的ではない。   In impact type pulverizers such as hammer mills and pin mills other than jet mills and ball mills, it has not been possible to efficiently obtain fine particulate chitin dry powders having a particle size of 50 μm or less of 90% or more. If the chitosan powder contains 10% or more particles having a particle size of 100 μm or more, when a complex with another polymer compound is formed, the surface lacks smoothness and the commercial value is lowered. Further, it is not economical to grind the particles having a particle size of 1 μm to 5% or more.

キチンは、カニ、エビなどの甲殻類の甲殻、微生物の細胞壁、キノコなど、自然界に広く分布する多糖であり、本来的にはキチン含有生物中のキチンの何れも本発明の対象となり得るが、実際的には収穫のしやすさなどの理由から、カニ、エビ、シャコなどの甲殻、あるいはイカの甲が原料として使用されており、本発明においてもこれらを使用する。また、従来知られている例えばEDTAを使用する方法、タンパク分解酵素を使用する方法、ハックマンの方法あるいはその改良法によって単離したキチンの何れも使用可能である。キチンの単離純度も必ずしも100%である必要はなく、目的に応じてキチン含有生物中キチンと共存するタンパク質、無機物を残したものでもよい。場合によってはこれらキチン含有生物からキチンを単離せず、そのまま処理してキチン含有微粒子とすることもできる。   Chitin is a polysaccharide widely distributed in nature, such as crustacean shells such as crabs and shrimps, microbial cell walls, mushrooms, and any chitin in chitin-containing organisms can be the subject of the present invention. Actually, shells such as crabs, shrimps, mantis, or squid shells are used as raw materials for reasons such as ease of harvesting, and these are also used in the present invention. In addition, any of chitin isolated by a conventionally known method using EDTA, a method using a proteolytic enzyme, a Hackman method, or an improved method thereof can be used. The isolation purity of chitin is not necessarily 100%, and it may be a protein or an inorganic substance that coexists with chitin in a chitin-containing organism depending on the purpose. In some cases, chitin is not isolated from these chitin-containing organisms, but can be processed as it is to obtain chitin-containing fine particles.

本発明では、キチンを脱アセチル化してキトサンとする。この場合、脱アセチル化度は60%以上が好ましい。キトサンを脱臭剤として使用する場合など、キトサンのアミノ基の量が多い方がよいことは言うまでもなく、また、脱アセチル化度60%以下の脱アセチル化物は、希酢酸水溶液に容易に溶解しないなど、キトサンの特徴を表さなくなる。   In the present invention, chitin is deacetylated to chitosan. In this case, the degree of deacetylation is preferably 60% or more. Needless to say, when chitosan is used as a deodorant, the amount of amino groups in chitosan is better, and deacetylated products having a degree of deacetylation of 60% or less are not easily dissolved in dilute aqueous acetic acid. , No longer represent the characteristics of chitosan.

本発明では、キチンを脱アセチル化して得たキトサンが低分子量化していなかったり、低分子量化が不十分である場合、得られたキトサンを微粒子に粉砕することが困難である。   In the present invention, when chitosan obtained by deacetylating chitin is not reduced in molecular weight or insufficient in molecular weight reduction, it is difficult to pulverize the obtained chitosan into fine particles.

通常キチンを水酸化ナトリウム水溶液の中に浸漬すれば脱アセチル化が起こる。脱アセチル化度60%以上のキトサンを効率よく製造するにはキチンを約40質量%以上の水酸化ナトリウム水溶液の中に浸漬し、室温以上で攪拌する。   Usually, deacetylation occurs when chitin is immersed in an aqueous sodium hydroxide solution. In order to efficiently produce chitosan having a degree of deacetylation of 60% or more, chitin is immersed in an aqueous solution of sodium hydroxide of about 40% by mass or more and stirred at room temperature or more.

具体例を示せば、電気伝導度1μS以下のイオン交換水および試薬特級グレードの水酸化ナトリウムを使用して42質量%水酸化ナトリウム水溶液を調製する。この42質量%水酸化ナトリウム水溶液500gを500mlの4つ口セパラブルガラスフラスコに入れ、4つの口にガラス製櫂型羽根付攪拌棒、温度計、窒素導入管(導入管の先端がフラスコ内溶液表面から少なくとも1/3以上液中に浸漬するようセットする)およびコンデンサーをセットし、流量約2L/分の窒素気流下、100〜150回転/分にて攪拌しながら100℃まで加熱し、10〜20分間100〜105℃に保持した後、20℃まで冷却する。窒素は終始流したまま、キチン20gを加え、流量約2L/分の窒素気流下、20℃にて100〜150回転/分にて1時間攪拌した後、約1時間かけて60℃まで昇温し、温度60〜65℃で16時間攪拌する。その後、速やかに内容物(キトサン)と水酸化ナトリウム水溶液とをろ別し、ろ別したキトサンを10〜15℃のイオン交換水1Lに加え10分間攪拌した後、キトサンをろ別する。この操作を15回繰り返す。その後真空乾燥機中で減圧下50℃で16時間乾燥して含水率10%以下の乾燥キトサンを得ることができる。   As a specific example, a 42% by mass aqueous sodium hydroxide solution is prepared using ion-exchanged water having an electric conductivity of 1 μS or less and reagent-grade sodium hydroxide. 500 g of this 42 mass% sodium hydroxide aqueous solution is put into a 500 ml four-neck separable glass flask, and a four-necked stirring rod with a glass bowl-shaped blade, a thermometer, a nitrogen introduction tube (the tip of the introduction tube is the solution in the flask) And set the condenser so that it is immersed in the liquid at least 1/3 or more from the surface, and heat to 100 ° C. with stirring at 100 to 150 revolutions / minute under a nitrogen stream at a flow rate of about 2 L / min. Hold at 100-105 ° C for -20 minutes and then cool to 20 ° C. While nitrogen was constantly flowing, 20 g of chitin was added and the mixture was stirred for 1 hour at 100 to 150 rpm at 20 ° C. in a nitrogen stream at a flow rate of about 2 L / min, and then heated to 60 ° C. over about 1 hour. And stirred at a temperature of 60 to 65 ° C. for 16 hours. Thereafter, the content (chitosan) and the aqueous sodium hydroxide solution are promptly filtered, and the filtered chitosan is added to 1 L of ion-exchanged water at 10 to 15 ° C. and stirred for 10 minutes, and then the chitosan is filtered off. This operation is repeated 15 times. Thereafter, it can be dried in a vacuum dryer at 50 ° C. under reduced pressure for 16 hours to obtain dry chitosan having a water content of 10% or less.

