JP2006352118A - Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film - Google Patents

Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film Download PDF

Info

Publication number
JP2006352118A
JP2006352118A JP2006160935A JP2006160935A JP2006352118A JP 2006352118 A JP2006352118 A JP 2006352118A JP 2006160935 A JP2006160935 A JP 2006160935A JP 2006160935 A JP2006160935 A JP 2006160935A JP 2006352118 A JP2006352118 A JP 2006352118A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
composition
bis
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006160935A
Other languages
Japanese (ja)
Inventor
Eiji Hayashi
英治 林
Koichi Hasegawa
公一 長谷川
Yoshihide Jo
榮秀 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006160935A priority Critical patent/JP2006352118A/en
Publication of JP2006352118A publication Critical patent/JP2006352118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition with which such a film can be formed that is excellent, as a material for an insulating film of a semiconductor device or the like, in a dielectric characteristic after a PCT, a CMP-resisting characteristic after a PCT and a close-contact characteristic with a substrate after a PCT, to provide a method of forming an interlayer insulating film and to provide a silica-based interlayer insulating film produced from the composition. <P>SOLUTION: The composition contains (A) a substance having a radius of inertia of 5 through 50 nm produced by hydrolyzing and condensing, in the presence of water and tetraalkylammonium hydroxide, at least one of the compounds represented below by formulae (1) and (2), wherein the formula (1) is R<SB>a</SB>Si(OR<SP>1</SP>)<SB>4-a</SB>, in which R stands for a hydrogen atom, a fluorine atom, or a monovalent organic group, R<SP>1</SP>does for a monovalent organic group, and a does for an integer from 0 through 2; and the formula (2) is R<SP>3</SP><SB>b</SB>(R<SP>4</SP>O)<SB>3-b</SB>Si-(R<SP>7</SP>)<SB>d</SB>-Si(O<SP>5</SP>)<SB>3-c</SB>R<SP>6</SP><SB>c</SB>, in which R<SP>3</SP>through R<SP>6</SP>stand for organic groups that are the same or different and respectively monovalent, b and c stand for the same or different numbers from 0 through 2, R<SP>7</SP>stands for an oxygen atom, a phenylene group, or a group represented by -(CH<SB>2</SB>)<SB>n</SB>- with n denoting an integer from 1 through 6, and d stands for 0 or 1; and (B) an organic solvent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、層間絶縁膜形成用組成物に関し、さらに詳しくは、半導体素子などにおける層間絶縁膜材料として、PCT(Presure Cooker Test)後の比誘電率特性、PCT後のCMP(Chemical Mechanical Polishing)耐性、PCT後の基板との密着性に優れたシリカ系層間絶縁膜が形成可能な層間絶縁膜形成用組成物に関する。   The present invention relates to a composition for forming an interlayer insulating film, and more specifically, as an interlayer insulating film material in a semiconductor element or the like, as a dielectric constant characteristic after PCT (Present Cooker Test), CMP (Chemical Mechanical Polishing) resistance after PCT The present invention relates to a composition for forming an interlayer insulating film capable of forming a silica-based interlayer insulating film having excellent adhesion to a substrate after PCT.

従来、半導体素子などにおける層間絶縁膜として、CVD法などの真空プロセスで形成されたシリカ(SiO)膜が多用されている。そして、近年、より均一な層間絶縁膜を形成することを目的として、SOG(Spin on Glass)膜と呼ばれるテトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁膜も使用されるようになっている。また、半導体素子などの高集積化に伴い、有機SOGと呼ばれるポリオルガノシロキサンを主成分とする低比誘電率の層間絶縁膜が開発されている。 Conventionally, a silica (SiO 2 ) film formed by a vacuum process such as a CVD method is frequently used as an interlayer insulating film in a semiconductor element or the like. In recent years, for the purpose of forming a more uniform interlayer insulating film, a coating type insulating film called a SOG (Spin on Glass) film containing a hydrolysis product of tetraalkoxylane as a main component has been used. It has become. In addition, with high integration of semiconductor elements and the like, an interlayer insulating film having a low relative dielectric constant, which is mainly composed of polyorganosiloxane called organic SOG, has been developed.

