JP2006513357A - 動力を発生させるためのハイブリッドシステム - Google Patents

動力を発生させるためのハイブリッドシステム Download PDF

Info

Publication number
JP2006513357A
JP2006513357A JP2004567423A JP2004567423A JP2006513357A JP 2006513357 A JP2006513357 A JP 2006513357A JP 2004567423 A JP2004567423 A JP 2004567423A JP 2004567423 A JP2004567423 A JP 2004567423A JP 2006513357 A JP2006513357 A JP 2006513357A
Authority
JP
Japan
Prior art keywords
capillary channel
fuel
hybrid system
capillary
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004567423A
Other languages
English (en)
Other versions
JP4489600B2 (ja
Inventor
ペリッザリ,ロベルト・オー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chrysalis Technologies Inc
Original Assignee
Chrysalis Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chrysalis Technologies Inc filed Critical Chrysalis Technologies Inc
Publication of JP2006513357A publication Critical patent/JP2006513357A/ja
Application granted granted Critical
Publication of JP4489600B2 publication Critical patent/JP4489600B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D3/00Burners using capillary action
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/18Cleaning or purging devices, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/20Preheating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

電力を発生させるためのハイブリッドシステムであり、このハイブリッドシステムは、太陽輻射を収集し、電力に変換させるための光起電力アレーと、液体燃料の源から動力を生成するための装置であって、入口端と出口端とを有し、入口端は液体燃料の源と流体連通するような少なくとも1つの毛細管流路と、少なくとも1つの毛細管流路に沿って配置される熱源であって、少なくとも1つの毛細管流路内の液体燃料を、少なくともその一部を液体状態から蒸気状態に変化させ、実質的に蒸発された燃料の流れを少なくとも1つの毛細管流路の出口端から供給するのに十分なレベルに加熱するように、作動可能である熱源と、少なくとも1つの毛細管流路の出口端と連通する燃焼室と、燃焼室内の燃焼によって放出された熱を電力に変換するように作動可能な変換装置とを備える装置と、光起電力アレーと変換装置とによって生成された電力を貯蔵するために、光起電力アレー及び変換装置に電気的に接続される貯蔵装置とを備えている。

