JP2007001811A - Method and apparatus for manufacturing quartz glass tube - Google Patents

Method and apparatus for manufacturing quartz glass tube Download PDF

Info

Publication number
JP2007001811A
JP2007001811A JP2005184274A JP2005184274A JP2007001811A JP 2007001811 A JP2007001811 A JP 2007001811A JP 2005184274 A JP2005184274 A JP 2005184274A JP 2005184274 A JP2005184274 A JP 2005184274A JP 2007001811 A JP2007001811 A JP 2007001811A
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
glass cylinder
outer peripheral
forming tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184274A
Other languages
Japanese (ja)
Other versions
JP4892202B2 (en
Inventor
Makoto Mitani
真 三谷
Yuichi Miyagishi
裕一 宮岸
Keigo Nakajima
啓吾 中島
Sadanobu Yamada
定信 山田
Takeshi Nishise
武司 西瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005184274A priority Critical patent/JP4892202B2/en
Publication of JP2007001811A publication Critical patent/JP2007001811A/en
Application granted granted Critical
Publication of JP4892202B2 publication Critical patent/JP4892202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/07Re-forming tubes or rods by blowing, e.g. for making electric bulbs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for precisely manufacturing a quartz glass tube having excellent surface property. <P>SOLUTION: In the manufacture of the quartz glass tube, the inside of a quartz glass cylinder is pressurized1 while heating the quartz glass cylinder and the quartz glass cylinder is inserted into an outer periphery forming tool 4 while rotating, wherein the outer periphery forming tool 4 is formed from a carbon material having 1.5 Mg/m<SP>3</SP>specific gravity. An inert gas is desirably supplied to the outer peripheral surface of the quartz glass cylinder 1 through the outer periphery forming tool 4. The supply quantity of the inert gas is desirably 100-400 L/min. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造装置の炉芯管等の半導体治工具用部材等で使用される石英ガラス管の製造方法とその製造装置に関する。   The present invention relates to a method of manufacturing a quartz glass tube used in a member for a semiconductor jig such as a furnace core tube of a semiconductor manufacturing apparatus and a manufacturing apparatus thereof.

半導体ウエーハには、酸化、拡散、気相成長等の熱処理が施され、その表面に酸化膜、絶縁膜、単結晶膜等を生成される。この熱処理は、高温雰囲気で実施されるため、炉芯管等の材料としては高純度で、化学的に安定な石英ガラス管が使用されている。また、半導体チップの高集積化および微細化ならびに歩留向上の観点から石英ガラス製治具に起因するウエーハの汚染を防止するというニーズが高くなっており、石英ガラス管製造時の汚染防止に対する関心が高まっている。このような石英ガラス管には、良好な表面性状および純度、更には寸法精度が要求される。   The semiconductor wafer is subjected to heat treatment such as oxidation, diffusion, vapor phase growth and the like, and an oxide film, an insulating film, a single crystal film, and the like are generated on the surface. Since this heat treatment is carried out in a high temperature atmosphere, a quartz glass tube having a high purity and being chemically stable is used as a material for a furnace core tube or the like. In addition, there is an increasing need to prevent wafer contamination caused by quartz glass jigs from the viewpoint of high integration and miniaturization of semiconductor chips and yield improvement. Is growing. Such a quartz glass tube is required to have good surface properties and purity, as well as dimensional accuracy.

このような石英ガラス管を製造する方法として、下記のような製造方法が提案されている。   As a method for manufacturing such a quartz glass tube, the following manufacturing method has been proposed.

特許文献1には、表面性状を改善する手段として、石英ガラスシリンダを回転させながら加熱軟化させ、内部から加圧し、石英ガラスシリンダ外周を炭素材料等で製作されたリング状のダイス内に通して回転引き抜きし、石英ガラス管を製造する方法が提案されている。この方法では、リング状のダイスを回転引き抜きする石英ガラス管と同期駆動回転させることにより、リング状のダイスと石英ガラス管との摺擦を軽減し、最終的にはツールマークを軽減することとしている。   In Patent Document 1, as a means for improving surface properties, a quartz glass cylinder is heated and softened while rotating, pressurized from the inside, and the outer periphery of the quartz glass cylinder is passed through a ring-shaped die made of a carbon material or the like. A method for producing a quartz glass tube by rotating and drawing is proposed. In this method, by rotating synchronously with the quartz glass tube that rotates and draws the ring-shaped die, the friction between the ring-shaped die and the quartz glass tube is reduced, and finally the tool mark is reduced. Yes.

特許文献2には、石英ガラスシリンダを回転させながら加熱軟化させ、内部から加圧し、石英ガラス管外表面を接触させることにより外径規制させた状態で、石英ガラス管を製造する方法において、外径設定治具接触手前位置で膨張部を形成させ、更に膨張部を外径設定治具に侵入させながら石英ガラス管の外径規制を行い寸法精度の改善をはかる方法が提案されている。この方法では、加熱軟化領域にある膨張部の外径を制御することによって製造される石英ガラス管の寸法精度を向上させることとしている。   In Patent Document 2, in a method of manufacturing a quartz glass tube in a state where the quartz glass cylinder is heated and softened while rotating, pressurized from the inside, and the outer diameter is regulated by contacting the outer surface of the quartz glass tube, There has been proposed a method for improving the dimensional accuracy by forming an inflating portion at a position before the diameter setting jig contact and further restricting the outer diameter of the quartz glass tube while allowing the inflating portion to enter the outer diameter setting jig. In this method, the dimensional accuracy of the quartz glass tube manufactured is controlled by controlling the outer diameter of the expansion portion in the heat softening region.

特許第2798466号公報Japanese Patent No. 2798466 特開平10−101353号公報JP-A-10-101353

石英ガラスシリンダが加熱される温度は、2000℃以上であるため、ダイスが消耗しやすい。消耗したダイスと石英ガラス管とが摺擦すると、ツールマークが発生するとともに、石英ガラス管外周面が汚染される。   Since the temperature at which the quartz glass cylinder is heated is 2000 ° C. or more, the die is likely to be consumed. When the worn die and the silica glass tube rub against each other, a tool mark is generated and the outer peripheral surface of the quartz glass tube is contaminated.