特に半導体素子などのさらなる高集積化や多層化に伴い、より優れた導体間の電気絶縁性が要求されており、したがって、より低比誘電率でかつクラック耐性に優れる層間絶縁膜材料が求められるようになっている。   In particular, with further higher integration and multi-layering of semiconductor elements and the like, better electrical insulation between conductors is required. Therefore, an interlayer insulating film material having a lower relative dielectric constant and excellent crack resistance is required. It is like that.

低比誘電率の材料としては、アンモニアの存在下にアルコキシシランを縮合して得られる微粒子とアルコキシシランの塩基性部分加水分解物との混合物からなる組成物(特開平5−263045、同5−315319)や、ポリアルコキシシランの塩基性加水分解物をアンモニアの存在下縮合することにより得られた塗布液(特開平11−340219、同11−340220)が提案されているが、これらの方法で得られる材料は、反応の生成物の性質が安定せず、PCT後の比誘電率特性、PCT後のCMP耐性、PCT後の基板との密着性などの膜特性のバラツキも大きいため、工業的生産には不向きであった。
特開平5−263045号公報 特開平5−315319号公報 特開平11−340219号公報 特開平11−340220号公報
As a material having a low relative dielectric constant, a composition comprising a mixture of fine particles obtained by condensing alkoxysilane in the presence of ammonia and a basic partial hydrolyzate of alkoxysilane (JP-A-5-263045 and 5- 315319) and coating solutions obtained by condensing a basic hydrolyzate of polyalkoxysilane in the presence of ammonia (JP-A-11-340219 and 11-340220) have been proposed. The resulting material is unstable in the properties of the reaction product, and has a large variation in film properties such as the dielectric constant characteristics after PCT, CMP resistance after PCT, and adhesion to the substrate after PCT. It was unsuitable for production.
JP-A-5-263045 JP-A-5-315319 Japanese Patent Laid-Open No. 11-340219 Japanese Patent Laid-Open No. 11-340220

本発明は、上記問題点を解決するための層間絶縁膜形成用組成物に関し、さらに詳しくは、半導体素子などにおける層間絶縁膜として、PCT後の比誘電率特性、PCT後のCMP耐性、PCT後の基板との密着性に優れた層間絶縁膜形成用組成物および該組成物から得られるシリカ系層間絶縁膜を提供することを目的とする。   The present invention relates to a composition for forming an interlayer insulating film for solving the above-described problems, and more specifically, as an interlayer insulating film in a semiconductor element or the like, as a dielectric constant characteristic after PCT, CMP resistance after PCT, and after PCT. It is an object of the present invention to provide a composition for forming an interlayer insulating film having excellent adhesion to the substrate and a silica-based interlayer insulating film obtained from the composition.

本発明は、
(A)下記一般式(1)で表される化合物(以下、「化合物1」という)、下記一般式(2)で表される化合物(以下、「化合物2」という)および下記一般式(3)で表される化合物(以下、「化合物3」という)の群から選ばれた少なくとも1種のシラン化合物を水酸化テトラアルキルアンモニウム、脂肪族環状有機アミン、金属水酸化物の群から選ばれる少なくとも1種の化合物(以下、「特定塩基性化合物」という)と水の存在下で加水分解し、縮合した慣性半径が5〜50nmである加水分解縮合物
Si(OR4−a ・・・・・(1)
(式中、Rは水素原子、フッ素原子または1価の有機基、R1は1価の有機基、aは1〜2の整数を示す。)
Si(OR ・・・・・(2)
(式中、Rは1価の有機基を示す。)
(RO)3−bSi−(R−Si(OR3−c ・・(3)
〔式中、R〜Rは同一または異なり、それぞれ1価の有機基、bおよびcは同一または異なり、0〜2の数を示し、Rは酸素原子、フェニレン基または−(CH−で表される基(ここで、nは1〜6の整数である)、dは0または1を示す。〕
ならびに(B)有機溶媒
を含有することを特徴とする層間絶縁膜形成用組成物に関する。
The present invention
(A) A compound represented by the following general formula (1) (hereinafter referred to as “compound 1”), a compound represented by the following general formula (2) (hereinafter referred to as “compound 2”), and the following general formula (3) ) At least one silane compound selected from the group of compounds (hereinafter referred to as “compound 3”) is selected from the group consisting of tetraalkylammonium hydroxide, aliphatic cyclic organic amines, and metal hydroxides. Hydrolysis condensate R a Si (OR 1 ) 4-a . Which is hydrolyzed in the presence of one compound (hereinafter referred to as “specific basic compound”) and condensed to a radius of inertia of 5 to 50 nm. (1)
(In the formula, R represents a hydrogen atom, a fluorine atom or a monovalent organic group, R 1 represents a monovalent organic group, and a represents an integer of 1 to 2)
Si (OR 2 ) 4 (2)
(Wherein R 2 represents a monovalent organic group.)
R 3 b (R 4 O) 3-b Si- (R 7) d -Si (OR 5) 3-c R 6 c ·· (3)
[Wherein R 3 to R 6 are the same or different, each is a monovalent organic group, b and c are the same or different, and represent a number of 0 to 2, and R 7 represents an oxygen atom, a phenylene group or — (CH 2 ) A group represented by n- (where n is an integer of 1 to 6), d represents 0 or 1. ]
And (B) an interlayer insulating film forming composition characterized by containing an organic solvent.

