JP2006500849A - スケーラブルなビデオエンコード - Google Patents

スケーラブルなビデオエンコード Download PDF

Info

Publication number
JP2006500849A
JP2006500849A JP2004539279A JP2004539279A JP2006500849A JP 2006500849 A JP2006500849 A JP 2006500849A JP 2004539279 A JP2004539279 A JP 2004539279A JP 2004539279 A JP2004539279 A JP 2004539279A JP 2006500849 A JP2006500849 A JP 2006500849A
Authority
JP
Japan
Prior art keywords
data
video
frame
data subset
subset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004539279A
Other languages
English (en)
Inventor
イホル キレンコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2006500849A publication Critical patent/JP2006500849A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/34Scalability techniques involving progressive bit-plane based encoding of the enhancement layer, e.g. fine granular scalability [FGS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

ビデオエンコーダは、受信されたビデオフレームと、予測フレームとから、相対フレームを得るプロセッサ(103)に接続されたビデオフレーム受信機(101)を有する。前記プロセッサ(103)は、離散コサイン変換(DCT)プロセッサ(105)に接続されており、離散コサイン変換(DCT)プロセッサ(105)は、更に、前記相対フレームに関する量子化された空間周波数係数を生成する量子化器(107)に接続されている。量子化器(107)の出力は、低い周波数成分を有するデータサブセットと、周波数成分を持つ第2のデータサブセットとに分割するスプリッタに供給される。前記第1データサブセットは、逆量子化器(111)、逆DCTプロセッサ(113)、動き補償プロセッサ(115、117)及び予測フレームプロセッサ(104)を有するエンコードループ内で使用される。従って、前記エンコードループは、各フレームに関する減少されたデータセットのみを考慮することにより、単純化される。送信機(119)は、前記ビデオデータを、前記第1及び第2のデータサブセットの両方に関するプログレッシブにスケーラブルなストリームとして送信する。