Description

近年、遠隔現場業務におけるパワーエレクトロニクス機器、通信周辺機器、医学装置、及び他の装置に電力を供給する必要性が大きくなり、極めて効率的な可動性電力システムの需要が増している。これらの用途は、高電力と高エネルギー密度の両方をもたらすと共に、可能な限り小さい寸法と重量、低排出物、及び低コストを求める電源を必要としている。
今日、バッテリが、携帯電源をもたらす主たる手段になっている。しかし、再充電に必要な時間に起因して、バッテリは、連続的に用いる用途には不都合であることがわかっている。さらに、携帯バッテリは、一般的に、数ミリワットから数ワットの範囲内の発電に制限されるので、高レベルの可動性、かつ軽量の発電の要望に対応することができない。
ガソリン又はディーゼルのいずれかを燃料とする内燃機関によって動力が供給される小型の発電機も用いられている。しかし、このような発電機は、それらの騒音と排出物特性によって、広範囲の可動性電力システムに対して全体的に不適当であり、屋内の使用に対して安全性を欠いている。高エネルギー密度の液体燃料によって動力が供給される従来の熱エンジンは、寸法に関して利点をもたらすが、熱力学的な規模とコストを考慮すると、より大きな発電装置に用いられた場合に有利になる傾向がある。
光起電力発電機と熱電発電機は、2キロワット未満のエネルギー変換技術として、唯一市販されている。光起電力の利得は明らかであるが、その欠点も明白である。熱電発電機に関して、それらは、大きく、高価で、かつ比較的非効率になる傾向がある。
これらの要因を考慮すると、略5.1から204kg−m/秒(50から2000ワット)の規模の範囲内において、有効な動力システムが存在しない。さらに、高エネルギー密度の液体燃料を活用するために、燃料前処理の改善と低燃料供給率を可能とする供給システムが必要である。加えて、このようなシステムは、排出物を最小限に抑えて、高効率な燃焼も可能としなければならない。204kg−m/秒(2キロワット)未満の静粛かつ清浄な動力源は、光起電力アレーに基づくような現在の技術を補うと有利であり、このような動力源であれば、電力を発生させるための有利なハイブリッドシステムをもたらすことが可能となる。
一態様において、本発明は、電力を発生させるためのハイブリッドシステムにおいて、
(a)太陽輻射を収集し、電力に変換させるための光起電力アレーと、
(b)液体燃料の源から動力を生成するための装置であって、(i)少なくとも1つの毛細管流路であって、入口端と出口端とを有し、前記入口端は液体燃料の源と流体連通するような毛細管流路と、(ii)前記少なくとも1つの毛細管流路に沿って配置される熱源であって、前記少なくとも1つの毛細管流路内の液体燃料を、少なくともその一部を液体状態から蒸気状態に変化させ、実質的に蒸発された燃料の流れを前記少なくとも1つの毛細管流路の前記出口端から供給するのに十分なレベルに加熱するように、作動可能である熱源と、(iii)前記少なくとも1つの毛細管流路の前記出口端と連通する燃焼室と、(iv)前記燃焼室内の燃焼によって放出された熱を電力に変換するように作動可能な変換装置とを備える装置と、
(c)前記光起電力アレーと前記変換装置とによって生成された電力を貯蔵するために、前記光起電力アレー及び前記変換装置に電気的に接続される貯蔵装置と、
を備えていることを特徴とするハイブリッドシステムに、向けられている。
他の態様において、本発明は、電力を発生させる方法において、
(a)光起電力アレーの使用によって、太陽輻射を電力に変換させるステップと、
(b)液体燃料を少なくとも1つの毛細管流路に供給するステップと、
(c)液体燃料を少なくとも1つの毛細管流路内で加熱することによって、実質的に蒸発された燃料の流れを少なくとも1つの毛細管流路の出口内を通させるステップと、
(d)蒸発された燃料を燃焼室内で燃焼させるステップと、
(e)燃焼室内での蒸発された燃料の燃焼によって生成された熱を、変換装置を用いて電力に変換するステップと、
(f)ステップ(a)と(e)において生成された電力を貯蔵装置内に蓄電するステップと、
を含むことを特徴とする方法に、向けられている。
好ましい一形態によれば、毛細管流路は、毛細管チューブを備え、熱源は、抵抗加熱要素、すなわち、電流を通すことによって加熱されるチューブの一部を備えることが可能である。さらに、他の好ましい形態において、変換装置は、約510kg−m/秒(5,000ワット)以下の動力を出力する発電機付きのマイクロタービン、発電機付きのスターリングエンジン、熱電装置、又は熱光起電力装置を備えている。装置の始動時において、蒸発された燃料を点火するために、点火装置が設けられている。燃料供給源は、加圧液体燃料を、好ましくは、7.0kg−m/秒(100psi)未満、さらに好ましくは、3.5kg−m/秒(50psi)未満、さらに一層好ましくは、0.7kg−m/秒(10psi)未満、最も好ましくは、0.35kg−m/秒(5psi)未満の圧力で流路に供給するように、配置されている。好ましい形態は、燃焼室内において、空気と混合され、25μm以下、好ましくは、10μm以下の平均液滴寸法を有するエアロゾルを形成するような蒸発された燃料の流れをもたらすことが可能となるので、装置の始動時において、低点火エネルギーで作動されるようになっている。
液体燃料の加熱中に堆積物の形成に関連する問題に対処するために、好ましい一形態は、装置の作動中に形成された堆積物を清浄化させるための方法と手段を提供するものである。
以下、例示するためにのみ与えられる本発明の好ましい形態を参照し、かつ添付の図面を参照して、本発明をさらに詳細に説明する。
図1は、本発明の実施形態による毛細管流路を備える燃料蒸発装置の部分断面を示している。
図2は、図4の装置とシステムを実施するために用いられる多重毛細管装置を示している。
図3は、図2に示される装置の端面図を示している。
図4は、本発明の実施に用いられる実質的に蒸発された燃料を供給する多重毛細管装置内において、燃料を蒸発させ、かつ堆積物を酸化させるのに用いられる装置の詳細を示している。
図5は、燃料と随意的に酸化ガスとを毛細管流路に供給する制御装置の概略を示している。
図6は、液体燃料を予熱するのに燃焼熱を用いるための装置の概略を示している。
図7は、毛細管流路の堆積物を清浄する移動可能なロッドを用いる燃料蒸発装置の他の実施形態の側面図である。
図7Aは、毛細管流路の堆積物を清浄化する移動可能なロッドが毛細管流路内に完全に係合されている状態を示す、図7の実施形態の側面図である。
図8は、本発明の一実施形態によって、スターリングエンジンを用いて、電気を発生させる本発明による電力を発生させるための装置の概略図である。
図9は、本発明の他の実施形態による電力生成装置を示す概略的部分断面図である。
図10は、本発明によるハイブリッド動力システムのブロック図である。
以下、図1〜図10に示される実施形態について説明する。これらの図の全体にわたって、同様の番号は同様の部品を示すのに用いられている。
本発明は、高エネルギー密度液体燃料を有利に燃焼させる動力発生装置を提供するものである。好ましい実施形態において、この装置は、燃料供給源に接続される少なくとも1つの毛細管の大きさの流路と、流路に沿って配置され、流路内の液体燃料を、蒸発された燃料の流れを流路の出口から供給するために、十分に加熱する熱源と、蒸発された燃料が燃焼される燃焼室と、燃焼室内の燃焼によって生じた熱を機械的及び/又は電気的動力に変換する変換装置とを備えている。燃焼室と動力変換装置に関連して、加熱された毛細管を使用する手法が、2002年5月10日にペリザイ(Pellizzari)によって出願された「蒸発された燃料の燃焼によって動力を発生させるための方法と装置」と題する米国特許出願第10/143,463号に開示されている。この特許出願は、本発明と共通の発明者適格を有し、本発明の譲渡人に譲渡され、参照することによって、ここに含まれるものとする。
この流路は、抵抗ヒータによって加熱される毛細管チューブであり得る。チューブの一部は、そこに電流を通すことによって加熱されるようになっている。毛細管流路はまた、低熱慣性を有することによっても特徴付けられ、それによって、毛細管通路は、燃料を蒸発させるための所望の温度に、極めて迅速に、例えば、2.0秒以内、好ましくは、0.5秒以内、さらに好ましくは、0.1秒以内に上昇されることになる。毛細管の大きさの流路は、好ましくは、単層又は多層金属、セラミック又はガラス体のような毛細管体内に形成されている。この流路は、入口又は出口で開口する包囲された容積部を有し、これらの入口と出口のいずれか1つは、毛細管体の外部に開口してもよいし、又は同一の毛細管体又は他の毛細管体内の他の通路又は接続具に接続されていてもよい。ヒータは、毛細管体の一部、例えば、ステンレス鋼チューブの一部として形成されていてもよい。あるいは、ヒータは、毛細管体内又は毛細管体上に組み込まれる抵抗加熱材料からなる別の層又はワイヤであってもよい。