特許文献1に記載の方法では、リング状のダイスを回転引き抜きする石英ガラス管と同期駆動回転させることとしているので、周方向のツールマークは大幅に低減されると予想される。しかし、軸方向のツールマークを抑制するには至らず、これに伴って不純物汚染も進行する。また、特許文献1に記載の方法は、石英ガラス管の外径寸法は、ダイス内径の寸法によって規制されるが、製造中にダイスが消耗すると、ダイス内径が変化するため、外径が安定していない。   In the method described in Patent Document 1, since the ring-shaped die is rotated synchronously with the quartz glass tube for rotating and drawing, the circumferential tool marks are expected to be greatly reduced. However, the tool mark in the axial direction cannot be suppressed, and impurity contamination progresses accordingly. In the method described in Patent Document 1, the outer diameter of the quartz glass tube is regulated by the size of the inner diameter of the die. However, when the die is consumed during manufacture, the inner diameter of the die changes, so the outer diameter is stable. Not.

特許文献2に記載の方法においては、膨張部が非接触状態で形成されるため、加熱温度その他の製造条件の変動により膨張部の外径が変化する。このため、寸法精度を向上させるのは困難である。また、膨張部が外径設定治具に侵入する際、急激に大きな抵抗を受けるため、石英ガラス管の表面性状が損なわれる。さらに、外径設定治具は通常の炭素材で作られているものと解され、特許文献1に記載の方法と同様にツールマーク発生等の問題は解消されていない。   In the method described in Patent Document 2, since the expanded portion is formed in a non-contact state, the outer diameter of the expanded portion changes due to variations in the heating temperature and other manufacturing conditions. For this reason, it is difficult to improve the dimensional accuracy. In addition, when the inflating portion enters the outer diameter setting jig, the surface property of the quartz glass tube is deteriorated because it receives a large resistance suddenly. Furthermore, it is understood that the outer diameter setting jig is made of a normal carbon material, and problems such as tool mark generation are not solved as in the method described in Patent Document 1.

石英ガラス管は通常使用前にフッ化水素酸水溶液で洗浄して使用されるので、石英ガラス管表面に発生したツールマークが微細であっても、フッ化水素酸水溶液中で選択的にエッチングされ、大きな凹凸や傷になる。従って、微細なツールマークすら発生しない石英ガラス管の製造方法が求められている。   Quartz glass tubes are usually washed with a hydrofluoric acid aqueous solution before use, so even if the tool mark generated on the surface of the quartz glass tube is fine, it is selectively etched in the hydrofluoric acid aqueous solution. , Become large irregularities and scratches. Accordingly, there is a need for a method of manufacturing a quartz glass tube that does not generate even fine tool marks.

上記のいずれの公報に記載される方法も、ダイスの消耗等に起因する表面性状の悪化および石英ガラス管外表面の不純物による汚染を完全に抑制するには至らず、また、同じダイスを用いて高い寸法精度で石英ガラス管の製造を続けることが困難であり、量産に不向きである。   None of the methods described in the above publications completely suppresses the deterioration of the surface properties caused by the consumption of the die and the contamination by impurities on the outer surface of the quartz glass tube, and the same die is used. It is difficult to continue production of quartz glass tubes with high dimensional accuracy and is not suitable for mass production.

本発明は、上記の問題を解決するためになされたものであり、石英ガラス管を良好な表面性状および純度、更には高い寸法精度で製造する方法およびその方法に用いるのに適した製造装置を提供することを目的とする。   The present invention has been made to solve the above problems, and a method for manufacturing a quartz glass tube with good surface properties and purity and high dimensional accuracy, and a manufacturing apparatus suitable for use in the method. The purpose is to provide.

本発明は、下記の(1)〜(5)に示す石英ガラスの製造方法および下記(6)および(7)に示す製造装置を要旨とする。   The gist of the present invention is a manufacturing method of quartz glass shown in the following (1) to (5) and a manufacturing apparatus shown in the following (6) and (7).

(1)石英ガラスシリンダを加熱しつつ、その内部を加圧し、この石英ガラスシリンダを回転させながら外周成形具に挿入して、石英ガラス管を製造する方法であって、外周成形具の石英ガラスシリンダと接触する部分がかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする石英ガラス管の製造方法。 (1) A method for producing a quartz glass tube by heating a quartz glass cylinder, pressurizing the inside thereof, and inserting the quartz glass cylinder into an outer periphery forming tool while rotating the quartz glass cylinder. A method for producing a quartz glass tube, wherein a portion in contact with a cylinder is made of a carbon material having a bulk density of 1.5 Mg / m 3 or less.

(2)外周成形具を介して石英ガラスシリンダ外周面に不活性ガスを供給することを特徴とする上記(1)に記載の石英ガラス管の製造方法。   (2) The method for producing a quartz glass tube according to the above (1), wherein an inert gas is supplied to the outer peripheral surface of the quartz glass cylinder through an outer peripheral forming tool.

(3)不活性ガスの供給量が100〜400L/minであることを特徴とする上記(2)に記載の石英ガラス管の製造方法。   (3) The method for producing a quartz glass tube according to (2), wherein the supply amount of the inert gas is 100 to 400 L / min.

(4)外周成形具は、その内面に棒状突起部を有し、石英ガラスシリンダの外周面が棒状突起部に接触して外径寸法が規制されることを特徴とする上記(1)から(3)までのいずれかに記載の石英ガラス管の製造方法。   (4) From the above (1), the outer peripheral forming tool has a rod-like protrusion on its inner surface, and the outer diameter of the quartz glass cylinder contacts the rod-like protrusion and the outer diameter is restricted. The method for producing a quartz glass tube according to any one of 3).

(5)棒状突起部のみがかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする上記(4)に記載の石英ガラス管の製造方法。 (5) The method for producing a quartz glass tube according to the above (4), wherein only the rod-shaped protrusions are made of a carbon material having a bulk density of 1.5 Mg / m 3 or less.

(6)石英ガラスシリンダを回転可能な状態で保持するチャックと、石英ガラスシリンダを加熱する加熱装置と、石英ガラスシリンダ内部を加圧する加圧装置と、石英ガラスシリンダの外径寸法を規制する外周成形具とを有する石英ガラス管の製造装置であって、外周成形具がかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする石英ガラス管の製造装置。 (6) Chuck that holds the quartz glass cylinder in a rotatable state, a heating device that heats the quartz glass cylinder, a pressurizing device that pressurizes the inside of the quartz glass cylinder, and an outer periphery that regulates the outer diameter of the quartz glass cylinder An apparatus for manufacturing a quartz glass tube having a forming tool, wherein the outer peripheral forming tool is made of a carbon material having a bulk density of 1.5 Mg / m 3 or less.