Description

本発明は、ビデオエンコーダと、これらのためのビデオエンコードの方法とに関し、限定的にではないが、詳細には、圧縮されたビデオ信号を生成するビデオエンコードシステムに関する。
ビデオ信号は、デジタルビデオ信号として、ますます放送され、頒布されている。低いデータレートを保持するために、様々な形態のビデオ圧縮が、一般に使用されている。この結果、複数の異なるビデオ圧縮規格が、規定されている。広く使用されている圧縮規格は、MPEG−2(Moving Picture Expert Group)規格であり、例えば、地上及び衛星デジタルTV放送、DVD、並びにデジタルビデオレコーダにおいて使用されている。
MPEG−2ビデオ規格は、複数の異なるレベル及びプロファイルを有しており、異なるデータレートと、エンコーダ及びデコーダの複雑性とが、ビデオ品質に対してトレードオフされるのを可能にしている。
所与のビデオシステムにおいて、複数の異なるビデオ符号化方式又は変型が使用され得る。従って、1つの圧縮されたビデオストリームを、異なる機能、性能及び要件を有するデコーダに送信するために、スケーラブルな符号化されたビデオストリームが、しばしば、使用されている。このスケーラビリティによって、前記デコーダは、前記ビデオストリームの一部を取得し、ここからピクチャ全体をデコードすることができる。解凍された画像の品質レベルは、前記ビデオストリームが、どれだけ該デコーダによって使用されるか、及びスケーラブルな圧縮されたストリームが、どれだけ系統立っているかに依存する。
現行のビデオ圧縮規格において、空間、信号対雑音比(SNR)及び時間スケーラビリティは、層状構造によって実現されている。エンコードされたビデオ情報は、異なるレイヤに対応する2以上の分離したストリームに分割される。前記規格のスケーラブルな構造において、ベースレイヤ(base layer :BL)は、非層状エンコード方式における場合のようにハイブリッド予測エンコードループを使用して符号化される。この結果、デコードされた際に、ピクチャ全体を、低品質ではあるが、生成することができるデータストリームとなる。拡張レイヤ(enhancement layer :EL)は、前記ベースレイヤにリンクされており、該ベースレイヤのピクチャに対する残差信号用のデータを有する。これによって、前記ELは、拡張データストリームを供給し、前記ベースレイヤの情報と組み合わされた場合に、上質のビデオ品質レベルを与える。従って、付加的な前記拡張レイヤは、ビデオ信号の品質の改善を提供するように、デコーダによってオプション的に使用されるので、該ビデオ信号のスケーラビリティを提供している。
前記従来型のスケーラビリティは、複数の不利な点を有する。例えば、前記スケーラビリティは、該スケーラビリティのみが、前記拡張レイヤにおいて利用可能であるので、あまり柔軟性がない。より高いスケーラビリティを実現するには、更なる拡張レイヤが必要であり、符号化のオーバーヘッドが増加され、圧縮効率が低減される。
近年、スケーラブルなビデオエンコード用の他の方式が、出現し始めている。いくつかの方式は、単一のプログレッシブなデータストリームが供給される完全にプログレッシブな構造を提供している。このデータストリームは、部分的にデコードされることができ、これによって、変化する伝送条件、受信機の性能、及びアプリケーション要件に適合する機能が提供されている。しかしながら、動き予測ビデオ符号化方式における完全にプログレッシブなスケーラビリティの実施に関する重大な問題は、いわゆるドリフト作用に対する脆弱性である。これは、前記エンコードループにおける動き補償に使用されている参照フレームが、デコーダ側において利用可能でない場合に起こり、ビデオ品質が著しく低下される。この問題に対して提案されている解決策には、前記デコーダの複雑性が、高く増加される必要がある。
細粒スケーラビリティ(Fine Granular Scalability :FGS)エンコーダとして知られているビデオエンコーダが、M. van der Schaar, Y. Chen, H. Radhaの“Embedded DCT and Wavelet Methods for Fine Granular Scalable Video: Analysis and Comparison”(Image and Video Communications and Processing 2000, Proc. SPIE, vol.2974, p.643-653, Jan. 2000)において提案されている。前記FGSエンコーダは、前記プログレッシブ及びレイヤ状の取り組み方を組み合わせ、2以上のレイヤを有する前記エンコードされたビデオ信号を供給している。前記ベースレイヤは、基本ビデオデータを有し、該基本ビデオデータは、動き予測を使用する非スケーラブルコーダによって、効率的に圧縮される。前記拡張レイヤは、元のピクチャと、送信されたベースレイヤのピクチャとの間の差分に対応するデータを有する。前記拡張レイヤのデータは、プログレッシブなデータストリームとして送信される。これは、最初に全データ値のうちの最上位ビットが送信され、次いで全データ値のうちの2番目の上位ビットが送信され、…等、全データ値のうちの最下位ビットが送信されるまで、送信されるビットプレーン符号化によって達成されている。
しかしながら、複数の不利な点が、前記FGSエンコーダに関連しており、該FGSエンコーダは、著しい計算リソース及びメモリサイズを要する比較的に複雑性の高いデコーダ及びコーダであること、及びSNRスケーラビリティのみが提供されているので、付加的なレイヤが、例えば、空間スケーラビリティ用に必要であることを含む。
更に、デジタルビデオエンコーダに関する共通の問題は、低いデータレートを実現するには、複雑なデジタル信号処理が必要であることである。特に、動き補償に関連する推定、予測及び処理は、複雑であり、リソース必要性が高い。これには、高性能のデジタル信号処理の使用が必要であり、結果として、前記ビデオエンコーダのコスト及び電力消費が増加される。
従って、現存する符号化システムは、リソース要求が厳しく、複雑で、柔軟性のない傾向にあり、改良されたビデオエンコードシステムが有利である。
従って、本発明は、上述の不利な点の1つ以上を、単独で又は組み合わせて、改善又は緩和する改良されたビデオエンコードシステムを提供することを目指している。
従って、本発明の第1の見地によれば、ビデオフレームをエンコードするビデオエンコーダが設けられ、当該ビデオエンコーダは、ビデオフレームを受信する受信機;受信された前記ビデオフレーム及び予測フレームから、相対フレームを得るプロセッサ;前記相対フレームのデータを、第1データサブセットと第2データサブセットとに分割するスプリッタ;前記受信されたビデオフレームと、前記第1及び第2データサブセットのうちの第1データサブセットのみとに応じて、動き補償パラメータを生成する動き補償プロセッサ;前記動き補償パラメータと、前記第1データサブセットと、前記受信されたビデオフレームとに応じて、前記予測フレームを生成する、予測フレームプロセッサ;並びに前記動き補償パラメータ、前記第1データサブセット及び前記第2データサブセットを含むビデオ信号を送信する送信機;を有する。