流路は、入口と出口で開口し、流体が通過し得る包囲された容積部を備えるどのような形状であってもよい。流路は、どのような所望の断面をも有していてもよいが、好ましい断面は、均一な直径の円である。他の毛細管流路の断面として、非円形状、例えば、三角形、正方形、矩形、楕円などが挙げられ、流路の断面は、均一である必要はない。流路は、直線状又は非直線状に延在し得るし、単一流路又は多重流路のいずれであってもよい。
毛細管の大きさの流路は、好ましくは、2mm未満、さらに好ましくは、1mm未満、最も好ましくは、0.5mm未満である水力直径を備え得るものである。「水力直径」は、流体輸送要素内を通る流体流れの特性を計算するのに用いられるパラメータであり、流体輸送要素の流れ面積を(一般的に、「潤辺」と呼ばれる)流体と接触する固体境界の周辺によって除した値の4倍として、定義されている。円形流路を有するチューブの場合、水力直径と実際の直径は同等である。毛細管通路が金属毛細管チューブによって画成される場合、そのチューブは、0.01から3mm、好ましくは、0.1から1mm、最も好ましくは、0.15から0.5mmの内径を有し得る。代替的に、毛細管通路は、その通路の横断面積によって画成されている。この通路の横断面積は、8×10-5から7×10-5mm2、好ましくは、8×10-3から8×10-1mm2、さらに好ましくは、2×10-3から2×10-1mm2である。単一又は多重毛細管、種々の圧力、種々の毛細管長さ、毛細管に加えられる熱量、及び異なる形状及び/又は断面積の多くの組合せが、所定の用途に適するように選択されている。
変換装置は、約510kg−m/秒(5,000ワット)以下の動力を発生させることができる随意的な動力発生器と共に、熱を機械的又は電気的動力に変換するためのスターリングエンジン、マイクロタービン、又は適切な装置であり得る。液体燃料は、ジェット燃料、ガソリン、ケロシン、又はディーゼル油のような任意の種類の炭化水素燃料、エタノール、メタノール、メチル第3級ブチルエーテルのような含酸素体、又はこれらの混合物であってもよい。燃料は、好ましくは、7.0kg−m/秒(100psi)未満、さらに好ましくは、3.5kg−m/秒(50psi)未満、さらに一層好ましくは、0.7kg−m/秒(10psi)未満、最も好ましくは、0.35kg−m/秒(5psi)未満の圧力で、流路に供給されるようになっている。蒸発された燃料は、空気と混合され、25μm以下、好ましくは、10μm以下の平均液滴寸法を有するエアロゾルを形成し、これによって、清浄かつ効率的な点火能力を可能にしている。
本発明の好ましい実施形態によれば、液体燃料は、加熱された毛細管チューブ(例えば、3mm以下の内径を有する小径のガラスチューブ、セラミックチューブ、又はステンレス鋼チューブのような金属チューブ)を介して燃焼室に供給され、この燃焼室内において、蒸発された燃料は、予熱されているか又は加熱されていない空気と混合されるようになっている。蒸発された燃料は、大気温度で空気と混合され、この混合物は、燃焼室内に通じる空気供給通路に引込まれることになる。代替的に、蒸発された燃料は、燃焼室から除去された排ガスの熱によって空気を予熱する熱交換機などによって予熱された空気と混合され得る。必要に応じて、空気は、蒸発された燃料との混合の前に、送風機などによって加圧されている。
加熱された毛細管通路内における液体燃料の蒸発中に、炭素及び/又は重炭化水素の堆積物は、毛細管壁に積層されることがあり、この場合、燃料の流れが著しく制限され、最終的に、毛細管流路の閉塞をもたらす可能性がある。これらの堆積物が堆積する速度は、毛細管壁温度、燃料流量、及び燃料の種類の関数である。燃料添加物はこのような堆積物を低減させるのに有用であると考えられているが、閉塞が発展した場合、本発明の燃料蒸発装置は、作動中に形成された堆積物を清浄化させるための手段をもたらすので、有利である。
本発明によれば、空気−燃料混合物は、燃焼室内において燃焼されて熱を生じ、この熱が、機械的又は電気的動力に変換されることになる。動力生成装置は、燃焼の前に、確実な液体燃料の供給と蒸発された燃料の噴霧をもたらしている。
加熱された毛細管流路は、7.0kg−m/秒(100osi)未満、好ましくは、3.5kg−m/秒(50psi)未満、さらに好ましくは、0.7kg−m/秒(10psi)未満、さらに一層好ましくは、0.35kg−m/秒(5psi)未満の液体燃料圧下にあり、蒸発された燃料が大気温度において空気と混合するとき、小径(例えば、25μm以下、好ましくは、10μm以下)の燃料液滴のエアロゾルを形成する能力を有している。本発明は、燃料を低空気供給圧(例えば、50.8mmH2O(2インチH2O)未満)で燃焼させ、迅速に始動し、付着、閉塞、及びガム状粘着を制御し、排気物質のレベルを低減させて作動し、燃料−空気混合物を点火するのに低点火エネルギーしか必要としない能力を有している。
本発明による装置の1つの利点は、その点火エネルギー要求値の特性にある。最小点火エネルギーは、噴霧された燃料/空気混合物が、典型的には、火花点火源のような点火装置によって点火され得る容易さを表すのに用いられる用語である。本発明による装置は、蒸発された燃料及び/又は25μm未満、好ましくは、10μm未満、さらに好ましくは、5μm未満のザウター平均径(SMD)を有する液滴を含むエアロゾルをもたらすころができ、このような微細なエアロゾルは、始動特性及びガスタービン用途における炎安定性を改良するのに有用である。加えて、最小点火エネルギーの著しい低減は、25μm以下のSMD値を有する燃料に対して、達成され得るものである。例えば、ルフェーブル(Lefebvre)によるガスタービンの燃焼工学(ヘミスフィア(Hemisphere)出版社、1983年)の252ページに記載されているように、噴霧された燃料/空気混合物が点火され得る容易さと相互に関連している用語であるEminは、SMDが減少するにつれて、急激に減少することが分かっている。最小点火エネルギーは、エアロゾル内の燃料液滴のザウター平均径(SMD)の三乗に略比例している。SMDは、その表面/容積比率が全噴霧の表面/容積比率と等しい液滴の直径であり、噴霧の質量移動特性に関連している。種々の燃料に対するEminとSMDとの関係は、ルフェーブルによって、以下の関係式によって略近似されることが分かっている。
logEmin = 4.5(logSMD)+k
ただし、Eminはミリジュール(mJ)で測定され、SMDはμmで測定され、kは燃料の種類に関する定数である。
ルフェーブルによれば、重燃料油は、115μmのSMDで約800mJの最小点火エネルギーを有し、50μmのSMDで約23mJの最小点火エネルギーを有している。イソオクタンは、90μmのSMDで約9mJの最小点火エネルギーを有し、40μmのSMDで約0.4mJの最小点火エネルギーを有している。ディーゼル燃料の場合、SMDが100μmに等しいとき、Eminは約100mJである。このSMDを30μmに低減させることによって、Eminを約0.8mJに低減させることになる。容易に理解され得るように、点火システムの要求値は、25μm未満のSMDに対して、実質的に低減されている。
本発明による動力変換装置は、極めて望ましい低点火エネルギー要求値を示すことが見出されている。低点火エネルギー要求値は、システムの全体の重量を低減させ、点火システムと関連する寄生電力損失の低減によって動力の出力を最大限にし、これによって、本発明の動力生成に関する利点を改良している。
前述の利点の観点から、低エネルギー火花点火装置は、動力生成装置の点火装置として好ましい。約5から7ミリジュール(mJ)の範囲内の火花エネルギーをもたらすことができる小型の圧電点火装置が好ましい。このような装置は、単純、小型、及び寄生負荷の問題を生じないことで、知られている。本発明の装置によって得られる超微細な燃料蒸発は、低エネルギー圧電点火装置と協働し、優れた点火特性をもたらしている。
液体燃料を用いる燃焼装置の排出物特性は、燃料液滴の寸法分布の品質に敏感であることが、知られている。高品質な微細な噴霧は、燃料蒸発を促進し、混合を向上させ、これによって、燃料リッチな燃焼の必要性を低減させ、従って、燃料リッチな燃焼に付随的して生じやすい煙と煤とを低減させることになる。小さい液滴は、流線形の流れをもたらし、バーナ壁との衝突を少なくする傾向にある。逆に、大きな液滴は、バーナ壁に衝突し、COと炭化水素の排出物、及び炭素の堆積物を生じることになる。この問題は、炎が著しく閉じ込められる装置において、さらに顕著である。
