JP2006352184A - Signal delay transmission circuit - Google Patents

Signal delay transmission circuit Download PDF

Info

Publication number
JP2006352184A
JP2006352184A JP2005171766A JP2005171766A JP2006352184A JP 2006352184 A JP2006352184 A JP 2006352184A JP 2005171766 A JP2005171766 A JP 2005171766A JP 2005171766 A JP2005171766 A JP 2005171766A JP 2006352184 A JP2006352184 A JP 2006352184A
Authority
JP
Japan
Prior art keywords
signal
delay
transmission element
transmission
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005171766A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yasuda
安田  信行
Hiroshi Yasuda
博 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Femuto Design Kk
Original Assignee
Femuto Design Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Femuto Design Kk filed Critical Femuto Design Kk
Priority to JP2005171766A priority Critical patent/JP2006352184A/en
Publication of JP2006352184A publication Critical patent/JP2006352184A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a delay signal sequence of a time interval shorter than the shortest delay transmission time of a signal transmission element or a delay time variable transmission element, and solve a disadvantage of the obtained delay signal sequence. <P>SOLUTION: A plurality of signal transmission elements having a different delay time and a plurality of delay time variable transmission elements having a different delay time are combined and used, and this enables obtaining the delay signal sequence of the time interval shorter than the shortest delay transmission time of the signal transmission element or the delay time variable transmission element. However, the disadvantage in which an initial delay output is more than the shortest delay transmission time of the signal transmission element or the delay time variable transmission element is solved by delaying a signal related to the delay signal sequence similarly to a new time reference signal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、極めて短い時間間隔の遅延信号列を出力する信号伝送遅延素子回路に関するものである。   The present invention relates to a signal transmission delay element circuit that outputs a delay signal sequence having an extremely short time interval.

今日信号記録装置において記録密度が極めて高くなっている中で、記録媒体に集光したレーザー光等で記録を行うと、光エネルギーは記録点のみならずその近傍周辺にも影響を及ぼすため、集光したレーザー光信号が信号レベル波形のまま媒体に記録されず、異なった記録結果となり、再生される信号が記録信号と異なり高密度記録が実現出来ない等の不具合な現象が生じていた。この不具合を改善するために前後の信号や記録する信号の値、あるいは記録媒体のフォーマット、あるいは記録媒体の材質、あるいは記録媒体の移動速度等により記録時のレーザー光信号の出力レベルや発光時間を補正する方法が案出され記録型CDレコーダーや記録型DVDレコーダーで実用に供されてきた。   In today's signal recording devices, where the recording density is extremely high, recording with a laser beam or the like focused on a recording medium causes the light energy to affect not only the recording point but also the vicinity of the recording point. The emitted laser beam signal is not recorded on the medium in the form of a signal level waveform, resulting in a different recording result, and a defective phenomenon occurs such that the reproduced signal is different from the recording signal and high-density recording cannot be realized. In order to remedy this problem, the output level and emission time of the laser light signal during recording are determined by the values of the previous and subsequent signals, the signal to be recorded, the format of the recording medium, the material of the recording medium, the moving speed of the recording medium, etc. A correction method has been devised and has been put to practical use in recordable CD recorders and recordable DVD recorders.

最近では更に、利便性や時間効率向上の要求から、記録型CDレコーダーや記録型DVDレコーダーでは記録時間の短縮が重要な課題となって標準再生速度の何倍で記録できるかが競走力や性能判断指標の最大要素の一つとなっている。これに応える高速記録を実現するためには機構や光学装置の高速制御応答性能の実現と共に記録系電子回路の使用可能な信号周波数の向上や高速な応答性能の実現が不可欠である。   Recently, due to demands for improved convenience and time efficiency, shortening the recording time has become an important issue for recordable CD recorders and recordable DVD recorders, and how many times the standard playback speed can be recorded. It is one of the largest elements of judgment indicators. In order to realize high-speed recording in response to this, it is indispensable to realize a high-speed control response performance of a mechanism and an optical device, improve a signal frequency that can be used by a recording electronic circuit, and realize a high-speed response performance.

記録装置の消費電力低減や製品価格低減のためには、無条件に高価で高速な半導体材料や高価で高速な最先端の製造プロセスを用いることは最適な方法であるとは云えない。現在最も広汎に用いられている安価な半導体材料や製造プロセスを用いることが必要である。しかし、最も高速な信号が要求される記録用レーザー光駆動用信号生成部における記録時近傍効果補正変調信号生成回路で要求される極めて短い時間間隔の遅延信号列を出力する信号遅延伝送回路を通常の信号伝送素子を縦続接続したもので得ることは難しく、更に記録媒体とレーザー光信号照射記録点との相対速度の変化に対応する様に上記の遅延信号列を発生するには遅延時間可変伝送素子を用いることが不可欠であるが、現在最も広汎に用いられている安価な半導体材料や製造プロセスで作成した遅延時間可変伝送素子では、その最短遅延伝送時間が要求される遅延信号列の時間間隔を超えてしまうことから、遅延時間可変伝送素子を単純に縦続接続したもので上記要求の遅延信号列を得ることは不可能であった。   In order to reduce the power consumption and product price of the recording apparatus, it is not optimal to use an unconditionally expensive and high-speed semiconductor material or an expensive and high-speed state-of-the-art manufacturing process. It is necessary to use inexpensive semiconductor materials and manufacturing processes that are currently most widely used. However, a signal delay transmission circuit that outputs a delayed signal sequence of an extremely short time interval required by a near-recording effect correction modulation signal generation circuit in a recording laser light driving signal generation unit that requires the fastest signal is usually used. It is difficult to obtain with cascaded signal transmission elements, and variable delay time transmission is required to generate the above-mentioned delayed signal sequence so as to correspond to changes in the relative speed between the recording medium and the laser light signal irradiation recording point. It is indispensable to use the element, but in the delay time variable transmission element created by the most widely used inexpensive semiconductor material and manufacturing process, the time interval of the delay signal sequence that requires the shortest delay transmission time Therefore, it is impossible to obtain the required delay signal string by simply cascading delay time variable transmission elements.

通常、この対応策としては、消費電力低減や製品価格低減を犠牲にして、高価で高速な半導体材料や高価で高速な最先端の製造プロセスを用いて作成したより高速な遅延時間可変伝送素子を単純に縦続接続することで、要求される時間間隔の遅延信号列を作ることであった。あるいは、現在最も広汎に用いられている安価な半導体材料や製造プロセスを用いて遅延時間可変伝送素子を作成し単純に縦続接続することで、要求される高速記録をあきらめて消費電力低減や製品価格低減を確保するものであった。
特開2004−159161号公報
Usually, this countermeasure includes the use of expensive, high-speed semiconductor materials and faster variable delay time transmission elements created using expensive, high-speed, advanced manufacturing processes at the expense of reduced power consumption and product price. By simply cascading, a delay signal sequence having a required time interval was created. Or, by creating a variable delay time transmission element using the cheapest semiconductor materials and manufacturing processes currently in widespread use and simply cascading them, the required high-speed recording can be given up to reduce power consumption and product price. The reduction was ensured.
JP 2004-159161 A

解決しようとする課題は、信号伝送素子あるいは遅延時間可変伝送素子の最短遅延伝送時間より短い時間間隔の遅延信号列を得ることである。   The problem to be solved is to obtain a delay signal sequence having a time interval shorter than the shortest delay transmission time of the signal transmission element or the variable delay time transmission element.

本発明は、遅延時間の異なる複数の信号伝送素子あるいは遅延時間の異なる複数の遅延時間可変伝送素子を用いることが最も主要な特徴である。   The main feature of the present invention is to use a plurality of signal transmission elements having different delay times or a plurality of variable delay time transmission elements having different delay times.

本発明の信号遅延伝送回路は、信号伝送素子や遅延時間可変伝送素子の最短遅延伝送時間より短い時間間隔の遅延信号列を得ることができるので、現在広汎に用いられている半導体材料や製造プロセスを用いることが可能になり、消費電力低減や製品価格低減と同時に要求される高速記録を実現できるという利点がある。   Since the signal delay transmission circuit of the present invention can obtain a delay signal sequence having a time interval shorter than the shortest delay transmission time of the signal transmission element and variable delay time transmission element, semiconductor materials and manufacturing processes that are widely used at present Can be used, and there is an advantage that the required high-speed recording can be realized simultaneously with reduction of power consumption and product price.

消費電力増大や製品価格上昇を招く高価で高速な半導体材料や高価で高速な最先端の製造プロセスを用いること無く、現在広汎に用いられている半導体材料や製造プロセスを用いる場合でも、要求される極めて短い時間間隔の遅延信号列の生成を可能とし、最小の消費電力及び製品価格を実現した。   Even when using widely used semiconductor materials and manufacturing processes without using expensive and high-speed semiconductor materials that lead to increased power consumption and product price, and expensive and high-speed cutting-edge manufacturing processes It was possible to generate a delayed signal sequence with extremely short time intervals, and realized the minimum power consumption and product price.

