JPH08276184A - Electrode for electrolyzing water - Google Patents

Electrode for electrolyzing water

Info

Publication number
JPH08276184A
JPH08276184A JP8010737A JP1073796A JPH08276184A JP H08276184 A JPH08276184 A JP H08276184A JP 8010737 A JP8010737 A JP 8010737A JP 1073796 A JP1073796 A JP 1073796A JP H08276184 A JPH08276184 A JP H08276184A
Authority
JP
Japan
Prior art keywords
electrode
water
diaphragm
electrolysis
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8010737A
Other languages
Japanese (ja)
Inventor
Yoichi Sano
洋一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8010737A priority Critical patent/JPH08276184A/en
Publication of JPH08276184A publication Critical patent/JPH08276184A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an electrode for electrolyzing water facilitating the dispersion of an ion-containing soln. and gas formed when water is electrolyzed, enhancing ion forming efficiency, efficiently producing acidic ion water and alkaline ion water and simplified in the holding structure of the electrode and a diaphragm. CONSTITUTION: Two electrode plates 5 each having a front surface 1 composed of a conductive material such as a metal and a rear surface 2 composed of a non-conductive material such as plastic and having a large number of through- holes 3 are arranged so that the non-conductive material surfaces 2 thereof are mutually opposed and a diaphragm 4 is arranged between the electrode plates 5 to constitute an electrode for electrolyzing water. This electrode is arranged in an electrolytic cell so as to divide the cell into two parts and one electrode plate is set to an anode and the other electrode plate is set to a cathode to apply voltage across the electrode plates to generate electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水および電解質を含む
水溶液の電気分解用の電極に関し、特に酸性イオン水及
びアルカリイオン水の製造に好適な水の電気分解用電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis of an aqueous solution containing water and an electrolyte, and more particularly to an electrode for electrolysis of water suitable for producing acidic ion water and alkaline ion water.

【0002】[0002]

【従来の技術】水の電気分解によって酸性イオン水およ
びアルカリイオン水が生成することは従来から知られて
いる。そして、近年この現象を利用して、健康用飲料水
などとしてのアルカリイオン水を製造すること、或いは
殺菌水などとしての酸性イオン水を製造することに関し
て種々の方法、装置が提案されている(特公平4−28
439号公報、特公平4−57394号公報、特開平6
−47376号公報、特開平6−55173号公報、特
開平6−246268号公報)。これらの従来の水の電
気分解には、電解槽中に陰極と陽極とを一定の間隔を置
いて対面させて配置し、この陰極と陽極の中間に隔膜を
配置した電気分解装置が用いられていた。
2. Description of the Related Art It has been conventionally known that acidic ionized water and alkaline ionized water are produced by electrolysis of water. Then, in recent years, various methods and devices have been proposed for producing alkaline ionized water such as health drinking water, or for producing acidic ionized water such as sterilizing water by utilizing this phenomenon. Japanese Patent Fair 4-28
No. 439, Japanese Patent Publication No. 4-57394, JP-A-6
-47376, JP-A-6-55173, JP-A-6-246268). For the conventional electrolysis of water, an electrolyzer is used in which a cathode and an anode are arranged facing each other in the electrolytic cell with a constant gap, and a diaphragm is arranged between the cathode and the anode. It was

【0003】[0003]