蒸発された燃料の燃焼中に生じる熱は、電気的又は機械的動力に変換されることになる。例えば、この熱は、所望量の電気的又は機械的な動力、例えば、510kg−m/秒(5000ワット)以下の電力又は機械的動力に変換されることになる。数時間の間に略2.0kg−m/秒(20W)しか生成できない携帯用バッテリ技術、又は102kg−m/秒(1kW)を超える動力を生成する騒々しく、かつ高排出物を生じる内燃機関/発電機と比較して、本発明の好ましい一実施形態による装置は、数百ワット範囲内の静粛かつ清浄な動力源を提供するものである。
本発明による燃焼室内において生じた熱を電気的又は機械的な動力に変換させる種々の技術が存在している。例えば、2.0から510kg−m/秒(20から5000ワット)の範囲内において、少なくとも以下の技術、すなわち、発電機を駆動するのに用いられ得る機械的な動力に熱を変換するためのスターリングエンジン、発電機を駆動するのに用いられるマイクロガスタービン、熱を電気に直接変換するための熱電技術、及び輻射エネルギーを電気に直接変換するための熱光起電力技術が、考えられる。
熱電装置は、静粛さと耐久性の利点を有し、また、外燃システムと連結された場合、低排出物と燃料に関する融通性をもたらす潜在能力を有している。変換装置として用いられ得る種々の熱電発電機として、米国特許第5,563,368号、5,793,119号、5,917,144号、及び6,172,427号に開示された熱電発電機が挙げられる。これらの開示内容は、参照することによって、ここに含まれるものとする。
熱光起電力装置は、静粛で、適度の電力密度をもたらす利点を有し、外燃システムと連結された場合、低排出物と燃料に関する融通性をもたらす潜在能力を有している。変換装置として用いられる種々の熱光起電力装置として、米国特許第5,512,109号、5,753,050号、6,092,912号、及び6,204,442号に開示された熱光起電力装置が挙げられる。これらの開示内容は、参照することによって、ここに含まれるものとする。米国特許第6,204,442号に示されているように、熱輻射体を用いて、燃焼ガスからの熱を吸収し、この熱輻射体から輻射された熱が、電気と変換するために光電池に導かれ、従って、光電池が燃焼ガスに直接露出されるのを保護することになる。
マイクロガスタービンは、高比出力に関して、望ましい。変換装置として用いられ得るマイクロタービン装置には、米国特許第5,836,150号、5,874,798号、及び5,932,940号に開示されたマイクロタービン装置が挙げられる。これらの開示内容は、参照することによって、ここに含まれるものとする。
スターリングエンジンは、寸法、静粛運転、耐久性に対する利点を有し、外燃システムと連結された場合、低排出物と燃料に関する融通性をもたらす潜在能力を有している。変換装置として用いられるスターリングエンジンは、当業者にとって明らかであろう。
図1を参照すると、本発明の装置に用いられる燃料蒸発装置が示されている。液体燃料の源から引き出される液体燃料を蒸発するための燃料蒸発装置10は、入口端14と出口端16とを有する毛細管流路12を備えている。流体制御弁18が、毛細管流路12の入口端14を液体燃料源Fと流体連通させ、実質的に液体状態の液体燃料を毛細管流路12内に導くために、設けられている。好ましくは、流体制御弁18は、ソレノイドによって、作動されるようになっているとよい。熱源20は、毛細管流路12に沿って配置されている。最も好ましくは、熱源20は、電気抵抗材料のチューブから毛細管流路12を形成することによって設けられている。毛細管流路12の一部は、電流源がチューブの接続部22と24とに電流をそれらに供給するために接続されるとき、ヒータ要素を形成している。容易に理解され得るように、熱源20は、毛細管流路12内の液体燃料を、少なくともその一部を液体状態から蒸気状態に変化させ、実質的に蒸発された燃料の流れを毛細管流路12の出口端16から供給するのに十分なレベルに加熱するように、作動可能である。「実質的に蒸発された」という用語は、液体燃料の少なくとも50%が熱源によって蒸発され、好ましくは、液体燃料の少なくとも70%、さらに好ましくは、少なくとも80%が蒸発されることを意味している。
また、燃料蒸発装置10は、本発明の装置の作動中に形成された堆積物を清浄化する手段をも備えている。図1に示される堆積物を清浄化するための手段は、流体制御弁18と、熱源20と、毛細管流路12を酸化剤Cの源と流体連通させるための酸化剤制御弁26とを備えている。容易に理解され得るように、酸化剤制御弁は、毛細管流路12のいずれかの端又はその近傍に配置されているか、又は毛細管流路12のいずれかの端と流体連通するように構成されている。もし酸化剤制御弁が毛細管流路12の出口端16又はその近傍に配置されている場合、その酸化剤制御弁は、酸化剤Cの源を毛細管流路12の出口端16と流体連通させるように機能している。作動において、熱源20は、毛細管流路12内の酸化剤Cを、液体燃料Fの加熱中に形成された堆積物を酸化するのに十分なレベルに加熱するのに、用いられている。一実施形態において、燃料供給モードから清浄化モードに切り換えるために、酸化剤制御弁26は、液体燃料Fの毛細管流路12内への導入と、酸化剤Cの毛細管流路12への導入とを交互に切り換えるように操作可能であり、酸化剤が少なくとも1つの毛細管通路内に導かれたとき、毛細管流路のその場での清浄化を可能にしている。
堆積物を酸化するための1つの技術として、空気又は蒸気を毛細管流路内に通す技術が挙げられる。図示されるように、毛細管流路は、好ましくは、清浄化過程中に、酸化プロセスが開始されて堆積物が尽きるまで継続されるように、加熱されるようになっている。この清浄化過程を促進させるために、毛細管壁への被膜又はその構成部分のいずれかとして、触媒物質を用いて、清浄化を達成するのに必要な温度及び/又は時間を低減させるとよい。燃料蒸発装置を連続的に作動させるために、2つの以上の毛細管流路を用いて、閉塞状態がセンサの使用などによって検出されたとき、燃料流れが他の毛細管流路に分岐され、酸化剤流れが閉塞された毛細管流路内に通され、清浄化されることになる。一例として、毛細管体は、複数の毛細管流路を備えることができ、液体燃料又は空気を各流路に選択的に供給するために、弁装置が設けられていてもよい。
代替的に、所定間隔で、燃料流れが毛細管通路から分岐され、酸化剤流れがそこに流されてもよい。毛細管流路への燃料供給は、制御装置によって行なわれている。例えば、制御装置は、所定期間にわたって燃料供給を行ない、所定の時間が経過した後、燃料供給を停止している。制御装置は、液体燃料の圧力及び/又は毛細管流路に供給される熱量を、1つ以上の検知された状態に基づいて調整してもよい。検知される状態として、とりわけ、燃料圧力、毛細管温度、又は空燃比が挙げられる。制御装置はまた、1つ以上の毛細管流路を、堆積物を清浄化するように制御してもよい。
清浄化技術は、単一流路を有する燃焼装置に適用されてもよい。しかし、もし燃焼装置が清浄化過程中に間欠的に中断される場合、清浄化中に流路に供給されるエネルギーは、好ましくは、電気的であるとよい。清浄化過程間の間隔は、実験的に定められた閉塞特性に基づいて、固定されているとよい。あるいは、検知/制御装置を用いて、閉塞を検出し、必要に応じて、清浄化プロセスを開始してもよい。例えば、制御装置は、毛細管流路への燃料供給圧力を検知することによって、閉塞の程度を検出し得るようになっている。
図示されるように、酸化清浄化技術はまた、連続的に作動することが必要とされる燃料蒸発装置に適用されてもよい。この場合、多重毛細管流路が用いられる。本発明に用いられる例示的な多重毛細管流路燃料蒸発装置は、図2及び図3に示されている。図2は、単一アセンブリ94内に組み込まれた多重毛細管チューブ装置の概略図を示している。図3は、アセンブリ94の端面図を示している。図示されるように、アセンブリは、3本の毛細管チューブ82A,82B,82Cと、中実ステンレス鋼ロッドを有する正極92とを備えている。チューブとロッドは、電気的絶縁材料の本体96内に支持され、接続具98を介して、電力がロッドと毛細管チューブに供給されるようになっている。例えば、直流は、1つ以上の毛細管チューブの上流端に供給され、下流端における接続部95は、ロッド92を通して電流の帰還経路を形成している。