従って、本発明の利点は、減少されたデータセットのみが、エンコードループにおいて使用されるので、エンコーダの著しく軽減された複雑性を含む。スケーラビリティは、前記第1及び第2データサブセットへの分離によって、提供されることができる。更に、動き補償が、ベースレイヤとして送信され得る前記第1データサブセットのみに基づくので、ドリフトエラーに対する改善された耐性が、達成されることができる。
本発明の第1フィーチャによれば、当該ビデオエンコーダは、前記分割の前に、前記相対フレームに対する周波数変換を実施する周波数変換プロセッサと、前記動き補償パラメータの生成の前に、前記第1データサブセットに対する逆周波数変換を実施する逆周波数変換プロセッサとを有する。このことは、前記周波数領域において処理することを可能にし、これにより前記第1及び第2データサブセットへの分割が、該周波数領域において実施されることを可能にする。好ましくは、前記周波数変換は、離散コサイン変換である。
本発明の他のフィーチャによれば、前記ビデオエンコーダは、前記分割の前に、前記相対フレームを量子化する量子化器と、前記動き補償パラメータの生成の前に、前記第1データサブセットに対する逆量子化を実施する逆量子化器とを、更に有する。前記量子化は、高周波数が、ゼロに切り捨てられ得る小さい係数を持つ傾向にあるので、前記データの大幅な圧縮を可能にする。
本発明の異なるフィーチャによれば、前記送信機は、前記動き補償パラメータ及び前記第1データサブセットをベースレイヤとして、且つ、前記第2データサブセットを少なくとも1つの拡張レイヤとして、送信することができる。このことは、エンコードされるビデオストリームの効率的なスケーラビリティを提供する。更に、動き補償が、前記ベースレイヤに限定されているので、ドリフト作用の影響は、著しく軽減される。
本発明の他のフィーチャによれば、前記第1データサブセットは、前記第2データサブセットのデータよりも比較的高品質の重要度のデータを有する。好ましくは、前記第1データサブセットは、前記第2データサブセットのデータよりも低い空間周波数に対応するデータを有する。従って、前記第1データサブセットは、エンコードされている前記ビデオフレームに関する不釣合いに高い情報コンテンツを有する。従って、前記処理が、最も重要なデータに関するものなので、減少されたデータセットに対する前記動き補償のベース化の影響は、軽減される。
本発明の他のフィーチャによれば、前記スプリッタは、閾値未満の空間周波数を有する前記相対フレームのデータを前記第1データサブセットに、該閾値以上の空間周波数を有する前記相対フレームのデータを前記第2データサブセットに分割することができる。これによって、非常に単純で容易ながらも、高パフォーマンスな分割の実施が提供される。
本発明の異なるフィーチャによれば、前記送信機は、前記第1及び第2データサブセットの少なくとも一方に関するプログレッシブでスケーラブルなデータストリームを生成し、送信することができる。好ましくは、前記送信機は、ビデオ品質の重要度が下がる順に、前記第1及び第2データサブセットの少なくとも一方のデータを送信することができ、特に、該送信機は、前記第1及び第2データサブセットの前記少なくとも一方の前記データを、関連する空間周波数が増加する順に送信することができる。従って、前記データサブセットの1以上は、スケーラブルなプログレッシブ態様で送信され、これによって、種々のデコーダが、改良されたエラー性能と共に使用されることを可能にする。
本発明の他のフィーチャによれば、前記送信機は、前記第1及び第2データサブセットの前記少なくとも一方の前記データを、1つ以上の前記相対フレームの、ほぼ同一の関連する空間周波数を有するデータ値の全てを有するサブバンドグループにアレンジし、関連する空間周波数が増加する順に、各サブバンドグループを、順次に送信することができる。従って、非常に効率的なプログレッシブでスケーラブルなデータストリームが生成され、デコーダが、前記受信されたデータのサブセットのみに基づいて、フレーム全体を生成するのを可能にする。より多くのデータが受信されるので、前記フレームの品質は、改善されることができる。更に、前記システムは、空間及び信号対雑音比(SNR)スケーラビリティの両方を、可能にすることができる。
本発明の、異なるフィーチャによれば、前記ビデオエンコーダは、ビデオトランスコーダであって、前記受信されたビデオフレームは、圧縮されたビデオフレームである。従って、前記ビデオエンコーダは、ビットレートの低減、及び/又は圧縮率の向上、及び/又は既に圧縮されているビデオ信号からのプログレッシブにスケーラブルなデータストリームを、提供することができる。
本発明の第2の見地によれば、当該方法は、前記ビデオフレームを受信するステップ;受信された前記ビデオフレームと予測フレームとから、相対フレームを得るステップ;前記相対フレームのデータを、第1データサブセット及び第2データサブセットに分割するステップ;前記受信されたビデオフレームと、前記第1及び第2データサブセットのうちの前記第1データサブセットのみとに応じて、動き補償パラメータを生成するステップ;前記動き補償パラメータと、前記第1データサブセットと、前記受信されたビデオフレームとに応じて、前記予測フレームを生成するステップ;並びに前記動き補償パラメータ、前記第1データサブセット及び前記第2データサブセットを含むビデオ信号を送信するステップ;を有する方法が提供される。
本発明のこれら及び他の見地及び利点は、以下に記載される実施例を参照して、明らかになり、説明されるであろう。
本発明の実施例は、添付図面を参照して、単なる例として、記載される。
本発明の好適実施例は、MPEG−2ビデオ圧縮方式を特に参照して、以下に記載されるが、本発明は、この用途に限定されず、非圧縮のビデオエンコード方式及びトランスコーディング方式を含む多くの他のビデオエンコード方式に、同様に適用されることが、明らかになるであろう。
図1は、本発明の好適実施例によるビデオエンコーダ100を示している。
ビデオエンコーダ100は、ビデオフレームを受信する受信機101を有する。前記好適実施例において、前記ビデオ受信機は、単に、ビデオソース(図示略)に適したインターフェースを提供する機能ブロックであって、エンコードされるべき該ビデオフレームを生じる。前記用途に依存して、前記ビデオソースは、例えば、ビデオカメラ、ビデオ記憶ユニット、ビデオ編集システム、又はビデオフレームを供給するその他の適切な手段であっても良い。
前記ビデオエンコーダ100は、受信された前記ビデオフレームと予測フレームとから、相対フレームを得る第1プロセッサ103を更に有する。第1プロセッサ103は、受信機101と、前記予測フレームを生成する予測フレームプロセッサ104とに接続されている。前記好適実施例において、第1プロセッサ103は、単に、減算ユニットを有し、該減算ユニットは、前記受信されたビデオフレームから、予測フレームを減算する。以下に記載されるように、前記予測フレームは、先行フレームの処理に基づいて生成される。従って、前記相対フレームは、実際に受信されたビデオフレームと、前記デコーダによって生成される前記予測フレームとの間の比較からの残差データに関連するデータを有する。