キトサンの溶液粘度を測定する場合には、使用するキトサンの蒸発分補正のために、キトサンを105℃、24時間乾燥し、乾燥減量(A質量%)を求め、蒸発残分「(100−A)%」を計算しておく。溶液粘度は、測定可能粘度範囲があるので、一台の粘度計で対応するため、測定溶液の濃度を2種類とする。低分子量キトサンの測定は、キトサン蒸発残分「(100−A)%」濃度1質量%、酢酸濃度1質量%とし、比較的高分子量のキトサンの場合は、キトサン蒸発残分「(100−A)%」濃度0.5質量%、酢酸濃度0.5質量%とする。   When measuring the solution viscosity of chitosan, the chitosan is dried at 105 ° C. for 24 hours in order to correct the amount of evaporation of chitosan used, the loss on drying (A mass%) is obtained, and the evaporation residue “(100−A )% ". Since the solution viscosity has a measurable viscosity range, the concentration of the measurement solution is two types in order to cope with one viscometer. The measurement of the low molecular weight chitosan was carried out using a chitosan evaporation residue “(100-A)%” concentration of 1 mass% and an acetic acid concentration of 1 mass%. In the case of relatively high molecular weight chitosan, the chitosan evaporation residue “(100-A )% ”Concentration 0.5% by mass and acetic acid concentration 0.5% by mass.

さらに具体的には、200mlガラスビーカーに電気伝導度1μS以下のイオン交換水約150gを取り、20℃とする。これに上記で得た乾燥キトサンの蒸発残分質量で2.0g(1質量%溶液)、あるいは1.0g(0.5質量%溶液)を入れ、長さ約50mm、太さ約8mmの樹脂コーティングした回転子にて20〜22℃、約1分間低速で攪拌する。次に試薬特級グレード酢酸2.0g(1質量%溶液)、あるいは1.0g(0.5質量%溶液)を加え、さらに電気伝導度1μS以下のイオン交換水を加えて、最終的に液量が200.0gになるよう調整した後、20〜22℃で攪拌する。ビーカー上部をラップ類などで蓋をした後、溶液粘度の上昇に合わせて液表面の中心部が1〜2mm程度へこむ程度に回転数を調整し温度20〜22℃で攪拌を3時間続ける。その後攪拌を止め温度20〜22℃で10時間静置する。その後、温度20〜22℃で液表面の中心部が1〜2mm程度へこむ程度に回転数を調整し攪拌を1時間続けた後、20℃で回転粘度計(東機産業(株) TV−10M型)にて粘度測定を行う。粘度計の回転数30rpm、測定時間1分とし、溶液粘度が2〜20mP・sのときはローターナンバー19のローター、溶液粘度が20〜200mP・sのときはローターナンバー20のローター、溶液粘度が100〜1,000mP・sのときはローターナンバー21のローター、溶液粘度が400〜4,000mP・sのときはローターナンバー22のローターを使用する。   More specifically, about 150 g of ion-exchanged water having an electric conductivity of 1 μS or less is taken into a 200 ml glass beaker and set to 20 ° C. Into this, 2.0 g (1% by weight solution) or 1.0 g (0.5% by weight solution) of dry chitosan obtained as described above is added, and the resin has a length of about 50 mm and a thickness of about 8 mm. Stir with a coated rotor at 20-22 ° C. for about 1 minute at low speed. Next, 2.0 g of reagent grade acetic acid (1% by mass solution) or 1.0 g (0.5% by mass solution) is added, and ion-exchanged water having an electric conductivity of 1 μS or less is further added. After adjusting so that it may become 200.0g, it stirs at 20-22 degreeC. After the top of the beaker is covered with wraps or the like, the rotation speed is adjusted so that the center of the liquid surface is recessed by about 1 to 2 mm as the solution viscosity increases, and stirring is continued at a temperature of 20 to 22 ° C. for 3 hours. Then, stirring is stopped and the mixture is allowed to stand at a temperature of 20 to 22 ° C. for 10 hours. Then, after adjusting the number of rotations so that the center of the liquid surface is recessed by about 1 to 2 mm at a temperature of 20 to 22 ° C. and stirring for 1 hour, a rotational viscometer (Toki Sangyo Co., Ltd. TV-10M Viscosity is measured with a mold). When the solution viscosity is 2 to 20 mP · s, the rotor number 19 is the rotor. When the solution viscosity is 20 to 200 mP · s, the rotor number 20 is the rotor. When the viscosity is 100 to 1,000 mP · s, the rotor with the rotor number 21 is used. When the solution viscosity is 400 to 4,000 mP · s, the rotor with the rotor number 22 is used.

