JP2006507051A - 体積画像のシーケンスを視覚化する方法及び装置 - Google Patents

体積画像のシーケンスを視覚化する方法及び装置 Download PDF

Info

Publication number
JP2006507051A
JP2006507051A JP2004552996A JP2004552996A JP2006507051A JP 2006507051 A JP2006507051 A JP 2006507051A JP 2004552996 A JP2004552996 A JP 2004552996A JP 2004552996 A JP2004552996 A JP 2004552996A JP 2006507051 A JP2006507051 A JP 2006507051A
Authority
JP
Japan
Prior art keywords
volume
image
visualization
voxels
voxel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004552996A
Other languages
English (en)
Other versions
JP2006507051A5 (ja
Inventor
ヴェーゼ,ユルゲン
ヘンペル,ダニール
ペカール,ウラジミール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2006507051A publication Critical patent/JP2006507051A/ja
Publication of JP2006507051A5 publication Critical patent/JP2006507051A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Generation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本発明は、動く対象の体積画像のシーケンスを視覚化する方法及び装置に関連する。この種類の方法及び装置は、観察者に対して、3次元体積画像のシーケンスが例えば2次元画像として描出される場合に用いられる。本発明は、通常はボクセルの一部の体積値のみが体積画像からの2次元画像の導出に関連があるという事実を用いる。動く対象の体積画像のシーケンスの場合、2次元画像の導出は、第1の体積画像の視覚化中に視覚化に関連のあるボクセルを格納することによって、また、格納されたボクセル値から及び当該格納されたボクセルに隣接するボクセルからのみの第2の体積画像の視覚化中に関連のある2次元画像を導出することによって加速されうる。使用のための近傍のボクセルの体積値の選択は、対象の動きに依存する。視覚化に関連のある第2の体積画像のボクセルは、再び格納され、第3の体積画像の視覚化に用いられる。これらの段階は、シーケンスの更なる体積画像について繰り返される。