第1プロセッサ103の出力部は、周波数変換プロセッサ105に接続されており、該周波数変換プロセッサ105は、前記相対フレームのデータ値を、2次元空間周波数領域に変換する。前記好適実施例において、前記周波数変換は、離散コサイン変換(DCT)であって、この実施は、従来技術において良く知られている。周波数変換プロセッサ105の出力部は、前記好適実施例において、量子化器107に接続されている。量子化器107は、量子化プロファイルに従って、前記周波数変換の係数を量子化し、前記好適実施例において、前記係数の値を、均等な大きさの量子化ステップに、単純にマッピングする。ビデオ信号は、典型的には、高い空間周波数成分よりも、低い空間周波数成分を有するので、前記高い空間周波数に関する多くの係数は、比較的小さい。前記量子化は、典型的には、これらの値の多くがゼロに量子化されるように、設定される。このことは、ビデオ品質に対する影響を、比較的にほとんど持たないが、ゼロ係数は、非常に効率的に通信されることができるので、効率的な圧縮を提供する。
本発明は、周波数変換及び量子化を実施する機能を有していないエンコードシステムに、同様に適用可能であるが、効率的な圧縮、及びこれにより著しく低減されたデータレート伝送要件を提供するので、前記好適実施例は、前記見地を包含している。
量子化器107は、スプリッタ109に接続されており、該スプリッタ109は、前記相対フレームのデータを、第1データサブセットと第2データサブセットとに分割する。いくつかの実施例において、前記第2データサブセットは、更に、複数のサブセットに分割される。前記好適実施例において、前記分割は、前記ビデオ品質に対して比較的高い影響を有する量子化器107の出力データが、前記第1データサブセット内に含まれ、且つ、前記ビデオ品質に対して比較的低い影響を有する前記出力データが、前記第2データサブセット内に含まれるというものである。従って、前記第1データサブセットは、減少された量のデータに対応するが、不釣合いに高い前記ビデオフレームに関係する情報コンテンツを有する。
スプリッタ109は、逆量子化器111に接続されている。しかしながら、この接続は、前記相対フレーム全体ではなく、前記第1サブセットのデータのみを運ぶ。従って、以下の演算は、前記相対フレームのデータセット全体に対するよりもむしろ、減少されたサブセットに対して実施される必要があるのみである。逆量子化器111は、量子化器107において実施された前記量子化に対して、(ある程度)相補的な演算を実施する。これは、量子化器107によって実施された演算に相補的であるスケーリング又は重みづけ演算を実施する。従って、前記量子化が、例えば、前記データの2による割算を含んでいた場合、前記逆量子化は、該データを2倍するであろう。しかしながら、これは、元の量子化において損失された端数の値を加算しない。このようにして、前記逆量子化は、受信ビデオデコーダにおいて実施される演算を模倣し、従って、該逆量子化器の出力は、前記デコーダ内で生成されるであろうフレームに、(前記周波数領域において)対応している。
逆量子化器111は、前記第1データサブセットに対する逆周波数変換を実施する逆周波数変換プロセッサ113に接続されている。実施される前記逆変換は、周波数変換プロセッサ105によって実施されたものに対して相補的な演算であって、従って、前記好適実施例においては、逆DCT変換である。前記逆量子化と同様に、前記逆周波数変換は、前記ビデオデコーダ内で実施されるものに対応し、従って、前記逆周波数変換プロセッサ113からの出力データは、前記デコーダによって生成されるであろう相対フレームに対応している。
前記好適実施例において、逆周波数変換プロセッサ113は、結合器115に接続されており、該結合器115は、逆周波数変換プロセッサ113によって生成された前記相対フレームを、第1プロセッサ103によって使用された前記予測ピクチャに加算する。従って、結合器115の出力は、ビデオレコーダによって、前記予測フレームと、前記第1データサブセットとから生成されるであろうビデオフレームに対応している。
結合器115の出力部は、動き補償プロセッサ117に接続されている。動き補償プロセッサ117は、更に、受信機101に接続されており、ここから元の前記ビデオフレームを受信する。前記ビデオフレームと、前記第1データサブセットから生成された前記フレームとに基づいて、前記動き補償プロセッサ117は、動き補償パラメータを生成する。ビデオ信号用の動き補償のいかなる既知の方法も、本発明を損なうことなく使用されることができることは、本発明の意図内にある。特に、前記動き補償は、後続フレームのピクチャセグメントの比較による、動き検出を含むことができる。これは、動き補償パラメータを生成することができ、該動き補償パラメータは、特定のピクチャセグメントが、一のフレームから次のフレームにどのように移動されるかを指示する動きベクトルを有する。従って、特に、前記動き補償処理、及び動き補償パラメータは、MPEG−2ビデオ圧縮方式によって規定され、これに関連して知られている処理及びパラメータを含むことができる。
動き補償プロセッサ117は、予測フレームプロセッサ104に接続されている。予測フレームプロセッサ104は、前記動き補償パラメータと、前記受信されたビデオフレームとに応じて、前記予測フレームを生成する。前記好適実施例において、予測フレームプロセッサ104及び動き補償プロセッサ117は、単一の機能ユニットとして実施され、前記予測フレームの生成は、結合器115の出力部において生成される前記データを考慮している。
従って、前記好適実施例において、前記動き補償と、及び前記予測フレームの生成とは、前記受信されたフレームと、1以上のフレームの前記第1データサブセットとに基づく。しかしながら、前記第2サブセットの前記データは、これらの処理内に含まれず、従って、前記処理は、減少されたデータセットに対する演算のみを必要とするので、前記複雑性及びリソース必要性は、著しく軽減される。
前記ビデオエンコーダは、前記動き補償パラメータ、前記第1データサブセット及び前記第2データサブセットを含むビデオ信号を送信する送信機119を、更に有する。単純な実施例において、このデータは、前記ビデオ信号が通信されるべきである通信チャネルに適した送信機によって、単一のデータストリームとして、単に送信される。しかしながら、前記ビデオエンコーダは、前記動き補償パラメータと前記第1データサブセットとを、第1データストリームとして、且つ、前記第2データサブセットを、少なくとも第2の分離したデータストリームとして、送信するのが好ましい。前記好適実施例において、送信機119は、前記動き補償パラメータと前記第1データサブセットとを、ベースレイヤとして、且つ、前記第2データサブセットを、少なくとも1つの拡張レイヤとして送信することができる。
前記好適実施例における第1データサブセットは、前記第2データサブセットよりも、前記ビデオ品質に対する重要度が高いデータを有するので、デコーダは、この単純な実施例において、前記動き補償パラメータ、及び前記第1データサブセットの前記データのみに基づいて、フレーム全体を得ることができる。得られるピクチャは、低下された品質ではあるが、デコーダが前記第2データサブセットの前記データをオプション的に処理することにより、更に拡張されることができる。従来技術に反して、種々の前記レイヤは、この実施例において、最終的にエンコードされたビデオ信号を分割又は分離することにより実現されるのではなく、前記ビデオエンコードの不可欠な部分として実施される。特に、ビデオエンコードループは、前記ベースレイヤに関係する前記データのみを使用して、実施されるので、著しく軽減化された複雑性を提供する。
前記ループの動き補償は、更に、前記第1データサブセットのデータのみに基づいているので、ビデオエンコーダ及びビデオデコーダの両方における前記動き補償処理は、前記ベースレイヤによって影響を受けるのみである。従って、拡張レイヤの情報(第2データサブセット)のいなかる損失も、ドリフトエラーの出現には至らない。前記ベースレイヤ(第1データサブセット)は、本質的に低い周波数の情報を有するので、復元される画像は、ぼやけているかもしれないが、動き推定‐補償を複雑にし得る高周波数雑音もないであろう。従って、低周波数画像(第1データサブセット)に対する動き推定‐補償処理は、前記エンコード及びデコード側の両方における元のフレームに対するものよりも、単純である。
前記相対フレームの前記データを、第1及び第2データサブセットに分割するのに、いかなる適切な基準又はアルゴリズム(前記好適実施例においては、前記DCT及び量子化が後続する)も、本発明を損なうことなく使用されることができる。好ましくは、前記第1データサブセットは、前記第2データサブセットのデータよりも比較的高い品質の重要度のデータを有し、特に、前記好適実施例において、前記第1データサブセットは、前記第2データサブセットのデータよりも、低い空間周波数に対応するデータを有する。前記好適実施例において、このことは、所与の閾値未満の空間周波数を有する前記相対フレームの前記データを前記第1データサブセットに、該閾値以上の空間周波数を有する該相対フレームのデータを前記第2データサブセットに分割する手段を有する前記スプリッタによって実施される。
図2は、64の係数(例えば、MPEG−2において使用されている規格である)を有する量子化されたDCTブロック201を、2つのデータサブセットに分割する前記好適実施例の前記処理を示している。与えられた前記例において、分割に関する閾値203は、太線によって示されている2次元空間周波数レベルで、与えられている。分割の前記レベルの上方(即ち、低い空間周波数に対応する左上の角の側)に位置する係数の全ては、前記第1データサブセット内に含まれる。前記分割のレベルの下方(即ち、右下の角の側)に位置する残りの高周波数DCT係数の全ては、前記第2データサブセット内に含まれる。前記分割のレベルは、前記第1及び/又は第2データサブセットのデータストリーム内で、符号化された前記係数と共に、前記ビデオデコーダに送信される。このことは、前記データを分割する非常に単純で柔軟な方法を提供し、前記分割のレベルが、動的に変更されることを可能にする。この実施例によれば、前記分割のレベルは、各DCT係数ブロックに対して、個別に設定されることもでき、DCT係数の適応的量子化の前記処理に依存し得る。前記分割のレベルの制御は、好ましくは、データレート制御の仕組みの一部として実施される。
従って、前記好適実施例において、前記分割は、対角の分割レベルと、ジグザグ状のスキャンニング構造とに基づいているが、例えば、長方形帯域(rectangular-shape zonal selection)のような低周波数領域を選択する他の方法を含む多くの他の分割アルゴリズムも可能であることは、明らかになるであろう。
例えば、ビットプレーンスケーラビリティによってSNRスケーラビリティのみが提供されている前記FGSビデオエンコーダとは対照的に、前記好適実施例において実施される前記周波数係数の分割は、空間解像度スケーラブルストリームの生成を可能にする。特に、主に低い周波数の情報を有する前記ベースレイヤは、低い空間解像度で、フレームをデコードするのに使用されることができる。
更に、前記好適実施例において、送信機119は、前記第1及び第2データサブセットの少なくとも一方、好ましくは両方それぞれに関する、個々にスケーラブルなデータストリームを生成する機能を有する。好ましくは、これは、前記第1及び第2データサブセットの少なくとも一方のデータを送信する機能を有する前記送信機119によって、ビデオ品質の重要度が減少する順であって、特に、関連する空間周波数が増加する順に、行われる。
特に前記好適実施例において、送信機119は、前記第1及び/又は第2データサブセットを、1つ以上の前記相対フレームの、ほぼ同一の関連する空間周波数を有するデータ値の全てを有するサブバンドグループにアレンジすることができる。送信機119は、関連する空間周波数が増加する順に、各サブバンドグループを、順次に送信する機能を、更に有する。
前記好適実施例における送信機119の実施は、図1に示されている。スプリッタ109は、第1サブバンドプロセッサ121と、第2サブバンドプロセッサ123とに接続されている。第1サブバンドプロセッサ121は、前記第1データサブセットからのデータを供給され、第2サブバンドプロセッサ123は、前記第2データサブセットからのデータを供給される。前記サブバンドプロセッサ121、123は、複数のDCTブロックからの前記係数を、フレーム全体のDCTブロックからの係数のグループであって、同一又は類似の空間周波数を有するグループに再グループ化する。好ましくは、フレームのDCTブロックの全ては、各グループが、対応する空間周波数を全てのDCT係数が有するように、再グループ化される。
図3は、本発明の好適実施例によるDCT係数の再グループ化の例を示している。この例では、第1フレーム301は、それぞれが、当該図内の1、2、3、4で示されている4つのサブバンドに対応する4つの係数を持つ16個のDCTブロック303を有する。前記係数は、サブバンド1に関する全係数が一緒にグループ化されるように、それぞれの前記サブバンドプロセッサ内に再配列される。従って、前記具体例では、サブバンドプロセッサ121、123は、それぞれが16個の係数を有する4つのグループ305を生成する。従って、サブバンドプロセッサ121、123は、各グループを1つのDCT周波数又はサブバンドに対応させて、前記DCT内の係数の数に対応する複数のグループを生成する。各グループ内の前記係数の数は、所与のフレーム内のDCTブロックの数と同一である。
前記サブバンドプロセッサ121、123のそれぞれは、スキャンニングプロセッサ125、127に接続されており、該スキャンニングプロセッサ125、127は、再配列された前記係数を、順次のデータストリームを生成するのに適切な順序で読み出す。より低い空間周波数が、より多くの情報を含み、得られるビデオ品質に対して高い重要度を有する傾向にあるので、前記再配列された係数は、空間周波数が増加する順に読み出されるのが好ましい。従って、図2の例において、サブバンドグループ1が最初に読み出され、次いでサブバンドグループ3、次いでサブバンドグループ2、最後にサブバンドグループ4が読み出される。従って、前記好適実施例においては、ジグザグスキャンが使用されているが、他の実施例において、他のスキャン順序が適用されても良い。