図2は、本発明装置の実施例であり、請求項3におけるn=1の場合の構成の回路結線図である。1は、第一の信号伝送素子であり,2は第一の信号伝送素子を縦続接続した第一の信号伝送素子列である。
信号やクロックは第一の信号伝送素子列の入力端子3に入力し、第一の信号伝送素子縦続接続点4及び出力端子5から取り出される。
n=1の場合の第一の信号伝送素子の伝送遅延時間は2dであり,
4及び5から2dの整数倍遅延した信号が取り出される。
一方、図2に示す様に、第二の信号伝送素子6が第一の信号伝送素子列2の入力端子3及び、第一の信号伝送素子縦続接続点4に接続される。n=1の場合の第二の信号伝送素子の伝送遅延時間は3dであり, 第二の信号伝送素子の出力端子7から3dの整数倍遅延した信号が取り出される。
図2からも解る様に、図2の実施例では、第一の信号伝送素子1あるいは第二の信号伝送素子6を単独で縦続接続等して構成した信号伝送素子列等で得られる2dあるいは3dの半分あるいは3分の1の時間間隔である第一の信号伝送素子1と第二の信号伝送素子6の伝送遅延時間の差の時間間隔で遅延した信号やクロック信号列を取り出す事ができる。
これにより、図1に示す一種類の信号遅延伝送素子の縦続接続等、従来の方法では実現不可能であった、信号伝送素子の伝送遅延時間限界よりも短時間の極めて短い時間間隔で遅延した信号やクロック信号列を取り出す事が可能になった。
FIG. 2 is an embodiment of the apparatus of the present invention, and is a circuit connection diagram of a configuration in the case of n = 1 in claim 3. Reference numeral 1 denotes a first signal transmission element, and reference numeral 2 denotes a first signal transmission element array in which the first signal transmission elements are connected in cascade.
Signals and clocks are input to the input terminal 3 of the first signal transmission element array and taken out from the first signal transmission element cascade connection point 4 and the output terminal 5.
The transmission delay time of the first signal transmission element when n = 1 is 2d,
A signal delayed by an integer multiple of 2d is extracted from 4 and 5.
On the other hand, as shown in FIG. 2, the second signal transmission element 6 is connected to the input terminal 3 of the first signal transmission element array 2 and the first signal transmission element cascade connection point 4. The transmission delay time of the second signal transmission element when n = 1 is 3d, and a signal delayed by an integral multiple of 3d is extracted from the output terminal 7 of the second signal transmission element.
As can be seen from FIG. 2, in the embodiment of FIG. 2, the signal transmission element array 2d or the like obtained by cascading the first signal transmission element 1 or the second signal transmission element 6 alone or the like. It is possible to extract a signal or a clock signal sequence delayed by a time interval of a difference in transmission delay time between the first signal transmission element 1 and the second signal transmission element 6 which is a time interval of half or one third of 3d. .
As a result, the delay was delayed by an extremely short time interval shorter than the transmission delay time limit of the signal transmission element, which could not be realized by the conventional method, such as cascade connection of one type of signal delay transmission element shown in FIG. Signals and clock signal trains can be extracted.

請求項5に記載される伝送遅延時間を可変する信号伝送素子として用いる伝送遅延時間可変素子の構成接続例を図3に示す。
伝送遅延時間可変素子はCMOSトランジスタ等で製作された反転増幅器(インバーターと呼ぶ)10と11が直列に接続され,それに電源電流を供給する電流源14とインバーターの容量性負荷12及び13によって構成される。
図3では制御端子CTLで最大駆動電流IMAXが可変される電流源14でインバーター10と11に電源電流を供給しているが、2つの独立した電流源により10と11それぞれに電源電流を供給することも同様である。
図3の回路でインバーター10と11、容量性負荷12及び13及び電圧上昇時信号値識別電圧Vrefr等が定まると電流源14の供給出来る最大電源電流IMAX(最大駆動電流と呼ぶ)によりインバーター10と11の出力電圧上昇時間及び電圧上昇時伝送遅延時間Tdrが決定され、それは図3、図4及び数1によって表される。
一方、出力電圧降下時間及び電圧降下時伝送遅延時間Tdfは素子抵抗(Vss側導通時)Rfと容量性負荷12、電源電圧Vdd、電圧降下時信号値識別電圧Vreff等で決定され、それもまた図3、図4及び数2によって表される。
図3、図4では反転増幅器(インバーターと呼ぶ)10と11が直列に接続されて1つの伝送遅延時間可変素子を構成しているため、前段の出力電圧上昇時遅延時間は後段の出力電圧降下時遅延時間と足され1素子の入出力伝送遅延時間Tdは出力電圧上昇時も降下時もTdr+Tdfと対称になる。
FIG. 3 shows a configuration connection example of a transmission delay time variable element used as a signal transmission element for varying the transmission delay time according to claim 5.
The variable transmission delay time element is composed of an inverting amplifier (called an inverter) 10 and 11 made of a CMOS transistor or the like connected in series, a current source 14 for supplying a power supply current, and capacitive loads 12 and 13 of the inverter. The
In FIG. 3, the power source current is supplied to the inverters 10 and 11 by the current source 14 in which the maximum drive current IMAX is variable at the control terminal CTL, but the power source current is supplied to each of 10 and 11 by two independent current sources. The same is true.
When the inverters 10 and 11, the capacitive loads 12 and 13, and the signal value identification voltage Vrefr at the time of voltage rise are determined in the circuit of FIG. 3, the maximum power supply current IMAX (referred to as the maximum drive current) that can be supplied by the current source 14 Eleven output voltage rise times and voltage rise transmission delay times Tdr are determined, which are represented by FIGS.
On the other hand, the output voltage drop time and the voltage drop transmission delay time Tdf are determined by the element resistance (Vss side conduction) Rf, capacitive load 12, power supply voltage Vdd, voltage drop signal value identification voltage Vreff, etc. It is represented by FIG. 3, FIG.
3 and 4, inverting amplifiers (referred to as inverters) 10 and 11 are connected in series to form one transmission delay time variable element, so the delay time when the output voltage rises in the previous stage is the output voltage drop in the subsequent stage. The input / output transmission delay time Td of one element added to the time delay time is symmetrical with Tdr + Tdf when the output voltage rises and falls.

Figure 2006352184
Figure 2006352184

Figure 2006352184
Figure 2006352184

図5は、本発明装置の実施例であり、請求項4におけるn=1の場合の構成の回路結線図である。1は、第一の信号伝送素子であり,2は第一の信号伝送素子を縦続接続した第一の信号伝送素子列である。
信号やクロックは第一の信号伝送素子列の入力端子3に入力し、第一の信号伝送素子縦続接続点4及び出力端子5から取り出される。
n=1の場合の第一の信号伝送素子の伝送遅延時間は3dであり,
4及び5から3dの整数倍遅延した信号が取り出される。
一方、図5に示す様に、第二の信号伝送素子6を縦続接続した第二の信号伝送素子列が第一の信号伝送素子列2の入力端子3及び、第一の信号伝送素子縦続接続点4に接続される。n=1の場合の第二の信号伝送素子の伝送遅延時間は2dであり, 第二の信号伝送素子の出力端子7及び8から3dの整数倍遅延した信号が取り出される。
図5の実施例では、第一の信号伝送素子1あるいは第二の信号伝送素子6を単独で縦続接続等して構成した信号伝送素子列等で得られる2dあるいは3dの半分あるいは3分の1の時間間隔である第一の信号伝送素子1と第二の信号伝送素子6の伝送遅延時間の差の時間間隔で遅延した信号やクロック信号列を取り出す事ができる。
これにより、図1に示す一種類の信号遅延伝送素子の縦続接続等、従来の方法では実現不可能であった、信号伝送素子の伝送遅延時間限界よりも短時間の極めて短い時間間隔で遅延した信号やクロック信号列を取り出す事が可能になった。
FIG. 5 is an embodiment of the device of the present invention, and is a circuit connection diagram of the configuration in the case of n = 1 in claim 4. Reference numeral 1 denotes a first signal transmission element, and reference numeral 2 denotes a first signal transmission element array in which the first signal transmission elements are connected in cascade.
Signals and clocks are input to the input terminal 3 of the first signal transmission element array and taken out from the first signal transmission element cascade connection point 4 and the output terminal 5.
The transmission delay time of the first signal transmission element when n = 1 is 3d,
A signal delayed by an integer multiple of 3d from 4 and 5 is extracted.
On the other hand, as shown in FIG. 5, the second signal transmission element array in which the second signal transmission elements 6 are cascade-connected is the input terminal 3 of the first signal transmission element array 2 and the first signal transmission element cascade connection. Connected to point 4. The transmission delay time of the second signal transmission element when n = 1 is 2d, and a signal delayed by an integral multiple of 3d is extracted from the output terminals 7 and 8 of the second signal transmission element.
In the embodiment of FIG. 5, 2d or a half or a third of 2d or 3d obtained by a signal transmission element array formed by cascading the first signal transmission element 1 or the second signal transmission element 6 alone or the like. It is possible to extract a signal or a clock signal sequence delayed by the time interval of the difference between the transmission delay times of the first signal transmission element 1 and the second signal transmission element 6 which is the time interval of
As a result, the delay was delayed by an extremely short time interval shorter than the transmission delay time limit of the signal transmission element, which could not be realized by the conventional method, such as cascade connection of one type of signal delay transmission element shown in FIG. Signals and clock signal trains can be extracted.