キトサンの脱アセチル化度は以下のコロイド滴定法で測定する。
1.キトサンの蒸発残分
1)恒量にした秤量瓶に試料1.5gを正確に測り採り、質量A(g)を記録する。
2)秤量瓶の蓋を外した状態で105℃送風乾燥機に入れ、1.5時間加熱する。
3)送風乾燥機中で秤量瓶に蓋をした後、シリカゲルデシケーターに取り出して放冷する。
4)質量を測定し、下記計算式[1]に従って蒸発残分を計算する。
キトサンの蒸発残分(%)={加熱・放冷後の(秤量瓶+試料)質量(g)−秤量瓶風袋の恒量(g)}÷試料質量A(g)×100…[1]
The degree of deacetylation of chitosan is measured by the following colloid titration method.
1. 1. Chitosan evaporation residue 1) Accurately measure 1.5 g of sample in a constant weighing bottle and record the mass A (g).
2) With the lid of the weighing bottle removed, place in a 105 ° C. blower dryer and heat for 1.5 hours.
3) After covering the weighing bottle in the blower dryer, take it out in a silica gel desiccator and let it cool.
4) Measure the mass and calculate the evaporation residue according to the following calculation formula [1].
Evaporation residue of chitosan (%) = {mass (g) after heating and cooling (sample) mass (g) −constant weight of weighing bottle tare (g)} ÷ sample mass A (g) × 100... [1]

2.キトサン/酢酸水溶液の調製
1)200mlガラスビーカーに上記1)の蒸発残分換算質量1.00gを正確に測り採る。
2)水198.0gを加え、マグネットスターラーで攪拌、分散する。
3)酢酸1mlをメスピペットで測り採り、上記分散溶液へ滴下する。
4)ビーカーにポリラップ(登録商標)で蓋をして、20〜25℃で約4時間、十分に攪拌の後に攪拌を止め、20〜25℃の室内に一晩(約16時間)静置する。
5)静置の後、再び20〜25℃で約2時間、十分に攪拌する。
2. Preparation of chitosan / acetic acid aqueous solution 1) Accurately measure 1.00 g in terms of evaporation residue of 1) above in a 200 ml glass beaker.
2) Add 198.0 g of water and stir and disperse with a magnetic stirrer.
3) Measure 1 ml of acetic acid with a measuring pipette and drop it into the dispersion.
4) Cover the beaker with polywrap (registered trademark), stop stirring at 20-25 ° C for about 4 hours, and after sufficient stirring, leave it in the room at 20-25 ° C overnight (about 16 hours). .
5) After standing still, it is sufficiently stirred again at 20-25 ° C. for about 2 hours.

3.コロイド滴定
1)200mlガラスビーカーに、上記1)で溶解した水溶液20.00gを正確に測り採り、水180.0gを加えてポリラップで蓋をし、マグネットスターラーで1時間攪拌する。
2)攪拌の後、200mlコニカルビーカーに溶液10.00gを正確に測り採り、水50mlと0.1%トルイジンブルー水溶液2〜3滴を加えて混合する。
3)コロイド滴定試薬N/400ポリビニル硫酸カリウム水溶液でコロイド滴定を行う。終点は、水溶液の着色が青色から赤紫色に変わる点とする。
3. Colloid titration 1) Into a 200 ml glass beaker, accurately measure 20.00 g of the aqueous solution dissolved in 1) above, add 180.0 g of water, cover with polywrap, and stir with a magnetic stirrer for 1 hour.
2) After stirring, accurately measure 10.00 g of the solution in a 200 ml conical beaker, add 50 ml of water and 2-3 drops of 0.1% toluidine blue aqueous solution and mix.
3) Colloidal titration with colloid titration reagent N / 400 aqueous polyvinyl potassium sulfate. The end point is the point at which the color of the aqueous solution changes from blue to reddish purple.

4.脱アセチル化度の計算方法
下記計算式[2]に従ってキトサンの脱アセチル化度を計算する。
脱アセチル化度(%)=(遊離アミノ基)÷{(遊離アミノ基)+(結合アミノ基)}×100…[2]
=(X/161)÷{(X/161)+(Y/203)}×100
ここで、X=キトサン中の遊離アミノ基質量=1/400×1/1000×F×161×(V−B)、Y=キトサン中の結合アミノ基質量=0.5×1/100−X
161:グルコサミン残基の当量分子量
203:N−アセチルグルコサミン残基の当量分子量
F:N/400ポリビニル硫酸カリウム水溶液のファクター
V:N/400ポリビニル硫酸カリウム水溶液の試料での滴定値(ml)
B:N/400ポリビニル硫酸カリウム水溶液の空試験での滴定値(ml)
4). Calculation method of degree of deacetylation The degree of deacetylation of chitosan is calculated according to the following formula [2].
Deacetylation degree (%) = (free amino group) ÷ {(free amino group) + (bonded amino group)} × 100 (2)
= (X / 161) ÷ {(X / 161) + (Y / 203)} × 100
Where X = free amino group mass in chitosan = 1/400 × 1/1000 × F × 161 × (V−B), Y = bonded amino group mass in chitosan = 0.5 × 1 / 100-X
161: Equivalent molecular weight of glucosamine residue 203: Equivalent molecular weight of N-acetylglucosamine residue F: Factor of N / 400 aqueous potassium potassium sulfate solution V: Titration value in sample of aqueous N / 400 aqueous potassium potassium sulfate solution (ml)
B: Titration value in the blank test of N / 400 potassium polyvinyl sulfate aqueous solution (ml)

「試薬」
(1)酢酸:試薬特級
(2)N/400ポリビニル硫酸カリウム水溶液:和光純薬 Lot.YPG8290 F=1.01 2004年11月16日購入(N/400ポリビニル硫酸カリウム水溶液は2004年に新タイプが発売された。ここでは改善された新タイプを使用するとする。)
(3)トルイジンブルー指示薬溶液:和光純薬 Lot.YLK9939
"reagent"
(1) Acetic acid: reagent special grade (2) N / 400 potassium polyvinyl sulfate aqueous solution: Wako Pure Chemicals Lot. YPG8290 F = 1.01 Purchased on November 16, 2004 (A new type of N / 400 aqueous potassium potassium sulfate solution was released in 2004. Here, it is assumed that an improved new type is used.)
(3) Toluidine blue indicator solution: Wako Pure Chemicals Lot. YLK9939