スキャンニングプロセッサ125、127のそれぞれは、コーダ129、131に接続され、該コーダ129、131は、適切な通信チャネルにおける伝送用のデータの適切な符号化を実施する。好ましくは、コーダ129、131は、ランレングス符号化(run length coding)及び/又は可変長符号化(variable length coding)を有する。従来技術において知られているように、これらの符号化方式は、無損失データ圧縮を提供し、該無損失データ圧縮は、同一値の長い並びを有するデータストリームに対して、特に効率的である。特に、前記ランレングス符号化、及び可変長符号化方式は、ゼロ値の長い並びを持つデータストリームに対して、非常に効率的であるので、これらのエンコード方式は、量子化された係数を圧縮するのに、極めて効率的である。
従って、前記好適実施例において、前記DCTブロックの低い周波数係数は、サブバンドグループに再構成され、適切にスキャンされて、ベースレイヤとして機能し得るデータストリームを形成する。各ブロックの残りの高周波数係数は、高周波数サブバンドグループに再構成され、適切にスキャンされて、拡張レイヤとして機能し得る第2データストリームを形成する。このようにして、プログレッシブにスケーラブルな又は埋め込まれたストリームが、前記ベースレイヤ及び前記拡張レイヤの両方に対して作成される。特に、ピクチャ全体に関する最も重要なデータが、最初に送信されるので、前記ビデオフレーム全体のピクチャ表示が、前記ベースレイヤのデータの最初のサブセットのみから再生(復元)されることができる。より多くのデータが受信されるので、前記ビデオ品質は、改善されることができる。
更に、上述のシステムは、空間及びSNRスケーラビリティの両方を可能にし、これは、プログレッシブな忠実度及び/又はプログレッシブ解像度の両方を提供することができる。第1の場合においては、部分的に受信されたストリームが、フルサイズの画像をデコードするのに使用されることができる。前記ベースレイヤは、低周波数コンテンツのみを有する前記フルサイズのぼやけた画像を供給し、これは、前記拡張されたレイヤのストリームからの係数によって精細化される。プログレッシブ解像度の場合、前記ベースレイヤの低周波数係数は、低い空間解像度で画像を構成するのに使用される。前記拡張レイヤの情報は、解像度を改善して画像を得るのに使用される。
更に、動き予測及び補償は、前記ベースレイヤ内で利用されるので、デコード中の基準としてベースレイヤの情報の利用は、生成されるドリフト作用を取り除く又は軽減する。前記ベースレイヤの情報の部分のみがデコーダによって受信される場合も、生成されるドリフト作用の結果は、画像全体の(低周波数サブバンドからの)最も重要な係数が最初に送信される事によって、軽減される。前記ドリフトエラーの程度は、前記ベースレイヤの受信されたサブバンドグループの数に、プログレッシブに(漸次的に)依存するであろう。
更に、フレーム全体の全ブロックからのDCT係数の、同様の空間周波数のサブバンドへの再グループ化は、連続的に送信される係数値の間の相関性を高めるであろう。この高くされた相関性は、前記可変長符号化によって使用されることができ、より高度な無損失圧縮を提供するので、同一のビデオ品質に対して、より低いデータレートを実現する。
いくつかの実施例において、前記送信機は、ビットプレーンスキャンニングを、付加的に又は代替的に、使用する。例えば、前記第1サブバンドグループの全係数のうちの最上位ビット全てが最初に送信され、次いで、該第1サブバンドグループの全係数のうちの、2番目の上位ビット全てが送信され、…等、でも良い。前記第1サブバンドグループの前記係数のビットの全て又はほとんどが通信されたときに、前記第2サブバンドグループの全係数のうちの最上位ビットが通信される等でも良い。
いくつかの実施例においては、受信されたビデオフレーム自体が、圧縮されたビデオフレームである。従って、エンコーダは、いくつかの実施例において、特に、トランスコーダである。好ましくは、これら実施例のいくつかにおける前記エンコーダは、受信されたビデオ信号と、生成されたビデオ信号との間のデータレート、又は非スケーラブルからスケーラブルに圧縮されたストリームへトランスコードに変化を与える。特に、ビデオエンコーダは、受信された圧縮されたビデオフレームをピクセル領域にデコードするのではなく、周波数領域において演算することができる。従って、前記ビデオエンコーダは、この場合、周波数変換、又は該周波数変換の間の関数関係を含まないかもしれず、他の処理ユニットが変更されるかもしれない。
MPEG−2方式の前記好適実施例において、イントラ(I)フレーム、予測(P)フレーム、及び双方向(B)フレームを含む複数の異なる種類のフレームが、送信されることもできる。この実施例において、前記相対フレームは、Pフレームの場合には、前記予測フレームを、前記受信されたビデオフレームから減算し、これによって残差フレームを作成することにより、決定される。Bフレームの場合には、2つの予測フレームが、使用されることができる、即ち前記予測フレームは、2つのフレームを含む、又は2つのフレームの合成であることができる。従って、前記相対フレームは、少なくとも1つ、できればそれ以上のフレームに関する情報を有する残差フレームである。前記Iフレームの場合には、前記相対フレームは、前記受信されたフレームに等しく、予測フレームの減算は、実施されない。言いかえれば、Iフレームの場合、前記相対フレームは、ブランクの(即ち、ヌルデータを有する)前記予測フレームに対応する空の予測フレームに関する。従って、前記好適実施例において、前記相対フレームは、例えば、MPEG−2のIフレーム、Pフレーム又はBフレームであることができる。
本発明は、全てのフレーム、又は前記フレームのサブセットに適用されることができる。本発明は、構成された態様又は他のいかなる適切な仕方によって、フレームに、任意に適用されることもできる。特に、前記MPEG−2ビデオエンコード方式において、イントラ(I)フレーム、予測(P)フレーム、及び双方向(B)フレームを含む複数の異なる種類のフレームが、送信されることもできる。前記相対フレームを2つ以上のサブセットに分割することは、これらのフレームの全て、又は前記フレームの種類のうちの1つ若しくは2つのみに対して実施されることができ、又は異なる前記フレームの種類のフレームのサブセットのみに適用されることもできる。
例えば、従来のビデオエンコードは、データサブセットへの前記分割を前記Iフレームの全て又はいくつかに適用するだけで、全てのPフレーム及び/又はBフレームを供給すすることができる。
本発明は、ハードウェア、ソフトウェア、ファームウェア又はこれらの何らかの組み合わせを含む何らかの適切な形態において、実施されることができる。しかしながら、本発明は、1つ以上のデータプロセッサ及び/又はデジタル信号プロセッサ上で走るコンピュータソフトウェアとして実施されるのが好ましい。本発明の実施例のエレメント及び構成要素は、何らかの適切な仕方で、物理的に、機能的に、及び論理的に実施され
てもよい。確かに、上述の機能は、単一のユニット、複数のユニット又は他の機能ユニットの一部として、実施されてもよい。このように、本発明は、単一のユニットで実施されることができ、又は種々のユニット及びプロセッサの間に物理的に及び機能的に分散されることもできる。
本発明は、前記好適実施例と共に記載されているが、本明細書に記載された特定の形態に限定されるものではない。というよりむしろ、本発明の範囲は、添付請求項によってのみ限定される。
本発明の実施例によるビデオエンコーダを示している。 本発明の実施例によるDCT係数ブロックの分割の例を示している。 本発明の実施例によるDCT係数の再グループ化の例を示している。