請求項5に記載される伝送遅延時間を可変する信号伝送素子として用いる伝送遅延時間可変素子の構成接続例を図6に示す。
伝送遅延時間可変素子はCMOSトランジスタ等で製作された差動型反転増幅器(差動型インバーターと呼ぶ)10と11が直列に接続され,それに電源電流を供給する電流源14と差動型インバーターの容量性負荷12及び13によって構成される。
図6の回路で差動型インバーター10と11、容量性負荷12及び13及び電圧上昇時信号値識別電圧Vrefr等が定まると電流源14の供給出来る最大電源電流IMAX(最大駆動電流と呼ぶ)により差動型インバーター10と11の出力電圧上昇時間及び電圧上昇時伝送遅延時間Tdrが決定され、それは図6、図7及び数3によって表される。
出力電圧降下時間及び電圧降下時伝送遅延時間Tdfは容量性負荷12、電源電圧Vdd、電圧降下時信号値識別電圧Vreff等が定まると電流源14の供給出来る最大電源電流IMAX(最大駆動電流と呼ぶ)によりで決定され、それもまた図6、図7及び式3によって表される。
ここで、Vdd側の電流源14の最大駆動電流IMAXとVss側の電流源14の最大駆動電流IMAXが等しく、差動型インバーター10と11のVdd側の増幅素子とVss側の増幅素子の増幅率や駆動力が同様であると、対時間電圧上昇特性と対時間電圧降下特性は対称になりVrefrとVreffはほぼ等しくVddとVssの中央電位になるためTdrとTdfは等しく2段差動型インバーターではTd= Tdr+Tdf=
2Tdr= 2Tdfとなる。
(0011)で記載したと同様に、図6で示す伝送遅延時間可変素子を用いた請求項4、請求項5で示す信号遅延伝送回路を構成する事が出来、一種類の伝送遅延時間可変素子を用いた従来の方法では実現不可能であった、伝送遅延時間可変素子の伝送遅延時間限界よりも短時間の極めて短い時間間隔で可変的に遅延した信号やクロック信号列を取り出す事を可能にする。
図6、図7では差動型反転増幅器(差動型インバーターと呼ぶ)10と11を直列に接続して1つの伝送遅延時間可変素子を構成しているが、一段であっても出力電圧上昇時遅延時間と出力電圧降下時遅延時間を対称にすることが出来るため、伝送遅延時間可変素子を一段で構成することも可能である。
更に、電源VddやVssや差動型インバーター入力にノイズが混入して遅延時間に影響を与える事も+側と−側の影響が相殺して消滅する特徴を有するため、ほとんどのノイズの影響を避けることが出来る。
図6で示す伝送遅延時間可変素子を用いた請求項4、請求項5で示す本発明の信号遅延伝送回路は従来の方法図1等では実現不可能であった、伝送遅延時間可変素子の伝送遅延時間限界よりも短時間の極めて短い時間間隔で可変的に遅延した信号やクロック信号列を取り出す事をノイズの影響をほとんど受けずに可能にする。
FIG. 6 shows a configuration connection example of a transmission delay time variable element used as a signal transmission element that varies the transmission delay time according to claim 5.
The variable transmission delay time element consists of a differential inverting amplifier (called a differential inverter) 10 and 11 made of a CMOS transistor or the like connected in series, and a current source 14 for supplying power supply current and a differential inverter. Consists of capacitive loads 12 and 13.
When the differential inverters 10 and 11, the capacitive loads 12 and 13, and the signal value identification voltage Vrefr at the time of voltage rise are determined in the circuit of FIG. 6, the maximum power supply current IMAX (referred to as the maximum drive current) that can be supplied by the current source 14 The output voltage rise time and the voltage rise transmission delay time Tdr of the differential inverters 10 and 11 are determined, which are represented by FIGS.
The output voltage drop time and the voltage drop transmission delay time Tdf are the maximum power supply current IMAX (referred to as the maximum drive current) that can be supplied by the current source 14 when the capacitive load 12, power supply voltage Vdd, voltage drop signal value identification voltage Vreff, etc. are determined. ), Which is also represented by FIGS.
Here, the maximum drive current IMAX of the current source 14 on the Vdd side and the maximum drive current IMAX of the current source 14 on the Vss side are equal, and amplification of the Vdd side amplification element and the Vss side amplification element of the differential inverters 10 and 11 is performed. When the rate and driving force are the same, the voltage rise characteristics vs. time voltage drop characteristics are symmetrical and Vrefr and Vreff are approximately equal to the center potential of Vdd and Vss, so Tdr and Tdf are equal and the two-stage differential inverter So Td = Tdr + Tdf =
2Tdr = 2Tdf.
In the same manner as described in (0011), the signal delay transmission circuit shown in claim 4 and claim 5 using the transmission delay time variable element shown in FIG. It is possible to take out a signal or a clock signal sequence that is variably delayed at an extremely short time interval that is shorter than the transmission delay time limit of the variable transmission delay time element, which could not be realized by the conventional method using the To do.
6 and 7, a differential inverting amplifier (referred to as a differential inverter) 10 and 11 is connected in series to form one transmission delay time variable element, but the output voltage rises even in a single stage. Since the time delay time and the output voltage drop delay time can be made symmetric, the transmission delay time variable element can be configured in a single stage.
Furthermore, the influence of the noise on the power supply Vdd, Vss and the differential inverter input, which affects the delay time, has the characteristic that the effects on the + side and-side cancel each other out. Can be avoided.
The signal delay transmission circuit of the present invention shown in claim 4 and claim 5 using the transmission delay time variable element shown in FIG. 6 cannot be realized by the conventional method FIG. 1 etc. It is possible to extract a signal and a clock signal train that are variably delayed at an extremely short time interval shorter than the delay time limit with almost no influence of noise.

Figure 2006352184
Figure 2006352184

請求項1は請求項3及び請求項4の第一と第二の信号伝送素子の伝送遅延時間を特定の関係に固定せず自由に設定する場合を示している。これにより自由に設定した第一と第二の信号伝送素子の伝送遅延時間の差の時間間隔で遅延した信号列を出力する信号遅延伝送回路を得ることが出来る。
請求項2は請求項1における異なる伝送遅延時間の信号伝送素子の種類を多数にした場合を示している。これにより多数の信号伝送素子の伝送遅延時間の差の時間間隔で遅延した信号列を出力する信号遅延伝送回路を得ることが出来る。
Claim 1 shows a case where the transmission delay times of the first and second signal transmission elements of Claims 3 and 4 are set freely without being fixed to a specific relationship. As a result, a signal delay transmission circuit that outputs a signal sequence delayed by a time interval corresponding to the difference between the transmission delay times of the first and second signal transmission elements set freely can be obtained.
Claim 2 shows a case where the number of types of signal transmission elements having different transmission delay times in claim 1 is increased. As a result, a signal delay transmission circuit that outputs a signal sequence delayed by a time interval corresponding to a difference in transmission delay times of a large number of signal transmission elements can be obtained.

請求項6は図3、図5で例を示している様な素子内部回路あるいは素子における容量性負荷Cの容量値を異ならせることや信号伝送素子及び伝送遅延時間可変素子をIC等に設計し製造する過程で造られ、派生する絶縁性を有する部分と導通性を有する部分や領域に起因する容量性負荷Cの容量値を長さや面積や数や厚さ等で異ならせることによって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。
なお、PN接合を逆バイアスして用いられる可変容量を用いこの面積や数や電圧を異ならせ、その電圧を変化させて伝送遅延時間可変素子に応用する等もこれに含まれる一例である。
Claim 6 is designed such that the internal circuit of the element as shown in FIGS. 3 and 5 or the capacitance value of the capacitive load C in the element is different, or the signal transmission element and the variable transmission delay time element are designed in an IC or the like. Transmission delay time by making the capacitance value of the capacitive load C, which is produced in the manufacturing process and derived from the insulating part and the conductive part or region, different depending on the length, area, number, thickness, etc. A plurality of types of signal transmission elements and transmission delay time variable elements different from each other.
An example of this is that a variable capacitor used by reverse biasing the PN junction is used to vary the area, number, and voltage, and change the voltage to apply to a variable transmission delay time element.

請求項7は信号伝送素子及び伝送遅延時間可変素子の素子内部回路あるいは素子の出力に異なる値の抵抗やインダクタンス等のインピーダンス要素を直列に挿入し容量性負荷成分との関係で伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。
これは、信号伝送素子及び伝送遅延時間可変素子をIC等に設計し製造する過程で造られ、派生する異なる値の抵抗やインダクタンス等のインピーダンス要素も含み、長さや面積や数や厚さ等を異ならせることによって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることも含む。
また、容量性負荷成分は信号伝送素子及び伝送遅延時間可変素子をIC等に設計し製造する過程で造られ、派生するや絶縁性を有する部分と導通性を有する部分や領域に起因する容量性負荷も含んでおり、上記インピーダンス要素と同時に長さや面積や数や厚さ等を異ならせることによって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることが出来る。
According to the seventh aspect of the present invention, impedance elements such as resistors and inductances having different values are inserted in series in the element internal circuit of the signal transmission element and the transmission delay time variable element or the output of the element, and the transmission delay time differs depending on the capacitive load component To obtain a plurality of types of signal transmission elements and transmission delay time variable elements.
This is made in the process of designing and manufacturing a signal transmission element and a variable transmission delay time element in an IC etc., and includes derived impedance elements such as different resistances and inductances, and includes length, area, number, thickness, etc. It also includes obtaining a plurality of types of signal transmission elements and transmission delay time variable elements having different transmission delay times by making them different.
Capacitive load components are produced in the process of designing and manufacturing signal transmission elements and variable transmission delay time elements in ICs, etc., and are derived from capacitive parts due to parts that have conductivity and parts that have conductivity. A load is also included, and a plurality of types of signal transmission elements and transmission delay time variable elements having different transmission delay times can be obtained by changing the length, area, number, thickness, and the like simultaneously with the impedance element.