キトサン微粒子の粒度は以下の方法で測定する。
粒度分布の測定は、レーザー回折散乱式粒度分布測定装置〔(株)堀場製作所製LA−300(レーザー光波長;650nm)〕を用いて行い、キトサン微粒子30〜50mgを試薬特級グレードのメタノール100mlと混合し、超音波バス(出力300W、周波数40kHz)で1分間分散させた後、バッチ式セルにセットし、透過率が70〜95%の範囲内になるよう試料濃度を調整した後測定した。測定条件としては、データ取り込み回数10回、反復回数30回、屈折率は1.50−0.00iの値を入力し、粒度分布は体積基準として計算を行った。
The particle size of the chitosan fine particles is measured by the following method.
The particle size distribution is measured using a laser diffraction / scattering particle size distribution measuring apparatus [LA-300 manufactured by Horiba, Ltd. (laser light wavelength: 650 nm)], and 30 to 50 mg of chitosan fine particles are mixed with 100 ml of reagent-grade grade methanol. After mixing and dispersing in an ultrasonic bath (output 300 W, frequency 40 kHz) for 1 minute, the sample was set in a batch cell and the sample concentration was adjusted so that the transmittance was in the range of 70 to 95%. As measurement conditions, the number of data acquisition was 10 times, the number of repetitions was 30, the refractive index was 1.50-0.00i, and the particle size distribution was calculated based on volume.

本発明の好ましい実施形態では、キチンを先ず塩酸、硫酸などのプロトン酸で低分子量化する。キチン単離の際の塩酸による脱炭酸カルシウム工程で同時に低分子量化を行うと好都合である。例えば、カニ殻1質量部を水30質量部に分散させておき、これに1質量部以上の塩酸を加え、20℃以上で好ましくは30℃以上で5時間以上攪拌する。これによって得られたキチンをキトサン化したときの0.5質量%溶液粘度が700mPa・s以下にまで低分子量化したキチンが得られる。   In a preferred embodiment of the present invention, chitin is first reduced in molecular weight with a protonic acid such as hydrochloric acid or sulfuric acid. It is advantageous to reduce the molecular weight at the same time in the decalcification step with hydrochloric acid during the isolation of chitin. For example, 1 part by mass of crab shell is dispersed in 30 parts by mass of water, 1 part by mass or more of hydrochloric acid is added thereto, and the mixture is stirred at 20 ° C. or higher, preferably 30 ° C. or higher for 5 hours or longer. As a result, chitin having a low molecular weight of 0.5% by mass when the chitin obtained is chitosan-converted to a viscosity of 700 mPa · s or less can be obtained.

このキチンを過酸化水素、次亜塩素酸などの酸化剤で酸化分解する方法;塩酸、硫酸などで酸加水分解する方法;電子線照射方法;ピンミル、ハンマーミル、ボールミル、ジェットミルなどの各種粉砕機で機械的応力を付加する方法によって低分子量化する。上記の方法は何れも基本的には使用可能であるが、それぞれ一長一短があり、また、最終目的物がキトサン微粒子であるので、単独でもよいが、目的に応じて上記方法を組み合わせて低分子量化を実施することが好ましい。但しキチンの段階で最終目的粒径の粒子まで粉砕してしまうと、その後の脱アセチル化の際のろ過が難しくなり、また、損失も大きくなるので好ましくない。このように脱アセチル化のことを考えると、目開き1mm程度の篩を90%程度通過する程度の粉砕にとどめておくことが好ましく、このキチンを脱アセチル化してキトサンとし、このキトサンを必要に応じてキチンの場合と同様の方法を適用して低分子量化してもよい。   Oxidative decomposition of chitin with oxidizing agents such as hydrogen peroxide and hypochlorous acid; Acid hydrolyzing with hydrochloric acid, sulfuric acid, etc .; Electron beam irradiation method; Various pulverizations such as pin mill, hammer mill, ball mill, jet mill, etc. The molecular weight is reduced by a method of applying mechanical stress with a machine. Any of the above methods can be used basically, but each has advantages and disadvantages, and since the final target product is chitosan fine particles, it may be used alone, but the above methods may be combined according to the purpose to reduce the molecular weight. It is preferable to implement. However, pulverization to particles having the final target particle size at the chitin stage is not preferable because filtration during subsequent deacetylation becomes difficult and loss increases. Considering the deacetylation in this way, it is preferable to keep the pulverization to about 90% through a sieve having an opening of about 1 mm. This chitin is deacetylated into chitosan, and this chitosan is necessary. Accordingly, the molecular weight may be lowered by applying the same method as in the case of chitin.

キチンまたはキトサンの低分子量化は、例えば、電子線照射方法が操作としては最も簡便であり、これと粉砕機との組み合わせが有効であるが、電子線照射物は食品用途には使用できないという制限がある。一方、キチンまたはキトサンの化学分解は、通常水中反応であるので、この方法での低分子量化では、得られた分解物を微粉砕前に乾燥する必要がある。この意味からは脱アセチル化後の低分子量化は特に粉砕機による方法が最も有効であり、特に粒径100μm以下の粒子が90%以上であるキトサン微粒子乾燥粉体、その中でも粒径50μm以下の粒子が50%以上であるキトサン微粒子乾燥粉体を得るためには、ジェットミルあるいはボールミルが有効であるが、低分子量化していないキチン含有原料生物そのまま、あるいはキトサンにしたときの0.5質量%溶液粘度が700mPa・s以上であって、必要な低分子量化をしていないキチンまたはキトサンを使用した場合、粉砕機単独で目的の粒度にすることはできない。そこで最終的にジェットミルあるいはボールミルで粉砕する前にジェットミル以外のハンマーミル、ピンミル、ボールミル、振動ミル、遊星運動ミルなど、衝撃またはずり応力付加型のキチンまたはキトサンの低分子量化を引き起こす能力を持った粉砕機で低分子量化することが望ましい。   For the reduction of the molecular weight of chitin or chitosan, for example, the electron beam irradiation method is the simplest to operate, and the combination of this with a pulverizer is effective, but the restriction that electron beam irradiated products cannot be used for food applications. There is. On the other hand, since chemical decomposition of chitin or chitosan is usually a reaction in water, in order to reduce the molecular weight by this method, it is necessary to dry the obtained decomposition product before pulverization. From this point of view, the molecular weight reduction after the deacetylation is particularly effective by a method using a pulverizer, particularly a chitosan fine particle dry powder in which particles having a particle size of 100 μm or less are 90% or more, of which the particle size is 50 μm or less. In order to obtain a chitosan fine particle dry powder having particles of 50% or more, a jet mill or a ball mill is effective, but the chitin-containing raw material organism not reduced in molecular weight is used as it is or 0.5% by mass when chitosan is used. When chitin or chitosan having a solution viscosity of 700 mPa · s or more and not having a low molecular weight is used, the desired particle size cannot be obtained by a pulverizer alone. Therefore, before grinding with a jet mill or a ball mill, the ability to lower the molecular weight of impact- or shear-stressed chitin or chitosan, such as hammer mills other than jet mills, pin mills, ball mills, vibration mills, planetary motion mills, etc. It is desirable to reduce the molecular weight with a pulverizer.