(7)外周成形具が、その内面に棒状突起部を有することを特徴とする上記(6)に記載の石英ガラス管の製造装置。   (7) The apparatus for producing a quartz glass tube according to the above (6), wherein the outer peripheral forming tool has a rod-shaped protrusion on the inner surface thereof.

本発明によれば、良好な表面性状および純度、更には高い寸法精度の石英ガラス管を製造することができるので、半導体製造装置用炉心管などに用いるのに適した石英ガラス管を提供できる。   According to the present invention, it is possible to manufacture a quartz glass tube having good surface properties and purity and high dimensional accuracy. Therefore, it is possible to provide a quartz glass tube suitable for use in a core tube for a semiconductor manufacturing apparatus.

図1は、本発明に係る石英ガラス管の製造装置を示す模式図である。本発明の石英ガラス管の製造装置は、石英ガラスシリンダ1を回転可能な状態で保持するチャック2-1、2-2と、石英ガラスシリンダ1を加熱するヒータ3と、石英ガラスシリンダ1内部を加圧する加圧装置(図示しない)と、石英ガラスシリンダ1の外径寸法を規制する外周成形具4とを有する石英ガラス管の製造装置である。   FIG. 1 is a schematic view showing an apparatus for producing a quartz glass tube according to the present invention. The quartz glass tube manufacturing apparatus of the present invention includes chucks 2-1 and 2-2 that hold the quartz glass cylinder 1 in a rotatable state, a heater 3 that heats the quartz glass cylinder 1, and an interior of the quartz glass cylinder 1. This is a quartz glass tube manufacturing apparatus having a pressurizing device (not shown) for pressurizing and an outer peripheral forming tool 4 for regulating the outer diameter of the quartz glass cylinder 1.

通常、石英ガラスシリンダ1は、予めダミー材5-1と溶着されており、ダミー材5-1はシリンダ内を加圧するために利用される空洞を有し、さらにダミー材5-1の入側には、密閉状態を維持するためのホルダ6が設置されている。なお、製造開始前は、通常、石英ガラスシリンダ1と出側のダミー材5-2とは溶着されていない。   Usually, the quartz glass cylinder 1 is welded to the dummy material 5-1 in advance, and the dummy material 5-1 has a cavity that is used to pressurize the inside of the cylinder, and further the entrance side of the dummy material 5-1 Is provided with a holder 6 for maintaining a sealed state. Before the start of production, the quartz glass cylinder 1 and the outgoing dummy material 5-2 are usually not welded.

ダミー材5-1を介してチャック2-1で保持された石英ガラスシリンダ1は、徐々に下流に移動し、回転が与えられた状態で、ヒータ3内に挿入され、加熱される。一方、チャック2-2で保持されたダミー材5-2は、回転が与えられた状態で、上流側に移動し、ヒータ3内に挿入され、加熱される。石英ガラスシリンダ1およびダミー材5-2が十分に加熱されたところで、これらを溶着させる。   The quartz glass cylinder 1 held by the chuck 2-1 via the dummy material 5-1 is gradually moved downstream and inserted into the heater 3 and heated while being rotated. On the other hand, the dummy material 5-2 held by the chuck 2-2 moves to the upstream side while being rotated, and is inserted into the heater 3 and heated. When the quartz glass cylinder 1 and the dummy material 5-2 are sufficiently heated, they are welded.

その後、石英ガラスシリンダ1内に図示しない加圧装置により窒素、アルゴン、空気などの加圧用ガスを導入し、これにより、石英ガラスシリンダ1の内圧が上昇して、加熱炉3内で拡径され、石英ガラスシリンダ1の外周が外周成形具4と接触する。石英ガラスシリンダ1内に導入するガスの圧力、石英ガラスシリンダ1の回転速度、移動速度、加圧条件、加熱温度などを調整することにより、石英ガラスシリンダ1の外周と外周成形具4との接触開始位置を決めることができる。   Thereafter, a pressurizing gas such as nitrogen, argon, air or the like is introduced into the quartz glass cylinder 1 by a not-shown pressurizing device, thereby increasing the internal pressure of the quartz glass cylinder 1 and expanding the diameter in the heating furnace 3. The outer periphery of the quartz glass cylinder 1 is in contact with the outer periphery forming tool 4. By adjusting the pressure of the gas introduced into the quartz glass cylinder 1, the rotation speed, the moving speed, the pressurization condition, the heating temperature, etc. of the quartz glass cylinder 1, the outer periphery of the quartz glass cylinder 1 is brought into contact with the outer peripheral molding tool 4. The starting position can be determined.

接触開始位置があまりに上流側過ぎると、外周成形具前で膨張して外径制御が困難となり、また、下流側過ぎると、逆に、外周成形具との接触時間が不十分となり外径のばらつきが大きくなる。接触開始位置の調整は、目視観察、画像処理その他の方法により確認しながら、加圧条件等を調整することにより行えばいい。   If the contact start position is too upstream, it will expand in front of the outer periphery forming tool and it will be difficult to control the outer diameter.If it is too downstream, the contact time with the outer periphery forming tool will be insufficient, resulting in variations in the outer diameter. Becomes larger. The adjustment of the contact start position may be performed by adjusting the pressurizing condition or the like while confirming by visual observation, image processing, or other methods.

なお、図1では石英ガラスシリンダの右側(すなわち、先端)を閉塞し、左側(すなわち、後端)から圧力ガスを導入しているが、左右入れ替えてもその原理には何ら変わりはない。   In FIG. 1, the right side (that is, the front end) of the quartz glass cylinder is closed, and the pressure gas is introduced from the left side (that is, the rear end).

ここで、本発明においては、かさ密度1.5(Mg/m3)以下の炭素材で構成される外周成形具を用いることを最大の特徴とする。その理由は、下記の(1)〜(3)に示す通りである。 Here, in the present invention, the greatest feature is to use an outer peripheral molding tool made of a carbon material having a bulk density of 1.5 (Mg / m 3 ) or less. The reason is as shown in the following (1) to (3).