図4について説明すると、この図では、本発明の実施に用いられる多重毛細管チューブ蒸発システム80が示されている。このシステムは、毛細管チューブ82A〜82C、燃料供給ライン84A〜84C、酸化剤供給ライン86A〜86C、酸化剤制御弁88A〜88C、電力入力ライン90A〜90C、及び共通アース91を備えている。システム80は、1つ以上の毛細管チューブを清浄化すると共に、他の1つ以上の毛細管チューブへの燃料供給を継続することを可能にするものである。例えば、毛細管流路82Bと82Cを介する燃料の燃焼は、毛細管流路82Aの清浄化中に実施されている。毛細管流路82Aの清浄化は、毛細管チューブ82Aへの燃料供給を停止し、十分に加熱された毛細管流路82Aに空気を供給し、毛細管流路内の堆積物を酸化することによって、達成されることになる。従って、1つ又はいくつかの毛細管の清浄化は、連続的に燃料を供給しながら、行なわれることになる。清浄化される1つ以上の毛細管流路は、好ましくは、清浄化プロセス中に、電気抵抗ヒータ又は用途からの熱的フィードバックによって、加熱されるようになっている。ここでも、所定の毛細管流路に対する清浄化過程間の間隔は、実験的に定められた既知の閉塞特性に基づいて、固定されてもよいし、又は検知/制御システムを用いて、堆積物を検出し、必要に応じて、清浄化プロセスを開始してもよい。
図5は、本発明による装置を作動させる制御装置の例示的概略図である。この装置には、閉塞された毛細管通路を清浄化させるための酸化ガス供給源が組込まれている。制御システムは、燃料供給源102に操作可能な接続される制御装置100を備え、この燃料供給源102は、燃料を毛細管流路104のような流路に供給し、随意的に、空気もその流路に供給している。制御装置は、電力供給装置106にも操作可能に接続され、この電力供給装置106は、十分にチューブを加熱して燃料を蒸発するために、電力を抵抗ヒータに供給し、又は電力を金属毛細管流路104に直接供給している。必要に応じて、燃焼システムは、制御装置100に操作可能に接続される多重流路とヒータを備えている。制御装置100は、1つ以上の信号送信装置、例えば、オンオフスイッチ、熱電対、燃料流量センサ、空気流量センサ、電力出力センサ、バッテリ充電センサなどに操作可能に接続され、これによって、制御装置100は、プログラム化され、制御装置に出力される信号に応じて、信号送信装置108によって、燃焼システムの作動を自動的に制御するようになっている。
作動において、本発明による装置の燃料蒸発装置は、燃焼中に生じた熱をフィードバックし、液体燃料が毛細管内を通るとき、その液体燃料を実質的に蒸発させるのに十分加熱され、これによって、電気的に又はその他の手段で毛細管流路を加熱する必要性を低減、排除、又は補助するように構成されている。例えば、毛細管チューブは、熱伝達を大きくするためにその表面積を増すように長尺に作られている。又は、毛細管チューブは、燃焼している燃料内を貫通するように構成されている。さらに、熱交換器は、燃焼反応からの排ガスを用いて、燃料を予熱するように配置されている。
図6は、毛細管流路64内を通る液体燃料が、高温に加熱され、燃料蒸発ヒータの電力要求値を低減させるために、毛細管流路64がいかに配置され得るかを、簡素な形態で示している。図示されるように、毛細管流路を備えるチューブの部分66は、燃焼された燃料の炎68内を貫通している。初期の始動の場合、バッテリ74のような電源に接続された電気リード線70、72によって加熱されるチューブの一部又は別体の抵抗ヒータからなる抵抗ヒータを用いて、液体燃料の最初の蒸発が行なわれている。適切な点火装置によって蒸発された燃料が点火された後、チューブの部分66は、燃焼熱によって予熱され、抵抗ヒータによる継続的な燃料の蒸発に必要な電力を低減させている。従って、チューブを予熱することによって、チューブ内の燃料は、抵抗ヒータを用いることなく蒸発され、これによって、電力が節約されることになる。
容易に理解され得るように、図1〜図6に示される燃料蒸発装置及び付随するシステムは、本発明の他の実施形態と関連して、用いられてもよい。図1を再び参照すると、堆積物を清浄化するための手段は、流体制御弁18と、毛細管流路12を溶媒と連通させるための溶媒制御弁26とを備え、この溶媒制御弁26は、毛細管流路12の一端に配置されている。溶媒による清浄化を用いる装置の一実施形態において、溶媒制御弁は、液体燃料の毛細管流路12への導入と、溶媒の毛細管流路12への導入を交互に切り換え、溶媒が毛細管流路12内に導かれるとき、毛細管流路12のその場での清浄化を可能にするように、作動可能である。種々多様な溶媒が用いられるが、液体燃料源からの液体燃料であってもよい。この場合、溶媒制御弁は、必要ではない。何故なら、燃料と溶媒を交互に切り換える必要がないからである。熱源は、毛細管流路12の清浄化中に、停止、すなわち、非作動にされるべきである。
図7は、本発明の他の例示的実施形態を示している。本発明の装置に用いられる燃料蒸発装置200は、液体燃料Fを供給するための加熱される毛細管流路212を有している。熱は、毛細管流路212に沿って配置された熱源220によって、与えられるようになっている。最も好ましくは、熱源220は、電気抵抗材料のチューブから毛細管流路212を形成することによって設けられている。毛細管流路212の一部は、電流源がチューブの接続部222と224に電流を供給するために接続されたとき、ヒータ要素を形成している。
燃料蒸発装置200の作動中に形成された堆積物を清浄化するために、軸方向可動ロッド232が、毛細管流路212の入口端214の開口と軸方向に一直線に並ぶように、装置本体230の端キャップ234の開口236内に配置されている。パッキン材料238は、シールのために、端キャップ234の内部容積部内に設けられている。図7Aを参照すると、毛細管流路212内に完全に延在している軸方向可動ロッド232が示されている。容易に理解され得るように、毛細管流路212内に最小の壁クリアランスが形成されるように、軸方向可動ロッド232の直径を選択することによって、燃料蒸発装置200の作動中、毛細管流路212の内面に沿って生じた堆積物の実質的に全てを除去することができる組合せ効果が得られる。
図8は、本発明による装置の概略図を示している。この装置は、フリーピストン式スターリングエンジン30と燃焼室34とを備え、550〜750℃の熱が往復ピストンによって、機械的な動力に変換され、この機械的な動力がオルタネータ32を駆動し、電力を生成している。また、このアセンブリは、毛細管流路/ヒータアセンブリ36、制御装置38、整流器/レギュレータ40、バッテリ42、燃料供給源44、復熱装置46、燃焼送風機48、クーラ50、及びクーラ/送風機52を備えている。作動において、制御装置38は、燃焼の熱がスターリングエンジン内のピストンを駆動し、エンジンがオルタネータ32から電気を出力するように、毛細管36への燃料の供給を制御し、燃焼室34内での燃料の燃焼を制御するように、作動可能である。必要に応じて、スターリングエンジン/オルタネータは、機械的な動力を出力する運動学的なスターリングエンジンに置き換えられる。燃焼室と空気予熱装置の例は、米国特許第4,277,942号、4,352,269号、4,384,457号、及び4、392,350号に見出される。これらの開示内容は、参照することによって、ここに含まれるものとする。
図9は、本発明の他の実施形態によるスターリングエンジンアセンブリのような熱変換装置の一部を形成する動力生成装置の概略的な部分断面図を示している。図9に示されるように、送風機によって空気入口に供給される空気は、燃焼室34に入り、毛細管/ヒータ装置36によって燃焼室に供給される蒸発された燃料と混合されることになる。燃焼室34内における燃焼の熱は、スターリングエンジン30の端を加熱し、スライディングピストンが電気を発生するようにオルタネータ内で往復運動するようになっている。燃焼室34は、排ガスが流入空気を予熱し、これによって、燃料の燃焼のためのエネルギー要求値を低減させるように、設計されている。例えば、ハウジングは多重壁装置を備え、この多重壁装置によって、流入空気は、排ガス通路内で循環する排ガスによって加熱されるプレナム内で、循環することが可能である。(矢印55によって示される)流入空気は、その空気を燃焼室34の周囲の渦流羽根56内に通すことによって、燃焼室内において、旋回するようになっている。燃焼された空気−燃料混合物は、熱変換装置(スターリングエンジン)30を加熱し、(矢印57によって示される)排ガスは、燃焼室から除去されることになる。