低分子量化並びに粉砕条件は、目的とするキトサン微粒子乾燥粉体の希望粒度、分子量、脱アセチル化度、それぞれの組み合わせに応じて適切に選択すればよい。得られたキトサン微粒子乾燥粉体は水分を含んでいてもよく、特に再乾燥しなくてもよいが、粉砕後の水分量が10質量%以上であって、水分をそれ以下にする必要がある場合は粉砕後乾燥してもよい。   The molecular weight reduction and pulverization conditions may be appropriately selected according to the desired particle size, molecular weight, degree of deacetylation, and combination of the desired chitosan fine particle dry powder. The obtained chitosan fine particle dry powder may contain moisture, and does not need to be re-dried in particular. However, the water content after pulverization is 10% by mass or more and the moisture needs to be less than that. In some cases, it may be dried after pulverization.

次に実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、脱アセチル化度および粒度以外の「部」または「%」は質量基準である。
実施例1
目開き4mmの篩を通過させた粗砕カニ殻1部を水30部に分散させておき、これに1部以上の塩酸を加え、20℃以上で好ましくは30℃以上で5時間以上攪拌する。その後、脱カルシウムカニ殻をろ別し、水30部中に再分散した後、ろ別する。この操作を10回繰り返した後、水30部中に再分散し、水酸化ナトリウム3部を加え、70℃まで加熱攪拌を3時間した後、キチンをろ別し、水30部中に再分散した後、ろ別する。この操作を10回繰り返した後、50℃の温風にて20時間乾燥して原料キチンを得た。このキチンをキトサンとし、0.5%の溶液粘度を測定したところ500mPa・sであった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. “Part” or “%” other than the degree of deacetylation and particle size is based on mass.
Example 1
1 part of the coarse crab shell that has passed through a sieve with a mesh opening of 4 mm is dispersed in 30 parts of water, and 1 part or more of hydrochloric acid is added thereto, and the mixture is stirred at 20 ° C. or more, preferably 30 ° C. or more and 5 hours or more. . Thereafter, the decalcified crab shell is filtered off, redispersed in 30 parts of water, and then filtered off. After repeating this operation 10 times, redispersed in 30 parts of water, added 3 parts of sodium hydroxide, heated and stirred to 70 ° C. for 3 hours, filtered off chitin, and redispersed in 30 parts of water. And then filter. This operation was repeated 10 times and then dried with hot air at 50 ° C. for 20 hours to obtain raw material chitin. When this chitin was used as chitosan and a solution viscosity of 0.5% was measured, it was 500 mPa · s.

このキチン100部を水2,000部に分散し、炭酸ナトリウム2.5部を加えた後、亜臭素酸ナトリウム0.15部を加え室温で6時間攪拌した。キチンをろ別し、水30部中に再分散した後、ろ別する。この操作を5回繰り返した後、50℃の温風にて20時間乾燥してキチンを得た。このキチンを脱アセチル化してキトサンとし、1.0%の溶液粘度を測定したところ480mPa・sであった。このキトサンをハンマーミルで粉砕し、目開き400μmの篩を通過させた。このキトサンの1.0%の溶液粘度を測定したところ120mPa・sであった。   100 parts of this chitin was dispersed in 2,000 parts of water, 2.5 parts of sodium carbonate was added, 0.15 part of sodium bromite was added, and the mixture was stirred at room temperature for 6 hours. The chitin is filtered off, redispersed in 30 parts of water and then filtered off. This operation was repeated 5 times and then dried with hot air at 50 ° C. for 20 hours to obtain chitin. This chitin was deacetylated to chitosan and a solution viscosity of 1.0% was measured and found to be 480 mPa · s. This chitosan was pulverized with a hammer mill and passed through a sieve having an opening of 400 μm. When 1.0% solution viscosity of this chitosan was measured, it was 120 mPa · s.

さらにこのキトサンをボールミルにて48時間粉砕してキトサン微粒子(A−1)を得た。このキトサン微粒子の粒度分布を測定したところ粒度分布の中心が10μmであり、100μm以下の微粒子が90%以上であった。このキトサンの1.0%の溶液粘度を測定したところ8mPa・sであった。   Further, this chitosan was pulverized with a ball mill for 48 hours to obtain chitosan fine particles (A-1). When the particle size distribution of the chitosan fine particles was measured, the center of the particle size distribution was 10 μm, and the fine particles of 100 μm or less were 90% or more. When 1.0% solution viscosity of this chitosan was measured, it was 8 mPa · s.

さらにこのキトサンをジェットミルで粉砕してキトサン微粒子(B−1)を得た。このキトサン微粒子の粒度分布の中心が4.5μmであり、10μm以下の微粒子が100%であった。このキトサンの1.0%の溶液粘度を測定したところ4mPa・sであった。   Furthermore, this chitosan was pulverized with a jet mill to obtain chitosan fine particles (B-1). The center of the particle size distribution of the chitosan fine particles was 4.5 μm, and the fine particles of 10 μm or less were 100%. It was 4 mPa * s when the solution viscosity of 1.0% of this chitosan was measured.