Description

本発明は、動く対称の体積画像のシーケンスを視覚化する方法並びに装置に関連する。この種類の方法及び装置は、例えば観察者に対して体積画像のシーケンスが視覚化されるときに使用される。
患者の器官の体積画像のシーケンスが捕捉され観察者に対して提示されうる方法及び装置は、医療分野から知られている。体積画像は対象の3次元画像であり、対応する体積値又はボクセル値により、ボクセルの位置に存在する対象の画像情報を夫々表わす体積素子又はボクセルから構成される。捕捉された体積画像は、夫々の体積画像から夫々の2次元画像を形成することにより視覚化され、2次元画像はモニタ等の適当な手段によって描出されうる。しかしながら、視覚化のための公知の方法は、画像体積の視覚化がその寸法の関数として非常に複雑であるため、最新のシステムに表示される画像の繰り返し率を制限する。これは、特に、この種類のシステムの捕捉ユニットが、視覚化ユニットがそこから画像を形成しうる率よりも高い画像繰り返し率を有する体積画像を捕捉することが可能であるときはうまくいかない。
従って、本発明は、体積画像のより高速な視覚化の方法及び装置を提供することを目的とする。
上記目的は、
a)体積画像の体積値からの視覚化に関連する第1の体積画像の体積値を決定する段階と、
b)体積値が関連付けられるボクセルを格納する段階と、
c)体積画像から2次元画像を導出する段階と、
d)格納されたボクセル又は格納されたボクセルの近傍のボクセルに関連付けられる体積値からのその視覚化に関連する第2の体積画像の体積値を決定する段階と、
e)体積値が関連付けられた前記ボクセルを格納する段階と、
f)体積画像から2次元画像を導出する段階と、
g)任意の更なる体積画像について段階d)乃至f)を繰り返す段階とを有する、体積画像のシーケンスを視覚化する方法によって達成される。
この方法によれば、まず、体積画像のシーケンスからの第1の体積画像が利用可能である。かかる体積画像は、観察者に対してアクセス可能とするために、視覚化されねばならない。このために、通常は、その上に体積画像が画像化される2次元画像面が定義され、観察者に対して、例えばディスプレイ画面上といった面上に形成された画像が提示される。対象の画像は、画像面上に画像化された体積画像からの方向から観察者が画像を見ているかのように観察者に対して提示される。
全てのボクセルのうちの一部分のみが体積画像の視覚化に関連することがわかっており、当該部分は使用される視覚化方法に依存する。
以下、ボクセルは、その体積値が体積画像からの2次元画像の抽出中に寄与するか又は関連するときに、即ち2次元画像情報の形成に寄与するときに関連があると見なされる。例えば、画像化方向上可視でない対象の部分の体積画像内容を表わす体積値を有するボクセルは視覚化には関連がない。従って、視覚化の方法の実行は、関連のないボクセルのできるかぎり大きい部分が2次元画像の抽出中に使用されていないときに加速されうる。生ずる画像は、全てのボクセルを使用しているときに同じ視覚化から得られる画像に略対応する。
このために、まず第1の体積画像のうち、その視覚化に関連のある画素値が決定され、これらの画素値が関連付けられるボクセルが格納される。従って、第1の体積画像の視覚化に関連のある全てのボクセルが格納され、更なる段階においてそこから2次元画像が導出される。動かない対象を表わす体積画像のシーケンスが視覚化されるべきであることが想定されるべきである。その場合、対象は第1の体積画像と同じように正確に第2の体積画像中でレンダリングされることが予想され、第2の体積画像の視覚化に対しては、第1の体積画像の視覚化に既に関連のあるボクセルが関連する。しかしながら、体積画像のシーケンス中に表わされる対象全体又は対象の一部が動くため、視覚化に関連のある第2の体積画像の幾つかの体積ボクセルは、対象の動きにより第1の体積画像に対してシフトされており、それらの体積値を有する幾つかのボクセルは視覚化に関連がある。これらの他の関連のある体積素子は、格納されたボクセルに隣接するよう、対象の動きに従って格納されたボクセルから所定の距離に配置される(即ち、第1の体積画像の関連のあるボクセル)。この文脈では、「近傍」という語は、直接の近傍だけでなく、幾つかの関連の或ボクセルが格納されたボクセルと新しい関連のあるボクセルとの間に配置される近傍も意味するものである。
本発明は、できるだけ少ない数の体積値からの第2の体積画像から2次元画像を導出することを目的とする。第2の体積画像は、格納されたボクセル又は格納されたボクセルの近傍のボクセルに関連付けられる体積値からのみ導出される2次元画像を導出することによって視覚化される。視覚化に用いられるボクセルは、体積画像の全てのボクセルのサブセットを構成する。サブセット内で関連のある体積値を有するボクセルの割合が大きくなればなるほど、実際の視覚化はより高速に実行されうる。最適な場合は、このサブセットは、視覚化に関連のある体積値を有するボクセルのみを含む。一般的に、この方法により、2次元画像の導出に用いられるボクセルの数は、導出のために用いられる近傍画素のサブセットが関連のない体積値を有するボクセルを有する場合であっても、体積画像の全ての体積値の全数に対して大きく減少されることが達成される。
第3の体積画像の視覚化に対しては、方法に従って、まず、第2の体積画像からの2次元画像の導出に実際に関連のある体積値が決定される。これらの体積値に関連付けられるボクセルが格納される。第2の体積画像の視覚化と同様、第3の体積画像の2次元画像は、格納されたボクセル又は格納されたボクセルの近傍のボクセルに関連付けられる体積値から導出される。手順は、更なる体積画像に対しても同じである。
従属項は、本発明による方法の特別な変形例に関連する。
動きモデルの使用は、請求項2に記載の方法の実施例を構成する。関連のある体積値を有するボクセルの割合は、従って、2次元画像の導出中に用いられるボクセルのサブセット内でできる限り大きくなる。動きモデルがなく、動きモデルの使用が可能でなければ、導出中に用いられるボクセルのサブセットは、或いは請求項3に記載の変形例により定義されうる。このサブセットをできる限り小さく維持するために、方法は、請求項4に記載の変形例により実際の対象の動きに対して適用されうる。領域は、対象が第1と第2の体積画像の間で大きい画像領域に亘って移動したときに大きくなるよう選択される。領域は、対象が小さい画像領域のみに亘って移動したときに小さくなるよう選択される。方法の特に簡単な実施は、半径又は直径を示すことがその場合に領域を定義するのに十分であるため、請求項5記載の更なる変形例によって与えられる。
視覚化のために、体積画像のボクセルの体積値がブロックで処理される方法が知られている。この種類の視覚化手順が本発明による方法に使用されるとき、請求項6により更なる変形例は当該の画素に対する格納ステップ及び格納位置の数を減少させる。
上記目的は、体積画像のシーケンスを視覚化する画像処理ユニットであって、
a)体積画像用のデータ入力と、
b)ボクセルを格納するメモリと、
c)視覚化に関連する体積画像の体積値を決定するデータ処理ユニットと、
d)視覚化方法を実行する視覚化ユニットと、
e)請求項1記載の方法、即ち、
e1)体積画像の体積値からの視覚化に関連する第1の体積画像の体積値を決定する段階と、
e2)体積値が関連付けられるボクセルを格納する段階と、
e3)体積画像から2次元画像を導出する段階と、
e4)格納されたボクセル又は格納されたボクセルの近傍のボクセルに関連付けられる体積値からのその視覚化に関連する第2の体積画像の体積値を決定する段階と、
e5)体積値が関連付けられたボクセルを格納する段階と、
e6)体積画像から2次元画像を導出する段階と、
e7)任意の更なる体積画像について段階e4)乃至e6)を繰り返す段階とを有する方法が実行されるよう構成要素を制御する制御ユニットとを有する、画像処理ユニットによっても達成される。
画像処理ユニットは、例えば表示画面を有するワークステーションといった独立の装置によって実現されうる。データ入力を介して、ユーザは、本発明の方法に従ってモニタ上に視覚化され表示される体積画像のシーケンスを受信する。一方で、この種類の画像処理ユニットは、例えば、多くの公知の方法で利用されえ、それにより更に、請求項8により視覚化されるべき体積画像が捕捉される。医療用装置における本発明による方法の使用は、ユーザが請求項9及び10に従って適切な速度で体積画像のシーケンスを視覚化することを可能とする。
請求項11に記載のコンピュータプログラム又はコンピュータプログラムプロダクトは、本発明による方法の実行のためにプログラマブルなデータ処理ユニットの使用を可能とする。
以下の例及び実施例は、図1乃至図5により裏付けられている。本発明による方法の一般的な例を、図1を参照して説明する。方法についてより正確に説明し、他の図面を参照して更に詳細に説明する。特に、図1の説明で使用する用語については更に明らかとなろう。
図1の体積画像B2乃至B5は、動く対象から捕捉され、各体積画像は多数のボクセルを有する夫々の3次元画像データセットから構成される。ステップ20において、第1の体積画像B2が視覚化され、結果は画像I2としてレンダリングされる。このために様々ないわゆるレンダリング方法が知られており、以下更に説明する。更に、ステップ20において、夫々の体積値が実際に視覚化に関連のある関連ボクセルが決定され、視覚化されるべき体積画像の各ボクセルに対する対応するボクセルを含むバッファメモリに格納される。バッファメモリの内容は、参照符号F1によって表わされる。
更なるステップ21では、全ての関連ボクセルの近傍にあるボクセルもまた関連のあるものとして格納される。これにより、図1中の参照符号F2によって表わされるように、関連ボクセルを有する領域が膨張(dilation)する結果となる。膨張は、ある種の予測によって、少なくとも次の体積画像B3の視覚化に関連する夫々の体積値をおそらくは含むボクセル素子に更に関連するものとして格納することを目的とする。次の体積画像B3の視覚化のために、ステップ20(レンダリング操作)が再び行われ、表示されうる画像I3を形成する。しかしながら、この場合、視覚化は体積画像B3の全ての画像ではなく、中間メモリからの対応するボクセルが関連のあるものとして格納されているボクセルのみを用いる。すると、画像I3は、関連のあるものとして格納された体積画像I3のボクセルのみではなく、全てのボクセルを用いた視覚化の結果となる画像に略対応する。バッファメモリ中に格納されたボクセルは、従って、通常は使用されるべき体積画像の全てのボクセルのサブセットを形成し、従って体積画像B3に対するレンダリング方法は、全てのボクセルが使用される体積画像B2について以前に実行されたステップ20よりもかなり高速にステップ20において実行されうる。
図1の方法のより正確な説明を可能とするために、本発明を図2のフローチャートの形で表わす。ステップ201において、視覚化されるべき体積画像が選択される(例えば、図1の画像B2)。体積画像は、3次元体積を表わし、複数のボクセルから構成される。ボクセルは、その体積値により、ボクセルの位置に存在する画像情報、例えば、放射線又は波形(音波)の減衰値又は反射値を表わす。ボクセルの体積値は、例えば、色値又はグレー値で表わされうる。
体積画像は、例えば、図3に図式的に示すように超音波装置によって捕捉されうる。体積画像用の3次元画像データセットを発生する超音波アプリケータ32は、台31上に配置された検査されるべき対象30(患者)上に手動で配置される。このアプリケータは、患者30に超音波を印加し、組織の夫々の部分によって反射される音波を検出する。図3aは、超音波アプリケータ32による音の可能な印加を示す。超音波は、線形配列42(個々のトランスデューサの行毎の配置)によって公知の方法で交互の面に印加される。図示のように、線形配列42に平行な波面は、かかる平面44a内の矢印の方向に延びる。しかしながら、その代わりに、音波の扇形の伝搬もまた、適当なトランスデューサが用いられると可能である。平面を通って伝搬する音波は、平面内に配置され、配列42内の適切なセンサによって検出される対象43の部分によって反射される。この手順が終了した後、音波は、以前の面44aに対して空間的にずれている次の面44b中の対象43に印加され、上述の手順が繰り返される。上述の操作は、最終平面44kに達するまで様々な面に対して続けられる。すると、対象43から、体積画像の3次元画像データセットが捕捉されている。手順は、平面44aから開始して更なる3次元画像データセットの捕捉のために繰り返されるか、平面のシーケンスが逆方向に辿られ、即ち、平面44kから開始する。公知のシステムを用いて、人間の心臓等の対象から1秒間当たりに50ほどの3次元画像データセットが取得されうる。人間の動く心臓のかかる連続的な3次元画像データセットのうちの4つを、図1中に体積画像B2、B3、B4、B5として示す。
図3に示すシステムでは、超音波アプリケータ32によって捕捉された3次元画像データセットB2乃至B5は、評価ユニット35に印加される。評価ユニット35は、捕捉された体積画像の格納に使用される体積画像メモリ36にアクセスしうる画像処理ユニット37と、視覚化結果の格納に用いられる画像メモリ39並びに中間又はバッファメモリ38を有する。視覚化されるべき体積画像の各ボクセルに対して、バッファメモリ38は、体積値が2値であり、以下「0」又は「1」と示される対応するボクセルを与える。画像処理ユニット37は、例えば、図2に示す方法を実行するよう配置される。画像処理ユニット37はまた、プログラム可能であり、コンピュータプログラムにより上述の方法を実行することを可能とされることが考えられる。コンピュータプログラムは、本例では、CD、フレキシブルディスク、又はEEPROM等の交換可能な記憶媒体(図示せず)であるコンピュータプログラムプロダクトにより、読み出しユニット37を介して、画像処理ユニット37へロードされ、画像処理ユニット37によって実行されるようにされる。画像処理ユニット37によって形成される、図1の画像I2及びI3は、ユーザに提示されるようインタフェース39aを介してモニタ34に到達する。評価ユニット35がインタフェース(図示せず)を介してネットワーク又はインターネットに接続されると、コンピュータプログラムプロダクトはまた、通常は無料で行われうるコンピュータプログラム又はそのコンポーネントのダウンロードを意味するものと理解されるべきである。
図2中のステップ301では、視覚化されるべき体積画像が視覚化されるべき第1の体積画像であるかどうか判定される。視覚化されるべきであれば、ステップ202において、バッファメモリ38は、全ての体積比に対して「1」が格納されるよう初期化される。これは、視覚化されるべき第1の体積画像に対して、体積画像の全てのボクセルが視覚化に関連があり、全ての体積値が2次元画像の導出に関連があることを意味する。視覚化されるべき体積画像が最初のものでない場合、先行する視覚化により、今後の視覚化に関連があると想定されるバッファメモリ38中のボクセルの体積値は「1」であり、関連のないボクセルは「0」である。用いられる視覚化方法に従って、ステップ203において、視覚化されるべき体積画像の第1のボクセルが選択される。ステップ302において、バッファメモリ38から選択されたボクセルの体積値が「1」であるかどうかが調べられる。「1」でない場合、選択されたボクセルの体積値は視覚化に関連がないと想定され、ステップ304までの後続ステップが飛ばされる。そうでなければ、選択されたボクセルは、視覚化に関連があると想定され、ステップ303において、後のステップ204において、選択されたボクセルの体積値が実際に、2次元画像の導出中の画像情報の形成に寄与するか、即ち、選択されたボクセルが実際に視覚化に関連するかが調べられる。そうであれば、ステップ205において、選択されたボクセルに対応するボクセルの体積値に対してバッファメモリ38中に「1」が格納され、そうでなければステップ206において「0」が格納される。ボクセルが関連がある場合、ステップ205の後に、ボクセルの体積値が2次元画像に対する画像情報を導出に使用されるステップ204が続き、撮像結果は画像メモリ39に格納される。
このために、例えば、ステップ204においていわゆるレンダリング方法が使用されうる。これらの方法によれば、ボクセルの体積値は異なった方法で画像上に投影され、又は、体積画像に沿って延びる架空の光線に沿って、画像面又は仮想点から開始して、個々の画素が決定される。かかるレンダリング方法、即ちいわゆるレイキャスティング(ray casting)の原理を、図4a及び図4bに図式的に示す。多数のボクセルb1から構成される体積画像Bは、多数の画素p1から構成される画像P内で視覚化されるべきである。このために、まず、画像Bの画素(図4a中に黒で示す)に接触するか横切るか、又は、体積画像Bの複数の画素(そのうちの1つを光線R1に沿って黒で示す)に接触又は横切ることが想定される。接触又は横切った画素の画像値は、画素に対応するボクセルの体積値から決定される。他の画素の画像値も同様に決定され、各画素に対して夫々の光線が想定され、光線は光線R1に平行に延び、画像値が決定されるべき関連のある画素に接触又は横切る。或いは、更なる光線は、光線R1に対して扇形に延びうる。表現の簡単化のため、以下、平行な光線についてのみ説明する。体積画像を通過するとき、光線は一般的には正確にボクセルの中心を通るわけではない。レンダリング方法において光線の近傍のどのボクセルが取り込まれるか、またその割合を決める様々な方法が知られている。これらの方法は、関連の文献に詳細に説明されているため、ここでは詳述しない。
様々なボクセルの体積値から画像値を決定する様々な可能性が存在する。かかる可能性は、所望の表現に依存し、幾つかの可能性について図4cを参照して説明する。図4cは、任意の光線に沿ったボクセルb(r)の体積値v(b)を示す。視覚化が、画像P中に体積画像中に示される対象の面を再生することを意図する場合、画素の画像値は光線R15に沿ったボクセルから決定される。このために、当該のボクセルの体積値は、光線に沿って進行している間に所定の限界値と比較される。限界値を下回る体積値を有する全てのボクセルは、この場合は視覚化に関連がない。体積値が限界値を超える最初のボクセルは、視覚化に関連があり、画像値の決定に考慮される。かかるボクセルが見つけられると、光線R15上に配置される更なるボクセルはもはや調べられず、なぜならばそれらの体積値はサーフェスレンダリングに必要でないからである。これらのボクセルは、視覚化にも関連がない。この視覚化の可能性のために、従って、視覚化に関連のある体積値を有する第1のボクセルに出会うまで、光線によって接触又は横切られる全てのボクセルについて調べる必要がある。
図4eは、画像Pの線PZの視覚化についてのこの可能性を示す。図4e中、架空の光線は、画像線PZの画素から発せられ、図4a及び図4bの体積画像BのスライスBBに対して平行であり透過する。各光線は、限界値を超過する体積値を有するボクセルに出会うまでスライスBBへと透過する。限界値よりも高い体積値を有する全てのボクセルは、陰影によって示される。これらのボクセルの体積値は、対応する画像値を決定するのに役立つ。光線に沿ったいずれのボクセルの画像値も限界値を超過しない場合、光線は体積画像のエッジまで延び、例えば、接触されたボクセルの全ての体積値の平均値から対応する画像値が形成され、又は所定の標準値が画像値に割り当てられる。視覚化についてのこの可能性により、光線に沿った最初のボクセルとして、限界値よりも高い体積値を夫々有する全てのボクセルは、体積画像Bの視覚化に関連がある。これらのボクセルに対して、図3のバッファメモリ38に「1」が格納され、全ての他のボクセルに対して「0」が格納される。
視覚化のための更なる可能性は、図4c中の光線R14によって表わされる。この場合、所定の限界値よりも高いボクセルの体積値は光線に沿って総和される。総和演算は、所定の最大和に達すると中断される。これまで接触され横切られた全てのボクセルは、関連のある体積値が限界値と比較されるかどうかについて調べられる。この視覚化の可能性を、図4eの以前の方法と同様に、図4dに示す。光線によって接触され、総和演算に寄与する体積値を有する全てのボクセルは、視覚化に関連があることがわかる。視覚化についての以前の可能性と比較すると、本例では視覚化に関連するボクセルの数が多い。この視覚化についての可能性によって形成される画像は対象の面を示すだけでなく、X線画像の場合のように、面のすぐ後ろに配置される構造も示す。
図4c中の光線R12によって示される視覚化についての可能性では、視覚化に関連のあるボクセルは、光線に沿った他のボクセルの体積値と比較してちょうど最大の体積値を有するボクセルである。
ここで説明するレンダリング方法は、多くの数の公知のレンダリング方法の例として考えられるべきである。ここで示すべき更なるレンダリング方法は、視覚化のために、個々のボクセルの体積値が画像の画像平面上に「投げられ」、壁に当たった雪の玉のように塗りつけられる、いわゆる「スプラッティング(splatting)」である。壁に「投げられた」全ての体積値の合計は、画像を生じさせる。上述の方法のように、今一度、視覚化に関連のあるボクセル、及び、レンダリング法に用いられるボクセルも得られる。この種類のレンダリング法は、例えば、Wenli Cai及びGeorgios Sakas、「DRR Volume Rendering Using Splatting in Shear-warp Context」, Nuclear Science & Medical Imaging Including Nuclear Power Systems, 2000 Symposium, ISBN 0-7803-6503-8, pp. 19-12ffから公知である。この方法によれば、個々のボクセルは、レンダリング法を実行している間に体積値に対する非常に効率的なメモリアクセスを可能とするよう格納されうる。
他のレンダリング法によれば、体積画像は、架空の光線が各ボクセルにより画像平面の方向に反射される仮想光源によって照明される。更なるレンダリング法については、関連の文献を参照されたい。しかしながら、殆どのレンダリング法は、共通して、体積画像のボクセルの一部が視覚化に関連する。本発明によれば、視覚化に関連する部分が格納される。
体積画像の更なる処理のために、図2のステップ304において、視覚化されるべき体積画像の全てのボクセルが視覚化方法に従って選択されたかどうかが調べられる。そうでなければ、先行するステップが再び行われ、ステップ203における次のボクセルの選択から始まる。そうでなければ、完全な体積画像が視覚化されており、視覚化結果は画像メモリ39内に画像の形で存在し、この画像はモニタ34によって表示されうる。更に、視覚化に関連する各ボクセルに対して、バッファメモリ38中の体積値として「1」が格納され、その中に各関連しないボクセルに対して「0」が格納される。
動いていない対象の体積画像のシーケンスが視覚化されるべきであると想定すると、シーケンスの各体積画像中で、視覚化のために同じボクセルが関連することが予想される。これらのボクセルに対して、バッファメモリに「1」が格納され、ステップ302乃至304を有するループが最適な形で完了し、なぜならばステップ204において、レンダリング方法は、2次元画像を導出するのに実際に関連のあるボクセルのみに適用されるからである。しかしながら、動く対象を表わす体積画像のシーケンスの視覚化中、対象の動きに依存して、バッファメモリ38中の夫々の対応するボクセルがそのときに体積値「0」を有する、視覚化されるべき次の体積画像のボクセルは、視覚化に関連し、ステップ204において2次元画像を導出するのに使用されねばならないことが予想される。従って、ある種の予測を用いて、次の体積画像の視覚化の前に少なくとも追加的な画素の体積値を定義することが必要である。このために、ステップ207において、例えば「1」が格納されているボクセルの近傍に、所定の近傍ボクセルに対してバッファメモリ38内に「1」がやはり格納される。結果として、関連するボクセルを有する領域が膨張する。
このために、例えば、近傍の領域の形状及び寸法は、以前に視覚化された体積画像及び次の体積画像の捕捉の時点の間に、当該の対象又はその一部の予想される動きに依存して選択されうる。特に簡単な場合、対象の基本的な動き及び体積画像シーケンスの画像レートを知っているユーザは、対象全体に対する動きの最大範囲を特定する。かかる情報は、例えば、既に体積値「1」を有する各ボクセルの周りの所定の半径内の全てのボクセルの体積値が「1」に設定されるよう、ステップ207に組み込まれる。図2に示す超音波装置の場合、ユーザは、制御要素40を介してかかる半径を指定しうる。
膨張についてのより複雑な可能性は、ステップ207における動きモデルMの組み込みを含む。動きモデルMは、体積画像のシーケンスの捕捉中に対象によって実行される動きを一般的に示す。例えば、動きモデルは、体積画像B2乃至B5に示す対象についての関連のある体積画像の捕捉の時点の間の、対象の個々の部分の動きの方向及び速度を示す。ステップ207において、まず、最後に視覚化された体積画像からの、即ち、バッファメモリ38内に「1」が格納された各ボクセルに対して、対応する体積値によって表される対象の部分が決定される。動きモデルを用いて、続いて、視覚化されるべき次の体積画像中で対象の当該部分がどの方向に動いたかを決定する。次の体積画像中で対象の当該部分を表わす体積値を有する対応するボクセルについて、バッファメモリ38に「1」が格納される。概して、この可能性は、上述の可能性によって与えられるものよりもかなり小さい近傍領域を生じさせるが、変換のためにより洗練された算術ユニットを必要とする。この種類の膨張は、制御要素40を介してユーザによって選択されうる。
視覚化された体積画像中の対象の動きの状態に関して更なる情報が利用可能とされると、膨張に必要なデータは、動きモデルから特に簡単に導出されうる。図3に示す超音波装置による心臓の視覚化のために、評価ユニット35内のECGユニット41に接続されたECGセンサ33は、このために患者に取り付けられる。ECGユニットは、必要であれば、予想される動きに関する情報を導出するために画像処理ユニット37が用いる、即ち、例えばプログラムコード中に含まれうる動きモデルMから、現在の心臓位相を決定するためにECG信号を用いる。
ステップ207における膨張の実行の後、次の体積画像が視覚化されうる。このために、ステップ201乃至304が再び実行される。ステップ204において、光線R15に沿って図3cのレンダリング方法が実行されると想定される。更に、既に体積値「1」を有する各ボクセルの周りの所定の半径内の全てのボクセルの体積値が1に設定されている種類の膨張が行われる。以下、最後の視覚化に関連のあった単一のボクセルについて考える。膨張中、このボクセルの周りの球状領域中の更なるボクセルに対してバッファメモリ382中に「1」が格納されている。ここで視覚化されるべき体積画像では、視覚化に関連のあるボクセルは、対象の動きによる球状領域内のどこかに配置されている。架空の光線が、視覚化中に視覚化されるべき体積画像を通過すると、ステップ204における視覚化のためにバッファメモリ38中に体積値「1」を有するボクセルのみが用いられる。即ち、球状領域中に配置される架空の光線に沿ったボクセルのみが限界値と比較される。他のボクセルは無視され、従って、限界値に対する体積値の比較の必要数は減少され、体積画像の視覚化はかなり加速される。
図1及び図2に示す方法はまた、バッファメモリ38を用いずに実行されうる。その場合、例えば、体積画像メモリ36は、体積値のメモリ位置内の各ボクセルに対して追加的な2値メモリ位置が与えられるよう構成される。この追加的な2値メモリ位置は、バッファメモリ38の対応するメモリ位置と同じ機能を有する。体積画像が体積画像メモリ36に達すると、この追加的な2値メモリ位置の内容は変更されない。方法の実行中、体積画像メモリ36内の追加的なメモリ位置は、バッファメモリ38のメモリ位置の代わりに、ステップ302、304、205、206及び207中に充填されチェックされる。