【発明が解決しようとする課題】上記構成の従来の電気
分解装置を用いて水の電気分解を行うに当たり、電気分
解の反応効率を高めるには、陰極と陽極の間隔をできる
だけ狭く配置するのが有効である。ところで、電気分解
は隔膜を挟んで対向する陰陽両電極面で起こるので、酸
性イオンおよびアルカリ性イオンを含む溶液やガスは、
隔膜と各電極との狭い間隙に生成する。対象とする水お
よび電解質を含む水溶液が効率的に電気分解されるため
には、生成したイオンを含む溶液を適当に拡散させる必
要があるし、発生したガスを放散させる必要がある。従
って、両電極と隔膜は上記の必要条件を満足させなが
ら、狭い間隔に適切に保持する必要があり、そのため該
電気分解装置は構造が複雑になるという問題点があっ
た。本発明は、上記の事情に鑑みなされたもので、電気
分解によって生成するイオンを含む溶液の拡散とガスの
放散を容易にならしめた上で、可能な限り両電極間の距
離を狭めることによって電気分解効率を高め、更には電
解槽中に電極や隔膜を保持させる構造を簡素化した水電
気分解用電極を提供することを目的とする。
When electrolyzing water using the conventional electrolyzer having the above-mentioned structure, in order to improve the reaction efficiency of electrolysis, it is necessary to arrange the cathode and the anode as narrow as possible. It is valid. By the way, since electrolysis occurs on both the positive and negative electrode surfaces facing each other across the diaphragm, the solution or gas containing acidic ions and alkaline ions,
It is generated in a narrow gap between the diaphragm and each electrode. In order for the target aqueous solution containing water and the electrolyte to be efficiently electrolyzed, it is necessary to appropriately diffuse the solution containing the generated ions and to diffuse the generated gas. Therefore, it is necessary to appropriately hold both electrodes and the diaphragm in a narrow space while satisfying the above requirements, which causes a problem that the structure of the electrolyzer becomes complicated. The present invention has been made in view of the above circumstances, by facilitating the diffusion of a solution containing ions generated by electrolysis and the diffusion of gas, and by narrowing the distance between both electrodes as much as possible. An object of the present invention is to provide an electrode for water electrolysis in which the electrolysis efficiency is improved and the structure for holding the electrode and the diaphragm in the electrolytic cell is simplified.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の目的
を達成させるべく水の電気分解用電極の構成について種
々究明した結果、従来とは全く異なり、対面する陰極及
び陽極の電極間で電気分解を起こさず、陰極及び陽極を
お互いに外側に向けて電気分解を起こさせるようにする
ことによって、従来の問題点を解消し得ることを見出
し、本発明を完成した。
As a result of various investigations on the structure of the electrode for electrolysis of water in order to achieve the above-mentioned object, the present inventor has found that, unlike the prior art, the electrode between the facing cathode and anode is completely different. The inventors have found that the conventional problems can be solved by causing the cathode and the anode to face each other outward without causing electrolysis, and have completed the present invention.

【0005】すなわち、本発明は、表側は金属性等の導
電性材料からなる面(1)、裏側はプラスチック等の非
導電性材料からなる面(2)であり、且つ多数の貫通す
る孔(3)を有する電極板(5)の2枚を、それぞれの
非導電性材料面(2)が向い合わせになるように配置
し、その中間に隔膜(4)を配置してなることを特徴と
する水電気分解用電極である。
That is, according to the present invention, the front side is a surface (1) made of a conductive material such as metal, the back side is a surface (2) made of a non-conductive material such as plastic, and a large number of through holes ( Two electrode plates (5) having 3) are arranged so that their non-conductive material surfaces (2) face each other, and a diaphragm (4) is arranged in the middle thereof. It is an electrode for water electrolysis.

【0006】本発明について更に詳しく説明する。水ま
たは電解質を含む水溶液の中に設置された陰、陽の電極
に電圧が印加されると、電極面で電離した水または電解
質との間で電子の移動が起こる。陽極側では酸素ガスや
電解質として例えば塩化ナトリウムを使用している場合
には塩素ガスが発生すると同時に溶液中には水素イオ
ン、ヒドロニウムイオン等が生成し溶液は酸性を呈す
る。陰極では水素ガスが発生すると共に水酸化物イオン
が生成し溶液はアルカリ性を呈する。陰極から溶液に移
動した電子は溶液中を移動して陽極に達する。即ち、陽
極から陰極へ電気が流れることになる。
The present invention will be described in more detail. When a voltage is applied to negative and positive electrodes placed in an aqueous solution containing water or an electrolyte, electrons move between the electrode and the water or the electrolyte ionized at the electrode surface. On the anode side, when oxygen gas or sodium chloride is used as an electrolyte, chlorine gas is generated and at the same time hydrogen ions, hydronium ions, etc. are generated in the solution, and the solution becomes acidic. At the cathode, hydrogen gas is generated and hydroxide ions are generated, and the solution becomes alkaline. The electrons that have moved from the cathode to the solution move in the solution and reach the anode. That is, electricity flows from the anode to the cathode.

【0007】イオンおよびガスの生成反応は、陽極およ
び陰極の電極面およびその近傍で行われるので、イオン
濃度は各々の電極面に近い程濃度が高く、従って遠い程
低くなって濃度差が生じる。一般的に言われていること
によれば、電極付近に生じたイオン等の生成物質は、濃
度勾配、電位勾配および溶液の対流等が駆動力になって
移動したり拡散するが、陰極用電極と陽極用電極の中間
に配置した隔膜は、陽極および陰極で生成した両溶液の
混合を阻止する役割を担っている。
Since the reaction of producing ions and gas is carried out on the electrode surfaces of the anode and the cathode and in the vicinity thereof, the ion concentration becomes higher as it is closer to each electrode surface, and therefore lower as it is farther away, and a difference in concentration occurs. It is generally said that the generated substances such as ions generated in the vicinity of the electrode move or diffuse due to the concentration gradient, the potential gradient, the convection of the solution, etc. as a driving force. The diaphragm arranged between the anode electrode and the anode electrode plays a role of preventing mixing of both solutions generated at the anode and the cathode.