さらにこのキトサンをジェットミルで粉砕してキトサン微粒子(B’−1)を得た。このキトサン微粒子の粒度分布の中心が3.2μmであり、10μm以下が100%であり、1〜10μmが99%の粒子を得た。このキトサンの1.0%の溶液粘度を測定したところ2mPa・sであった。このものの脱アセチル化度は87%であった。   Further, this chitosan was pulverized with a jet mill to obtain chitosan fine particles (B′-1). The center of the particle size distribution of the chitosan fine particles was 3.2 μm, 10 μm or less was 100%, and 1 to 10 μm was 99%. It was 2 mPa * s when the solution viscosity of 1.0% of this chitosan was measured. The degree of deacetylation of this product was 87%.

実施例2
実施例1の原料キチンを脱アセチル化して脱アセチル化度66%のキトサンを得た。これをピンミルで粗砕後、遊星運動ミルで粉砕し、目開き200μmの篩を通過するキトサン粒子を得た。これを2つに分け、一方をボールミルで粉砕してキトサン微粒子(A−2)を得た。このキトサン微粒子の粒度分布の中心が32μmであり、100μm以下が90%以上の粒子を得た。このキトサンの1.0%の溶液粘度を測定したところ340mPa・sであった。
Example 2
The raw material chitin of Example 1 was deacetylated to obtain chitosan having a deacetylation degree of 66%. This was coarsely crushed with a pin mill and then crushed with a planetary motion mill to obtain chitosan particles passing through a sieve having an opening of 200 μm. This was divided into two and one was pulverized with a ball mill to obtain chitosan fine particles (A-2). The center of the particle size distribution of the chitosan fine particles was 32 μm, and particles with 100 μm or less being 90% or more were obtained. When 1.0% solution viscosity of this chitosan was measured, it was 340 mPa · s.

もう一方のキトサンをジェットミルで粉砕してキトサン微粒子(B−2)を得た。このキトサン微粒子の粒度分布の中心は5.8μmであり、10μm以下が75%であり、100μm以下が90%以上であった。このキトサンの1.0%の溶液粘度を測定したところ9mPa・sであった。このものの脱アセチル化度は66%であった。   The other chitosan was pulverized with a jet mill to obtain chitosan fine particles (B-2). The center of the particle size distribution of the chitosan fine particles was 5.8 μm, 10 μm or less was 75%, and 100 μm or less was 90% or more. When 1.0% solution viscosity of this chitosan was measured, it was 9 mPa · s. The degree of deacetylation of this product was 66%.

比較例1
目開き4mmの篩を通過させた粗砕カニ殻1部を氷水30部に分散させておき、さらに外部からも氷冷する。これに0.8部の塩酸を、攪拌下、内温が3℃以上にならないよう少量ずつ滴下した。滴下終了後内温が3℃以下で5時間以上攪拌する。その後、脱カルシウムカニ殻をろ別し、水30部中に再分散した後、ろ別する。この操作を10回繰り返した後、窒素気流下、水30部中に再分散し、水酸化ナトリウム3部を加え、40℃まで加熱攪拌3時間した後、キチンをろ別し、水30部中に再分散した後、ろ別する。
Comparative Example 1
One part of the coarsely crushed crab shell that has been passed through a sieve having a mesh size of 4 mm is dispersed in 30 parts of ice water, and further cooled with ice from the outside. To this, 0.8 part of hydrochloric acid was added dropwise little by little with stirring so that the internal temperature would not exceed 3 ° C. After completion of dropping, the mixture is stirred for 5 hours or more at an internal temperature of 3 ° C or lower. Thereafter, the decalcified crab shell is filtered off, redispersed in 30 parts of water, and then filtered off. After repeating this operation 10 times, re-dispersed in 30 parts of water under a nitrogen stream, added 3 parts of sodium hydroxide, heated and stirred to 40 ° C. for 3 hours, filtered off chitin, and in 30 parts of water. After redispersion, filter off.

上記操作を10回繰り返した後、減圧下40℃にて20時間乾燥してキチンを得た。このキチンを脱アセチル化して脱アセチル化度72%のキトサンとし、0.5%の溶液粘度を測定したところ、2,500mPa・sであった。これを冷凍粉砕し目開き300μmの篩を通過するキトサン粒子を得た。このキトサンの1.0%の溶液粘度を測定したところ1,340mPa・sであった。このものをジェットミルで粉砕したが、度々オーバーロードして機械がストップしてしまった。僅かに粉砕されたものの顕微鏡観察をしたところ、50μmの粒径の粒子も観察されたが、200〜300μmの繊維状のものが多くあり、目的の粒径のキトサン微粒子は得られなかった。   The above operation was repeated 10 times and then dried at 40 ° C. under reduced pressure for 20 hours to obtain chitin. The chitin was deacetylated to obtain chitosan having a degree of deacetylation of 72%, and a solution viscosity of 0.5% was measured and found to be 2500 mPa · s. This was frozen and ground to obtain chitosan particles passing through a sieve having an opening of 300 μm. When a 1.0% solution viscosity of this chitosan was measured, it was 1,340 mPa · s. This was crushed with a jet mill, but overloaded and the machine stopped. Microscopic observation of the slightly pulverized material showed that particles with a particle size of 50 μm were also observed, but there were many fibrous particles with a particle size of 200 to 300 μm, and chitosan fine particles with the desired particle size were not obtained.

実施例3
比較例1の冷凍粉砕品100部を水2,000部に分散し、過酸化水素10部を加え攪拌下、60℃、5時間酸化分解した。キトサンをろ別し、水30部中に再分散した後、ろ別する。この操作を2回繰り返した後、減圧下40℃にて20時間乾燥してキトサンを得た。このキトサンの1.0%の溶液粘度を測定したところ54mPa・sであった。
Example 3
100 parts of the frozen pulverized product of Comparative Example 1 was dispersed in 2,000 parts of water, 10 parts of hydrogen peroxide was added, and the mixture was oxidatively decomposed at 60 ° C. for 5 hours with stirring. Chitosan is filtered off, redispersed in 30 parts of water and then filtered off. This operation was repeated twice and then dried at 40 ° C. under reduced pressure for 20 hours to obtain chitosan. When 1.0% solution viscosity of this chitosan was measured, it was 54 mPa · s.