請求項8は信号伝送素子及び伝送遅延時間可変素子の素子内部回路あるいは素子の負荷駆動能力を異ならせることで伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。
これは信号伝送素子及び伝送遅延時間可変素子の素子内部回路あるいは素子の長さや面積や数等を異ならせることによって得ることも出来る。
Claim 8 is to obtain a plurality of types of signal transmission elements and transmission delay time variable elements having different transmission delay times by varying the element internal circuit of the signal transmission element and the transmission delay time variable element or the load driving capability of the element. .
This can also be obtained by making the element internal circuits of the signal transmission element and the variable transmission delay time element or the length, area, number, etc. of the elements different.

請求項9は、図3、図5で例を示している様な最大駆動電流IMAXが可変可能な電流源14を素子あるいは素子内部回路の電源として用い電流源14の駆動力を長さや面積や数や厚さ等を異ならせることによってあるいは制御端子CTLで異なる値に制御する等ことによって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。   Claim 9 uses the current source 14 that can vary the maximum drive current IMAX as shown in the examples of FIGS. 3 and 5 as the power source of the element or the internal circuit of the element, and the driving force of the current source 14 is determined by the length, area, It is to obtain a plurality of types of signal transmission elements and transmission delay time variable elements having different transmission delay times by varying the number, thickness, etc., or by controlling them to different values with the control terminal CTL.

請求項10は信号伝送素子及び伝送遅延時間可変素子の素子内部回路あるいは素子の入力信号値識別レベルを異ならせることによって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。   Claim 10 is to obtain a plurality of types of signal transmission elements and transmission delay time variable elements having different transmission delay times by varying the input signal value identification levels of the signal transmission elements and the transmission delay time variable elements. It is.

請求項11は信号伝送素子及び伝送遅延時間可変素子に付属させた入力信号値識別レベルが異なるレベル比較器やこれと同様の働きをする素子やIC等の領域等によって伝送遅延時間の異なる複数種類の信号伝送素子及び伝送遅延時間可変素子を得ることである。   Claim 11 is a level comparator with different input signal value identification levels attached to the signal transmission element and the transmission delay time variable element, and a plurality of types having different transmission delay times depending on areas such as elements and ICs having the same function The signal transmission element and the transmission delay time variable element are obtained.

請求項12は請求項1から請求項11までの方法で作成あるいは構成した信号遅延伝送回路を用いて「Delay Locked
Loop回路」(以後DLL回路と呼ぶ)を構成することである。
Claim 12 uses a signal delay transmission circuit created or configured by the method of claim 1 to claim 11 to “Delay Locked”.
"Loop circuit" (hereinafter referred to as DLL circuit).

請求項12の一つの実施例は図8に示す様に、伝送遅延時間可変信号遅延伝送回路の入力端子24に入力したCLOCKと、既定のLoop
Delay分である2nd遅れた伝送遅延出力26をそれぞれ位相比較器21の基準(REF)入力端子29と比較(COMP)入力端子30に入力し、位相比較器21の出力31をチャージポンプ22及び位相補償器23で制御信号32に生成し、伝送遅延時間可変信号遅延伝送回路20の伝送遅延時間可変制御入力端子28に入力してDLL回路を構成している。
ここで、伝送遅延時間可変信号遅延伝送回路の最初の伝送遅延出力25は入力端子24の信号であるCLOCKとの、伝送遅延時間が2dであり、要求される時間間隔dを満たしていない。
As shown in FIG. 8, one embodiment of claim 12 includes a CLOCK input to the input terminal 24 of the variable transmission delay time signal delay transmission circuit and a predetermined loop.
The transmission delay output 26 delayed by 2nd, which is the delay, is input to the reference (REF) input terminal 29 and the comparison (COMP) input terminal 30 of the phase comparator 21, respectively, and the output 31 of the phase comparator 21 is input to the charge pump 22 and the phase. The DLL 23 is configured by generating the control signal 32 by the compensator 23 and inputting the control signal 32 to the transmission delay time variable control input terminal 28 of the transmission delay time variable signal delay transmission circuit 20.
Here, the first transmission delay output 25 of the variable transmission delay time signal delay transmission circuit has a transmission delay time of 2d with respect to CLOCK which is a signal of the input terminal 24, and does not satisfy the required time interval d.

そこで、請求項13は入力信号であるCLOCKに代えて最初の伝送遅延出力25を時間基準信号として用い、本来は2nd遅れた伝送遅延出力26までであった伝送遅延出力を2d延長して(2n+2)d出力27まで生成して用いることにより伝送遅延出力列とする事である。   Therefore, claim 13 uses the first transmission delay output 25 as the time reference signal instead of the input signal CLOCK, and extends the transmission delay output that was originally 2nd delayed transmission delay output 26 by 2d (2n +2) By generating and using up to d output 27, a transmission delay output sequence is obtained.

請求項12のもう一つの実施例は図9に示す様に、伝送遅延時間可変信号遅延伝送回路の入力端子24に入力したCLOCKが2d遅延した最初の伝送遅延出力25と、これから更にLoop Delay分遅れた (2n+2)d伝送遅延出力27をそれぞれ位相比較器21の基準(REF)入力端子29と比較(COMP)入力端子30に入力し、位相比較器21の出力31をチャージポンプ22及び位相補償器23で制御信号32に生成し、伝送遅延時間可変信号遅延伝送回路20の伝送遅延時間可変制御入力端子28に入力してDLL回路を構成している。
ここで、伝送遅延時間可変信号遅延伝送回路の最初の伝送遅延出力25は入力端子24の信号であるCLOCKとの、伝送遅延時間が2dであり、要求される時間間隔dを満たしていない。
In another embodiment of the present invention, as shown in FIG. 9, the first transmission delay output 25 in which the CLOCK inputted to the input terminal 24 of the variable transmission delay time signal delay transmission circuit is delayed by 2d, and further the Loop Delay amount. The delayed (2n + 2) d transmission delay output 27 is input to the reference (REF) input terminal 29 and the comparison (COMP) input terminal 30 of the phase comparator 21, respectively, and the output 31 of the phase comparator 21 is connected to the charge pump 22 and The phase compensator 23 generates the control signal 32 and inputs it to the transmission delay time variable control input terminal 28 of the transmission delay time variable signal delay transmission circuit 20 to constitute a DLL circuit.
Here, the first transmission delay output 25 of the variable transmission delay time signal delay transmission circuit has a transmission delay time of 2d with respect to CLOCK which is a signal of the input terminal 24, and does not satisfy the required time interval d.

ここで、伝送遅延時間可変信号遅延伝送回路出力25、26、27等は実施例4と同様であり、請求項13に記述する様に最初の伝送遅延出力25を時間基準信号として用い、2d延長した(2n+2)d出力27までを伝送遅延出力列としている。   Here, the transmission delay time variable signal delay transmission circuit outputs 25, 26, 27 and the like are the same as those in the fourth embodiment, and as described in claim 13, the first transmission delay output 25 is used as a time reference signal to extend 2d. Up to (2n + 2) d output 27 is used as a transmission delay output string.

請求項14は請求項1から請求項13までの方法で作成した信号遅延伝送回路の遅延信号列を用いる場合に、最初の遅延信号出力が要求される時間間隔よりも遅れてしまうため、遅延信号列のどれか一つの信号を新たな時間基準信号として用いることを余儀なくされた結果、信号遅延伝送回路の遅延信号列と組み合わせて使用する信号を、何らかの方法で、元の時間基準信号あるいは時間基準クロックに対する新たな時間基準信号の遅れ時間と同じ時間遅らせる事である。   Since the delay signal sequence of the signal delay transmission circuit created by the method of claims 1 to 13 is used in claim 14, the delay signal is delayed because the first delay signal output is delayed from the required time interval. As a result of having to use any one of the signals as a new time reference signal, the signal used in combination with the delayed signal sequence of the signal delay transmission circuit is changed in some way to the original time reference signal or time reference signal. The delay time is the same as the delay time of the new time reference signal with respect to the clock.

請求項15は請求項14を実現する方法の一つである。 元の時間基準信号あるいは時間基準クロックを、遅延信号列の新たな時間基準信号を生成した伝送素子やその回路あるいは伝送遅延時間可変素子やその回路と同じものを同じ条件で用いて新たな時間基準信号と同じく遅延させ、それをD型フリップフロップ(以後DFFと呼ぶ)等で構成したレジシターのクロックとして与え、このレジシターで遅延信号列と組み合わせて使用する信号を新たな時間基準信号と同じく遅延させる事を意味している。   Claim 15 is one of the methods for realizing Claim 14. A new time reference using the same time reference signal or time reference clock as the transmission element or circuit or the transmission delay time variable element or circuit that generated the new time reference signal of the delay signal sequence under the same conditions. This is delayed in the same way as the signal, and is given as a clock for a register composed of D-type flip-flops (hereinafter referred to as DFF), and the signal used in combination with the delay signal sequence is delayed by this register in the same way as a new time reference signal Means things.