(1)成形過程にある石英ガラスシリンダは、ヒータ内で少なくとも軟化点以上に加熱されており、粘度も4.5×106Pa・s以下と比較的軟らかい状態にある。一方、従来、ダイスは、かさ密度が1.8Mg/m3程度で硬さが60HS(ショア硬さ)程度である。従って、このような高温環境下で、石英ガラスと硬質の炭素材とを接触させると、接触箇所にツールマークが発生する。この観点からは、かさ密度が1.5Mg/m3以下の軟質の炭素材を用いる必要がある。 (1) The quartz glass cylinder in the molding process is heated to at least the softening point in the heater and has a relatively soft viscosity of 4.5 × 10 6 Pa · s or less. On the other hand, conventionally, dies have a bulk density of about 1.8 Mg / m 3 and a hardness of about 60 HS (Shore hardness). Therefore, when quartz glass and a hard carbon material are brought into contact with each other under such a high temperature environment, a tool mark is generated at the contact location. From this point of view, it is necessary to use a soft carbon material having a bulk density of 1.5 Mg / m 3 or less.

(2)成形過程にある石英ガラスシリンダは、高温環境において、炭素材で構成される外周成形具と接触する。このため、接触箇所において比較的容易に石英ガラスと炭素材とが反応してSiCが形成され、石英ガラス管表面にツールマークおよび不純物による汚染が発生しやすい。しかし、かさ密度1.5Mg/m3以下の炭素材は、極めて気孔率が高いため、炭素材内部に不活性ガスを導入すれば、そのガスが石英ガラスとの接触域全域に均等に流れ、接触域を不活性雰囲気に維持することができ、SiCの発生を防止することができる。しかも、炭素材の消耗を極限まで抑制することができる。 (2) The quartz glass cylinder in the forming process comes into contact with an outer peripheral forming tool made of a carbon material in a high temperature environment. For this reason, quartz glass reacts with the carbon material relatively easily at the contact location to form SiC, and contamination by tool marks and impurities tends to occur on the surface of the quartz glass tube. However, carbon materials with a bulk density of 1.5 Mg / m 3 or less have extremely high porosity, so if an inert gas is introduced inside the carbon material, the gas will flow evenly throughout the contact area with the quartz glass and contact The region can be maintained in an inert atmosphere, and generation of SiC can be prevented. Moreover, consumption of the carbon material can be suppressed to the limit.

(3)成形過程にある石英ガラスシリンダは、ヒータ内で加熱され、その後、外周成形具内で、冷却されつつ成形されるが、このときの冷却速度が遅い場合には、微少な変形が発生する可能性がある。しかし、かさ密度1.5Mg/m3以下の炭素材を用いた外周成形具であれば、前述のように、内部から不活性ガスを導入させることができるので、成形途中だけでなく、成形完了後も継続的に不活性雰囲気ガスを供給することができる。このため、石英ガラスの冷却を促進でき、微少な変形を防止することができる。 (3) The quartz glass cylinder in the molding process is heated in the heater and then molded while being cooled in the outer peripheral molding tool. However, if the cooling rate at this time is slow, slight deformation occurs. there's a possibility that. However, if it is an outer periphery molding tool using a carbon material with a bulk density of 1.5 Mg / m 3 or less, as described above, an inert gas can be introduced from the inside. Also, an inert atmosphere gas can be continuously supplied. For this reason, the cooling of the quartz glass can be promoted, and a slight deformation can be prevented.

このように、本発明においては、外周成形具としては、硬さおよび気孔率の関係からかさ密度1.5Mg/m3以下である炭素材を用いる。また、炭素材の硬さは、かさ密度と関係がある。炭素材の硬さとしては、20HS以下であることが望ましい。 Thus, in the present invention, a carbon material having a bulk density of 1.5 Mg / m 3 or less is used as the outer peripheral forming tool because of the relationship between hardness and porosity. The hardness of the carbon material is related to the bulk density. The hardness of the carbon material is desirably 20HS or less.

なお、外周成形具内に不活性ガス導入用管を配設するとともに、接触面に複数の孔を設けて、石英ガラス表面に不活性ガスを導入することも考えられるが、この方法では、石英ガラスとの接触部分全域にわたって不活性ガス雰囲気とすることができず、SiC発生の防止も、石英ガラスの冷却も不十分となる。   In addition, it is conceivable that an inert gas introduction tube is provided in the outer peripheral forming tool and a plurality of holes are provided on the contact surface to introduce an inert gas to the quartz glass surface. An inert gas atmosphere cannot be formed over the entire contact portion with the glass, and the prevention of SiC generation and the cooling of the quartz glass are insufficient.

外周成形具に導入する不活性ガスの量は、製造する石英ガラス管の寸法によるが、100〜400L(リットル)/minとすることが望ましい。これは、不活性ガスの量が100L/min未満の場合、接触部分全域を十分に不活性雰囲気とすることが困難となり、外周成形具の消耗を抑制が不十分となるおそれがある。また、SiCの発生およびそれに伴う不純物による汚染も十分に防止できない場合がある。一方、不活性ガスの量が400L/minを超える場合には、ヒータ内が過冷却状態となって、溶融時間が長くなるおそれがある。   The amount of the inert gas introduced into the outer peripheral forming tool is preferably 100 to 400 L (liter) / min depending on the size of the quartz glass tube to be manufactured. This is because when the amount of the inert gas is less than 100 L / min, it is difficult to sufficiently make the entire contact portion an inert atmosphere, and there is a possibility that the suppression of the consumption of the outer peripheral forming tool becomes insufficient. Further, generation of SiC and contamination due to impurities accompanying it may not be sufficiently prevented. On the other hand, when the amount of the inert gas exceeds 400 L / min, the heater is overcooled and the melting time may be increased.

なお、不活性ガスとしては、特に限定されないが、アルゴンガス、ヘリウムガスおよび窒素ガス、またはこれらの混合ガスを用いるのがよい。   In addition, although it does not specifically limit as inert gas, It is good to use argon gas, helium gas, nitrogen gas, or these mixed gas.

外周成形具としては、リング状のダイスとしてもよいが、図2に示すような構成のものであるのが望ましい。この構成とすることで、石英ガラスシリンダと炭素材(外周成形具)との接触を最小限に抑えることができる。   The outer peripheral forming tool may be a ring-shaped die, but preferably has a structure as shown in FIG. By setting it as this structure, a contact with a quartz glass cylinder and a carbon material (periphery shaping tool) can be suppressed to the minimum.