これを2つに分け一方をボールミルで粉砕してキトサン微粒子(A−3)を得た。このキトサン微粒子の粒度分布の中心が25μmであり、100μm以下が90%以上であった。このキトサンの1.0%の溶液粘度を測定したところ、16mPa・sであった。   This was divided into two, and one was pulverized with a ball mill to obtain chitosan fine particles (A-3). The center of the particle size distribution of the chitosan fine particles was 25 μm, and 100 μm or less was 90% or more. It was 16 mPa * s when the solution viscosity of 1.0% of this chitosan was measured.

もう一方のキトサンを再度脱アセチル化して脱アセチル化度99%とした後、ジェットミルで粉砕してキトサン微粒子(B−3)を得た。このキトサン微粒子の粒度分布の中心が4.8μmであり、10μm以下が75%であり、100μm以下が90%以上であった。このキトサンの1.0%の溶液粘度を測定したところ、5mPa・sであった。
The other chitosan was deacetylated again to a degree of deacetylation of 99% and then pulverized by a jet mill to obtain chitosan fine particles (B-3). The center of the particle size distribution of the chitosan fine particles was 4.8 μm, 10 μm or less was 75%, and 100 μm or less was 90% or more. When 1.0% solution viscosity of this chitosan was measured, it was 5 mPa · s.

以上の実施例および比較例の粉砕後のキトサンの粒径、粘度および脱アセチル化度を下記表1に纏めた。

Figure 2007002123
Table 1 below summarizes the particle size, viscosity, and degree of deacetylation of the chitosan after pulverization in the above Examples and Comparative Examples.
Figure 2007002123

使用例
前記B’−1のキトサン粒子、A−2のキトサン粒子、比較例1のキトサン粒子を使用し、融点140℃のポリエチレンペレットに対し、それぞれ1質量%加え、粉体ブレンドした後、インジェクションプレート作成用試験機に投入し、内温160℃、滞留時間30秒として80mm×50mm、厚さ1mmのインジェクションプレートを作製した。B’−1のキトサン粒子から作成したインジェクションプレートは目視的に表面均質で指で触れると滑らかで、摩擦による脱落も観察されなかった。A−2のキトサン粒子から作成したインジェクションプレートは目視的に表面均質で指で触れると僅かに凹凸を感じるが、殆ど問題にならない程度ではあり、全体として滑らかで、摩擦による脱落も観察されなかった。これに対し比較例1のキトサン粒子を使用して作製したインジェクションプレートにははっきりとキトサン粒子が観察され、また、触診によっても粒子の存在が確認された。その部分を強く摩擦すると粒子の脱落も起こった。
Example of use Using the chitosan particles of B'-1, chitosan particles of A-2, and chitosan particles of Comparative Example 1, 1% by mass of each was added to polyethylene pellets having a melting point of 140 ° C., powder blended, and then injected. An injection plate having an internal temperature of 160 ° C. and a residence time of 30 seconds was prepared as an 80 mm × 50 mm, 1 mm thick injection plate. The injection plate prepared from the B'-1 chitosan particles was visually surface-homogeneous and smooth when touched with a finger, and no detachment due to friction was observed. The injection plate made from the A-2 chitosan particles was visually surface-homogeneous and felt slightly uneven when touched with a finger, but it was almost insignificant, smooth as a whole, and no drop by friction was observed. . In contrast, chitosan particles were clearly observed on the injection plate produced using the chitosan particles of Comparative Example 1, and the presence of the particles was also confirmed by palpation. When the part was rubbed strongly, the particles dropped out.

以上の如き本発明によれば、他の高分子化合物などとの複合化材料として有用なキトサン微粒子を経済的に提供することができる。   According to the present invention as described above, chitosan fine particles useful as a composite material with other polymer compounds and the like can be economically provided.

Claims (6)

原料生物から一回も溶解工程を経ずに製造された脱アセチル化度60%以上、1質量%溶液粘度が1.5mPa・s以上1,000mPa・s以下かつ粒径100μm以下の粒子が90%以上であることを特徴とするキトサン微粒子。   90 degree particles having a degree of deacetylation of 60% or more and a 1% by mass solution viscosity of 1.5 mPa · s or more and 1,000 mPa · s or less and a particle size of 100 μm or less produced from the raw material organism without passing through the dissolution process are 90%. % Chitosan microparticles characterized by being above. 粒径50μm以下の粒子が90%以上である請求項1に記載のキトサン微粒子。   The chitosan fine particles according to claim 1, wherein particles having a particle size of 50 μm or less are 90% or more. 粒径50μm以下の粒子が90%以上かつ1μm以下の粒子が10%以下である請求項1に記載のキトサン微粒子。   The chitosan fine particles according to claim 1, wherein particles having a particle size of 50 µm or less are 90% or more and particles having a particle size of 1 µm or less are 10% or less. ジェットミルあるいはボールミルによって粉砕して得られた請求項1〜3の何れか1項に記載のキトサン微粒子。   The chitosan fine particle according to any one of claims 1 to 3, obtained by pulverizing with a jet mill or a ball mill. ボールミルあるいはジェットミルによる粉砕原料が、ボールミルあるいはジェットミル以外の少なくとも1種の粉砕機で粉砕したキトサン粉末である請求項4に記載のキトサン微粒子。   The chitosan fine particles according to claim 4, wherein the raw material pulverized by a ball mill or a jet mill is chitosan powder pulverized by at least one pulverizer other than the ball mill or jet mill. 粉砕原料が、1質量%溶液粘度が1,000mPa・s以下のキトサンである請求項4または5に記載のキトサン微粒子。   The chitosan fine particles according to claim 4 or 5, wherein the pulverized raw material is chitosan having a 1% by mass solution viscosity of 1,000 mPa · s or less.
JP2005184805A 2005-06-24 2005-06-24 Chitosan fine particles Active JP4976662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184805A JP4976662B2 (en) 2005-06-24 2005-06-24 Chitosan fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184805A JP4976662B2 (en) 2005-06-24 2005-06-24 Chitosan fine particles