一般的に、動力変換装置は、液体燃料源と、少なくとも1つの流路(例えば、1つ以上の加熱される毛細管チューブ)であって、この流路を通って、燃料供給源からの燃料が蒸発され、燃焼室に供給されるような流路とを備え、蒸発された燃料は、燃焼され、燃焼室内において生じた熱は、スターリングエンジン又は他の熱変換装置を駆動するのに用いられている。熱交換器を用いて、空気が熱交換器内の空気通路を通過するときに、その空気を予熱し、これによって、装置の効率を最大限に高めることができる。すなわち、蒸発された燃料と混合される空気を予熱し、燃焼室内の燃焼を促進することによって、スターリングエンジンを所定の作動温度に維持するのに、多くの燃料を必要としない。排ガスは、熱交換器内の排気ダクトを通過し、これによって、排ガスからの熱が燃焼室に供給される空気に伝達されることになる。
燃焼室は、空気が蒸発された燃料と混合され、及び/又は空気−燃料混合物が燃焼されるどのような適切な装置をも備えていてもよい。例えば、燃料は、ベンチュリー内で空気と混合され、空気−燃料混合物をもたらし、この空気−燃料混合物が、ベンチュリーの下流側の熱発生区域内において燃焼されるようになっている。燃焼を開始するために、空気−燃料混合物は、火花発生器のような点火装置がその混合物を点火する点火区域内に閉じ込められている。この点火装置は、機械的な火花発生器、電気的な火花発生器、抵抗加熱点火ワイヤなどのような燃料を点火することが可能などのような装置であってもよい。電気的な火花発生器は、小型バッテリのようなどのような適切な電源によっても作動可能である。しかし、このようなバッテリは、駆動されたときに電流を発生する手動操作式圧電変換器と置き換えることもできる。このような装置の場合、電流は、変換器の圧縮によって、電気機械的に発生されることになる。例えば、ストライカは、トリガーの押圧時に所定の力で変換器を叩くように、配置されている。圧電変換器によって生じた電気は、適切な回路によって、火花発生機構に供給されるようになっている。このような装置を用いて、燃料−空気混合物を点火することが可能となる。
変換装置によって発生された電力の一部は、適切な蓄電装置、例えば、バッテリ又はコンデンサ内に貯蔵され、この電力は、点火装置に給電するのに用いられている。例えば、手動操作スイッチを用いて、抵抗加熱要素に電流を供給するか又は流路内の燃料を蒸発させる金属チューブの一部に電流を直接供給し、及び/又は燃焼室に供給された燃料−空気混合物の燃焼を開始するために、点火装置に電流を供給することが可能である。
必要に応じて、燃料を燃焼することによって生じた熱を用いて、機械的又は電気的な動力に頼るどのような種類の装置をも作動することが可能である。例えば、熱変換源を用いて、電話通信装置(例えば、無線電話)や携帯コンピュータのような携帯電気機器、動力ツール、電気器具、キャンプ機器、軍用機器、原動機付き自動車、動力付き車椅子、及び船用推進装置のような輸送機器、電子検出装置、電子監視機器、バッテリ充電器、点灯機器、加熱機器などに対して電気を生成することが可能である。また、熱変換装置を用いて、非携帯装置、又は配電網へのアクセスが利用できないか、不便であるか、又は確実ではない箇所にも、電力を供給することが可能である。このような箇所及び/又は非携帯装置として、遠隔住宅区域や軍用野営地、自動販売機、船舶機器などが挙げられる。
本発明のハイブリッド動力発生システムに用いることが考えられる光起電力アレーとして、種々多様な光電池が挙げられる。入手できることが知られている好ましい型式の例として、20〜25%の変換効率をもたらし、種々の変換層を備えているものが挙げられる。例えば、変換層は、最外面の青応答層と、緑−赤応答層と、赤外層とを含んでいる。他の型式として、シリコンよりむしろ、ガリウムを含むものが挙げられる。しかし、状況によっては、電池の半導体表面が、好ましくは、(断面積に関して)十分な量の導電金属帯片を備え、これによって、製造業者によって予想されているよりも数倍大きい電流を発生させても、半導体の過熱又は金属導体の溶融さえも生じることがないような比較的非効率(10〜18%)な電池を用いる方がさらに経済的である場合もある。
代替的に、太陽電池の特定の目的に用いられる設計として、当業者であれば理解し得るように、平坦又は非平坦面に構築される層状の非晶質シリコンを含む非晶質型式が挙げられる。これらの電池構成の開発によって、電池材料は、任意の表面に蒸発又は噴霧され、適格な被膜を形成することが可能となっている。
米国特許第4,152,824号、4,239,555号、4,451,969号、4,595,790号、4,851,308号、6,077,722号、6,111,189号、6,368,892号、6,423,565号、及び6,465,724号によって明白に示されているように、光電池及び光起電力アレーを製造するための種々の方法が知られている。これらの内容は、参照することによって、ここに含まれるものとする。
光電池を用いる電力生成の業界において普通になされているように、例えば、アレーの一部が比較的乏しい照射位置にある場合、負荷を相殺する手段が設けられていてもよい。有用な作動電圧は、少なくとも12Vである。特に太陽光が弱くて実電圧が降下するとき、伝送損失と半導体損失とを最小限に抑える観点から、電圧が高いほど、有用性が高まる。当技術分野において知られているように、電流が変動しても、一定の出力電圧を維持するために、昇圧型コンバータが設けられていてもよい。典型的には、本発明と組み合わせて用いられるアレーは、51から204kg−m/秒(500ワットから2キロワット)又はそれ以上の範囲内で、電気を生成するとよい。
図10を参照すると、好ましい形態によるハイブリッド動力システム300のブロック図が示されている。図示されるように、液体燃料源と、その燃料供給源からの燃料を蒸発させ、燃焼室に供給する1つ以上の加熱される毛細管チューブとを備える動力ユニット310が設けられ、前述したように、蒸発された燃料は、燃焼され、燃焼室内において生じた熱が、スターリングエンジン又は他の熱変換装置を駆動するのに用いられている。熱変換装置は、有利には、オルタネータ、例えば、電力を生成し、バッテリ340に供給するリニアオルタネータに取り付けられているとよい。バッテリ340は、負荷に接続されるパワーエレクトロニクスモジュール350に給電するようになっている。
前述した型式から選択され得る光起電力アレー320も、バッテリ340に電気的に接続されている。この光起電力アレー320は、ピーク太陽輻射の期間中に負荷の全要求値を満たすような大きさであってもよいし、動力ユニット310によって補完されるように設計されていてもよい。動力ユニット310の規模に関して、35.7kg−m/秒(350ワット)容量のエンジンを有するユニットであれば、1日当たり12時間作動させることによって、102kg−m/秒(1キロワット)の光起電力アレーが陽の照る日に得るのと同様の電力出力をもたらし得る。このように、動力ユニットの容量は、光起電力アレーよりも著しく小さくすることができ、それでも、給電能力と電力信頼性の向上をもたらすことが可能である。容易に理解され得るように、より大きな用途に対処するために、多数の動力ユニットが同時に用いられてもよい。
特に好ましくは、光起電力アレー320が給電の約90%を担うことによって、年間で約300から800時間のエンジン運転を必要とするハイブリッド方式が得られる。本発明のハイブリッド構造は、光起電力パネルとバッテリ蓄電能力の必要性を25から50%まで低減させることができ、光起電力アレーと比較して、資本コストと所有コストを低減させることができる。加えて、検討したハイブリッド構造は、バッテリサブシステムへの応力の低減(放電レベルの低減など)を達成し、その結果、置換スケジュールを2倍以上増大させることになる。
本発明の好ましい実施形態を参照して、本発明を詳細に説明したが、本発明の範囲から逸脱することなく、種々の変更がなされ、かつ等価物が用いられ得ることは、当業者にとって明らかであろう。
本発明の実施形態による毛細管流路を備える燃料蒸発装置を示す部分断面図である。 図4の装置とシステムを実施するために用いられる多重毛細管装置を示す図である。 図2に示される装置の端面図である。 本発明の実施に用いられる実質的に蒸発された燃料を供給する多重毛細管装置内において、燃料を蒸発させ、かつ堆積物を酸化させるのに用いられる装置の詳細を示す図である。 燃料と随意的に酸化ガスとを毛細管流路に供給する制御装置を示す概略図である。 液体燃料を予熱するのに燃焼熱を用いるための装置を示す概略図である。 毛細管流路の堆積物を清浄する移動可能なロッドを用いる燃料蒸発装置の他の実施形態を示す側面図である。 毛細管流路の堆積物を清浄化する移動可能なロッドが毛細管流路内に完全に係合されている状態を示す、図7の実施形態の側面図である。 本発明の一実施形態によって、スターリングエンジンを用いて、電気を発生させる本発明による電力を発生させるための装置を示す概略図である。 本発明の他の実施形態による電力生成装置を示す概略的部分断面図である。 本発明によるハイブリッド動力システムを示すブロック図である。