請求項15の一実施例として、図10に示すLaser
Driver駆動信号生成回路への応用例を説明する。
PCKはシステムの時間基準クロック46であり、光記録装置の記録速度によりその周波数は変化する。
DLL36はPCK 周期の時間遅れをDLLループの伝送遅延時間可変素子列に与え、PCKの変化に対応した時間間隔の遅延信号列50を生成する。
Write DATA 51は記録される信号の元のDATAであるが、記録時にレーザー光が記録媒体に与えるエネルギーによって発生する影響を改善するためEncoder符号器41及びRegister41及びDecoder復号器42により生成した信号54とDLL36によって生成した遅延信号列50をMatrix37を用いて出力レベルや出力時間を補正したレーザードライバー(Laser Driver)駆動信号58に整形し、Laser Driver38に加え、レーザー39の光信号の出力レベルや発光時間を補正する。

遅延信号列50は信号生成の都合からPCKシステムの時間基準クロック46を分周器35で2分周したCLOCK47をDLL36に入力して生成した時間基準クロック46の1/2の周波数のクロックである。それを遅延させた信号列の内の新たな時間基準も時間基準クロック46の1/2の周波数のクロックである。
このためこの新たな時間基準信号48をDecoder復号器出力54の遅延クロックとして用いることは出来ない。
そこで、新たな時間基準信号48を生成した信号遅延時間可変伝送回路と同じ回路44とCTL伝送遅延時間可変制御信号49を用いてPCK46を新たな時間基準信号48と同時間遅らせ、DFF等によって構成されたレジスター43のクロック56として用いることでDecoder出力54を新たな時間基準信号48と同時間遅らせた信号55を生成する。
この信号55とDLLの出力信号である遅延信号列50をMatrix 37で整形し、レーザードライバー(Laser Driver)駆動信号58を生成する。
分周器35が負のクロック入力となっているのは、新たな時間基準信号48及びクロック56のタイミングが、システムの時間基準クロック46を用いて生成した復号器42の信号54とタイミング競合してDFF等によって構成されたレジスター43が誤動作することを1/2クロックずらして防止するためである。
As an embodiment of claim 15, the Laser shown in FIG.
An application example to the Driver drive signal generation circuit will be described.
PCK is a time reference clock 46 of the system, and its frequency changes depending on the recording speed of the optical recording apparatus.
The DLL 36 applies a time delay of the PCK period to the transmission delay time variable element array of the DLL loop, and generates a delay signal string 50 having a time interval corresponding to the change of the PCK.
Write DATA 51 is the original DATA of the signal to be recorded, but the signal 54 generated by the encoder encoder 41, the register 41, and the decoder decoder 42 in order to improve the influence caused by the energy that the laser beam gives to the recording medium during recording. And the delay signal sequence 50 generated by DLL36 is shaped into a laser driver drive signal 58 with the output level and output time corrected using Matrix 37, and in addition to Laser Driver 38, the output level and light emission of the laser 39 optical signal Correct the time.

The delay signal string 50 is a clock having a frequency half that of the time reference clock 46 generated by inputting the CLOCK 47 obtained by dividing the PCK system time reference clock 46 by the frequency divider 35 by the frequency divider 35 into the DLL 36 for the convenience of signal generation. . The new time reference in the delayed signal train is also a clock having a frequency half that of the time reference clock 46.
Therefore, this new time reference signal 48 cannot be used as a delay clock for the decoder decoder output 54.
Therefore, PCK46 is delayed by the same time as the new time reference signal 48 using the same circuit 44 and variable CTL transmission delay time control signal 49 as the signal delay time variable transmission circuit that generates the new time reference signal 48, and is configured by DFF etc. By using it as the clock 56 of the registered register 43, a signal 55 obtained by delaying the Decoder output 54 with the new time reference signal 48 is generated.
The signal 55 and the delay signal sequence 50 which is the output signal of the DLL are shaped by the Matrix 37 to generate a laser driver drive signal 58.
The frequency divider 35 has a negative clock input because the timing of the new time reference signal 48 and clock 56 conflicts with the signal 42 of the decoder 42 generated using the system time reference clock 46. This is to prevent the register 43 constituted by DFF or the like from malfunctioning with a ½ clock shift.

請求項16は請求項14を実現する方法の一つである。 遅延信号列の新たな時間基準信号と遅延信号列の内の別の信号をEXOR等の組み合わせ論理回路で整形し、元の時間基準クロックが新たな時間基準信号と同時間遅れたものと等価な信号にする、それをD型フリップフロップ等で構成したレジスターのクロックとして与え、このレジスターで遅延信号列と組み合わせて使用する信号を新たな時間基準信号と同じ時間遅延させる事である。   Claim 16 is one of the methods for realizing Claim 14. A new time reference signal in the delay signal sequence and another signal in the delay signal sequence are shaped by a combinational logic circuit such as EXOR, which is equivalent to the original time reference clock being delayed by the same time as the new time reference signal. The signal is supplied as a clock of a register composed of a D-type flip-flop, and the signal used in combination with the delay signal sequence is delayed by the same time as the new time reference signal.

請求項16の一実施例として、図11に示すLaser
Driver駆動信号生成回路への応用例を説明する。
PCKはシステムの時間基準クロック46であり、光記録装置の記録速度によりその周波数は変化する。
DLL36はPCK 周期の時間遅れをDLLループの伝送遅延時間可変素子列に与え、PCKの変化に対応した時間間隔の遅延信号列50を生成する。
Write DATA 51は記録される信号の元のDATAであるが、記録時にレーザー光が記録媒体に与えるエネルギーによって発生する影響を改善するためEncoder符号器41及びRegister41及びDecoder復号器42により生成した信号54とDLL36によって生成した遅延信号列50をMatrix37を用いて出力レベルや出力時間を補正したレーザードライバー(Laser Driver)駆動信号58に整形し、Laser Driver38に加え、レーザー39の光信号の出力レベルや発光時間を補正する。

遅延信号列50は信号生成の都合からPCKシステムの時間基準クロック46を分周器35で2分周したCLOCK47をDLL36に入力して生成した時間基準クロック46の1/2の周波数のクロックである。それを遅延させた信号列の内の新たな時間基準信号も時間基準クロック46の1/2の周波数の信号である。
このためこの新たな時間基準信号48をDecoder復号器出力54の遅延クロックとして用いることは出来ない。
そこで、新たな時間基準信号48と遅延信号列の内の別の信号49をEXOR等の組み合わせ論理回路45で整形し、元の時間基準クロック46が新たな時間基準信号48と同時間遅れたものと等価なクロック信号にする。
上記クロック信号57をDFF等によって構成されたレジスター43のクロックとして与え、このDFF等によって構成されたレジスター43で遅延信号列と組み合わせて使用する信号55を新たな時間基準信号48と同じ時間遅延させる。
遅延した信号55とDLLの出力信号である遅延信号列50をMatrix37を用いて整形し、レーザードライバー(Laser Driver)駆動信号58を生成する。
分周器35が負のクロック入力となっているのは、新たな時間基準信号48及び48と同時間遅れたPCKと等価なクロック信号57のタイミングが、システムの時間基準クロック46を用いて生成した復号器42の信号54とタイミング競合してDFF等によって構成されたレジスター43が誤動作することを1/2クロックずらして防止するためである。
図12はEXORと等価な組み合わせ論理回路の例である。
図13はPCK46、CLOCK47、新たな時間基準信号48、遅延信号列の内の別の信号49、48と同時間遅れたPCKと等価なクロック信号57のタイミング図である。
As an embodiment of claim 16, the Laser shown in FIG.
An application example to the Driver drive signal generation circuit will be described.
PCK is a time reference clock 46 of the system, and its frequency changes depending on the recording speed of the optical recording apparatus.
The DLL 36 applies a time delay of the PCK period to the transmission delay time variable element array of the DLL loop, and generates a delay signal string 50 having a time interval corresponding to the change of the PCK.
Write DATA 51 is the original DATA of the signal to be recorded, but the signal 54 generated by the encoder encoder 41, the register 41, and the decoder decoder 42 in order to improve the influence caused by the energy that the laser beam gives to the recording medium during recording. And the delay signal sequence 50 generated by DLL36 is shaped into a laser driver drive signal 58 with the output level and output time corrected using Matrix 37, and in addition to Laser Driver 38, the output level and light emission of the laser 39 optical signal Correct the time.

The delay signal string 50 is a clock having a frequency half that of the time reference clock 46 generated by inputting the CLOCK 47 obtained by dividing the PCK system time reference clock 46 by the frequency divider 35 by the frequency divider 35 into the DLL 36 for the convenience of signal generation. . A new time reference signal in the signal sequence obtained by delaying the signal is also a signal having a frequency half that of the time reference clock 46.
Therefore, this new time reference signal 48 cannot be used as a delay clock for the decoder decoder output 54.
Therefore, the new time reference signal 48 and another signal 49 in the delayed signal sequence are shaped by a combinational logic circuit 45 such as EXOR, and the original time reference clock 46 is delayed by the same time as the new time reference signal 48. The clock signal is equivalent to
The clock signal 57 is given as a clock of the register 43 configured by DFF or the like, and the signal 55 used in combination with the delay signal sequence is delayed by the same time as the new time reference signal 48 by the register 43 configured by DFF or the like. .
The delayed signal 55 and the delayed signal string 50, which is the output signal of the DLL, are shaped using the Matrix 37 to generate a laser driver drive signal 58.
The frequency divider 35 has a negative clock input because the timing of the clock signal 57 equivalent to the PCK delayed by the same time as the new time reference signals 48 and 48 is generated using the system time reference clock 46. This is to prevent the register 43 constituted by DFF and the like from malfunctioning due to timing conflict with the signal 54 of the decoder 42, which is shifted by 1/2 clock.
FIG. 12 shows an example of a combinational logic circuit equivalent to EXOR.
FIG. 13 is a timing chart of PCK 46, CLOCK 47, new time reference signal 48, and clock signal 57 equivalent to PCK delayed by the same time as other signals 49, 48 in the delayed signal train.