Claims (14)

  1. ビデオフレームをエンコードするビデオエンコーダであって、
    ― 前記ビデオオフレームを受信する受信機、
    ― 受信された前記ビデオフレームと予測フレームとから、相対フレームを得るプロセッサ;
    ― 前記相対フレームのデータを、第1データサブセット及び第2データサブセットに分割するスプリッタ;
    ― 前記受信されたビデオフレームと、前記第1及び第2データサブセットのうちの前記第1データサブセットのみとに応じて、動き補償パラメータを生成する動き補償プロセッサ;
    ― 前記予測フレームを、前記動き補償パラメータと、前記第1データサブセットと、前記受信されたビデオフレームとに応じて生成する、予測フレームプロセッサ;及び
    ― 前記動き補償パラメータと、前記第1データサブセットと、前記第2データサブセットとを含むビデオ信号を送信する送信機;
    を有するビデオエンコーダ。
  2. 前記分割の前に、前記相対フレームに対する周波数変換を実施する周波数変換プロセッサと、前記動き補償パラメータの生成の前に、前記第1データサブセットに対する逆周波数変換を実施する逆周波数変換プロセッサとを更に有する、請求項1に記載のビデオエンコーダ。
  3. 前記分割の前に、前記相対フレームを量子化する量子化器と、前記動き補償パラメータの生成の前に、前記第1データサブセットに対する逆量子化を実施する逆量子化器とを更に有する、請求項1に記載のビデオエンコーダ。
  4. 前記送信機が、前記動き補償パラメータ及び前記第1データサブセットをベースレイヤとして、且つ、前記第2データサブセットを少なくとも1つの拡張レイヤとして、送信することができる、請求項1に記載のビデオエンコーダ。
  5. 前記第1データサブセットが、前記第2データサブセットのデータよりも、比較的に高い品質の重要度のデータを有する、請求項1に記載のビデオエンコーダ。
  6. 前記第1データサブセットが、前記第2データサブセットのデータよりも、低い空間周波数に対応するデータを有する、請求項5に記載のビデオエンコーダ。
  7. 前記スプリッタが、閾値未満の空間周波数を有する前記相対フレームのデータを前記第1データサブセットに、前記閾値以上の空間周波数を有する前記相対フレームのデータを前記第2データサブセットに、分割することができる、請求項6に記載のビデオエンコーダ。
  8. 前記送信機が、前記第1及び第2データサブセットのうちの少なくとも一方に関するプログレッシブにスケーラブルなデータストリームを、生成し、送信することができる、請求項1に記載のビデオエンコーダ。
  9. 前記送信機が、前記第1及び第2データサブセットのうちの少なくとも一方のデータを、ビデオの品質の重要度が下がる順に、送信することができる、請求項1に記載のビデオエンコーダ。
  10. 前記送信機が、関連する空間周波数が増加する順に、前記第1及び第2データサブセットのうちの前記少なくとも一方のデータを送信することができる、請求項9に記載のビデオエンコーダ。
  11. 前記送信機が、前記第1及び第2データサブセットのうちの前記少なくとも一方のデータを、ほぼ同一の関連する空間周波数を持つ少なくとも一方の前記相対フレームのデータ値の全てを有するサブバンドグループにアレンジし、関連する空間周波数が増加する順に、各サブバンドグループを、順次に送信する、請求項10に記載のビデオエンコーダ。
  12. 前記ビデオエンコーダが、ビデオトランスコーダであって、前記受信されたビデオフレームが、圧縮されたビデオフレームである、請求項1に記載のビデオエンコーダ。
  13. ビデオフレームをビデオエンコードする方法であって、
    ― 前記ビデオフレームを受信するステップ;
    ― 受信された前記ビデオフレームと予測フレームとから、相対フレームを得るステップ;
    ― 前記相対フレームのデータを、第1データサブセット及び第2データサブセットに分割するステップ;
    ― 前記受信されたビデオフレームと、前記第1及び第2データサブセットのうちの前記第1データサブセットのみとに応じて、動き補償パラメータを生成するステップ;
    ― 前記動き補償パラメータと、前記第1データサブセットと、前記受信されたビデオフレームとに応じて、前記予測フレームを生成するステップ;並びに
    ― 前記動き補償パラメータ、前記第1データサブセット及び前記第2データサブセットを含むビデオ信号を送信するステップ;
    を有する、ビデオフレームをビデオエンコードする方法。
  14. 請求項13に記載の方法の実行を可能にする、コンピュータプログラム。
JP2004539279A 2002-09-27 2003-08-18 スケーラブルなビデオエンコード Pending JP2006500849A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02079064 2002-09-27
PCT/IB2003/003673 WO2004030368A1 (en) 2002-09-27 2003-08-18 Scalable video encoding

Publications (1)

Publication Number Publication Date
JP2006500849A true JP2006500849A (ja) 2006-01-05

Family

ID=32039179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004539279A Pending JP2006500849A (ja) 2002-09-27 2003-08-18 スケーラブルなビデオエンコード

Country Status (7)

Country Link
US (1) US20060008002A1 (ja)
EP (1) EP1547392A1 (ja)
JP (1) JP2006500849A (ja)
KR (1) KR20050061483A (ja)
CN (1) CN1685731A (ja)
AU (1) AU2003253190A1 (ja)
WO (1) WO2004030368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517343A (ja) * 2007-01-18 2010-05-20 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 品質スケーラブル・ビデオ・データ・ストリーム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201629A1 (en) * 2004-03-09 2005-09-15 Nokia Corporation Method and system for scalable binarization of video data
KR100703746B1 (ko) * 2005-01-21 2007-04-05 삼성전자주식회사 비동기 프레임을 효율적으로 예측하는 비디오 코딩 방법 및장치
US20060233255A1 (en) * 2005-04-13 2006-10-19 Nokia Corporation Fine granularity scalability (FGS) coding efficiency enhancements
KR20070096751A (ko) * 2006-03-24 2007-10-02 엘지전자 주식회사 영상 데이터를 코딩/디코딩하는 방법 및 장치
KR100891662B1 (ko) 2005-10-05 2009-04-02 엘지전자 주식회사 비디오 신호 디코딩 및 인코딩 방법
KR20070038396A (ko) 2005-10-05 2007-04-10 엘지전자 주식회사 영상 신호의 인코딩 및 디코딩 방법
US8401082B2 (en) * 2006-03-27 2013-03-19 Qualcomm Incorporated Methods and systems for refinement coefficient coding in video compression
AU2007309044B2 (en) * 2006-10-23 2011-04-28 Vidyo, Inc. System and method for scalable video coding using telescopic mode flags
EP1944978A1 (en) * 2007-01-12 2008-07-16 Koninklijke Philips Electronics N.V. Method and system for encoding a video signal. encoded video signal, method and system for decoding a video signal
CN101272587B (zh) * 2007-03-19 2011-03-09 展讯通信(上海)有限公司 一种视频渐进接收方法及应用其的视频彩铃接收方法
EP2086237B1 (en) * 2008-02-04 2012-06-27 Alcatel Lucent Method and device for reordering and multiplexing multimedia packets from multimedia streams pertaining to interrelated sessions
US9762912B2 (en) * 2015-01-16 2017-09-12 Microsoft Technology Licensing, Llc Gradual updating using transform coefficients for encoding and decoding
US10938503B2 (en) * 2017-12-22 2021-03-02 Advanced Micro Devices, Inc. Video codec data recovery techniques for lossy wireless links
CN113473139A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种图像处理方法和图像处理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785330B1 (en) * 1999-08-19 2004-08-31 Ghildra Holdings, Inc. Flexible video encoding/decoding method
US6614936B1 (en) * 1999-12-03 2003-09-02 Microsoft Corporation System and method for robust video coding using progressive fine-granularity scalable (PFGS) coding
JP3496613B2 (ja) * 2000-02-10 2004-02-16 日本電気株式会社 デジタルコンテンツのコピー制御方法及び装置
US7068717B2 (en) * 2000-07-12 2006-06-27 Koninklijke Philips Electronics N.V. Method and apparatus for dynamic allocation of scalable selective enhanced fine granular encoded images
US6940905B2 (en) * 2000-09-22 2005-09-06 Koninklijke Philips Electronics N.V. Double-loop motion-compensation fine granular scalability
US20020126759A1 (en) * 2001-01-10 2002-09-12 Wen-Hsiao Peng Method and apparatus for providing prediction mode fine granularity scalability
US20020118743A1 (en) * 2001-02-28 2002-08-29 Hong Jiang Method, apparatus and system for multiple-layer scalable video coding
US7062096B2 (en) * 2002-07-29 2006-06-13 Matsushita Electric Industrial Co., Ltd. Apparatus and method for performing bitplane coding with reordering in a fine granularity scalability coding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517343A (ja) * 2007-01-18 2010-05-20 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 品質スケーラブル・ビデオ・データ・ストリーム
US9113167B2 (en) 2007-01-18 2015-08-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Coding a video signal based on a transform coefficient for each scan position determined by summing contribution values across quality layers

Also Published As

Publication number Publication date
AU2003253190A1 (en) 2004-04-19
CN1685731A (zh) 2005-10-19
US20060008002A1 (en) 2006-01-12
WO2004030368A1 (en) 2004-04-08
EP1547392A1 (en) 2005-06-29
KR20050061483A (ko) 2005-06-22

Similar Documents

Publication Publication Date Title
US8031776B2 (en) Method and apparatus for predecoding and decoding bitstream including base layer
US20220159311A1 (en) Temporal signalling for video coding technology
KR100679011B1 (ko) 기초 계층을 이용하는 스케일러블 비디오 코딩 방법 및 장치
JP4922391B2 (ja) 多階層基盤のビデオエンコーディング方法および装置
JP4891234B2 (ja) グリッド動き推定/補償を用いたスケーラブルビデオ符号化
US8406294B2 (en) Method of assigning priority for controlling bit rate of bitstream, method of controlling bit rate of bitstream, video decoding method, and apparatus using the same
US20060120450A1 (en) Method and apparatus for multi-layered video encoding and decoding
AU2006201490B2 (en) Method and apparatus for adaptively selecting context model for entropy coding
US20060104354A1 (en) Multi-layered intra-prediction method and video coding method and apparatus using the same
US20060209961A1 (en) Video encoding/decoding method and apparatus using motion prediction between temporal levels
US20060233254A1 (en) Method and apparatus for adaptively selecting context model for entropy coding
JP4410245B2 (ja) ビデオをトランスコーディングする方法
KR20010080644A (ko) 기저층 양자화 데이터를 이용하여 향상층 데이터를 엔코딩및 디코딩하는 시스템 및 방법
KR20040091686A (ko) 더 높은 질의 참조 프레임을 사용하는 fgst 코딩 방법
US8340181B2 (en) Video coding and decoding methods with hierarchical temporal filtering structure, and apparatus for the same
JP2006500849A (ja) スケーラブルなビデオエンコード
US20070121719A1 (en) System and method for combining advanced data partitioning and fine granularity scalability for efficient spatiotemporal-snr scalability video coding and streaming
EP1618742A1 (en) System and method for rate-distortion optimized data partitioning for video coding using parametric rate-distortion model
JP2007522708A (ja) Roiを支援する映像コーディング方法及び装置
EP1817911A1 (en) Method and apparatus for multi-layered video encoding and decoding
AU2008201768A1 (en) Method and apparatus for adaptively selecting context model for entropy coding
WO2006098586A1 (en) Video encoding/decoding method and apparatus using motion prediction between temporal levels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126