図2は、本発明に用いることができる外周成形具の例を示す模式図であり、(a)は石英ガラス長手方向に垂直な断面図、(b)は(a)中のA−A断面図、(c)は(a)中のア部拡大図である。図2に示すように、外周成形具4は、リング状の外枠4-1と、棒状突起部4-2とから構成されるものが望ましい。そして、この外周成形具4を用いる場合には、図2(c)に示すように、石英ガラスシリンダ1は、棒状突起部4-2の内面と接することで、外径が形成される。   FIG. 2 is a schematic view showing an example of an outer periphery forming tool that can be used in the present invention, where (a) is a sectional view perpendicular to the longitudinal direction of quartz glass, and (b) is an AA section in (a). FIG. 4 (c) is an enlarged view of part a in (a). As shown in FIG. 2, the outer peripheral forming tool 4 is preferably composed of a ring-shaped outer frame 4-1 and a rod-shaped protrusion 4-2. When this outer periphery forming tool 4 is used, as shown in FIG. 2 (c), the quartz glass cylinder 1 is in contact with the inner surface of the rod-shaped protrusion 4-2, so that the outer diameter is formed.

従って、外周成形具をリング状のダイスとする場合と比較して、接触面積が減少し、また、外周成形具と石英ガラスシリンダとの間に一定の隙間ができることで、石英ガラスシリンダの冷却が進みやすく、外周成形具の酸化、消耗が低減されるからである。   Therefore, compared with the case where the outer peripheral forming tool is a ring-shaped die, the contact area is reduced, and a certain gap is formed between the outer peripheral forming tool and the quartz glass cylinder, so that the quartz glass cylinder is cooled. This is because it is easy to proceed and oxidation and consumption of the outer peripheral forming tool are reduced.

図3は、外周成形具の棒状突起部の例を示す模式図である。図3に示すように、棒状突起部4-2の内部には、空間7が形成されており、この空間7内に不活性ガスが導入される。そして、棒状突起部4-2は、例えば、その一端は閉鎖されており、他端は不活性ガス導入管を設置するためのネジ加工が施されているものである。   FIG. 3 is a schematic diagram illustrating an example of a rod-shaped protrusion of the outer peripheral forming tool. As shown in FIG. 3, a space 7 is formed inside the rod-shaped protrusion 4-2, and an inert gas is introduced into the space 7. And, for example, one end of the rod-shaped protrusion 4-2 is closed, and the other end is subjected to screw processing for installing an inert gas introduction pipe.

なお、図2および3では棒状突起部が2個の場合を示したが、個数には特に制限はない。ただし、不活性ガスの流動の観点からは個数は少ない方がよい。また、外枠も図2に示すリング状のものでなくてもよいが、あまりに石英ガラスシリンダとの隙間が大きくなるようなものであると、冷却が不十分となったり、ヒータの温度を低下させたりする。このため、外枠としては、図2に示すリング状のものであって、所望の石英ガラス管の外径より1.0〜5.0mm大きい内径を有するものがより望ましい。   2 and 3 show the case where there are two rod-like protrusions, the number is not particularly limited. However, a smaller number is better from the viewpoint of the flow of the inert gas. Also, the outer frame does not have to be the ring shape shown in FIG. 2, but if the clearance with the quartz glass cylinder becomes too large, the cooling will be insufficient or the heater temperature will be lowered. I will let you. For this reason, the outer frame is more preferably a ring-shaped one shown in FIG. 2 having an inner diameter that is 1.0 to 5.0 mm larger than the outer diameter of the desired quartz glass tube.

棒状突起部を用いる場合、棒状突起部だけをかさ密度1.5Mg/m3以下の炭素材で構成し、外枠は、通常の炭素材(かさ密度1.8Mg/m3程度またはそれ以上)を用いるのがよい。これは、石英ガラスと接触する棒状突起部は、柔らかくて、気孔が多く不活性ガスを通しやすい材料とする必要があるが、石英ガラスと接触しない外枠は、むしろ機械的強度が高い方がよいためである。 When using rod-shaped projections, only the rod-shaped projections are made of carbon material with a bulk density of 1.5 Mg / m 3 or less, and the outer frame is made of ordinary carbon material (bulk density of about 1.8 Mg / m 3 or more). It is good. This is because the rod-shaped protrusions that come into contact with quartz glass need to be soft and have a large number of pores and allow inert gas to pass through, but the outer frame that does not come into contact with quartz glass should have higher mechanical strength. Because it is good.

本発明の製造方法において、石英ガラスシリンダの回転数は、製造する石英ガラス管の寸法によるが、10〜30rpmとすることが望ましい。回転数が10rpm未満の場合には、石英ガラスシリンダの均熱性が損なわれやすくなる。特に、製造される石英ガラス管の肉厚が薄い場合には石英ガラス管の寸法精度に悪影響を及ぼす。また回転数が30rpmを超える場合には、遠心力の影響が大きくなり、石英ガラス管の寸法精度に悪影響を及ぼす。   In the production method of the present invention, the rotation speed of the quartz glass cylinder is preferably 10 to 30 rpm, although it depends on the size of the quartz glass tube to be produced. When the rotational speed is less than 10 rpm, the thermal uniformity of the quartz glass cylinder tends to be impaired. In particular, when the thickness of the manufactured quartz glass tube is thin, the dimensional accuracy of the quartz glass tube is adversely affected. On the other hand, when the rotational speed exceeds 30 rpm, the influence of centrifugal force increases, which adversely affects the dimensional accuracy of the quartz glass tube.

入側のチャックの走行速度と出側チャック走行速度との比は、石英ガラスシリンダの断面積と製造される石英ガラス管の断面積の比の逆数と一致するように設定すればよい。また、入側チャックの回転速度と出側チャックの回転速度とは、基本的には速度差を持たせないことが望ましい。また速度差を持たせる場合でも1rpm以下に制限するのがよい。   The ratio between the traveling speed of the inlet chuck and the traveling speed of the outlet chuck may be set so as to coincide with the reciprocal of the ratio of the sectional area of the quartz glass cylinder and the sectional area of the manufactured quartz glass tube. It is desirable that the rotational speed of the inlet chuck and the rotational speed of the outlet chuck basically have no speed difference. Even when a speed difference is provided, it is preferable to limit the speed to 1 rpm or less.

石英ガラスシリンダを形成する石英ガラス素材としては、VAD法などで製造される合成石英ガラスのみではなく、天然石英ガラスその他の石英ガラスを用いてもよい。   As the quartz glass material forming the quartz glass cylinder, not only synthetic quartz glass manufactured by the VAD method or the like, natural quartz glass or other quartz glass may be used.