図1及び図2に示す方法は、体積画像B2乃至B5のボクセル、並びに、ブロック内のボクセル値を処理することにより実行されうる。この変形例は、特に、用いられるレンダリング法が体積値のブロックごとの処理をサポートするときに使用される。このために、体積画像のボクセルはブロックへ細分化され、バッファメモリ38は、2値メモリ位置が各ボクセルに対してではなく、各ブロックに対して与えられるよう構成される。ブロックの値は、当該2値メモリ位置に格納されうる。ステップ302中、まず、ブロックが、視覚化に関連する少なくとも1つのボクセルを含むかどうかを判定する。含まない場合、このブロックの全てのボクセルはもはや使用されない。含む場合、ステップ205において、バッファメモリ中のブロックの値は「1」に設定され、そうでなければ、ステップ206において「0」に設定される。更に、ステップ204において、ブロックの全てのボクセルは2次元画像を導出するのに使用され、現在使用されているブロックが導出に実際に関連する少なくとも1つのボクセルを含むかどうか調べられる。体積画像が視覚化されると、上述の可能性に従った膨張のための続く段階207の実行中、値「1」を有するブロックの近傍に位置するブロックの値もまた「1」に設定される。次の体積画像の続く視覚化中、ステップ303乃至206において、バッファメモリ38内の値が「1」であるブロックからのボクセルのみが使用される。この場合、バッファメモリ38は、通常は少ない記憶空間を必要とすることがわかっている。例として、体積画像B2のボクセルは、デカルト座標に従って配置され、体積画像B2は、各空間方向に1024ボクセルの大きさを有するため、全部で10243個のボクセルがあることが想定される。これらのボクセルは、各空間方向に8つのボクセルの大きさを有するブロックへ細分化され、従って、ブロック当たり83個のボクセルへ細分化される。上述の実施例と比較すると、例えば、係数10243/83=1283だけのバッファメモリのメモリ場所の減少が得られる。
ブロック中の体積データの使用は、ステップ204が、体積データのブロック毎の使用に基づく公知のレンダリング法を用いるときに有利である。かかるブロック毎のレンダリング方法は、例えば、以下の文献、Choong Hwan Lee and Kyo Ho Park, "Fast Volume Rendering using Adaptive Block Subdivision", the 5th Pacific Conference on Computer Graphics and Applications ,1997, IEEE Computer Society, ISBN: 0-8186-8028-8, p.148ffに記載されている。
図5は、本発明の更なる実施例を示す。図示のコンピュータ断層撮影装置は、z方向に対して平行に延びる回転軸14回りに回転可能なガントリを有する。このために、ガントリ1は、望ましくは一定の、しかし調整可能な速度でモータ2によって駆動される。放射線源S、例えばX線管は、ガントリ1に取り付けられる。X線源は、放射線源Sから生成される放射線から円錐状放射線ビーム4を形成するコリメータ装置3を具備する。放射線ビーム4は、円筒状の検査領域13内に配置された患者(図示せず)を横切る。検査領域13を横切った後、X線ビーム4は、ガントリ1に取り付けられ、ガントリ1の形状に従って湾曲した2次元検出器ユニット16上に入射する。
参照符号αmaxによって示される放射線ビーム4の第1の開口角(開口角とは、x−y平面のエッジに位置するビーム4の光線が放射線源S及び回転軸14によって画成される平面に対して成す角である)は、検査されるべき対象が測定値の捕捉中に配置されねばならない検査領域の直径を決定する。参照符号βmaxによって示される放射線ビーム4の開口角(放射線源S及び回転軸によって画成される平面上のz方向の2つの外側光線が成す角)は、測定値の捕捉中に検査されるべき対象がその中に配置されねばならない検査ゾーン13の厚さを決定する。
検出器ユニット16によって捕捉される測定データは、放射線の円錐4によって覆われる検査ゾーン13の一部の中の吸収分布を再構成する再構成ユニット10へ与えられる。ガントリ1の各回転中、検査されるべき対象は放射線ビーム4によって完全に横切られ、各回転中に3次元画像データセットが発生されうるようにされる。再構成ユニット10はまた、図2に示す方法を実行する画像処理ユニット10aを有する。体積画像B2乃至B5は、以前に再構成された体積画像に対応する。ステップ20によって捕捉された画像I2及びI3は、モニタ11上に表示されうる。レンダリングされる体積の寸法に応じて、現在のコンピュータ断層撮影装置は、1秒当たり10枚の画像を有する画像シーケンスを形成することが可能である。
モニタ2、再構成ユニット10、放射線源S、及び検出器ユニット16から再構成ユニット10への測定データの転送は、適切な制御ユニット7によって制御される。検査されるべき対象がz方向上で放射線ビーム4の寸法よりも大きければ、検査ゾーンは、やはり制御ユニット7によって制御されるモータ5によって、回転軸14又はz軸の方向に平行にシフトされうる。モータ2及び5は、ガントリ1の角速度に対する検査ゾーン13の変位の速度の比率が一定であるよう制御されえ、それにより放射線源S及び検査ゾーン13は軌跡と称される螺旋経路に沿って互いに対して移動する。これに対して、放射線源S及び検出器ユニット16によって形成される走査ユニットが回転又は変位を行うかどうかは無関係であり、相対的な移動のみが重要である。体積画像の連続的な捕捉のために、検査されるべき対象はz軸に平行に循環的に前後に移動される。
図2に示すような超音波装置において、人間の心臓の検査のためにコンピュータ断層撮影が用いられるとき、CT装置が図示のように構成されるとき、即ち、心電図12及び患者に取り付けられたセンサを有するとき、心臓の動きの信号は測定データの捕捉と同時に捕捉される。この信号は、一方では、再構成に適した測定データの選択を行うよう再構成ユニット10に印加される。図3の超音波装置のように、ステップ207における膨張中、心電図12は、心臓の動きの状態を決定するのに用いられ、従って、動きモデルから適切なデータを選択するのに用いられる。
図2に示す方法はまた、動く対象の体積画像を発生することが可能な公知の磁気共鳴断層撮影と同様に用いられ得る。かかる装置は公知であり、図2の方法は、コンピュータ断層撮影と同様に再構成された体積画像に適用されうるため、この点についてはここでは詳述しない。
本願に記載の変形例及び実施例は、人間の心臓を検査する方法及び装置を記載する。しかしながら、他の動く対象の検査もまた可能である。例えば、本発明による方法はまた、血管造影検査にも使用されうる。更なる適用分野は、関節の動きの視覚化に関するものである。その場合、患者は、体積画像の捕捉中に関節をゆっくりと動かす。
本発明による方法を図式的に示す図である。 本発明による方法のフローチャートを示す図である。 本発明による方法を実行する超音波装置を示す図である。 本発明による方法を実行する超音波装置を示す図である。 1つの視覚化方法を示す図である。 他の視覚化方法を示す図である。 他の視覚化方法を示す図である。 他の視覚化方法を示す図である。 他の視覚化方法を示す図である。 本発明による方法が実行されうるコンピュータ断層撮影システムを示す図である。

Claims (11)

  1. 体積画像のシーケンスを視覚化する方法であって、
    a)前記体積画像の体積値からの視覚化に関連する第1の体積画像の体積値を決定する段階と、
    b)前記体積値が関連付けられるボクセルを格納する段階と、
    c)前記体積画像から2次元画像を導出する段階と、
    d)格納されたボクセル又は前記格納されたボクセルの近傍のボクセルに関連付けられる体積値からのその視覚化に関連する第2の体積画像の体積値を決定する段階と、
    e)前記体積値が関連付けられた前記ボクセルを格納する段階と、
    f)前記体積画像から2次元画像を導出する段階と、
    g)任意の更なる体積画像について前記段階d)乃至f)を繰り返す段階とを有する、方法。
  2. 前記近傍のボクセルは、対象の動きの動きモデルによって定義される、請求項1記載の方法。
  3. 格納されたボクセルの周りの周囲領域からの全てのボクセルは近傍ボクセルとして定義される、請求項1記載の方法。
  4. 前記周囲領域の形状及び/又は大きさは調整されうる、請求項1記載の方法。
  5. 周囲領域は、格納されたボクセルから所定の幾何学的な距離よりも離れていない全てのボクセルを含む、請求項3記載の方法。
  6. 体積画像のボクセルは格納用のブロックへと組み合わされ、ブロックは、ブロック中の少なくとも1つのボクセルが視覚化に関連するときに格納され、第2の体積画像の視覚化は、格納されたブロック中の、又は、かかる格納されたブロックの近傍のブロック中のボクセルに関連付けられたその体積値から導出される、請求項1記載の方法。
  7. 体積画像のシーケンスを視覚化する画像処理ユニットであって、
    a)体積画像用のデータ入力と、
    b)ボクセルを格納するメモリと、
    c)視覚化に関連する体積画像の体積値を決定するデータ処理ユニットと、
    d)視覚化方法を実行する視覚化ユニットと、
    e)請求項1記載の方法、即ち、
    e1)前記体積画像の体積値からの視覚化に関連する第1の体積画像の体積値を決定する段階と、
    e2)前記体積値が関連付けられるボクセルを格納する段階と、
    e3)前記体積画像から2次元画像を導出する段階と、
    e4)格納されたボクセル又は前記格納されたボクセルの近傍のボクセルに関連付けられる体積値からのその視覚化に関連する第2の体積画像の体積値を決定する段階と、
    e5)前記体積値が関連付けられた前記ボクセルを格納する段階と、
    e6)前記体積画像から2次元画像を導出する段階と、
    e7)任意の更なる体積画像について前記段階e4)乃至e6)を繰り返す段階とを有する方法が実行されるよう前記構成要素を制御する制御ユニットとを有する、画像処理ユニット。
  8. 前記体積画像の捕捉用の捕捉ユニットを有する、請求項7記載の装置。
  9. 超音波アプリケータの形の捕捉ユニットを有する、請求項8記載の超音波装置。
  10. X線源及びX線検出器ユニットの形の捕捉ユニットを有する、請求項8記載のCT装置。
  11. プログラマブルなデータ処理装置が請求項1記載の方法を実行することを可能とするコンピュータプログラム又はコンピュータプログラムプロダクト。
JP2004552996A 2002-11-21 2003-11-13 体積画像のシーケンスを視覚化する方法及び装置 Pending JP2006507051A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10254323 2002-11-21
PCT/IB2003/005130 WO2004047029A1 (en) 2002-11-21 2003-11-13 Method and apparatus for visualizing a sequence of volume images

Publications (2)

Publication Number Publication Date
JP2006507051A true JP2006507051A (ja) 2006-03-02
JP2006507051A5 JP2006507051A5 (ja) 2007-01-11

Family

ID=32318600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004552996A Pending JP2006507051A (ja) 2002-11-21 2003-11-13 体積画像のシーケンスを視覚化する方法及び装置

Country Status (7)

Country Link
US (1) US20060071932A1 (ja)
EP (1) EP1565891B1 (ja)
JP (1) JP2006507051A (ja)
AT (1) ATE384314T1 (ja)
AU (1) AU2003278516A1 (ja)
DE (1) DE60318737T2 (ja)
WO (1) WO2004047029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136679A (ja) * 2007-12-05 2009-06-25 Biosense Webster Inc 3−d画像および表面マッピングによる解剖学的モデル化
WO2014050596A1 (ja) * 2012-09-26 2014-04-03 日立アロカメディカル株式会社 超音波診断装置及び超音波二次元断層画像生成方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038812A1 (en) * 2004-08-03 2006-02-23 Warn David R System and method for controlling a three dimensional morphable model
US8884959B2 (en) * 2005-06-03 2014-11-11 Siemens Aktiengesellschaft Gradient free shading for volume rendering using shadow information
US20070236496A1 (en) * 2006-04-06 2007-10-11 Charles Keller Graphic arts image production process using computer tomography
JP5049614B2 (ja) * 2007-03-08 2012-10-17 株式会社東芝 医用画像表示装置
JP5794752B2 (ja) * 2007-07-24 2015-10-14 株式会社東芝 X線コンピュータ断層撮影装置及び画像処理装置
US10080544B2 (en) * 2008-09-15 2018-09-25 Teratech Corporation Ultrasound 3D imaging system
US20120179044A1 (en) * 2009-09-30 2012-07-12 Alice Chiang Ultrasound 3d imaging system
US9842424B2 (en) * 2014-02-10 2017-12-12 Pixar Volume rendering using adaptive buckets
US10474927B2 (en) * 2015-09-03 2019-11-12 Stc. Unm Accelerated precomputation of reduced deformable models
US11043042B2 (en) * 2016-05-16 2021-06-22 Hewlett-Packard Development Company, L.P. Generating a shape profile for a 3D object
US11398072B1 (en) * 2019-12-16 2022-07-26 Siemens Healthcare Gmbh Method of obtaining a set of values for a respective set of parameters for use in a physically based path tracing process and a method of rendering using a physically based path tracing process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285125A (ja) * 1991-07-03 1993-11-02 Philips Gloeilampenfab:Nv 影像間のシード輪郭の伝搬による多重位相、多重スライス心臓mri研究での輪郭抽出の方法及び装置
JPH09180001A (ja) * 1995-12-25 1997-07-11 Hitachi Ltd 3次元動態データの表示方法
JPH1031754A (ja) * 1996-07-17 1998-02-03 Ge Yokogawa Medical Syst Ltd 3次元イメージ作成方法,3次元イメージ作成装置および医用画像診断装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1258923A (en) * 1986-04-14 1989-08-29 Robert A. Drebin Methods and apparatus for imaging volume data
US5038302A (en) * 1988-07-26 1991-08-06 The Research Foundation Of State University Of New York Method of converting continuous three-dimensional geometrical representations into discrete three-dimensional voxel-based representations within a three-dimensional voxel-based system
MX9707128A (es) * 1995-03-22 1997-11-29 Idt Internat Digital Technolog Metodo y aparato para coordinar la determinacion de movimiento en cuadros multiples.
JP2000511366A (ja) * 1995-10-25 2000-08-29 サーノフ コーポレイション 4分割ツリーベースの可変ブロックサイズ動き推定装置および方法
US6331116B1 (en) * 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US6055330A (en) * 1996-10-09 2000-04-25 The Trustees Of Columbia University In The City Of New York Methods and apparatus for performing digital image and video segmentation and compression using 3-D depth information
US6091777A (en) * 1997-09-18 2000-07-18 Cubic Video Technologies, Inc. Continuously adaptive digital video compression system and method for a web streamer
DE19806728A1 (de) * 1998-02-18 1999-08-19 Philips Patentverwaltung Verfahren zur zweidimensionalen Abbildung von Strukturen für die medizinische Diagnostik
US6290654B1 (en) * 1998-10-08 2001-09-18 Sleep Solutions, Inc. Obstructive sleep apnea detection apparatus and method using pattern recognition
US6169817B1 (en) * 1998-11-04 2001-01-02 University Of Rochester System and method for 4D reconstruction and visualization
JP3442346B2 (ja) * 2000-06-01 2003-09-02 カナガワ アンド カンパニー株式会社 画像形成装置及びこれを用いた画像の構成方法
US7019745B2 (en) * 2001-03-28 2006-03-28 Hitachi Medical Corporation Three-dimensional image display device
US6450962B1 (en) * 2001-09-18 2002-09-17 Kretztechnik Ag Ultrasonic diagnostic methods and apparatus for generating images from multiple 2D slices
US20030132936A1 (en) * 2001-11-21 2003-07-17 Kevin Kreeger Display of two-dimensional and three-dimensional views during virtual examination
US6942618B2 (en) * 2003-06-19 2005-09-13 Siemens Medical Solutions U.S.A., Inc. Change detection for optimized medical imaging
US7787927B2 (en) * 2003-06-20 2010-08-31 Merge Cad Inc. System and method for adaptive medical image registration
US20050096543A1 (en) * 2003-11-03 2005-05-05 Jackson John I. Motion tracking for medical imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285125A (ja) * 1991-07-03 1993-11-02 Philips Gloeilampenfab:Nv 影像間のシード輪郭の伝搬による多重位相、多重スライス心臓mri研究での輪郭抽出の方法及び装置
JPH09180001A (ja) * 1995-12-25 1997-07-11 Hitachi Ltd 3次元動態データの表示方法
JPH1031754A (ja) * 1996-07-17 1998-02-03 Ge Yokogawa Medical Syst Ltd 3次元イメージ作成方法,3次元イメージ作成装置および医用画像診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136679A (ja) * 2007-12-05 2009-06-25 Biosense Webster Inc 3−d画像および表面マッピングによる解剖学的モデル化
WO2014050596A1 (ja) * 2012-09-26 2014-04-03 日立アロカメディカル株式会社 超音波診断装置及び超音波二次元断層画像生成方法
JPWO2014050596A1 (ja) * 2012-09-26 2016-08-22 株式会社日立製作所 超音波診断装置及び超音波二次元断層画像生成方法
US9786040B2 (en) 2012-09-26 2017-10-10 Hitachi, Ltd. Ultrasound diagnostic apparatus and ultrasound two-dimensional cross-section image generation method

Also Published As

Publication number Publication date
US20060071932A1 (en) 2006-04-06
EP1565891B1 (en) 2008-01-16
DE60318737D1 (de) 2008-03-06
WO2004047029A1 (en) 2004-06-03
EP1565891A1 (en) 2005-08-24
AU2003278516A1 (en) 2004-06-15
DE60318737T2 (de) 2009-01-15
ATE384314T1 (de) 2008-02-15

Similar Documents

Publication Publication Date Title
JP5221394B2 (ja) ラドンデータから画像関数を再構成する方法
Mohamed et al. A survey on 3D ultrasound reconstruction techniques
JP4644195B2 (ja) 球体上への冠状動脈のマッピング
JP5736427B2 (ja) Ct結像におけるオブジェクトを定位するデバイス及びその方法
US7825924B2 (en) Image processing method and computer readable medium for image processing
JP2009011827A (ja) 複数のビューのボリューム・レンダリングのための方法及びシステム
JP2007195970A (ja) 断層撮影システムおよび断層撮影表示の可視化方法
JP2009533086A (ja) トモシンセシス技術を用いた患者の位置決め
JPH02211587A (ja) 物体内部構造表面の2次元像を表示する装置と方法
JP2006507051A (ja) 体積画像のシーケンスを視覚化する方法及び装置
KR20150043204A (ko) 윤곽 데이터로 영상 데이터를 재구성
JPH10171976A (ja) 画像処理方法及び画像処理装置
JP2008259612A (ja) 投影画像生成装置およびそのプログラム
JP4342164B2 (ja) コンピュータ断層撮影装置
WO2005072613A1 (ja) 断層撮影装置および方法
JP2016152916A (ja) X線コンピュータ断層撮像装置及び医用画像処理装置
CA3057216A1 (en) Method, device and system for simulating shadow images
JP2005103263A (ja) 断層撮影能力のある画像形成検査装置の作動方法およびx線コンピュータ断層撮影装置
US20020015468A1 (en) Computed tomography method involving conical irradiation of an object
JP4350214B2 (ja) 超音波診断装置
JP2000105838A (ja) 画像表示方法及び画像処理装置
JP2003325511A (ja) 超音波画像処理装置
JP2008017906A (ja) 画像処理方法および画像処理プログラム
CN101006469A (zh) 用于产生体积图像的全景视图的系统和方法
KR101851221B1 (ko) 초음파 영상 장치 및 그 제어 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330