【0008】従来の方法の如き陰極と陽極とが対面する
電極を用い、中間に隔膜を配置した場合には、陰極およ
び陽極の当該隔膜側の電極面で活発に電気分解が起こ
り、各々の電極でイオンおよびガスが生成する。該ガス
は電極と隔膜の間に存在する溶液中を気泡となって放散
し、陰イオンおよび陽イオンは濃度勾配、電位勾配およ
び対流等の作用で拡散する。この時隔膜により両溶液の
混合は阻止されるが、電位勾配が存在するので溶液中に
存在するイオンは電気泳動しながら隔膜を通過して対極
側に移動する。この物理現象は、例えば塩化ナトリウム
の電気分解によってカセイソーダを製造する場合等に応
用されていて、陽極で生成したナトリウムイオンが陰極
に移動することにより水酸化ナトリウムの生成を可能と
する。
In the case of using an electrode in which a cathode and an anode face each other as in the conventional method and a diaphragm is arranged in the middle, electrolysis actively occurs on the electrode surface of the cathode and the anode on the diaphragm side, and each electrode is Ions and gas are generated at. The gas is diffused as bubbles in the solution existing between the electrode and the diaphragm, and the anions and cations diffuse by the action of concentration gradient, potential gradient, convection and the like. At this time, mixing of both solutions is prevented by the diaphragm, but since there is a potential gradient, ions existing in the solution migrate to the counter electrode side while passing through the diaphragm while performing electrophoresis. This physical phenomenon is applied, for example, when caustic soda is produced by electrolysis of sodium chloride, and sodium ions produced at the anode move to the cathode so that sodium hydroxide can be produced.

【0009】しかし、本発明の目的である、酸性及びア
ルカリ性のイオン水を製造する場合には、生成した陰イ
オンおよび陽イオンが、各々の生成した極側の溶液中で
濃度を高める必要があり、そのため溶液中に存在するイ
オンが反対極側に移動する現象は好ましくないことであ
る。そこで、本発明では、陰電極と陽電極とを対面させ
ず、各々の電極が外側すなわち互いに背面を向くように
し、そして対面する側は非導電材料となし、その中間に
隔膜を配置させる構成にすることによって、電気分解反
応を背面の電極面で起こさせ、イオンおよびガスを生成
させ、溶液中に存在するイオンが反対極側に移動するの
を抑制し、溶液中のイオン濃度を高め得るようにしたも
のである。
However, in the case of producing acidic and alkaline ionized water, which is the object of the present invention, it is necessary to increase the concentration of the produced anions and cations in the produced solution on the electrode side. Therefore, the phenomenon that the ions present in the solution move to the opposite electrode side is not preferable. Therefore, in the present invention, the negative electrode and the positive electrode are not faced to each other, each electrode is directed to the outside, that is, the back face to each other, and the facing side is made of a non-conductive material, and the diaphragm is arranged in the middle. By doing so, the electrolysis reaction is caused on the back electrode surface, ions and gas are generated, the ions existing in the solution are suppressed from moving to the opposite electrode side, and the ion concentration in the solution can be increased. It is the one.

【0010】本発明の水電気分解用電極の一例を示す図
面に従って説明する。図1は本発明の水の電気分解用電
極の斜視図であり、図2はそのA−A断面図である。
(1)は金属等の導電性材料から成る面で、材料として
は銅、鉛、ニッケル、クロム、チタン、金、白金、酸化
鉄、グラファイト等であるが、白金が好ましい。金属等
の板を使用する場合には、5〜100ミクロンの板を使
用するのが適当であるが、0.1〜5ミリメートル程度
のチタン等の金属板に白金等をメッキしたものを使用し
てもよい。(2)はプラスチック等の非導電性材料から
成る面で、材料としてはポリエチレン樹脂、ポリプロピ
レン樹脂、ポリスチレン樹脂、ポリエチレンテレフタレ
ート樹脂、塩化ビニール樹脂、ABS樹脂、アクリル樹
脂、エポキシ樹脂、ポリ弗化ビニル樹脂、セラミック
ス、天然ゴム、SBR、シリコンゴム、クロロプレンゴ
ム等の板が用いられる。また、ガラス繊維、木綿、合成
繊維等の布やネット等で強化した合成樹脂板でもよい
し、更に非導電性塗料の塗布膜や合成樹脂のフィルムで
あってもよい。上記(1)と(2)とはその中間に溶液
が入らないように密着積層させて電極板(5)とする。
An example of the water electrolysis electrode of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an electrode for water electrolysis according to the present invention, and FIG. 2 is a sectional view taken along line AA.
(1) is a surface made of a conductive material such as metal, and examples of the material include copper, lead, nickel, chromium, titanium, gold, platinum, iron oxide, graphite, and the like, and platinum is preferable. When using a plate of metal or the like, it is suitable to use a plate of 5 to 100 microns, but use a metal plate of titanium or the like of about 0.1 to 5 mm plated with platinum or the like. May be. (2) is a surface made of non-conductive material such as plastic, and the material is polyethylene resin, polypropylene resin, polystyrene resin, polyethylene terephthalate resin, vinyl chloride resin, ABS resin, acrylic resin, epoxy resin, polyvinyl fluoride resin. Plates of ceramics, natural rubber, SBR, silicon rubber, chloroprene rubber, etc. are used. Further, it may be a synthetic resin plate reinforced with a cloth such as glass fiber, cotton or synthetic fiber, a net, etc., or may be a coating film of a non-conductive paint or a synthetic resin film. The above (1) and (2) are closely laminated so that the solution does not enter in the middle thereof to form an electrode plate (5).