高速な光記録装置への応用のみならず、高速な半導体メモリー制御回路や高速な信号波形発生装置等、広汎な用途に応用可能である。   It can be applied not only to high-speed optical recording devices but also to a wide range of applications such as high-speed semiconductor memory control circuits and high-speed signal waveform generators.

一種類の信号遅延伝送素子による信号遅延伝送回路の接続図。(従来例1)The connection diagram of the signal delay transmission circuit by one type of signal delay transmission element. (Conventional example 1) 本発明の信号遅延伝送回路接続図。(実施例1)The signal delay transmission circuit connection diagram of this invention. (Example 1) 本発明の伝送遅延時間可変素子の構成図。(実施例2)The block diagram of the transmission delay time variable element of this invention. (Example 2) 本発明に用いる伝送遅延時間可変素子の動作説明用時間対電圧変化図。(実施例2)FIG. 6 is a time vs. voltage change diagram for explaining the operation of the variable transmission delay time element used in the present invention. (Example 2) 本発明の信号遅延伝送回路接続図。(実施例3)The signal delay transmission circuit connection diagram of this invention. (Example 3) 本発明に用いる伝送遅延時間可変素子の動作説明用構成図。(実施例3)The block diagram for operation | movement description of the transmission delay time variable element used for this invention. (Example 3) 本発明に用いる伝送遅延時間可変素子の動作説明用時間対電圧変化図。(実施例3)FIG. 6 is a time vs. voltage change diagram for explaining the operation of the variable transmission delay time element used in the present invention. (Example 3) 本発明のDelay Locked Loop回路接続図。(実施例4)The Delay Locked Loop circuit connection diagram of the present invention. Example 4 本発明のDelay Locked Loop回路接続図。(実施例5)The Delay Locked Loop circuit connection diagram of the present invention. (Example 5) 本発明のLaser Driver信号生成回路接続図。(実施例6)The laser driver signal generation circuit connection diagram of this invention. (Example 6) 本発明のLaser Driver信号生成回路接続図。(実施例7)The laser driver signal generation circuit connection diagram of this invention. (Example 7) EXOR回路と等価な回路例。(実施例7)Circuit example equivalent to EXOR circuit. (Example 7) EXOR回路と等価な回路による2倍の周波数クロック生成タイミング図。(実施例7)Timing diagram of double frequency clock generation by an EXOR circuit equivalent circuit. (Example 7)

符号の説明Explanation of symbols

1 第一の信号伝送素子
2 信号伝送素子縦続接続点
3 第一の信号伝送素子列
4 信号遅延伝送回路の入力
5 信号遅延伝送回路の出力
6 第二の信号伝送素子入力
7 第二の信号伝送素子出力
8 ― 欠番
9 ― 欠番
10 伝送遅延時間可変素子を構成する前段の反転増幅器(インバーター)
11 伝送遅延時間可変素子を構成する後段の反転増幅器(インバーター)
12 伝送遅延時間可変素子を構成する前段の容量性負荷 C
13 伝送遅延時間可変素子を構成する後段の容量性負荷 C
14 最大駆動電流可変電流源(IMAX)
15 伝送遅延時間可変素子信号入力(IN)
16 伝送遅延時間可変素子信号出力(OUT)
17 最大駆動電流可変制御入力(CTL)
18 ― 欠番
19 ― 欠番
20 伝送遅延時間可変信号遅延伝送回路
21 位相比較器(PHC)
22 チャージポンプ(CP)
23 フィルター(LPF)
24 伝送遅延時間可変信号遅延伝送回路信号入力
25 伝送遅延時間可変信号遅延伝送回路の最初の遅延信号出力(時間基準信号)
26 伝送遅延時間可変信号遅延伝送回路の2nd遅延信号出力
27 伝送遅延時間可変信号遅延伝送回路の(2n+2)d遅延信号出力
28 伝送遅延時間可変制御入力
29 位相比較器(PHC)基準信号入力(REF)
30 位相比較器(PHC)比較信号入力(COMP)
31 位相比較器(PHC)出力
32 伝送遅延時間可変制御信号
33 ― 欠番
34 ― 欠番
35 分周器
36 Delay Locked Loop回路(DLL)
37 レーザードライバー(Laser Driver)駆動信号生成マトリックス回路(Matrix)
38 レーザードライバー(Laser Driver)
39 レーザー
40 符号器(Encoder)
41 レジスター(Register)
42 復号器(Decoder)
43 D型フリップフロップ(DFF)等によって構成されたレジスター
44 新たな時間基準信号48を生成した信号遅延時間可変伝送回路と同じ回路
45 EXOR等の組み合わせ論理回路
46 システムの時間基準クロック(PCK)
47 システムの時間基準クロック(PCK)を2分周した信号(CLOCK)
48 PCKの変化に対応した時間間隔dの遅延CLOCK信号列中の遅延時間2dの新たな時間基準信号
49 PCKの変化に対応した時間間隔dの遅延CLOCK信号列中の遅延時間n+1dの信号
50 PCKの変化に対応した時間間隔dの遅延CLOCK信号列
51 記録される信号の元のDATA (Write DATA)
52 符号器 (Encoder) 出力
53 レジスター(Register)出力
54 復号器(Decoder) 出力信号
55 DFF等によって構成されたレジスターの出力
56 PCKを新たな時間基準信号と同じ時間遅らせた信号(DFF等によって構成されたレジスターのクロック)
57 新たな時間基準信号48と同時間遅れたPCK46と等価なクロック信号(DFF等によって構成されたレジスターのクロック)
58 レーザードライバー(Laser Driver)駆動信号
59 レーザードライバー(Laser Driver)出力信号
DESCRIPTION OF SYMBOLS 1 1st signal transmission element 2 Signal transmission element cascade connection point 3 1st signal transmission element row | line | column 4 Input of signal delay transmission circuit 5 Output of signal delay transmission circuit 6 Second signal transmission element input 7 Second signal transmission Element output 8-No. 9-No. 10 Inverting amplifier (inverter) in the previous stage that constitutes variable transmission delay time element
11 Inverting amplifier (inverter) in the latter stage that constitutes a variable transmission delay time element
12 Capacitive load of the previous stage constituting variable transmission delay time element C
13 Capacitive load of the latter stage constituting the variable transmission delay time element C
14 Maximum drive current variable current source (IMAX)
15 Transmission delay time variable element signal input (IN)
16 Transmission delay time variable element signal output (OUT)
17 Maximum drive current variable control input (CTL)
18-No. 19-No. 20 Transmission delay time variable signal delay transmission circuit 21 Phase comparator (PHC)
22 Charge pump (CP)
23 Filter (LPF)
24 Transmission Delay Time Variable Signal Delay Transmission Circuit Signal Input 25 Transmission Delay Time Variable Signal Delay Transmission Circuit First Delay Signal Output (Time Reference Signal)
26 Transmission Delay Time Variable Signal Delay Transmission Circuit 2nd Delay Signal Output 27 Transmission Delay Time Variable Signal Delay Transmission Circuit (2n + 2) d Delay Signal Output 28 Transmission Delay Time Variable Control Input 29 Phase Comparator (PHC) Reference Signal Input (REF)
30 Phase comparator (PHC) comparison signal input (COMP)
31 Phase comparator (PHC) output 32 Transmission delay time variable control signal 33-No. 34-No. 35 Divider 36 Delay Locked Loop circuit (DLL)
37 Laser Driver Drive Signal Generation Matrix Circuit (Matrix)
38 Laser Driver
39 Laser 40 Encoder
41 Register
42 Decoder
43 Register composed of D-type flip-flop (DFF), etc. 44 Same circuit as variable signal delay time transmission circuit that generates new time reference signal 48 45 Combination logic circuit such as EXOR 46 Time reference clock (PCK) of system
47 System time base clock (PCK) divided by 2 (CLOCK)
48 A new time reference signal with a delay time 2d in the delay CLOCK signal sequence of time interval d corresponding to the change of PCK 49 A signal of the delay time n + 1d in the delay CLOCK signal sequence of time interval d corresponding to the change of PCK 50 Delayed clock signal sequence with time interval d corresponding to PCK change 51 Original DATA (Write DATA) of recorded signal
52 Encoder Output 53 Register Output 54 Decoder Output Signal 55 Output 56 of Register Registered by DFF etc. Signal delayed by the same time as the new time reference signal (configured by DFF etc.) Registered clock)
57 Clock signal equivalent to PCK46 delayed by the same time as the new time reference signal 48 (register clock composed of DFF, etc.)
58 Laser Driver Drive Signal 59 Laser Driver Output Signal

Claims (16)

第一の信号伝送素子を縦続接続した第一の信号伝送素子列において、信号入出力点および信号伝送素子縦続接続点に第一の信号伝送素子とは異なる伝送遅延時間の第二の信号伝送素子あるいは第二の信号伝送素子を縦続接続した第二の信号伝送素子列を接続し、第二の信号伝送素子の信号出力点あるいは第二の信号伝送素子列の信号出力点および信号伝送素子縦続接続点から信号を取り出すと同時に第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点からも信号を取り出して出力する信号遅延伝送回路であって、第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号のみを出力する場合、あるいは第一の信号伝送素子の代わりに第二の信号伝送素子を用いて信号伝送素子列を作り信号入出力点および信号伝送素子縦続接続点から取り出した信号のみを出力する場合よりも更に短い時間間隔である第一の信号伝送素子と第二の信号伝送素子の伝送遅延時間の差となる時間間隔の遅延信号列を出力する信号遅延伝送回路。   A second signal transmission element having a transmission delay time different from that of the first signal transmission element at the signal input / output point and the signal transmission element cascade connection point in the first signal transmission element row in which the first signal transmission elements are cascaded. Alternatively, the second signal transmission element array in which the second signal transmission elements are cascade-connected is connected, and the signal output point of the second signal transmission element or the signal output point of the second signal transmission element array and the signal transmission element cascade connection are connected. A signal delay transmission circuit for taking out a signal from a point and simultaneously taking out and outputting a signal from a signal input / output point and a signal transmission element cascade connection point of the first signal transmission element row, When outputting only the signal extracted from the signal input / output point and the signal transmission element cascade connection point, or using the second signal transmission element instead of the first signal transmission element to create a signal transmission element array The delay of the time interval that is the difference between the transmission delay times of the first signal transmission element and the second signal transmission element, which is a shorter time interval than when only the signal extracted from the point and the signal transmission element cascade connection point is output A signal delay transmission circuit that outputs a signal train. 第一の信号伝送素子を縦続接続した第一の信号伝送素子列において、信号入出力点および信号伝送素子縦続接続点に前記信号伝送素子と伝送遅延時間の異なる第二の信号伝送素子あるいは第二の信号伝送素子を縦続接続した第二の信号伝送素子列を接続し、更に、第一の信号伝送素子や第二の信号伝送素子を含め伝送遅延時間の異なる第三あるいは複数種類の信号伝送素子を第二の信号伝送素子と同様に第一の信号伝送素子列や第二の信号伝送素子列やその他の信号伝送素子列に接続することによって作られる信号遅延伝送回路であって、第一第二を含む複数の信号伝送素子の信号出力点あるいは信号伝送素子列の信号出力点および信号伝送素子の縦続接続点から信号を取り出し出力することで複数の信号伝送素子の伝送遅延時間の差となる時間間隔の遅延信号列を出力する信号遅延伝送回路。   In the first signal transmission element array in which the first signal transmission elements are cascade-connected, a second signal transmission element or a second signal transmission element having a transmission delay time different from that of the signal transmission element is connected to the signal input / output point and the signal transmission element cascade connection point. A third or a plurality of types of signal transmission elements having different transmission delay times, including a first signal transmission element and a second signal transmission element, connected to a second signal transmission element array in which the signal transmission elements are cascade-connected. A signal delay transmission circuit formed by connecting the first signal transmission element array, the second signal transmission element array, and the other signal transmission element array in the same manner as the second signal transmission element, The signal is extracted from the signal output point of the plurality of signal transmission elements including two or the signal output point of the signal transmission element array and the cascade connection point of the signal transmission elements, and is output, thereby causing a difference in transmission delay time of the plurality of signal transmission elements. Signal delay transmission circuit for outputting a delay signal sequence between intervals. 第一の信号伝送素子を縦続接続した信号伝送素子列において、信号入出力点および信号伝送素子縦続接続点に前記第一の信号伝送素子の遅延時間を2dとすると、遅延時間がほぼd×(2n+1)「nは1以上の正の整数」となる第二の信号伝送素子あるいは第二の信号伝送素子を縦続接続した第二の信号伝送素子列を接続し、第二の信号伝送素子の信号出力点あるいは第二の信号伝送素子列の信号出力点および信号伝送素子縦続接続点から信号を取り出し、第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号と共に用いることにより、第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号のみを用いる場合よりも更に短い時間間隔の遅延信号列を出力する信号遅延伝送回路。   In the signal transmission element array in which the first signal transmission elements are cascade-connected, when the delay time of the first signal transmission element is 2d at the signal input / output point and the signal transmission element cascade connection point, the delay time is approximately d × ( 2n + 1) a second signal transmission element connected to a second signal transmission element or a second signal transmission element cascade in which the second signal transmission elements are connected to each other, where n is a positive integer of 1 or more. The signal was taken out from the signal output point or the signal output point of the second signal transmission element array and the signal transmission element cascade connection point, and taken out from the signal input / output point and signal transmission element cascade connection point of the first signal transmission element string A signal delay transmission circuit that, when used together with a signal, outputs a delayed signal sequence with a shorter time interval than when only the signal extracted from the signal input / output point and the signal transmission device cascade connection point of the first signal transmission device row is used. . 遅延時間がほぼd×(2n+1)「nは1以上の正の整数」となる第一の信号伝送素子を縦続接続した信号伝送素子列において、信号入出力点および信号伝送素子縦続接続点に遅延時間が2dとなる第二の信号伝送素子あるいは第二の信号伝送素子を縦続接続した第二の信号伝送素子列を接続し、第二の信号伝送素子の信号出力点あるいは第二の信号伝送素子列の信号出力点および信号伝送素子縦続接続点から信号を取り出し、第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号と共に用いることにより、第一の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号のみを用いる場合、あるいは第一の信号伝送素子の代わりに第二の信号伝送素子を用いた場合の信号伝送素子列の信号入出力点および信号伝送素子縦続接続点から取り出した信号のみを用いる場合よりも更に短い時間間隔の遅延信号列を出力する信号遅延伝送回路。   In the signal transmission element array in which the first signal transmission elements having a delay time of approximately d × (2n + 1) “n is a positive integer greater than or equal to 1” are cascaded, signal input / output points and signal transmission element cascade connection points Is connected to the second signal transmission element or the second signal transmission element string in which the second signal transmission elements are cascade-connected, and the signal output point of the second signal transmission element or the second signal A signal is taken out from the signal output point of the transmission element row and the signal transmission element cascade connection point, and used together with the signal taken out from the signal input / output point and the signal transmission element cascade connection point of the first signal transmission element row, the first Signal transmission element array when using only the signal taken out from the signal input / output point and signal transmission element cascade connection point of the signal transmission element array, or when using the second signal transmission element instead of the first signal transmission element Signal input / output points And a signal delay transmission circuit for outputting a delayed signal sequence having a shorter time interval than when only the signal extracted from the signal transmission element cascade connection point is used. 請求項1及び請求項2及び請求項3及び請求項4において、第一の信号伝送素子及び第二の信号伝送素子に伝送遅延時間可変素子を用いた信号遅延伝送回路。   5. The signal delay transmission circuit according to claim 1, wherein the first signal transmission element and the second signal transmission element are variable transmission delay time elements. 請求項1及び請求項2及び請求項3及び請求項4及び請求項5において、異なる大きさの電気容量あるいは一部要素として異なる大きさの電気容量を持った素子等を出力に負荷すること、あるいは伝送素子を製作構成する過程で生じた大きさの異なる電気的容量性負荷等により伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   In claim 1, claim 2, claim 3, claim 4, and claim 5, loading an output with an element having a different capacity or an element having a different capacity as a partial element to the output, Alternatively, a signal delay transmission circuit using the first signal transmission element and the second signal transmission element in which the difference in the transmission delay time is determined by the electric capacitive load having different sizes generated in the process of manufacturing and configuring the transmission element . 請求項1及び請求項2及び請求項3及び請求項4及び請求項5及び請求項6において、異なる大きさの電気抵抗及び電気的誘導性のどちらかあるいは両方を具備する素子あるいは領域等、あるいは一部要素として異なる大きさの電気抵抗及び異なる大きさの電気的誘導性のどちらかあるいは両方を具備する素子あるいは領域等を介して、出力に電気的容量性のある素子あるいは領域等、あるいは一部要素として電気的容量性のある素子あるいは領域等を負荷すること、あるいは伝送素子を製作構成する過程で生じた電気的容量性負荷等により伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   In claim 1, claim 2, claim 3, claim 4, claim 5 and claim 6, elements or regions having different or both of electrical resistance and electrical inductivity, or the like, or As an element, a region or the like having an electrical resistance of a different size as an element or a region or the like having either or both of a different size of electrical resistance and a different size of electrical inductivity. A first signal transmission element in which a difference in transmission delay time is determined by loading an element or region having electrical capacitance as a sub-element or by an electric capacitive load generated in the process of manufacturing and configuring the transmission element And a signal delay transmission circuit using the second signal transmission element. 請求項1及び請求項2及び請求項3及び請求項4及び請求項5及び請求項6及び請求項7において、駆動能力の異なる伝送駆動素子等を用いることにより伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   In claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 and claim 7, the difference in transmission delay time is determined by using transmission drive elements having different drive capabilities. A signal delay transmission circuit using one signal transmission element and a second signal transmission element. 請求項1及び請求項2及び請求項3及び請求項4及び請求項5及び請求項6及び請求項7及び請求項8において、伝送駆動素子へ電源電圧や電源電流を供給する素子や装置あるいは素子や装置の設定条件や制御条件等伝送駆動素子等の駆動能力に影響を与える環境を異ならせることにより伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   Claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7 and claim 8, an element, device or element for supplying a power supply voltage or power supply current to a transmission drive element The first signal transmission element and the second signal transmission element were used to determine the difference in transmission delay time by changing the environment that affects the driving capability of the transmission drive element, such as the device setting conditions and control conditions. Signal delay transmission circuit. 請求項1及び請求項2及び請求項3及び請求項4及び請求項5及び請求項6及び請求項7及び請求項8及び請求項9において、信号値識別電圧あるいは信号値識別電流レベルの異なる入力部あるいは領域を持つ伝送素子あるいは領域等を用いることにより伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   Claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, and claim 9, wherein different signal value identification voltage or signal value identification current levels are input. A signal delay transmission circuit using a first signal transmission element and a second signal transmission element in which a difference in transmission delay time is determined by using a transmission element or a region having a part or a region. 請求項1及び請求項2及び請求項3及び請求項4及び請求項5及び請求項6及び請求項7及び請求項8及び請求項9及び請求項10において、信号値識別電圧あるいは信号値識別電流レベルの異なる入力部を持つ緩衝増幅器あるいは信号値識別電圧あるいは信号値識別電流レベルの異なるレベル比較器あるいはこれと同様の働きをする素子及び領域等を用いることにより伝送遅延時間の違いを決定した第一の信号伝送素子と第二の信号伝送素子を用いた信号遅延伝送回路。   In claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, 9 and 10, signal value identification voltage or signal value identification current The difference in transmission delay time is determined by using buffer amplifiers having different levels of input units, level comparators having different signal value identification voltages or signal value identification current levels, or elements and regions having the same function. A signal delay transmission circuit using one signal transmission element and a second signal transmission element. 請求項5及び請求項6及び請求項7及び請求項8及び請求項9及び請求項10及び請求項11の方法を用いた信号遅延伝送回路の遅延信号列内のどれか一つの出力と、上記された遅延信号列内のどれか一つの出力とは異なる遅延信号列内のどれかもう一つの出力あるいは信号遅延伝送回路の入力信号のどちらかを位相比較器に入力することによって構成されるDLL「Delay Locked Loop」回路。   Any one output in the delayed signal train of the signal delay transmission circuit using the method of claim 5, claim 6, claim 7, claim 8, claim 9, claim 10 and claim 11, and DLL configured by inputting one of the other outputs in the delay signal sequence different from the output of one of the delayed signal sequences or the input signal of the signal delay transmission circuit to the phase comparator. "Delay Locked Loop" circuit. 請求項1から請求項12までの方法を用いた信号遅延伝送回路の遅延信号列の内どれか一つを時間的な基準信号としてその他の遅延信号列と共に出力する信号遅延伝送回路。   13. A signal delay transmission circuit that outputs any one of the delay signal sequences of the signal delay transmission circuit using the method according to claim 1 as a temporal reference signal together with other delay signal sequences. 信号遅延伝送回路の遅延信号列出力を利用する装置において、請求項1から請求項13までの方法を信号遅延伝送回路や遅延信号列出力生成に用いた事により発生する遅延信号列の基準信号や遅延信号の時間遅れと同じ時間遅れを、遅延信号列出力を利用する回路や装置の信号に回路等の前後、中間、内部等で加える事。これにより、遅延信号列出力を利用する装置の本来の時間的な基準信号や基準クロックと遅延信号列出力信号が時間的にずれている事による不具合を解消した回路及び装置。   In an apparatus using the delayed signal sequence output of the signal delay transmission circuit, the reference signal or delay of the delayed signal sequence generated by using the method of claims 1 to 13 for generating the signal delay transmission circuit or delayed signal sequence output Add the same time delay as the signal delay to the signal of the circuit or device that uses the delayed signal sequence output before, after, in the middle, inside the circuit, etc. As a result, a circuit and a device in which the original time reference signal or the reference clock of the device using the delayed signal sequence output and the problem due to the time signal and the delayed signal sequence output signal being shifted are eliminated. 信号遅延伝送回路出力信号である遅延信号列の時間的な基準信号の生成に用いた信号遅延伝送回路と同じ信号伝送素子や伝送遅延時間可変素子や回路及び伝送遅延時間可変制御信号を用いて、信号遅延伝送回路の遅延信号列出力を利用する装置の本来の時間的な基準信号あるいは基準クロックを遅延信号列の時間的な基準信号と同様に遅延させた信号あるいはクロックを生成する事。
このクロックを、D型フリップフロップ等で構成したレジスターにクロックとして与える事及び、そのクロックを利用した回路及び装置。
これにより、遅延信号列出力を利用する回路や装置の信号に遅延信号列の時間的な基準信号と同様な時間遅れを加える事及び、それを利用した回路及び装置。
Using the same signal transmission element, transmission delay time variable element, circuit and transmission delay time variable control signal as the signal delay transmission circuit used for generating the temporal reference signal of the delay signal string that is the signal delay transmission circuit output signal, To generate a signal or clock obtained by delaying the original temporal reference signal or reference clock of the device using the delayed signal train output of the signal delay transmission circuit in the same manner as the temporal reference signal of the delayed signal train.
Giving this clock as a clock to a register composed of a D-type flip-flop and the like and a circuit and a device using the clock.
Thus, a time delay similar to the temporal reference signal of the delay signal sequence is added to the signal of the circuit or device using the delay signal sequence output, and the circuit and device using the same.
信号遅延伝送回路出力信号である遅延信号列の時間的な基準信号とその他の信号遅延伝送回路出力信号の内のどれかを、例えば排他的論理和(EXOR)等の組み合せ論理回路等を用いて、遅延信号列の時間的な基準信号の立ち上がりエッジと下がりエッジが同方向のエッジとなるクロックを生成する事。なお、組み合せ論理回路等は特定することはない。
このクロックを、D型フリップフロップ等で構成したレジスターにクロックとして与える事及び、そのクロックを利用した回路及び装置。
これにより、遅延信号列出力を利用する回路や装置の信号に遅延信号列の時間的な基準信号と同様な時間遅れを加える事及び、それを利用した回路及び装置。
Any one of the time reference signal of the delay signal train that is the signal delay transmission circuit output signal and the other signal delay transmission circuit output signal, for example, using a combinational logic circuit such as exclusive OR (EXOR) And generating a clock in which the rising edge and the falling edge of the temporal reference signal of the delay signal sequence are edges in the same direction. The combinational logic circuit or the like is not specified.
Giving this clock as a clock to a register composed of a D-type flip-flop and the like and a circuit and a device using the clock.
Thus, a time delay similar to the temporal reference signal of the delay signal sequence is added to the signal of the circuit or device using the delay signal sequence output, and the circuit and device using the same.
JP2005171766A 2005-06-13 2005-06-13 Signal delay transmission circuit Pending JP2006352184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171766A JP2006352184A (en) 2005-06-13 2005-06-13 Signal delay transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171766A JP2006352184A (en) 2005-06-13 2005-06-13 Signal delay transmission circuit