Publications (2)

Publication Number Publication Date
JP2007002123A true JP2007002123A (en) 2007-01-11
JP4976662B2 JP4976662B2 (en) 2012-07-18

Family

ID=37688015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184805A Active JP4976662B2 (en) 2005-06-24 2005-06-24 Chitosan fine particles

Country Status (1)

Country Link
JP (1) JP4976662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013972A1 (en) * 2007-07-24 2009-01-29 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Immunoadjuvant and method of assaying iga antibody
JP2009029714A (en) * 2007-07-24 2009-02-12 Dainichiseika Color & Chem Mfg Co Ltd Immunoadjuvant
CN106478840A (en) * 2016-09-13 2017-03-08 浙江大学 A kind of preparation method of cross-linked chitosan

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130346A (en) * 1983-12-20 1985-07-11 Nippon Soda Co Ltd Treatment of chitosan
JPH01152104A (en) * 1987-12-08 1989-06-14 Hokkaido Soda Kk Preparation of water-soluble chitosan salt powder
JPH01249843A (en) * 1988-03-30 1989-10-05 Daicel Chem Ind Ltd Uniformed chitosan suspension
JPH01287102A (en) * 1988-05-13 1989-11-17 Dainichiseika Color & Chem Mfg Co Ltd Production of low-molecular weight chitosan
JPH05279401A (en) * 1992-03-31 1993-10-26 Nippon Kayaku Co Ltd Production of powdery chitosan
JPH0841106A (en) * 1994-07-27 1996-02-13 Nippon Kayaku Co Ltd Low-viscosity chitosan and its production
JPH08208708A (en) * 1995-02-02 1996-08-13 Dainichiseika Color & Chem Mfg Co Ltd Production of low-molecular-weight chitosan
JPH08269104A (en) * 1995-04-04 1996-10-15 Nippon Kayaku Co Ltd Modification of physical properties of chitin or chitosan powder
JPH0999251A (en) * 1995-10-04 1997-04-15 Idemitsu Petrochem Co Ltd Production of organic powder and organic powder
JP2000007706A (en) * 1998-06-29 2000-01-11 Nippon Kayaku Co Ltd Preparation of dry chitin powder or dry chitosan powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130346A (en) * 1983-12-20 1985-07-11 Nippon Soda Co Ltd Treatment of chitosan
JPH01152104A (en) * 1987-12-08 1989-06-14 Hokkaido Soda Kk Preparation of water-soluble chitosan salt powder
JPH01249843A (en) * 1988-03-30 1989-10-05 Daicel Chem Ind Ltd Uniformed chitosan suspension
JPH01287102A (en) * 1988-05-13 1989-11-17 Dainichiseika Color & Chem Mfg Co Ltd Production of low-molecular weight chitosan
JPH05279401A (en) * 1992-03-31 1993-10-26 Nippon Kayaku Co Ltd Production of powdery chitosan
JPH0841106A (en) * 1994-07-27 1996-02-13 Nippon Kayaku Co Ltd Low-viscosity chitosan and its production
JPH08208708A (en) * 1995-02-02 1996-08-13 Dainichiseika Color & Chem Mfg Co Ltd Production of low-molecular-weight chitosan
JPH08269104A (en) * 1995-04-04 1996-10-15 Nippon Kayaku Co Ltd Modification of physical properties of chitin or chitosan powder
JPH0999251A (en) * 1995-10-04 1997-04-15 Idemitsu Petrochem Co Ltd Production of organic powder and organic powder
JP2000007706A (en) * 1998-06-29 2000-01-11 Nippon Kayaku Co Ltd Preparation of dry chitin powder or dry chitosan powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013972A1 (en) * 2007-07-24 2009-01-29 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Immunoadjuvant and method of assaying iga antibody
JP2009029714A (en) * 2007-07-24 2009-02-12 Dainichiseika Color & Chem Mfg Co Ltd Immunoadjuvant
CN106478840A (en) * 2016-09-13 2017-03-08 浙江大学 A kind of preparation method of cross-linked chitosan

Also Published As

Publication number Publication date
JP4976662B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
Pauzi et al. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application
Zhou et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties
WO2017047768A1 (en) Product containing microfibrous cellulose
JP5940933B2 (en) Resin composition
KR20190133296A (en) Cellulose-containing resin composition and cellulosic ingredient
Neji et al. Preparation, characterization, mechanical and barrier properties investigation of chitosan-kaolinite nanocomposite
JPH0598589A (en) Production of finely ground fibrous material from cellulose particle
WO2006016506A1 (en) Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
JPWO2010026925A1 (en) Powder cosmetics
JP2017078145A (en) Manufacturing method of cellulose nanofiber dried body
JPWO2006120772A1 (en) Method for producing antibacterial fibers
JP4976662B2 (en) Chitosan fine particles
Manjula et al. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process
Halder et al. Study on gelatin-silver nanoparticle composite towards the development of bio-based antimicrobial film
Yun et al. Preparation of functional chitosan-based nanocomposite films containing ZnS nanoparticles
Esmailzadeh et al. CuO/LDPE nanocomposite for active food packaging application: a comparative study of its antibacterial activities with ZnO/LDPE nanocomposite
Perkas et al. Coating textiles with antibacterial nanoparticles using the sonochemical technique
TW201828834A (en) Fiberized paramylon, additive, and method for producing the additive
Akhtar et al. Calcium hydroxyapatite nanoparticles as a reinforcement filler in dental resin nanocomposite
Wu et al. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties
JP2010106055A (en) Functional cellulose composition and production method thereof
Ibrahim et al. Effect of grinding and particle size on some physical and rheological properties of chitosan
JP7420336B2 (en) Method for manufacturing composite particles
JP4758685B2 (en) Low molecular weight chitin powder
JP2021176827A (en) Composite particle, production method of the same, and personal care product including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250