次に、本発明は、上記層間絶縁膜形成用組成物を基板に塗布し、加熱することを特徴とする層間絶縁膜の形成方法に関する。   Next, this invention relates to the formation method of the interlayer insulation film characterized by apply | coating the said composition for interlayer insulation film formation to a board | substrate, and heating.

次に、本発明は、上記層間絶縁膜の形成方法によって得られるシリカ系層間絶縁膜に関する。   Next, the present invention relates to a silica-based interlayer insulating film obtained by the method for forming an interlayer insulating film.

本発明によれば、特定の塩基性化合物と水の存在下アルコキシシラン加水分解および/または縮合を行うことで、PCT後の比誘電率特性、PCT後のCMP耐性、PCT後の基板との密着性に優れた層間絶縁膜形成用組成物(層間絶縁膜用材料)を提供することが可能である。   According to the present invention, by carrying out alkoxysilane hydrolysis and / or condensation in the presence of a specific basic compound and water, the dielectric constant characteristics after PCT, the CMP resistance after PCT, and the adhesion to the substrate after PCT It is possible to provide a composition for forming an interlayer insulating film (material for an interlayer insulating film) having excellent properties.

本発明において、(A)加水分解縮合物とは、上記化合物(1)〜(3)の群から選ばれた少なくとも1種の加水分解物およびその縮合物もしくはいずれか一方である。   In the present invention, (A) hydrolysis condensate is at least one hydrolyzate selected from the group of compounds (1) to (3) and / or a condensate thereof.

ここで、(A)成分における加水分解物とは、上記(A)成分を構成する化合物(1)〜(3)に含まれるRO−基,RO−基,RO−基およびRO−基のすべてが加水分解されている必要はなく、例えば、1個だけが加水分解されているもの、2個以上が加水分解されているもの、あるいは、これらの混合物であってもよい。 Here, the hydrolyzate in the component (A) is an R 1 O— group, an R 2 O— group, or an R 4 O— group contained in the compounds (1) to (3) constituting the component (A). And all of the R 5 O— groups need not be hydrolyzed, for example, only one is hydrolyzed, two or more are hydrolyzed, or a mixture thereof. Also good.

また、(A)成分における縮合物は、(A)成分を構成する化合物(1)〜(3)の加水分解物のシラノール基が縮合してSi−O−Si結合を形成したものであるが、本発明では、シラノール基がすべて縮合している必要はなく、僅かな一部のシラノール基が縮合したもの、縮合の程度が異なっているものの混合物などをも包含した概念である。   Moreover, the condensate in the component (A) is a product in which the silanol groups of the hydrolyzates of the compounds (1) to (3) constituting the component (A) are condensed to form a Si—O—Si bond. In the present invention, it is not necessary that all the silanol groups are condensed, and it is a concept including a mixture of a small part of the silanol groups or a mixture of those having different degrees of condensation.

(A)加水分解縮合物
(A)加水分解縮合物は、上記化合物(1)〜(3)の群から選ばれた少なくとも1種のシラン化合物を特定塩基性化合物の存在下に、加水分解、縮合して得られる。
(A) Hydrolysis condensate (A) The hydrolysis condensate is obtained by hydrolyzing at least one silane compound selected from the group of the compounds (1) to (3) in the presence of a specific basic compound. Obtained by condensation.