Claims (20)

  1. 電力を発生させるためのハイブリッドシステムにおいて、
    (a)太陽輻射を収集し、電力に変換させる光起電力アレーと、
    (b)液体燃料の源から動力を生成するための装置であって、(i)少なくとも1つの毛細管流路であって、入口端と出口端とを有し、前記入口端は前記液体燃料の源と流体連通するような毛細管流路と、(ii)前記少なくとも1つの毛細管流路に沿って配置される熱源であって、前記少なくとも1つの毛細管流路の液体燃料を、少なくともその一部を液体状態から蒸気状態に変化させ、実質的に蒸発された燃料の流れを前記少なくとも1つの毛細管流路の前記出口端から供給するのに十分なレベルに加熱するように、作動可能である熱源と、(iii)前記少なくとも1つの毛細管流路の前記出口端と連通する燃焼室と、(iv)前記燃焼室内の燃焼によって放出された熱を電力に変換するように作動可能な変換装置とを備える装置と、
    (c)前記光起電力アレーと前記変換装置とによって生成された電力を貯蔵するために、前記光起電力アレー及び前記変換装置に電気的に接続される貯蔵装置と、
    を備えていることを特徴とするハイブリッドシステム。
  2. 前記熱源は、抵抗加熱要素を備えていることを特徴とする、請求項1に記載のハイブリッドシステム。
  3. 前記少なくとも1つの毛細管流路は、少なくとも1つの毛細管チューブを備えていることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  4. 前記熱源は、電流を流すことによって加熱される前記毛細管チューブの一部を含んでいることを特徴とする、請求項3に記載のハイブリッドシステム。
  5. 前記装置の作動中に形成された堆積物を清浄化するための手段をさらに備えていることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  6. 堆積物を清浄化するための前記手段は、流体制御弁と、前記熱源と、前記少なくとも1つの毛細管流路を酸化剤と流体連通させるための酸化剤制御弁とを備え、前記熱源はまた、前記少なくとも1つの毛細管流路内の酸化剤を、前記液体燃料の加熱中に形成された堆積物を酸化するのに十分なレベルに加熱するように作動可能であり、前記少なくとも1つの毛細管流路を酸化剤と流体連通させるための前記酸化剤制御弁は、前記毛細管流路への液体燃料の導入と前記毛細管流路への酸化剤の導入を交互に切換え、前記酸化剤が前記少なくとも1つの毛細管流路内に導かれたとき、前記毛細管流路のその場での清浄化を可能にするように作動可能であることを特徴とする、請求項5に記載のハイブリッドシステム。
  7. 堆積物を清浄化するための前記手段は流体制御弁を備え、前記流体制御弁は、前記少なくとも1つの毛細管流路を溶媒と流体連通させ、前記溶媒が前記少なくとも1つの毛細管流路内に導かれたとき、前記毛細管流路のその場での清浄化を可能にするように、作動可能であることを特徴とする、請求項5に記載のハイブリッドシステム。
  8. 前記溶媒は、前記液体燃料源からの液体燃料を含み、前記熱源は、前記毛細管流路の清浄化中に停止されるようになっていることを特徴とする、請求項7に記載のハイブリッドシステム。
  9. 前記燃焼室は、前記蒸発された燃料を点火するように作動可能な点火装置を備えていることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  10. 前記熱源は、前記点火装置の点火エネルギー要求値を低減させるのに有効なレベルに前記液体燃料を蒸発させるのに効果的であることを特徴とする、請求項9に記載のハイブリッドシステム。
  11. 前記変換装置は、マイクロタービン、発電機付きのマイクロタービン、スターリングエンジン、発電機付きのスターリングエンジン、熱電装置及び熱光起電力装置からなる群から選択される装置を含んでいることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  12. 前記変換装置は、510kg−m/秒(5000ワット)以下の機械的又は電気的動力を出力するようになっていることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  13. 燃料源をさらに備え、前記燃料源は、加圧液体燃料を100psi以下の圧力で前記少なくとも1つの毛細管流路に供給することが可能であることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  14. 熱交換器をさらに備え、前記熱交換器は、前記燃焼室から排気される排ガスの一部が循環する排気ダクトと、空気が循環する空気通路とを備え、前記熱交換器は、前記排ガスダクト内の前記排ガスからの熱を空気に伝達することによって、前記空気通路内の空気を予熱することを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  15. 送風機をさらに備え、前記送風機は、空気を圧力下で前記燃焼室に供給し、空気−燃料混合物を燃焼させるのに有効な所望の空気/燃料比で、加圧空気を蒸発された燃料と混合させることを可能にしていることを特徴とする、先行する請求項のいずれか1項に記載のハイブリッドシステム。
  16. 電力を発生させる方法において、
    (a)光起電力アレーの使用によって、太陽輻射を電力に変換させるステップと、
    (b)液体燃料を少なくとも1つの毛細管流路に供給するステップと、
    (c)前記液体燃料を前記少なくとも1つの毛細管流路内で加熱することによって、実質的に蒸発された燃料の流れを前記少なくとも1つの毛細管流路の出口内を通させるステップと、
    (d)前記蒸発された燃料を燃焼室内で燃焼させるステップと、
    (e)前記燃焼室内での前記蒸発された燃料の燃焼によって生成された熱を、変換装置を用いて電力に変換するステップと、
    (f)前記ステップ(a)と(e)において生成された電力を貯蔵装置内に蓄電するステップと、
    を含むことを特徴とする方法。
  17. 前記少なくとも1つの毛細管流路は、少なくとも1つの毛細管チューブを含み、前記熱源は、抵抗加熱要素、又は電流を流すことによって加熱される毛細管チューブの一部を備え、前記液体燃料を前記毛細管チューブ内に流し、前記チューブを加熱することによって、前記液体燃料を蒸発させるステップをさらに含むことを特徴とする、請求項16に記載の方法。
  18. 前記変換装置は、マイクロタービン、発電機付きのマイクロタービン、スターリングエンジン、発電機付きのスターリングエンジン、熱電装置及び熱光起電力装置からなる群から選択される装置を含むことを特徴とする、先行する請求項のいずれか1項に記載の方法。
  19. 少なくとも1つの毛細管流路を周期的に清浄化するステップをさらに含むことを特徴とする、先行する請求項のいずれか1項に記載の方法。
  20. 前記周期的な清浄化ステップは、(i)前記少なくとも1つの毛細管流路の前記加熱を停止するステップと、(ii)溶媒を前記少なくとも1つの毛細管流路に供給するステップとを含み、前記少なくとも1つの毛細管流路内に形成された堆積物が除去されることを特徴とする、請求項19に記載の方法。
JP2004567423A 2003-01-23 2003-12-10 動力を発生させるためのハイブリッドシステム Expired - Fee Related JP4489600B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44209403P 2003-01-23 2003-01-23
PCT/US2003/039327 WO2004068593A2 (en) 2003-01-23 2003-12-10 Hybrid system for generating power