加工時の石英ガラスシリンダの温度は、軟化点を左右するOH基、Cl基等の濃度との関係で設定すればよい。加熱炉内は、酸化防止のため不活性雰囲気であるのがよい。これらの温度域に適用できる外周成形具としては、酸化アルミナ系の酸化物、タングステン、モリブデン等の金属、炭素材等を用いればよい。この中でも高温域での強度並びに純度の面から炭素材を用いるのが最も好ましい。   What is necessary is just to set the temperature of the quartz glass cylinder at the time of a process in relation to the density | concentrations, such as OH group and Cl group which influence a softening point. The inside of the heating furnace is preferably an inert atmosphere to prevent oxidation. As an outer peripheral forming tool applicable to these temperature ranges, an oxide of alumina oxide, a metal such as tungsten or molybdenum, a carbon material, or the like may be used. Among these, it is most preferable to use a carbon material from the viewpoint of strength and purity in a high temperature range.

高純度のSiCl4を酸水素火炎中で加水分解反応させて、SiO2微粒子を堆積成長させた多孔質体を焼結、透明化して、合成石英ガラスインゴットとし、この合成石英ガラスインゴットを出発素材として、石英ガラス素材としての外径160mm、肉厚35mm、長さ2000mmの石英ガラスシリンダを作製した。そして、この石英ガラスシリンダを用いて、各種方法により石英ガラス管を製造し、外表面の性状および外表面の純度を調査した。   A high-purity SiCl4 is hydrolyzed in an oxyhydrogen flame, and a porous body on which SiO2 fine particles are deposited and grown is sintered and transparentized to form a synthetic quartz glass ingot. This synthetic quartz glass ingot is used as a starting material. A quartz glass cylinder having an outer diameter of 160 mm, a thickness of 35 mm, and a length of 2000 mm as a quartz glass material was produced. And using this quartz glass cylinder, the quartz glass tube was manufactured by various methods, and the property of the outer surface and the purity of the outer surface were investigated.

(本発明例)
上記の石英ガラスシリンダを図1に示す製造装置を用いて、外径200mm、肉厚10mm、長さ約4350mmの石英ガラス管に加工した。このとき、ヒータ温度は2300℃、回転速度は20rpm、石英ガラスシリンダの内圧は104,000〜105,500Pa(作製開始時:101,325Pa)、石英ガラスシリンダの送り込み速度は22.05mm/min、石英ガラス管の引き抜き速度は50.77mm/minに設定した。なお、石英ガラスシリンダの接触開始位置は、石英ガラスシリンダの内圧を上記の範囲で変更して調整した。なお、外周成形具としては、図2に示す形状のものを用いた。この外周成形具において、外枠4-1としては、かさ密度が1.8Mg/m3であり、硬さが60HSであるものを用い、棒状突起部4-2としては、かさ密度が1.1Mg/m3であり、硬さが5HSであるものを用いた。
(Example of the present invention)
The above quartz glass cylinder was processed into a quartz glass tube having an outer diameter of 200 mm, a wall thickness of 10 mm, and a length of about 4350 mm using the manufacturing apparatus shown in FIG. At this time, the heater temperature is 2300 ° C, the rotation speed is 20 rpm, the internal pressure of the quartz glass cylinder is 104,000 to 105,500 Pa (production start time: 101,325 Pa), the feeding speed of the quartz glass cylinder is 22.05 mm / min, and the quartz glass tube is pulled out The speed was set to 50.77 mm / min. The contact start position of the quartz glass cylinder was adjusted by changing the internal pressure of the quartz glass cylinder within the above range. In addition, as a periphery shaping | molding tool, the thing of the shape shown in FIG. 2 was used. In this outer peripheral forming tool, as the outer frame 4-1, a bulk density of 1.8 Mg / m 3 and a hardness of 60 HS are used, and as the rod-shaped protrusion 4-2, the bulk density is 1.1 Mg / m. m 3 having a hardness of 5HS was used.

得られた石英ガラス管の外径を長手方向100mmピッチ、円周方向2点(90゜ピッチ)測定したところ、外径は199.87〜199.99mm(平均199.94mm)であり、長手方向全長にわたり外径変動が小さい良好な石英ガラス管が得られた。また、得られた石英ガラス管の外表面の状態を観察したところ、外周成形具との接触によって発生する傷の類は一切確認されなかった。また、この石英ガラス管をフッ化水素酸水溶液で洗浄したが、選択的にエッチングされることにより発生する凹凸や傷の類は一切確認されなかった。   When the outer diameter of the quartz glass tube obtained was measured at a pitch of 100 mm in the longitudinal direction and at two points in the circumferential direction (90 ° pitch), the outer diameter was 199.87 to 199.99 mm (average 199.94 mm). A good quartz glass tube with little variation was obtained. Further, when the state of the outer surface of the obtained quartz glass tube was observed, no kind of scratches caused by contact with the outer peripheral forming tool was confirmed. Further, this quartz glass tube was washed with a hydrofluoric acid aqueous solution, but no irregularities or scratches generated by selective etching were confirmed.

(比較例)
上記の石英ガラスシリンダを、外周成形具の形状・材質を除き、図1に記載の製造装置と同様の製造装置を用いて、外径200mm、肉厚10mm、長さ約4300mmの石英ガラス管に加工した。このとき、ヒータ温度は2300℃、回転速度は20rpm、石英ガラスシリンダの内圧は104,000〜105,500Pa(作製開始時:101,325Pa)、石英ガラスシリンダの送り込み速度は22.05mm/min、石英ガラス管の引き抜き速度は50.77mm/minに設定した。なお、石英ガラスシリンダの接触開始位置は、石英ガラスシリンダの内圧を上記の範囲で変更して調整した。なお、外周成形具としては、かさ密度が1.8Mg/m3であり、硬さが60HSの炭素材からなる通常のダイスを用いた。
(Comparative example)
Using the same manufacturing equipment as the manufacturing equipment shown in Fig. 1 except for the shape and material of the outer periphery forming tool, the above silica glass cylinder is converted into a quartz glass tube with an outer diameter of 200mm, a wall thickness of 10mm, and a length of about 4300mm. processed. At this time, the heater temperature is 2300 ° C, the rotation speed is 20 rpm, the internal pressure of the quartz glass cylinder is 104,000 to 105,500 Pa (production start time: 101,325 Pa), the feeding speed of the quartz glass cylinder is 22.05 mm / min, and the quartz glass tube is pulled out The speed was set to 50.77 mm / min. The contact start position of the quartz glass cylinder was adjusted by changing the internal pressure of the quartz glass cylinder within the above range. As the outer peripheral forming tool, a normal die made of a carbon material having a bulk density of 1.8 Mg / m 3 and a hardness of 60 HS was used.

得られた石英ガラス管の外径を長手方向100mmピッチ、円周方向2点(90゜ピッチ)測定したところ、外径は199.92〜200.69mm(平均200.34mm)であり、全体的に目標値を超え、また石英ガラス管の製作が進行するにしたがって、外径が大きくなっていた。これは製作が進むにつれてダイスに使用されているカーボンが消耗し、次第にダイス内径の寸法が大きくなったためであると思われる。また、得られた石英ガラス管の外表面の状態を観察したところ、ダイス内面との接触によって発生したと推察される筋状のスリ傷が長手方向全長にわたり確認された。また、この石英ガラス管をフッ化水素酸水溶液で洗浄すると、洗浄前に確認された筋状のスリ傷が選択的にエッチングされることにより更に際立って確認された。   When the outer diameter of the obtained quartz glass tube was measured at 100mm pitch in the longitudinal direction and 2 points in the circumferential direction (90 ° pitch), the outer diameter was 199.92-200.69mm (average 200.34mm). As the production of the quartz glass tube progressed, the outer diameter increased. This seems to be because the carbon used in the die was consumed as the production progressed, and the dimensions of the inner diameter of the die gradually increased. Moreover, when the state of the outer surface of the obtained quartz glass tube was observed, streak-like scratches presumed to have occurred due to contact with the inner surface of the die were confirmed over the entire length in the longitudinal direction. Further, when this quartz glass tube was washed with a hydrofluoric acid aqueous solution, the streak-like scratches confirmed before the cleaning were selectively etched to be confirmed more conspicuously.

本発明によれば、良好な表面性状および純度、更には高い寸法精度の石英ガラス管を製造することができるので、半導体製造装置用炉心管などに用いるのに適した石英ガラス管を提供できる。   According to the present invention, it is possible to manufacture a quartz glass tube having good surface properties and purity and high dimensional accuracy. Therefore, it is possible to provide a quartz glass tube suitable for use in a core tube for a semiconductor manufacturing apparatus.

本発明に係る石英ガラス管の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the quartz glass tube which concerns on this invention. 本発明に用いることができる外周成形具の例を示す模式図であり、(a)は石英ガラス長手方向に垂直な断面図、(b)は(a)中のA−A断面図、(c)は(a)中のア部拡大図である。It is a schematic diagram which shows the example of the outer periphery shaping | molding tool which can be used for this invention, (a) is sectional drawing perpendicular | vertical to a quartz glass longitudinal direction, (b) is AA sectional drawing in (a), (c ) Is an enlarged view of part a in (a). 外周成形具の棒状突起部の例を示す模式図である。It is a schematic diagram which shows the example of the rod-shaped projection part of an outer periphery shaping | molding tool.

符号の説明Explanation of symbols

1.石英ガラスシリンダ
2-1.入側チャック
2-2.出側チャック
3.ヒータ
4.外周成形具
4-1.外枠
4-2.棒状突起部
5-1.入側ダミー材
5-2.出側ダミー材
6.ホルダ
7.空間
1.Quartz glass cylinder
2-1 Input chuck
2-2.Exit side chuck
3.Heater
4. Peripheral molding tool
4-1.Outer frame
4-2.Bar-shaped protrusion
5-1. Dummy material on the entry side
5-2. Outlet dummy material
6.Holder
7.Space

Claims (7)

石英ガラスシリンダを加熱しつつ、その内部を加圧し、この石英ガラスシリンダを回転させながら外周成形具に挿入して、石英ガラス管を製造する方法であって、外周成形具の石英ガラスシリンダと接触する部分がかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする石英ガラス管の製造方法。 A method of manufacturing a quartz glass tube by heating a quartz glass cylinder, pressurizing the inside thereof, and inserting the quartz glass cylinder into an outer peripheral molding tool while rotating the quartz glass cylinder, and contacting the quartz glass cylinder of the outer peripheral molding tool method for producing a quartz glass tube portion is characterized in that it is constituted by a bulk density 1.5 Mg / m 3 or less of the carbon material. 外周成形具を介して石英ガラスシリンダ外周面に不活性ガスを供給することを特徴とする請求項1に記載の石英ガラス管の製造方法。   2. The method for producing a quartz glass tube according to claim 1, wherein an inert gas is supplied to the outer peripheral surface of the quartz glass cylinder through an outer peripheral forming tool. 不活性ガスの供給量が100〜400L/minであることを特徴とする請求項2に記載の石英ガラス管の製造方法。   The method for producing a quartz glass tube according to claim 2, wherein the supply amount of the inert gas is 100 to 400 L / min. 外周成形具は、その内面に棒状突起部を有し、石英ガラスシリンダの外周面が棒状突起部に接触して外径寸法が規制されることを特徴とする請求項1から3までのいずれかに記載の石英ガラス管の製造方法。   The outer peripheral forming tool has a rod-shaped protrusion on its inner surface, and the outer diameter of the quartz glass cylinder is in contact with the rod-shaped protrusion and the outer diameter is restricted. A method for producing a quartz glass tube according to claim 1. 棒状突起部のみがかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする請求項4に記載の石英ガラス管の製造方法。 5. The method for producing a quartz glass tube according to claim 4, wherein only the rod-like projections are made of a carbon material having a bulk density of 1.5 Mg / m 3 or less. 石英ガラスシリンダを回転可能な状態で保持するチャックと、石英ガラスシリンダを加熱する加熱装置と、石英ガラスシリンダ内部を加圧する加圧装置と、石英ガラスシリンダの外径寸法を規制する外周成形具とを有する石英ガラス管の製造装置であって、外周成形具がかさ密度1.5Mg/m3以下の炭素材で構成されることを特徴とする石英ガラス管の製造装置。 A chuck that holds the quartz glass cylinder in a rotatable state, a heating device that heats the quartz glass cylinder, a pressurizing device that pressurizes the inside of the quartz glass cylinder, and an outer peripheral forming tool that regulates the outer diameter of the quartz glass cylinder; An apparatus for producing a quartz glass tube, wherein the outer peripheral forming tool is made of a carbon material having a bulk density of 1.5 Mg / m 3 or less. 外周成形具が、その内面に棒状突起部を有することを特徴とする請求項6に記載の石英ガラス管の製造装置。
7. The apparatus for producing a quartz glass tube according to claim 6, wherein the outer peripheral forming tool has a rod-shaped protrusion on the inner surface thereof.
JP2005184274A 2005-06-24 2005-06-24 Method and apparatus for producing quartz glass tube Active JP4892202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184274A JP4892202B2 (en) 2005-06-24 2005-06-24 Method and apparatus for producing quartz glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184274A JP4892202B2 (en) 2005-06-24 2005-06-24 Method and apparatus for producing quartz glass tube