化合物(1);
上記一般式(1)において、RおよびRの1価の有機基としては、アルキル基、アリール基、アリル基、グリシジル基などを挙げることができる。また、一般式(1)において、Rは1価の有機基、特にアルキル基またはフェニル基であることが好ましい。
Compound (1);
In the general formula (1), examples of the monovalent organic group represented by R and R 1 include an alkyl group, an aryl group, an allyl group, and a glycidyl group. In the general formula (1), R is preferably a monovalent organic group, particularly an alkyl group or a phenyl group.

ここで、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられ、好ましくは炭素数1〜5であり、これらのアルキル基は鎖状でも、分岐していてもよく、さらに水素原子がフッ素原子などに置換されていてもよい。   Here, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and preferably 1 to 5 carbon atoms. These alkyl groups may be linear or branched, Further, a hydrogen atom may be substituted with a fluorine atom or the like.

一般式(1)において、アリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基などを挙げることができる。   In the general formula (1), examples of the aryl group include a phenyl group, a naphthyl group, a methylphenyl group, an ethylphenyl group, a chlorophenyl group, a bromophenyl group, and a fluorophenyl group.

一般式(1)で表される化合物の具体例としては、トリメトキシシラン、トリエトキシシラン、トリ−n−プロポキシシラン、トリ−iso−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、トリ−tert−ブトキシシラン、トリフェノキシシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−iso−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、フルオロトリ−tert−ブトキシシラン、フルオロトリフェノキシシランなど;
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリフェノキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリ−iso−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、ビニルトリ−tert−ブトキシシラン、ビニルトリフェノキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロポキシシラン、n−プロピルトリ−iso−プロポキシシラン、n−プロピルトリ−n−ブトキシシラン、n−プロピルトリ−sec−ブトキシシラン、n−プロピルトリ−tert−ブトキシシラン、n−プロピルトリフェノキシシラン、i−プロピルトリメトキシシラン、i−プロピルトリエトキシシラン、i−プロピルトリ−n−プロポキシシラン、i−プロピルトリ−iso−プロポキシシラン、i−プロピルトリ−n−ブトキシシラン、i−プロピルトリ−sec−ブトキシシラン、i−プロピルトリ−tert−ブトキシシラン、i−プロピルトリフェノキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ブチルトリ−n−プロポキシシラン、n−ブチルトリ−iso−プロポキシシラン、n−ブチルトリ−n−ブトキシシラン、n−ブチルトリ−sec−ブトキシシラン、n−ブチルトリ−tert−ブトキシシラン、n−ブチルトリフェノキシシラン、sec−ブチルトリメトキシシラン、sec−ブチルトリエトキシシラン、sec−ブチル−トリ−n−プロポキシシラン、sec−ブチル−トリ−iso−プロポキシシラン、sec−ブチル−トリ−n−ブトキシシラン、sec−ブチル−トリ−sec−ブトキシシラン、sec−ブチル−トリ−tert−ブトキシシラン、sec−ブチル−トリフェノキシシラン、t−ブチルトリメトキシシラン、t−ブチルトリエトキシシラン、t−ブチルトリ−n−プロポキシシラン、t−ブチルトリ−iso−プロポキシシラン、t−ブチルトリ−n−ブトキシシラン、t−ブチルトリ−sec−ブトキシシラン、t−ブチルトリ−tert−ブトキシシラン、t−ブチルトリフェノキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−iso−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、フェニルトリ−tert−ブトキシシラン、フェニルトリフェノキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−トリフロロプロピルトリメトキシシラン、γ−トリフロロプロピルトリエトキシシランなど;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチル−ジ−n−プロポキシシラン、ジメチル−ジ−iso−プロポキシシラン、ジメチル−ジ−n−ブトキシシラン、ジメチル−ジ−sec−ブトキシシラン、ジメチル−ジ−tert−ブトキシシラン、ジメチルジフェノキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチル−ジ−n−プロポキシシラン、ジエチル−ジ−iso−プロポキシシラン、ジエチル−ジ−n−ブトキシシラン、ジエチル−ジ−sec−ブトキシシラン、ジエチル−ジ−tert−ブトキシシラン、ジエチルジフェノキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−n−プロピル−ジ−n−プロポキシシラン、ジ−n−プロピル−ジ−iso−プロポキシシラン、ジ−n−プロピル−ジ−n−ブトキシシラン、ジ−n−プロピル−ジ−sec−ブトキシシラン、ジ−n−プロピル−ジ−tert−ブトキシシラン、ジ−n−プロピル−ジ−フェノキシシラン、ジ−iso−プロピルジメトキシシラン、ジ−iso−プロピルジエトキシシラン、ジ−iso−プロピル−ジ−n−プロポキシシラン、ジ−iso−プロピル−ジ−iso−プロポキシシラン、ジ−iso−プロピル−ジ−n−ブトキシシラン、ジ−iso−プロピル−ジ−sec−ブトキシシラン、ジ−iso−プロピル−ジ−tert−ブトキシシラン、ジ−iso−プロピル−ジ−フェノキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ブチル−ジ−n−プロポキシシラン、ジ−n−ブチル−ジ−iso−プロポキシシラン、ジ−n−ブチル−ジ−n−ブトキシシラン、ジ−n−ブチル−ジ−sec−ブトキシシラン、ジ−n−ブチル−ジ−tert−ブトキシシラン、ジ−n−ブチル−ジ−フェノキシシラン、ジ−sec−ブチルジメトキシシラン、ジ−sec−ブチルジエトキシシラン、ジ−sec−ブチル−ジ−n−プロポキシシラン、ジ−sec−ブチル−ジ−iso−プロポキシシラン、ジ−sec−ブチル−ジ−n−ブトキシシラン、ジ−sec−ブチル−ジ−sec−ブトキシシラン、ジ−sec−ブチル−ジ−tert−ブトキシシラン、ジ−sec−ブチル−ジ−フェノキシシラン、ジ−tert−ブチルジメトキシシラン、ジ−tert−ブチルジエトキシシラン、ジ−tert−ブチル−ジ−n−プロポキシシラン、ジ−tert−ブチル−ジ−iso−プロポキシシラン、ジ−tert−ブチル−ジ−n−ブトキシシラン、ジ−tert−ブチル−ジ−sec−ブトキシシラン、ジ−tert−ブチル−ジ−tert−ブトキシシラン、ジ−tert−ブチル−ジ−フェノキシシラン、ジフェニルジメトキシシラン、ジフェニル−ジ−エトキシシラン、ジフェニル−ジ−n−プロポキシシラン、ジフェニル−ジ−iso−プロポキシシラン、ジフェニル−ジ−n−ブトキシシラン、ジフェニル−ジ−sec−ブトキシシラン、ジフェニル−ジ−tert−ブトキシシラン、ジフェニルジフェノキシシラン、ジビニルトリメトキシシランなど;
を挙げることができる。
Specific examples of the compound represented by the general formula (1) include trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-iso-propoxysilane, tri-n-butoxysilane, tri-sec-butoxy. Silane, tri-tert-butoxysilane, triphenoxysilane, fluorotrimethoxysilane, fluorotriethoxysilane, fluorotri-n-propoxysilane, fluorotri-iso-propoxysilane, fluorotri-n-butoxysilane, fluorotri- sec-butoxysilane, fluorotri-tert-butoxysilane, fluorotriphenoxysilane and the like;
Methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane, methyltriphenoxysilane, Ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltri-iso-propoxysilane, ethyltri-n-butoxysilane, ethyltri-sec-butoxysilane, ethyltri-tert-butoxysilane, ethyltriphenoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, vinyltri-iso-propoxysilane, vinyltri-n-butoxy Vinyltri-sec-butoxysilane, vinyltri-tert-butoxysilane, vinyltriphenoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltri-n-propoxysilane, n-propyltri- iso-propoxysilane, n-propyltri-n-butoxysilane, n-propyltri-sec-butoxysilane, n-propyltri-tert-butoxysilane, n-propyltriphenoxysilane, i-propyltrimethoxysilane, i -Propyltriethoxysilane, i-propyltri-n-propoxysilane, i-propyltri-iso-propoxysilane, i-propyltri-n-butoxysilane, i-propyltri-sec-butoxysilane, i-propyltri -Ter -Butoxysilane, i-propyltriphenoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-butyltri-n-propoxysilane, n-butyltri-iso-propoxysilane, n-butyltri-n-butoxy Silane, n-butyltri-sec-butoxysilane, n-butyltri-tert-butoxysilane, n-butyltriphenoxysilane, sec-butyltrimethoxysilane, sec-butyltriethoxysilane, sec-butyl-tri-n-propoxy