Publications (2)

Publication Number Publication Date
JP2006513357A true JP2006513357A (ja) 2006-04-20
JP4489600B2 JP4489600B2 (ja) 2010-06-23

Family

ID=32825182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004567423A Expired - Fee Related JP4489600B2 (ja) 2003-01-23 2003-12-10 動力を発生させるためのハイブリッドシステム

Country Status (9)

Country Link
EP (1) EP1588425A2 (ja)
JP (1) JP4489600B2 (ja)
KR (1) KR101004459B1 (ja)
CN (1) CN1826698A (ja)
AU (1) AU2003296473A1 (ja)
BR (1) BR0318030A (ja)
CA (1) CA2513315C (ja)
MX (1) MXPA05007694A (ja)
WO (1) WO2004068593A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994803A (zh) * 2014-05-27 2014-08-20 厦门大学 基于红外热像观察的热管吸液芯毛细流动测量方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183636B1 (ko) 2010-10-20 2012-09-17 이진용 공해가 발생되지 않는 전기에너지 생성장치
JP6575559B2 (ja) * 2017-04-27 2019-09-18 トヨタ自動車株式会社 燃料噴射弁
CN109404160A (zh) * 2018-11-01 2019-03-01 浙江大学 热源互补型的分隔式斯特林发动机加热器
US10731557B1 (en) 2019-04-19 2020-08-04 Hamilton Sundstrand Corporation Cyclonic dirt separator for high efficiency brayton cycle based micro turbo alternator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210250C2 (de) * 1972-03-03 1982-05-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzvorrichtung für den Kaltstart und den Warmlauf fremdgezündeter Brennkraftmaschinen
DE3719234A1 (de) * 1987-06-09 1988-12-22 Dow Corning Gmbh Verfahren und vorrichtung zum reinigen der kraftstoffeinlasswege einer fremdgezuendeten einspritzbrennkraftmaschine
DE4036176C1 (en) * 1990-11-14 1992-06-17 Forschungszentrum Juelich Gmbh, 5170 Juelich, De Fuel nozzle for atomising gas stream - has auxiliary scavenging water line to act on fuel line
DE19743087A1 (de) * 1997-09-30 1999-05-27 Siegfried W Schilling Vorrichtung zum Verdampfen von flüssigen Brennstoffen
US6198038B1 (en) * 2000-01-13 2001-03-06 Thermo Power Corporation Burner and burner/emitter/recuperator assembly for direct energy conversion power sources
US6871792B2 (en) * 2002-03-22 2005-03-29 Chrysalis Technologies Incorporated Apparatus and method for preparing and delivering fuel
US7313916B2 (en) * 2002-03-22 2008-01-01 Philip Morris Usa Inc. Method and apparatus for generating power by combustion of vaporized fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103994803A (zh) * 2014-05-27 2014-08-20 厦门大学 基于红外热像观察的热管吸液芯毛细流动测量方法及装置

Also Published As

Publication number Publication date
KR101004459B1 (ko) 2010-12-31
AU2003296473A1 (en) 2004-08-23
EP1588425A2 (en) 2005-10-26
CA2513315C (en) 2013-10-29
CA2513315A1 (en) 2004-08-12
WO2004068593A2 (en) 2004-08-12
JP4489600B2 (ja) 2010-06-23
MXPA05007694A (es) 2010-09-28
BR0318030A (pt) 2005-12-06
WO2004068593A8 (en) 2005-12-22
WO2004068593A3 (en) 2005-11-10
CN1826698A (zh) 2006-08-30
KR20050094051A (ko) 2005-09-26

Similar Documents

Publication Publication Date Title
US20140069354A1 (en) Hybrid System for Generating Power
CN100430648C (zh) 燃烧气化燃料而产生动力的设备和方法
US20060118065A1 (en) Waste oil electrical generation systems
JP2005520991A (ja) 燃料を製造して供給する装置と方法
US7067933B2 (en) Waste oil electrical generation system
US7177535B2 (en) Apparatus for generating power and hybrid fuel vaporization system
JP4489600B2 (ja) 動力を発生させるためのハイブリッドシステム
US20170077376A1 (en) Thermoelectric power generator and combustion apparatus
KR101121293B1 (ko) 파워를 발생시키기 위한 장치 및 그를 위한 하이브리드연료 기화 시스템
MXPA06000184A (en) Apparatus for generating power and hybrid fuel vaporization system therefor
McAlonan et al. Burner System for a Thermoelectric Generator
JPH01248976A (ja) 液体燃料式熱電発電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees