JP2006519090A5 - - Google Patents

Download PDF

Info

Publication number
JP2006519090A5
JP2006519090A5 JP2004569170A JP2004569170A JP2006519090A5 JP 2006519090 A5 JP2006519090 A5 JP 2006519090A5 JP 2004569170 A JP2004569170 A JP 2004569170A JP 2004569170 A JP2004569170 A JP 2004569170A JP 2006519090 A5 JP2006519090 A5 JP 2006519090A5
Authority
JP
Japan
Prior art keywords
water
exchange membrane
ion exchange
electrode
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004569170A
Other languages
Japanese (ja)
Other versions
JP2006519090A (en
JP4392354B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2003/006601 external-priority patent/WO2004079051A1/en
Publication of JP2006519090A publication Critical patent/JP2006519090A/en
Publication of JP2006519090A5 publication Critical patent/JP2006519090A5/ja
Application granted granted Critical
Publication of JP4392354B2 publication Critical patent/JP4392354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明の原理に従って、先行技術の電解セルの短所を克服する独特な高電界電解(HEFE)セルが提示される。本発明のHEFEセルは、電極及びプロトンのイオン交換膜を収容する対応するセル構造内に取り囲まれた平坦なプロトンのイオン交換膜に結着(又は被覆)された平坦な電極対を含む。この電解セル構造は、純化された水を受け入れる少なくとも1つのインレット・チャネルと、電解FRS水及び水素富裕水の出力のための2つのアウトレット・チャネルとを含む。本発明の高電界電解セルは、再利用または電力発生用に水素富裕水のリサイクリングのための機構を更に提供する。 In accordance with the principles of the present invention, a unique high field electrolysis (HEFE) cell is presented that overcomes the shortcomings of prior art electrolysis cells. The HEFE cell of the present invention comprises a flat electrode pair bound (or coated) to a flat proton ion exchange membrane surrounded by a corresponding cell structure containing an electrode and a proton ion exchange membrane. The electrolytic cell structure includes at least one inlet channel that receives purified water and two outlet channels for the output of electrolytic FRS water and hydrogen rich water. The high electrolysis cell of the present invention further provides a mechanism for recycling hydrogen-rich water for reuse or power generation.

図1は、本発明の高電界電解(HEFE)セル10の典型的な概略図である。図示されるように、HEFEセル10は、その装置を任意の領域に適切に収容すべく、または、発生されるFRS水のボリュームに関しての生成要件に適切に合致すべく変更され得る寸法を伴う平坦構造である。処理された水(純化または軟水)はインレット・チャネル2を通じてHEFEセル10に流れ、電解されたフリーラジカル溶液水は、第2アウトレット・チャネル6を通じて排水される豊富水素水によって第1アウトレット・チャネル4を通じてHEFEセルから流出する。インレット・チャネル2を通じて処理水が流入すると、HEFEセル10内部のプロトンのイオン交換膜8が入ってくる水を仕切る。本発明のプロトンのイオン交換膜8は一般に平坦であって、約10μm〜500μmの厚みを有する固体高分子電解質から形成される。殆どの硬水(または通常水)に見られるカルシウムイオン及びマグネシウムイオンが透過性ではなく、プロトンのイオン交換膜8の多孔質表面を塞ぐ傾向があって、その性能を劣化するので、HEFE用には軟水または純化水が推奨される。 FIG. 1 is an exemplary schematic diagram of a high field electrolysis (HEFE) cell 10 of the present invention. As shown, the HEFE cell 10 is flat with dimensions that can be modified to properly accommodate the device in any area or to meet production requirements with respect to the volume of FRS water generated. Structure. The treated water (purified or soft water) flows to the HEFE cell 10 through the inlet channel 2, and the electrolyzed free radical solution water is supplied to the first outlet channel 4 by the abundant hydrogen water drained through the second outlet channel 6. Through the HEFE cell. When treated water flows through the inlet channel 2, the proton ion exchange membrane 8 inside the HEFE cell 10 partitions the incoming water. The proton ion exchange membrane 8 of the present invention is generally flat and is formed of a solid polymer electrolyte having a thickness of about 10 μm to 500 μm. Calcium ions and magnesium ions found in most hard water (or normal water) are not permeable and tend to block the porous surface of the proton ion exchange membrane 8, degrading its performance, so for HEFE Soft water or purified water is recommended.

イオン交換膜8の一方側に結着されているメッシュ(またはネット)・タイプのアノード電極(+)16はアニオン(−)を引き付け、イオン交換膜8の他方側に結着されているメッシュ(またはネット)・タイプのカソード(−)電極14はカチオン(+)を引き付ける。電極14,16は、プロトンのイオン交換膜8内への水の取り入れのために、メッシュ(またはネット)のひも或いはワイヤの間における複数の穴或いは開口スペースから構成されている。アノード(+)電極16及びカソード(−)電極14への(約5ボルトから20ボルトの)電力の付与に及んで、電流(電子の流れ)が水を通過し、水分子をアノード(+)電極上及び/またはアノード(+)電極近傍で正イオン及び負イオンに分解する。正の水素カチオン(+)はカソード(−)電極14に向かって移行して、電子と混合して水素原子を形成する。2つの水素原子が組み合わせられてカソード(−)電極14付近に水素分子Hを作り出し、アウトレット・チャネル6を通じて排出される水素リッチ水を発生する。O またはOHラジカル等の水酸化物イオン(アニオン(−))はアノード(+)電極16に向かって移動し、幾つかの電子と陽子とを失って酸素原子及び他のフリーラジカルを形成し、そしてFRS水として第2のアウトレット・チャネル4を通じて除去される。一般に、正に帯電したアノード(+)電極16(アニオン(−)側)での水流は、負に帯電したカソード(−)電極14(カチオン(+)側)での水流の1/10未満である。電解セルは、ヒドロキシルラジカル、超酸化物、一重項酸素、過ヒドロキシラジカル、ヒドロキシルイオン、ヒドロペルオキシラジカル、水素過酸化物、オゾン、並びに、活性酸素を発生する。 A mesh (or net) type anode electrode (+) 16 bonded to one side of the ion exchange membrane 8 attracts anions (−), and a mesh (which is bonded to the other side of the ion exchange membrane 8 ( Alternatively, the net) type cathode (-) electrode 14 attracts cations (+). The electrodes 14 and 16 are composed of a plurality of holes or open spaces between mesh (or net) strings or wires for taking water into the ion exchange membrane 8 of protons . Upon application of power (approximately 5 to 20 volts) to the anode (+) electrode 16 and the cathode (−) electrode 14, a current (electron flow) passes through the water and water molecules are passed through the anode (+). It decomposes into positive and negative ions on the electrode and / or near the anode (+) electrode. Positive hydrogen cations (+) migrate toward the cathode (-) electrode 14 and mix with electrons to form hydrogen atoms. The two hydrogen atoms combine to create hydrogen molecules H 2 near the cathode (−) electrode 14, generating hydrogen-rich water that is discharged through the outlet channel 6. Hydroxide ions (anions (−)) such as O 2 or OH radicals move towards the anode (+) electrode 16 and lose some electrons and protons to remove oxygen atoms and other free radicals. Formed and removed through the second outlet channel 4 as FRS water. In general, the water flow at the positively charged anode (+) electrode 16 (anion (−) side) is less than 1/10 of the water flow at the negatively charged cathode (−) electrode 14 (cation (+) side). is there. The electrolysis cell generates hydroxyl radicals, superoxide, singlet oxygen, perhydroxy radicals, hydroxyl ions, hydroperoxy radicals, hydrogen peroxide, ozone, and active oxygen.

図2は、高電界電解セル10に使用された他の構成要素に加えて、電極14及び16の詳細な層状構造を図示している。一般に、電極14,16はプラチナ或いは他の貴金属で被覆或いは形成されており、プロトンのイオン交換膜8及び転換ガイド20の間に配置されている。この転換ガイド20は、典型的には、アクリル樹脂製であるが、ステンレスまたはチタニウム等の他の適切な材料で置き換えられ得る。電極14,16は、プレス結着機構(不図示)または単にプロトンのイオン交換膜8上への被覆によって該プロトンのイオン交換膜8に固定及び結着され得る。簡略化のためにカソード(−)電極14のみが図2に図示されているが、理解して頂きたいことは、同様の構成がプロトンのイオン交換膜8及び転換ガイド20に関してアノード(+)電極16の配置に対して為される。更には、図2に図示されているカソード(−)電極14の構造に対する説明もそのアノード(+)電極16に適用される。図2におけるA−A’断面に図示されているように、本発明の各メッシュ電極14,16は、イオン交換膜8での、またはイオン交換膜8近傍での水の流れに乱れを発生する粗い非平滑表面層22,26で構成されている。第1の粗表面層は非常に小さな(または微細な)突出部22で構成され、その他が比較的に粗い(またはより大きな)隆起物26を伴っている。各電極のより小さな突出物メッシュ層22はプロトンのイオン交換膜8と対向すると共にそれに結着し、より大きな隆起物メッシュ層側26は水流と対向し、イオン交換膜8から遠ざかって近接している。水流上に、それら大小の突起メッシュ層26,22の双方が小さな矢印で図示されている水の無秩序な乱流を作り出し、水をプロトンのイオン交換膜8内に付勢している。水流と直接対向しているより粗い(またはより大きな突起)表面メッシュ層26はこの水流の「道」内にあって、水流内に最大限の乱流を作り出している。この構造はプロトンのイオン交換膜表面またはプロトンのイオン交換膜表面近傍における無秩序な流れ促進し、真水のその中への取り入れの効率を改善している。加えて、水取り入れの乱れた流れは余剰酸素の膜8内への吸収を可能とし、水の溶解酸素(DO)レベルを増大することで電解の効率を改善し、次いでそれは水の酸化還元ポテンシャル(ORP)・レベルを改善する。 FIG. 2 illustrates the detailed layered structure of the electrodes 14 and 16 in addition to the other components used in the high electrolysis cell 10. In general, the electrodes 14 and 16 are coated or formed of platinum or other noble metal, and are disposed between the proton ion exchange membrane 8 and the conversion guide 20. The conversion guide 20 is typically made of acrylic resin, but can be replaced with other suitable materials such as stainless steel or titanium. Electrodes 14 and 16 may be secured and a binder to the ion-exchange membrane 8 of the protons by a coating of the press binding mechanism (not shown) or just above the ion-exchange membrane 8 of protons. For simplicity, only the cathode (−) electrode 14 is shown in FIG. 2, but it should be understood that a similar configuration is the anode (+) electrode with respect to the proton ion exchange membrane 8 and conversion guide 20. This is done for 16 arrangements. Further, the description of the structure of the cathode (−) electrode 14 shown in FIG. 2 also applies to the anode (+) electrode 16. As shown in the AA ′ cross section in FIG. 2, each mesh electrode 14, 16 of the present invention generates a disturbance in the flow of water at or near the ion exchange membrane 8. It is composed of rough non-smooth surface layers 22 and 26. The first rough surface layer is composed of very small (or fine) protrusions 22 and the other with relatively rough (or larger) ridges 26. The smaller protrusion mesh layer 22 of each electrode faces and binds to the proton ion exchange membrane 8, and the larger raised mesh layer side 26 faces the water flow and is away from and close to the ion exchange membrane 8. Yes. On the water flow, both the large and small protruding mesh layers 26, 22 create a chaotic turbulent flow of water, which is illustrated by small arrows, and urges the water into the proton ion exchange membrane 8. A coarser (or larger protrusion) surface mesh layer 26 directly opposite the water flow is within the “way” of this water flow, creating maximum turbulence in the water flow. This structure was disordered flow promoters in the ion-exchange membrane surface near the ion exchange membrane surface or protons of the proton, and improve the efficiency of intake into the fresh water. In addition, the turbulent flow of water uptake allows absorption of surplus oxygen into the membrane 8 and improves electrolysis efficiency by increasing the dissolved oxygen (DO) level of the water, which in turn is the redox potential of the water. Improve (ORP) level.

図4は本発明に従った水素脱気の第2実施例を図示している。この実施例によって、カソード(−)電極14(またはカチオン(+)側)は外気に開放され、水素ガスが単純に水から外側の空気に蒸発する。この実施例によって、水レベル38はあふれを防止すべく制御される。カソード(−)電極14で水素分子等のカチオン(+)が発生し、水素ガスが水中に浮かぶ。水素ガスやプロトンのイオン交換膜8の小さな開口を貫通するナトリウム等のその他のかすかな物質を洗い流すのに、水を使用することができる。 FIG. 4 illustrates a second embodiment of hydrogen degassing according to the present invention. According to this embodiment, the cathode (-) electrode 14 (or cation (+) side) is opened to the outside air, and hydrogen gas simply evaporates from water to the outside air. With this embodiment, the water level 38 is controlled to prevent overflow. Cations (+) such as hydrogen molecules are generated at the cathode (−) electrode 14, and hydrogen gas floats in water. Water can be used to wash out other faint substances such as sodium that penetrate the small openings in the ion exchange membrane 8 of hydrogen gas or protons .

Claims (6)

水を取り入れるための少なくとも1つのインレット・チャネル、水素リッチ水の出力のための第1アウトレット・チャネル、及びフリーラジカル溶液水の出力のための第2アウトレット・チャネルを有する構造を備える電解セルであって、
前記構造が2つの平坦メッシュ電極の間でそれらに接触して配置された平坦なプロトンのイオン交換膜を収容し、
前記電極のそれぞれが、第一隆起パターンを有するワイヤの第一層と該第一隆起パターンより小さな第二隆起パターンを有するワイヤの第二層とを含み、
前記電極への電力の付与が前記インレット・チャネルを通じて流れる水を電気分解し、前記第1アウトレット・チャネルを通じて出力されるフリーラジカル溶液水と前記第2アウトレット・チャネルを通じて出力される水素リッチ水とを発生させることを特徴とする電解セル。
An electrolytic cell comprising a structure having at least one inlet channel for taking water, a first outlet channel for the output of hydrogen-rich water , and a second outlet channel for the output of free radical solution water. And
The structure contains an ion exchange membrane of flat protons arranged between and in contact with two flat mesh electrodes;
Each of the electrodes comprises a first layer of wire having a first raised pattern and a second layer of wire having a second raised pattern smaller than the first raised pattern;
Application of power to the electrode electrolyzes water flowing through the inlet channel, free radical solution water output through the first outlet channel, and hydrogen-rich water output through the second outlet channel. An electrolysis cell characterized by being generated.
前記第一層が前記プロトンのイオン交換膜面から離れた遠位に近接されて、前記プロトンのイオン交換膜に隣接する水の流れに乱れを作り出している、請求項1に記載の電解セル。 The electrolysis cell of claim 1 , wherein the first layer is located distally away from the proton ion exchange membrane surface to create a turbulence in the flow of water adjacent to the proton ion exchange membrane. 前記第二層が前記プロトンのイオン交換膜に対向して近接されている、請求項1に記載の電解セル。 The electrolysis cell according to claim 1 , wherein the second layer is in close proximity to the proton ion exchange membrane. 前記プロトンのイオン交換膜が、前記電極に固定して連結されている、請求項1に記載の電解セル。The electrolytic cell according to claim 1, wherein the proton ion exchange membrane is fixedly connected to the electrode. 前記隆起が、前記電極を形成するワイヤの曲がりによって形成されている、請求項1に記載の電解セル。The electrolysis cell according to claim 1, wherein the bulge is formed by bending of a wire forming the electrode. 前記電極のそれぞれが、前記プロトンのイオン交換膜と二つの転換ガイドのうち一方との間に配置され、各転換ガイドは第一水流チャンネルと第二水流チャンネルとを備えてなり、電極の一方は第一水流チャンネルを覆って、他方が第二水流チャンネルを覆っている、請求項1に記載の電解セル。Each of the electrodes is disposed between the proton ion exchange membrane and one of the two conversion guides, each conversion guide comprising a first water flow channel and a second water flow channel, one of the electrodes being The electrolysis cell according to claim 1, wherein the electrolysis cell covers the first water flow channel and the other covers the second water flow channel.
JP2004569170A 2003-03-04 2003-03-04 High electrolysis cell Expired - Fee Related JP4392354B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/006601 WO2004079051A1 (en) 2003-03-04 2003-03-04 High electric field electrolysis cell

Publications (3)

Publication Number Publication Date
JP2006519090A JP2006519090A (en) 2006-08-24
JP2006519090A5 true JP2006519090A5 (en) 2009-10-15
JP4392354B2 JP4392354B2 (en) 2009-12-24

Family

ID=32961109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004569170A Expired - Fee Related JP4392354B2 (en) 2003-03-04 2003-03-04 High electrolysis cell

Country Status (6)

Country Link
US (2) US20070017801A1 (en)
EP (1) EP1613793A4 (en)
JP (1) JP4392354B2 (en)
CN (1) CN1780938A (en)
AU (1) AU2003225659A1 (en)
WO (1) WO2004079051A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1461474B1 (en) 2001-12-05 2011-11-30 Oculus Innovative Sciences, Inc. Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
KR100737447B1 (en) * 2004-07-27 2007-07-10 삼성전자주식회사 A sterilizing method, a sterilizing apparatus, ion producting apparatus and electric device and air cleaning apparatus utilizing them
JP4649200B2 (en) * 2004-12-24 2011-03-09 株式会社 ミカサベッツ Radical oxygen water generator and radical oxygen water generator system
KR101523091B1 (en) 2005-03-23 2015-05-26 오클루스 이노바티브 사이언시즈 인코포레이티드 Method of treating skin ulcers using oxidative reductive potential water solution
WO2006119300A2 (en) 2005-05-02 2006-11-09 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
AU2007205861B2 (en) 2006-01-20 2013-05-09 Oculus Innovative Sciences, Inc. Methods of treating or preventing sinusitis with oxidative reductive potential water solution
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
US7836543B2 (en) * 2006-02-10 2010-11-23 Tennant Company Method and apparatus for producing humanly-perceptable indicator of electrochemical properties of an output cleaning liquid
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
JP4740080B2 (en) * 2006-09-26 2011-08-03 三洋電機株式会社 Air sanitizer
CN101918326A (en) 2007-08-15 2010-12-15 西门子水处理技术公司 Ballast water treatment system and method
WO2009046279A2 (en) 2007-10-04 2009-04-09 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
US8485140B2 (en) 2008-06-05 2013-07-16 Global Patent Investment Group, LLC Fuel combustion method and system
US20090314655A1 (en) 2008-06-19 2009-12-24 Tennant Company Electrolysis de-scaling method with constant output
JP5670889B2 (en) 2008-06-19 2015-02-18 テナント カンパニー Tubular electrolysis cell including concentric electrodes and corresponding method
US8371315B2 (en) 2008-12-17 2013-02-12 Tennant Company Washing systems incorporating charged activated liquids
MX348304B (en) 2009-06-15 2017-06-02 Invekra S A P I De C V Solution containing hypochlorous acid and methods of using same.
KR101020925B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Production-apparatus of ion water
KR101020982B1 (en) * 2010-05-17 2011-03-09 주식회사 이온팜스 Water ionizer
US8394253B2 (en) * 2010-11-16 2013-03-12 Strategic Resource Optimization, Inc. Electrolytic system and method for generating biocides having an electron deficient carrier fluid and chlorine dioxide
US20120223000A1 (en) * 2011-03-04 2012-09-06 Lih-Ren Shiue Vacuum assisted ozonization
KR101120942B1 (en) * 2011-08-08 2012-03-13 주식회사 선도 Manufacturing device of hydrogen water with functional
US9719178B2 (en) * 2013-02-28 2017-08-01 The United States Of America, As Represented By The Secretary Of The Navy Electrochemical module configuration for the continuous acidification of alkaline water sources and recovery of CO2 with continuous hydrogen gas production
KR101349305B1 (en) * 2013-05-24 2014-01-13 한국지질자원연구원 Device for electrowinning rare metals using channelled cell, and method thereof
DE102014203372A1 (en) * 2014-02-25 2015-08-27 Condias Gmbh Electrode arrangement for an electrochemical treatment of a liquid
DE102014203374B4 (en) * 2014-02-25 2018-05-03 Condias Gmbh Electrode assembly and method for electrochemically producing electrolyzed water
CN104018176A (en) * 2014-06-16 2014-09-03 广西大学 Method for dissociating water into hydrogen radical through electric field induction
CN104016301B (en) * 2014-06-16 2016-06-29 广西大学 The method of hydrogen is prepared in electric field induction
US10214820B2 (en) 2014-12-15 2019-02-26 JOI Scientific, Inc. Hydrogen generation system with a controllable reactive circuit and associated methods
US9816190B2 (en) 2014-12-15 2017-11-14 JOI Scientific, Inc. Energy extraction system and methods
US10047445B2 (en) 2014-12-15 2018-08-14 JOI Scientific, Inc. Hydrogen generation system
GB201509769D0 (en) * 2015-06-03 2015-07-22 Imp Innovations Ltd Apparatus and method for production of oxidants
US20190046561A1 (en) 2017-08-08 2019-02-14 Perricone Hydrogen Water Company, Llc Barriers for glass and other materials
US11129848B2 (en) 2017-08-08 2021-09-28 Perricone Hydrogen Water Company, Llc Medication enhancement using hydrogen
CN108408847A (en) * 2018-03-29 2018-08-17 深圳市霍沃科技有限公司 Misty small molecule hydrogen-rich water preparation apparatus and misty small molecule hydrogen-rich water preparation method
US11123365B2 (en) 2019-11-18 2021-09-21 Perricone Hydrogen Water Company, Llc Compositions comprising palmitoylethanolamide and hydrogen water, and methods thereof
DE102021200029A1 (en) * 2020-01-10 2021-07-15 Sms Group Gmbh Process for the production of hydrogen and oxygen by means of an electrolyzer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057482A (en) * 1972-06-16 1977-11-08 Candor James T Apparatus for removing liquid from liquid bearing material
US4265719A (en) * 1980-03-26 1981-05-05 The Dow Chemical Company Electrolysis of aqueous solutions of alkali-metal halides employing a flexible polymeric hydraulically-impermeable membrane disposed against a roughened surface cathode
IT1202425B (en) * 1987-01-26 1989-02-09 Giuseppe Bianchi ELECTROCHEMICAL DEOXYGENATION PROCESS FOR THE CONTROL OF CORROSION IN DEIONIZED WATERS
US5686051A (en) * 1994-11-11 1997-11-11 Kabushiki Kaisha Kobe Seiko Sho Ozone water production apparatus
JP3408394B2 (en) * 1996-08-27 2003-05-19 株式会社日本トリム Method for producing electrolytic hydrogen dissolved water and apparatus for producing the same
JP2001259635A (en) * 2000-03-16 2001-09-25 Matsushita Electric Ind Co Ltd Acidic water and alkaline water producer
JP5140218B2 (en) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use