【0011】上記の電極板(5)に貫通する多数の孔
(3)を穿孔する。この孔(3)の大きさは1個当りの
面積が1〜500平方ミリメートル、好ましくは2〜3
00平方ミリメートルであり、この孔(3)は電気分解
に寄与する電極面全体に配置する。孔全体の合計面積の
電極全面に対する割合(開口率)は10〜90%であ
り、好ましくは30〜70%が適当である。この孔の大
きさ、開口率は、電気分解の電力効率に影響する。
A large number of holes (3) penetrating the electrode plate (5) are punched. The area of each hole (3) is 1 to 500 mm 2, preferably 2 to 3 mm 2.
The hole (3) is located over the entire electrode surface that contributes to electrolysis. The ratio of the total area of the entire holes to the entire surface of the electrode (aperture ratio) is 10 to 90%, preferably 30 to 70%. The size and opening ratio of the holes affect the power efficiency of electrolysis.

【0012】上記構成の電極板(5)の2枚を、それぞ
れの非導電性の面(2)が向かい合うように配置し、そ
の間に隔膜(4)を配置する。そして、各電極板(5)
と隔膜(4)とを密着させて一体化して、各電極板
(5)に接続する陰、陽電極用の接点(5’)、
(5’)を設けた非導電性材料の固定用の枠(6)に取
り付けて、本発明の水電気分解用電極となす。隔膜
(4)の材質は、通常使用されているアスベスト、グラ
スウール、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊
維、ポリエステル繊維、芳香族ポリアミド繊維等の不織
布、素焼きの陶器、紙、イオン交換樹脂膜等である。上
記の例では、各電極板(5)と隔膜(4)とを密着一体
化したが、これらの配置方法としては、それぞれを独立
に配置してもよい。すなわち、電極板(5)の非導電性
の面(2)と隔膜(4)との間に溶液が存在できるよう
に、非導電性材料で構成したスペーサーを挿入して一体
化して、非導電性材料の固定用の枠(6)に取り付けて
もよい。
Two electrode plates (5) having the above construction are arranged so that their non-conductive surfaces (2) face each other, and a diaphragm (4) is arranged between them. And each electrode plate (5)
And the diaphragm (4) are brought into close contact with each other and integrated, and are connected to each electrode plate (5), and contacts (5 ') for the negative and positive electrodes,
It is attached to a frame (6) for fixing a non-conductive material provided with (5 ′) to form the electrode for water electrolysis of the present invention. The material of the diaphragm (4) is non-woven fabric such as asbestos, glass wool, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyester fiber, aromatic polyamide fiber, etc. that are commonly used, unglazed pottery, paper, ion exchange resin film, etc. is there. In the above example, the electrode plates (5) and the diaphragm (4) are closely adhered to each other, but they may be arranged independently. That is, a spacer made of a non-conductive material is inserted and integrated so that the solution can exist between the non-conductive surface (2) of the electrode plate (5) and the diaphragm (4), and the non-conductive material is formed. It may be attached to the frame (6) for fixing the material.

【0013】図3は、本発明の水電気分解用電極を使用
して、水または電解質を含む水溶液を電気分解する装置
の斜視図である。(7)は水電気分解用電極であり、
(8)は電解槽である。電解層(8)の略中央に、水電
気分解用電極(7)を設置する。この時、水電気分解用
電極(7)で電解槽(8)中の水溶液が完全に分離さ
れ、両側の水溶液が混合されないような構成にする。電
解層(8)に水または電解質を含む水溶液を満たす。次
いで、水電気分解用電極(7)の片方の電極板(5)を
陰極となし、他方の電極板(5)を陽極となし、それぞ
れの接点(5’)、(5’)に通電して電圧を印加して
電気分解を行う。また、上記の例では電解槽に、水電気
分解用電極(7)を一個のみ設置したが、2個以上設置
してもよい。このように複数個設置する場合には、同じ
極同士が向い合うように、例えば陽極と陽極が向い合う
ように設置する。
FIG. 3 is a perspective view of an apparatus for electrolyzing water or an aqueous solution containing an electrolyte using the electrode for water electrolysis of the present invention. (7) is an electrode for water electrolysis,
(8) is an electrolytic cell. The electrode (7) for water electrolysis is installed at approximately the center of the electrolytic layer (8). At this time, the water electrolysis electrode (7) completely separates the aqueous solution in the electrolytic cell (8) so that the aqueous solutions on both sides are not mixed. The electrolytic layer (8) is filled with water or an aqueous solution containing an electrolyte. Next, one electrode plate (5) of the water electrolysis electrode (7) was used as a cathode and the other electrode plate (5) was used as an anode, and the respective contacts (5 '), (5') were energized. Voltage is applied to electrolyze. Further, in the above example, only one electrode for water electrolysis (7) is installed in the electrolytic cell, but two or more electrodes may be installed. When a plurality of such electrodes are installed in this way, they are installed so that the same poles face each other, for example, the anodes face each other.

【0014】[0014]

【作用】本発明は、上述の如く、陰極と陽極とは対面せ
ず、各々が外側すなわち背面を向き、対面する側は非導
電材料であり、その中間に隔膜を配置させた構成にした
ために、電気分解反応は背面の電極面で起きてイオンお
よびガスを生成する。この時、電流は各々の電極板に設
けられた貫通する孔と隔膜を通じて各々の背面の電極面
との間を流れる為に、電位勾配は孔と隔膜の間に存在す
る溶液中にだけ存在し、それぞれの背面電極側の溶液中
には存在しない。したがって、それぞれの電極で生成し
た陰イオン、陽イオンは濃度勾配及び対流により電極よ
り遠ざかる方向に移動するが、電位勾配により対極する
電極へ引かれて移動する力が弱いので、陰イオン及び陽
イオンが混合しにくい。すなわち、生成したイオンは濃
度勾配や対流で当該電極から遠ざかる方向に拡散し、一
部電極板の孔の部分に存在するイオンだけが電位勾配に
より対極に移動する。そのため、溶液中に存在するイオ
ンの対極側への移動現象が減少し、生成した陰イオンお
よび陽イオンが各々の生成した極側の溶液中で濃度を高
められ、効率良く酸性及びアルカリ性のイオン水を製造
することができる。また、ガスは隔膜とは反対側の解放
された溶液側で放散される。
As described above, according to the present invention, the cathode and the anode do not face each other, each faces the outer side, that is, the back side, the facing side is the non-conductive material, and the diaphragm is arranged in the middle. The electrolysis reaction occurs on the back electrode surface to generate ions and gas. At this time, since a current flows between the through hole provided in each electrode plate and the back electrode surface through the diaphragm, the potential gradient exists only in the solution existing between the hole and the diaphragm. , Does not exist in the solution on each back electrode side. Therefore, the anions and cations generated at the respective electrodes move in the direction away from the electrodes due to the concentration gradient and convection, but the potential gradient causes a weak force to move to the opposite electrode. Is difficult to mix. That is, the generated ions are diffused in a direction away from the electrode due to a concentration gradient or convection, and only the ions existing in some of the holes of the electrode plate move to the counter electrode due to the potential gradient. Therefore, the phenomenon of migration of the ions existing in the solution to the counter electrode side is reduced, the concentration of the generated anion and cation is increased in the solution of the generated electrode side, and the acidic and alkaline ionized water is efficiently added. Can be manufactured. Also, the gas is released on the released solution side opposite the diaphragm.

【0015】電気分解時に、電気は陽極と陰極の間に存
在する電解質を含む水溶液中を移動するが、この両電極
間距離及び隔膜が電気分解時の電気抵抗の因子となる。
電気分解に於ける電力効率を高めるためには、電気抵抗
を減らすべく、陰、陽両極間距離を狭くするのが望まし
いが、従来の陰極と陽極が向かい合った対面電極の場合
には、両電極の間に存在する溶液の移動やガスの放散を
考慮する必要があるので一定の限度がある。陰極と陽極
が外側を向き背中合わせになった本発明の背面電極の場
合には、両電極間には絶縁材と隔膜を存在させるだけで
よく、溶液の移動やガスの放散を考慮する必要は無い。
そのため、極間距離は使用する電極や絶縁材料および隔
膜の厚みの合計値まで減少させ得、もって電気分解にお
ける電力効率を高めることができる。
At the time of electrolysis, electricity moves in an aqueous solution containing an electrolyte existing between an anode and a cathode, and the distance between both electrodes and the diaphragm are factors of electric resistance at the time of electrolysis.
In order to increase the power efficiency in electrolysis, it is desirable to narrow the distance between the negative and positive electrodes in order to reduce the electrical resistance, but in the case of a conventional facing electrode with a cathode and an anode facing each other, both electrodes There is a certain limit because it is necessary to consider the movement of the solution and the emission of gas existing during the period. In the case of the back electrode of the present invention in which the cathode and the anode face outward and face to face, it is only necessary to provide an insulating material and a diaphragm between both electrodes, and it is not necessary to consider the movement of the solution and the gas emission. .
Therefore, the distance between the electrodes can be reduced to the total value of the thickness of the electrodes, the insulating material, and the diaphragm used, and thus the power efficiency in electrolysis can be increased.

【0016】実施例1.一方の面に白金メッキを施した
厚さ1mmのチタン板の反対面に非導電性の厚さ0.2
のポリエチレンフィルムを積層し、この積層物に直径5
mmの孔をピッチが7.7mmになるように均等に穿孔
して電極板を作った。この開口率は33%であった。上
記の電極板2枚を、ポリエチレンフィルム面が相対する
ように配置し、その間に厚さ0.17mmのユミクロン
メンブランスフィルター(湯浅電池性MF−60B)隔
膜を配置し、三者を密着させ、その上部非導電性型枠で
固定して電極を作成した。この電極の縦横各100mm
のサイズのものを容量1リットルの電解層の略中央に設
置した。この電極で電解槽中の水溶液が完全に分離され
混合されないような構成にした。この電解槽中に、電解
質を含む水溶液として0.03重量%の塩化ナトリウム
水溶液を満たした。次いで、上記電極の一方の電極板を
陽極、他方の電極板を陰極とし、約13Vの低電圧にて
直流電流を流した。そして、陽極側の水溶液と陰極側の
水溶液のpH及び酸化還元電位(ORP)の経時的変化
を測定した。その結果を表1に示す。また、陽極側の液
のpHが2.7に到達するまでの電力効率を測定したと
ころ、5.1ワット・時/リットルであった。
Example 1. Platinum-plated 1 mm thick titanium plate on one side and non-conductive thickness 0.2 on the opposite side
Of polyethylene film, and the diameter of this laminate is 5
mm holes were evenly punched so that the pitch was 7.7 mm to form an electrode plate. The aperture ratio was 33%. The two electrode plates are arranged so that the polyethylene film surfaces face each other, and a 0.17 mm thick Yumicron membrane filter (Yuasa Battery MF-60B) diaphragm is arranged between them to bring the three into close contact. Then, an electrode was prepared by fixing it on the upper non-conductive mold. Vertical and horizontal of this electrode 100 mm each
The one having a size of 1 was placed substantially in the center of the electrolytic layer having a capacity of 1 liter. With this electrode, the aqueous solution in the electrolytic cell was completely separated and was not mixed. The electrolytic cell was filled with a 0.03 wt% sodium chloride aqueous solution as an aqueous solution containing an electrolyte. Then, using one electrode plate of the above electrodes as an anode and the other electrode plate as a cathode, a direct current was applied at a low voltage of about 13V. Then, changes over time in pH and redox potential (ORP) of the aqueous solution on the anode side and the aqueous solution on the cathode side were measured. Table 1 shows the results. Further, the power efficiency was measured until the pH of the liquid on the anode side reached 2.7, which was 5.1 watt · hour / liter.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2.電極板に穿孔する孔の直径を7
mm、配列のピッチを10mmとした以外は実施例1と
全く同じ形状及び条件にて電気分解を行った。この場合
の開口率は44%であった。陽極側の水溶液と陰極側の
水溶液のpH及び酸化還元電位(ORP)の経時的変化
を測定した結果を表2に示す。また、pHが2.7に到
達するまでの電力効率は3.4ワット・時/リットルで
あった。
Example 2. The diameter of the holes drilled in the electrode plate is 7
mm and the pitch of the arrangement was 10 mm, and electrolysis was performed under the same shape and conditions as in Example 1. The aperture ratio in this case was 44%. Table 2 shows the results of measuring changes in pH and redox potential (ORP) of the aqueous solution on the anode side and the aqueous solution on the cathode side with time. Further, the power efficiency until the pH reached 2.7 was 3.4 watt · hour / liter.