Publications (2)

Publication Number Publication Date
JP2007001811A true JP2007001811A (en) 2007-01-11
JP4892202B2 JP4892202B2 (en) 2012-03-07

Family

ID=37687748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184274A Active JP4892202B2 (en) 2005-06-24 2005-06-24 Method and apparatus for producing quartz glass tube

Country Status (1)

Country Link
JP (1) JP4892202B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093153A1 (en) * 2007-01-30 2008-08-07 Corning Incorporated Ultra thin glass drawing and blowing
JP2008266060A (en) * 2007-04-18 2008-11-06 Ferrotec Ceramics Corp Manufacture method of silica glass tube
JP2008280186A (en) * 2007-05-08 2008-11-20 Olympus Corp Apparatus and method for molding bottomed glass tube
KR20160075348A (en) * 2014-12-19 2016-06-29 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Method for producing a tube of glass
US20220306513A1 (en) * 2021-03-29 2022-09-29 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass tube and method of manufacturing the same
EP4345072A1 (en) 2022-09-28 2024-04-03 Heraeus Quarzglas GmbH & Co. KG Quartz glass tube and method of producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567136A (en) * 1978-11-14 1980-05-21 Fujitsu Ltd Method and device for controlling electron beam
JPH10101353A (en) * 1996-09-27 1998-04-21 Shinetsu Quartz Prod Co Ltd Production of quartz glass tube
JPH11217229A (en) * 1998-01-30 1999-08-10 Shinetsu Quartz Prod Co Ltd Production of quartz glass article
JP2000302461A (en) * 1999-04-13 2000-10-31 Canon Inc Molding for glass element
JP2002338265A (en) * 2001-05-08 2002-11-27 Canon Inc Optical glass forming die, optical glass forming and formed optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567136A (en) * 1978-11-14 1980-05-21 Fujitsu Ltd Method and device for controlling electron beam
JPH10101353A (en) * 1996-09-27 1998-04-21 Shinetsu Quartz Prod Co Ltd Production of quartz glass tube
JPH11217229A (en) * 1998-01-30 1999-08-10 Shinetsu Quartz Prod Co Ltd Production of quartz glass article
JP2000302461A (en) * 1999-04-13 2000-10-31 Canon Inc Molding for glass element
JP2002338265A (en) * 2001-05-08 2002-11-27 Canon Inc Optical glass forming die, optical glass forming and formed optical element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464793B1 (en) 2007-01-30 2014-11-25 코닝 인코포레이티드 Ultra thin glass drawing and blowing
US20100107694A1 (en) * 2007-01-30 2010-05-06 Thierry Luc Alain Dannoux Ultra Thin Glass Drawing and Blowing
JP2010516618A (en) * 2007-01-30 2010-05-20 コーニング インコーポレイテッド Drawing and blow molding of ultra-thin glass
US8776548B2 (en) * 2007-01-30 2014-07-15 Corning Incorporated Ultra thin glass drawing and blowing
WO2008093153A1 (en) * 2007-01-30 2008-08-07 Corning Incorporated Ultra thin glass drawing and blowing
JP2008266060A (en) * 2007-04-18 2008-11-06 Ferrotec Ceramics Corp Manufacture method of silica glass tube
JP2008280186A (en) * 2007-05-08 2008-11-20 Olympus Corp Apparatus and method for molding bottomed glass tube
KR20160075348A (en) * 2014-12-19 2016-06-29 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Method for producing a tube of glass
KR102475612B1 (en) * 2014-12-19 2022-12-08 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Method for producing a tube of glass
US20220306513A1 (en) * 2021-03-29 2022-09-29 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass tube and method of manufacturing the same
EP4067315A1 (en) * 2021-03-29 2022-10-05 Heraeus Quarzglas GmbH & Co. KG Quartz glass tube and method of manufacturing the same
US11919794B2 (en) 2021-03-29 2024-03-05 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass tube and method of manufacturing the same
EP4345072A1 (en) 2022-09-28 2024-04-03 Heraeus Quarzglas GmbH & Co. KG Quartz glass tube and method of producing the same

Also Published As

Publication number Publication date
JP4892202B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4892202B2 (en) Method and apparatus for producing quartz glass tube
JP6478990B2 (en) Manufacturing method for large quartz glass tubes
JP2810941B2 (en) Method for producing polygonal columnar silica glass rod
JP2007169149A (en) Apparatus and method for manufacturing optical preform
JP2008081374A (en) Silica glass crucible
JP5113415B2 (en) Manufacturing method of quartz glass tube
JP6170958B2 (en) Optical fiber preform manufacturing method
JP2011184213A (en) Method for producing silicon single crystal
JP4251274B2 (en) Method for producing quartz glass tube and rod having double-layer structure
JP3952770B2 (en) Quartz glass tube manufacturing apparatus and manufacturing method
JP2013060321A (en) Quartz burner and method of producing glass preform for optical fiber
JP4464321B2 (en) Method and apparatus for producing quartz glass rod
JP4598786B2 (en) Manufacturing method of quartz glass tube
JP4078917B2 (en) Method and apparatus for producing quartz glass ingot
JP4329935B2 (en) Method and apparatus for producing quartz glass tube
JP4325888B2 (en) Eccentric hollow wafer holding rod and method for manufacturing wafer holding apparatus using the holding rod
JP2011121843A (en) Crucible for pulling single crystal, and method for pulling single crystal
JP2003221249A (en) Method for manufacturing fused silica tube and its manufacturing device
JP2502868Y2 (en) Equipment for processing quartz glass rods
JP2007008763A (en) Manufacturing method of quartz glass tube and manufacturing unit
JP4685082B2 (en) Method and apparatus for producing quartz glass ingot
JP5149862B2 (en) Quartz glass tube for burner
JPH09301726A (en) Production of quarts glass tube
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP4345973B2 (en) Quartz glass tube, method and apparatus for manufacturing the same, and plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4892202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250