Similar Documents

Publication Publication Date Title
JP2006519090A5 (en)
JP4392354B2 (en) High electrolysis cell
WO2014201852A1 (en) Simple and efficient electrolysis method and device for making electrolyzed water from pure water
WO2016134621A1 (en) New membraneless water electrolysis method for significantly improving electrolysis efficiency
CN203668073U (en) Simple and efficient electrolysis device capable of preparing purified water into electrolyzed water
CN102803151A (en) Apparatus for producing ion water
WO2017141284A1 (en) Electrolyzed water generation device
JP5282201B2 (en) Electrolyzed water generator
CN104630816B (en) Hydrogen production device and technology via photoelectric degradation of organic pollutant based on solar energy and sea water cell collaborative drive
Cui et al. Natural wood-derived solid ionic conductor for solid electro-Fenton strategy
KR101404691B1 (en) Hydrogen and oxygen generating device
JP2012193428A (en) Electrolytic solution decomposition device and decomposition method for electrolytic solution using the same
KR20200110535A (en) A desalination system
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
JP4649200B2 (en) Radical oxygen water generator and radical oxygen water generator system
CN115161676A (en) Device and method for directly producing hydrogen from seawater
JP6624470B1 (en) Microbial fuel cell, power generator and sewage treatment system
KR100651654B1 (en) A water purifier using an electrolysis
JPH08276184A (en) Electrode for electrolyzing water
CN109761322A (en) A kind of water process composite bactericidal method and device thereof
JPH09239364A (en) Electrolyzer and ionic water producing device
CN217973429U (en) Device for directly producing hydrogen from seawater
CN211896185U (en) Novel micro-electrolysis catalytic oxidation reaction tower
JP3485247B2 (en) Ionized water generator and partition wall for ionized water generator
CN208414566U (en) The ozone generating-device of ozone wound surface therapeutic apparatus