【0019】[0019]

【表2】 [Table 2]

【0020】実施例3.実施例2で用いたと同じ構成
で、その大きさを縦360mm、横500mmとした電
極を使用した。この電極を、容量100リットルの電解
層の略中央に、電解槽中の水溶液が完全に分離され混合
されないように配置した。電解槽に0.03%塩化ナト
リウム水溶液を入れ電気分解を行った。この時の電流を
約15Vに維持した。陽極側の水溶液と陰極側の水溶液
のpH及び酸化還元電位(ORP)の経時的変化を測定
した。その結果を表3に示す。また、pHが2.7に到
達するまでの電力効率は4.4ワット・時/リットルで
あった。
Example 3. An electrode having the same structure as that used in Example 2 and having a size of 360 mm in length and 500 mm in width was used. This electrode was placed in the approximate center of the electrolytic layer having a capacity of 100 liters so that the aqueous solution in the electrolytic cell was completely separated and not mixed. A 0.03% sodium chloride aqueous solution was placed in the electrolytic cell for electrolysis. The current at this time was maintained at about 15V. Changes over time in pH and redox potential (ORP) of the aqueous solution on the anode side and the aqueous solution on the cathode side were measured. Table 3 shows the results. Further, the power efficiency until the pH reached 2.7 was 4.4 watt · hour / liter.

【0021】[0021]

【表3】 [Table 3]

【0022】pH2.7以下のレベルでの酸性イオン水
は良好な殺菌力を有する。通常の電解方法によれば、こ
のレベルに達するための電力効率は条件によって変動は
あるが、通常8〜10ワット・時/リットル程度であ
る。本発明の電極を用いた場合は、実施例1では5.1
ワット・時/リットル、実施例2では3.4ワット・時
/リットル、実施例3では4.4ワット・時/リットル
であり、電力効率がすぐれていることがわかる。
Acidic ionized water at a level below pH 2.7 has good bactericidal activity. According to the usual electrolysis method, the power efficiency for reaching this level varies depending on the conditions, but is usually about 8 to 10 watt · hour / liter. In the case of using the electrode of the present invention, 5.1 in Example 1.
It can be seen that the power efficiency is excellent since it is watt-hour / liter, Example 2 is 3.4 watt-hour / liter, and Example 3 is 4.4 watt-hour / liter.

【0023】[0023]

【発明の効果】本発明の水電気分解用電極を用いて水ま
たは電解質を含む水溶液を電気分解すると、該電極の
陰、陽両電極間の距離を電極板および隔膜の厚みの合計
値まで減少させ得るので、電気分解における電力効率を
高めることができる。また電極と隔膜の間でイオンおよ
びガスの生成が無いので溶液の拡散やガスの排出が容易
であり、ガスが電極と隔膜の中間や隔膜の内部に留まり
ることによる電気抵抗の増加が原因で生じる電流不安定
要因が少なくなる。また、本発明の水電気分解用電極を
用い場合、それぞれの電極で生成した陰イオン、陽イオ
ンは濃度勾配及び対流により電極より遠ざかる方向に移
動するが、電位勾配により対極する電極へ引かれて移動
する力が弱いので、陰イオン及び陽イオンが混合しにく
く、目的とするイオンの濃縮度を高めることができる、
効率良く酸性イオン水、アルカリイオン水を製造するこ
とができる。更に、従来の方法では、陰、陽の電極板と
隔膜をそれぞれを独立に保持する必要があったものを、
本発明の場合には電極と隔膜を直接、またはスペーサー
を挿入して、密着し一体化した構造物にし易いので、電
気分解に供する容器等に保持する為の構造を単純化出来
るし、電極の形状設計上の自由度が広がり、平板だけで
なく曲面や球面や角面を持つ電極の製作が容易である。
When water or an aqueous solution containing an electrolyte is electrolyzed using the water electrolysis electrode of the present invention, the distance between the negative and positive electrodes of the electrode is reduced to the total value of the thickness of the electrode plate and the diaphragm. Therefore, the power efficiency in electrolysis can be improved. In addition, since there is no generation of ions and gas between the electrode and the diaphragm, it is easy to diffuse the solution and discharge the gas, and the increase in the electrical resistance due to the gas remaining between the electrode and the diaphragm or inside the diaphragm causes The current instability factor is reduced. When the water electrolysis electrode of the present invention is used, the anions and cations generated at each electrode move in the direction away from the electrode due to the concentration gradient and convection, but are attracted to the opposite electrode by the potential gradient. Since the moving force is weak, it is difficult for anions and cations to mix with each other, and the concentration of the target ions can be increased.
It is possible to efficiently produce acidic ionized water and alkaline ionized water. Furthermore, in the conventional method, it is necessary to separately hold the negative and positive electrode plates and the diaphragm,
In the case of the present invention, since it is easy to make a structure in which the electrode and the diaphragm are directly adhered or a spacer is inserted and adhered and integrated, it is possible to simplify the structure for holding in a container or the like to be subjected to electrolysis. The degree of freedom in shape design is widened, and it is easy to manufacture not only flat plates but also curved, spherical, and angular surfaces.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水電気分解用電極の一例を示す斜視
図。
FIG. 1 is a perspective view showing an example of a water electrolysis electrode of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の水電気分解用電極を設置した電解装置
の斜視図。
FIG. 3 is a perspective view of an electrolysis device provided with an electrode for water electrolysis according to the present invention.