Publications (1)

Publication Number Publication Date
JP2006352184A true JP2006352184A (en) 2006-12-28

Family

ID=37647603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171766A Pending JP2006352184A (en) 2005-06-13 2005-06-13 Signal delay transmission circuit

Country Status (1)

Country Link
JP (1) JP2006352184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042455A1 (en) * 2021-09-15 2023-03-23 ソニーセミコンダクタソリューションズ株式会社 Dll circuit and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042455A1 (en) * 2021-09-15 2023-03-23 ソニーセミコンダクタソリューションズ株式会社 Dll circuit and light-emitting device

Similar Documents

Publication Publication Date Title
US7863957B2 (en) Duty cycle correction circuit and semiconductor integrated circuit apparatus including the same
JP3753925B2 (en) Semiconductor integrated circuit
US7457191B2 (en) Apparatus and method of generating output enable signal for semiconductor memory apparatus
US7675337B2 (en) Duty cycle correcting circuit and duty cycle correcting method
US8212622B2 (en) Oscillation circuit and recording apparatus
JP2011249942A (en) Clock adjustment circuit, duty ratio deviation detection circuit, imaging device, and clock adjustment method
US11201610B2 (en) Selectable delay buffers and logic cells for dynamic voltage scaling in ultra low voltage designs
JP2011142382A (en) Output circuit and semiconductor device including pre-emphasis function
US7170331B2 (en) Delay circuit
US20080126458A1 (en) Apparatus and Methods for Generating Random Signals
JP2005151438A (en) Comparator circuit
JP3114215B2 (en) Clock frequency doubler
JPH1074390A (en) Semiconductor integrated circuit
JP2006352184A (en) Signal delay transmission circuit
JP2000163999A (en) Self-timing control circuit
CN107210066B (en) Three-dimensional logic circuit
US20170244397A1 (en) Electronic circuit, solid state image capturing apparatus and method of controlling electronic circuit
US9385693B2 (en) Flip-flop circuit and semiconductor apparatus using the same
JP3547983B2 (en) Pulse width control circuit and disk recording control circuit
JP2011041140A (en) Data receiving circuit
US20070297307A1 (en) Write Correction Circuit and Write Correction Method
JP2006157909A (en) Duty cycle correction circuit
TWI820783B (en) Frequency detection device for clock signal and detection method thereof
JP3843103B2 (en) Pulse width control circuit
JP2016127602A (en) Clock generation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730