【符号の説明】[Explanation of symbols]

1 導電性材料から成る面 2 非導電性材料から
成る面 3 孔 4 隔膜 5 電極板 5’
陰、陽電極用の接点 6 固定用の枠 7 電極 8 電解槽
1 surface made of conductive material 2 surface made of non-conductive material 3 hole 4 diaphragm 5 electrode plate 5 '
Contact for negative and positive electrodes 6 Frame for fixing 7 Electrode 8 Electrolyzer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表側は金属等の導電性材料からなる面
(1)、裏側はプラスチック等の非導電性材料からなる
面(2)であり、且つ多数の貫通する孔(3)を有する
電極板(5)の2枚を、それぞれの非導電性材料面
(2)が向い合わせになるように配置し、その中間に隔
膜(4)を配置してなることを特徴とする水電気分解用
電極。
1. An electrode having a surface (1) made of a conductive material such as metal on the front side and a surface (2) made of a non-conductive material such as plastic on the back side and having a large number of through holes (3). For water electrolysis, characterized in that two plates (5) are arranged so that their non-conductive material surfaces (2) face each other, and a diaphragm (4) is arranged between them. electrode.
JP8010737A 1995-01-30 1996-01-25 Electrode for electrolyzing water Pending JPH08276184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8010737A JPH08276184A (en) 1995-01-30 1996-01-25 Electrode for electrolyzing water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-31848 1995-01-30
JP3184895 1995-01-30
JP8010737A JPH08276184A (en) 1995-01-30 1996-01-25 Electrode for electrolyzing water

Publications (1)

Publication Number Publication Date
JPH08276184A true JPH08276184A (en) 1996-10-22

Family

ID=26346055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8010737A Pending JPH08276184A (en) 1995-01-30 1996-01-25 Electrode for electrolyzing water

Country Status (1)

Country Link
JP (1) JPH08276184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394700B1 (en) * 2000-02-02 2003-08-14 산요덴키가부시키가이샤 Electrode positioning unit for drain water
KR100598429B1 (en) * 2005-04-08 2006-07-10 광주과학기술원 Electrode structure for electrodeionization
JP2006346672A (en) * 2005-05-20 2006-12-28 Yoichi Sano Batch-type apparatus for producing acidic electrolytic water and method using the same
JP2014019950A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator
JP2014019949A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator
JP2014019640A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394700B1 (en) * 2000-02-02 2003-08-14 산요덴키가부시키가이샤 Electrode positioning unit for drain water
KR100598429B1 (en) * 2005-04-08 2006-07-10 광주과학기술원 Electrode structure for electrodeionization
JP2006346672A (en) * 2005-05-20 2006-12-28 Yoichi Sano Batch-type apparatus for producing acidic electrolytic water and method using the same
JP2014019950A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator
JP2014019949A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator
JP2014019640A (en) * 2012-12-31 2014-02-03 Kenko Shien Center Co Ltd Tabletop hydrogen gas generator

Similar Documents

Publication Publication Date Title
US5674365A (en) Electrode composition for electrolysis of water
US7045042B2 (en) Gas-collecting electrets as magneto-electrolysis cell components
EP0050373A1 (en) Electrolysis cell and method of generating halogen
JP2005144240A (en) Electrolytic cell and electrolytic water generator
JP5282201B2 (en) Electrolyzed water generator
JPH08276184A (en) Electrode for electrolyzing water
JP2004307878A (en) Device for generating hydrogen and oxygen
JPH111790A (en) Electrode for electrolysis of water
CN106929875B (en) A method of ferrate is prepared based on carbon plate plating iron
CN217007103U (en) Boundary-limited electrolytic cell device of symmetric four-electrode system
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
CN214004135U (en) Electrolysis device for preparing hydrogen-rich water
CN211367063U (en) Electrolytic bath
US4177118A (en) Process for electrolyzing water
CN207998643U (en) A kind of acidic oxidized electric potential water electrolytic cell that can improve electrolysis performance
JPH0938653A (en) Production of electrolyzed ionic water and device therefor
JPH06312183A (en) Method and apparatus for producing electrolytic ion water
CN212915187U (en) Leaching liquid generator
KR840007608A (en) Monopolar, Bipolar, and / or Hybrid Membrane Electrolytes
CN209383864U (en) A kind of three electric pole type anode and cathodes separation electrolysis unit
CN213895303U (en) High-efficiency electrolytic cell
KR101891161B1 (en) Electrolytic sterilizing·reduced water production equipment
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
KR200338145Y1 (en) making apparatus of electrolysis water
JPS6035999B2 (en) porous electrode