Silane, sec-butyl-tri-iso-propoxysilane, sec-butyl-tri-n-butoxysilane, sec-butyl-tri-sec-butoxysilane, sec-butyl-tri-tert-butoxysilane, sec-butyl- Triphenoki Sisilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, t-butyltri-n-propoxysilane, t-butyltri-iso-propoxysilane, t-butyltri-n-butoxysilane, t-butyltri-sec-butoxy Silane, t-butyltri-tert-butoxysilane, t-butyltriphenoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-iso-propoxysilane, phenyltri-n-butoxy Silane, phenyltri-sec-butoxysilane, phenyltri-tert-butoxysilane, phenyltriphenoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ- Aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-trifluoropropyltrimethoxysilane, γ-trifluoropropyltriethoxysilane, and the like;
Dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyl-di-n-propoxysilane, dimethyl-di-iso-propoxysilane, dimethyl-di-n-butoxysilane, dimethyl-di-sec-butoxysilane, dimethyl-di-tert -Butoxysilane, dimethyldiphenoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyl-di-n-propoxysilane, diethyl-di-iso-propoxysilane, diethyl-di-n-butoxysilane, diethyl-di-sec -Butoxysilane, diethyl-di-tert-butoxysilane, diethyldiphenoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, di-n-propyl-di-n-propoxysilane, di- n-propyl- -Iso-propoxysilane, di-n-propyl-di-n-butoxysilane, di-n-propyl-di-sec-butoxysilane, di-n-propyl-di-tert-butoxysilane, di-n-propyl -Di-phenoxysilane, di-iso-propyldimethoxysilane, di-iso-propyldiethoxysilane, di-iso-propyl-di-n-propoxysilane, di-iso-propyl-di-iso-propoxysilane, di -Iso-propyl-di-n-butoxysilane, di-iso-propyl-di-sec-butoxysilane, di-iso-propyl-di-tert-butoxysilane, di-iso-propyl-di-phenoxysilane, di -N-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-butyl-di-n-pro Xysilane, di-n-butyl-di-iso-propoxysilane, di-n-butyl-di-n-butoxysilane, di-n-butyl-di-sec-butoxysilane, di-n-butyl-di-tert -Butoxysilane, di-n-butyl-di-phenoxysilane, di-sec-butyldimethoxysilane, di-sec-butyldiethoxysilane, di-sec-butyl-di-n-propoxysilane, di-sec-butyl -Di-iso-propoxysilane, di-sec-butyl-di-n-butoxysilane, di-sec-butyl-di-sec-butoxysilane, di-sec-butyl-di-tert-butoxysilane, di-sec -Butyl-di-phenoxysilane, di-tert-butyldimethoxysilane, di-tert-butyldiethoxysilane, di-tert -Butyl-di-n-propoxysilane, di-tert-butyl-di-iso-propoxysilane, di-tert-butyl-di-n-butoxysilane, di-tert-butyl-di-sec-butoxysilane, di -Tert-butyl-di-tert-butoxysilane, di-tert-butyl-di-phenoxysilane, diphenyldimethoxysilane, diphenyl-di-ethoxysilane, diphenyl-di-n-propoxysilane, diphenyl-di-iso-propoxy Silane, diphenyl-di-n-butoxysilane, diphenyl-di-sec-butoxysilane, diphenyl-di-tert-butoxysilane, diphenyldiphenoxysilane, divinyltrimethoxysilane and the like;
Can be mentioned.

化合物(1)として好ましい化合物は、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどである。   Preferred compounds as the compound (1) are methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltri Examples include ethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.

これらは、1種あるいは2種以上を同時に使用してもよい。   These may be used alone or in combination of two or more.

化合物(2);
上記一般式(2)において、Rで表される1価の有機基としては、先の一般式(1)と同様な有機基を挙げることができる。
Compound (2);
In the general formula (2), examples of the monovalent organic group represented by R 2 include the same organic groups as those in the general formula (1).

一般式(2)で表される化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラフェノキシシランなどが挙げられる。   Specific examples of the compound represented by the general formula (2) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, and tetra-sec-butoxysilane. , Tetra-tert-butoxysilane, tetraphenoxysilane, and the like.

化合物(3);
上記一般式(3)において、R〜Rで表される1価の有機基としては、先の一般式(1)と同様な有機基を挙げることができる。
Compound (3);
In the general formula (3), examples of the monovalent organic group represented by R 3 to R 6 include the same organic groups as those in the general formula (1).

一般式(3)のうち、Rが酸素原子の化合物としては、ヘキサメトキシジシロキサン、ヘキサエトキシジシロキサン、ヘキサフェノキシジシロキサン、1,1,1,3,3−ペンタメトキシ−3−メチルジシロキサン、1,1,1,3,3−ペンタエトキシ−3−メチルジシロキサン、1,1,1,3,3−ペンタフェノキシ−3−メチルジシロキサン、1,1,1,3,3−ペンタメトキシ−3−エチルジシロキサン、1,1,1,3,3−ペンタエトキシ−3−エチルジシロキサン、1,1,1,3,3−ペンタフェノキシ−3−エチルジシロキサン、1,1,1,3,3−ペンタメトキシ−3−フェニルジシロキサン、1,1,1,3,3−ペンタエトキシ−3−フェニルジシロキサン、1,1,1,3,3−ペンタフェノキシ−3−フェニルジシロキサン、1,1,3,3−テトラメトキシ−1,3−ジメチルジシロキサン、1,1,3,3−テトラエトキシ−1,3−ジメチルジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ジメチルジシロキサン、1,1,3,3−テトラメトキシ−1,3−ジエチルジシロキサン、1,1,3,3−テトラエトキシ−1,3−ジエチルジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ジエチルジシロキサン、1,1,3,3−テトラメトキシ−1,3−ジフェニルジシロキサン、1,1,3,3−テトラエトキシ−1,3−ジフェニルジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ジフェニルジシロキサン、1,1,3−トリメトキシ−1,3,3−トリメチルジシロキサン、1,1,3−トリエトキシ−1,3,3−トリメチルジシロキサン、1,1,3−トリフェノキシ−1,3,3−トリメチルジシロキサン、1,1,3−トリメトキシ−1,3,3−トリエチルジシロキサン、1,1,3−トリエトキシ−1,3,3−トリエチルジシロキサン、1,1,3−トリフェノキシ−1,3,3−トリエチルジシロキサン、1,1,3−トリメトキシ−1,3,3−トリフェニルジシロキサン、1,1,3−トリエトキシ−1,3,3−トリフェニルジシロキサン、1,1,3−トリフェノキシ−1,3,3−トリフェニルジシロキサン、1,3−ジメトキシ−1,1,3,3−テトラメチルジシロキサン、1,3−ジエトキシ−1,1,3,3−テトラメチルジシロキサン、1,3−ジフェノキシ−1,1,3,3−テトラメチルジシロキサン、1,3−ジメトキシ−1,1,3,3−テトラエチルジシロキサン、1,3−ジエトキシ−1,1,3,3−テトラエチルジシロキサン、1,3−ジフェノキシ−1,1,3,3−テトラエチルジシロキサン、1,3−ジメトキシ−1,1,3,3−テトラフェニルジシロキサン、1,3−ジエトキシ−1,1,3,3−テトラフェニルジシロキサン、1,3−ジフェノキシ−1,1,3,3−テトラフェニルジシロキサンなどを挙げることができる。 Of the general formula (3), compounds in which R 7 is an oxygen atom include hexamethoxydisiloxane, hexaethoxydisiloxane, hexaphenoxydisiloxane, 1,1,1,3,3-pentamethoxy-3-methyldi Siloxane, 1,1,1,3,3-pentaethoxy-3-methyldisiloxane, 1,1,1,3,3-pentaphenoxy-3-methyldisiloxane, 1,1,1,3,3- Pentamethoxy-3-ethyldisiloxane, 1,1,1,3,3-pentaethoxy-3-ethyldisiloxane, 1,1,1,3,3-pentaphenoxy-3-ethyldisiloxane, 1,1 1,1,3,3-pentamethoxy-3-phenyldisiloxane, 1,1,1,3,3-pentaethoxy-3-phenyldisiloxane, 1,1,1,3,3-pentaphenoxy-3 -Phenyldisiloxane, 1,1,3,3-tetramethoxy-1,3-dimethyldisiloxane, 1,1,3,3-tetraethoxy-1,3-dimethyldisiloxane, 1,1,3,3 -Tetraphenoxy-1,3-dimethyldisiloxane, 1,1,3,3-tetramethoxy-1,3-diethyldisiloxane, 1,1,3,3-tetraethoxy-1,3-diethyldisiloxane, 1,1,3,3-tetraphenoxy-1,3-diethyldisiloxane, 1,1,3,3-tetramethoxy-1,3-diphenyldisiloxane, 1,1,3,3-tetraethoxy-1 , 3-diphenyldisiloxane, 1,1,3,3-tetraphenoxy-1,3-diphenyldisiloxane, 1,1,3-trimethoxy-1,3,3-trimethyldisiloxane, 1,1,3 Triethoxy-1,3,3-trimethyldisiloxane, 1,1,3-triphenoxy-1,3,3-trimethyldisiloxane, 1,1,3-trimethoxy-1,3,3-triethyldisiloxane, , 1,3-triethoxy-1,3,3-triethyldisiloxane, 1,1,3-triphenoxy-1,3,3-triethyldisiloxane, 1,1,3-trimethoxy-1,3,3- Triphenyldisiloxane, 1,1,3-triethoxy-1,3,3-triphenyldisiloxane, 1,1,3-triphenoxy-1,3,3-triphenyldisiloxane, 1,3-dimethoxy- 1,1,3,3-tetramethyldisiloxane, 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane, 1,3-diphenoxy-1,1,3,3-tetra Tildisiloxane, 1,3-dimethoxy-1,1,3,3-tetraethyldisiloxane, 1,3-diethoxy-1,1,3,3-tetraethyldisiloxane, 1,3-diphenoxy-1,1, 3,3-tetraethyldisiloxane, 1,3-dimethoxy-1,1,3,3-tetraphenyldisiloxane, 1,3-diethoxy-1,1,3,3-tetraphenyldisiloxane, 1,3- Examples thereof include diphenoxy-1,1,3,3-tetraphenyldisiloxane.

これらのうち、ヘキサメトキシジシロキサン、ヘキサエトキシジシロキサン、1,1,3,3−テトラメトキシ−1,3−ジメチルジシロキサン、1,1,3,3−テトラエトキシ−1,3−ジメチルジシロキサン、1,1,3,3−テトラメトキシ−1,3−ジフェニルジシロキサン、1,3−ジメトキシ−1,1,3,3−テトラメチルジシロキサン、1,3−ジエトキシ−1,1,3,3−テトラメチルジシロキサン、1,3−ジメトキシ−1,1,3,3−テトラフェニルジシロキサン、1,3−ジエトキシ−1,1,3,3−テトラフェニルジシロキサンなどを、好ましい例として挙げることができる。   Of these, hexamethoxydisiloxane, hexaethoxydisiloxane, 1,1,3,3-tetramethoxy-1,3-dimethyldisiloxane, 1,1,3,3-tetraethoxy-1,3-dimethyldisiloxane Siloxane, 1,1,3,3-tetramethoxy-1,3-diphenyldisiloxane, 1,3-dimethoxy-1,1,3,3-tetramethyldisiloxane, 1,3-diethoxy-1,1, 3,3-tetramethyldisiloxane, 1,3-dimethoxy-1,1,3,3-tetraphenyldisiloxane, 1,3-diethoxy-1,1,3,3-tetraphenyldisiloxane and the like are preferable. As an example.

また、一般式(3)において、dが0の化合物としては、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサフェノキシジシラン、1,1,1,2,2−ペンタメトキシ−2−メチルジシラン、1,1,1,2,2−ペンタエトキシ−2−メチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−メチルジシラン、1,1,1,2,2−ペンタメトキシ−2−エチルジシラン、1,1,1,2,2−ペンタエトキシ−2−エチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−エチルジシラン、1,1,1,2,2−ペンタメトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタエトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタフェノキシ−2−フェニルジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジエチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラエトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジフェニルジシラン、1,1,2−トリメトキシ−1,2,2−トリメチルジシラン、1,1,2−トリエトキシ−1,2,2−トリメチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリメチルジシラン、1,1,2−トリメトキシ−1,2,2−トリエチルジシラン、1,1,2−トリエトキシ−1,2,2−トリエチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリエチルジシラン、1,1,2−トリメトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリエトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリフェノキシ−1,2,2−トリフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラエチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルジシランなどを挙げることができる。   Further, in the general formula (3), examples of the compound in which d is 0 include hexamethoxydisilane, hexaethoxydisilane, hexaphenoxydisilane, 1,1,1,2,2-pentamethoxy-2-methyldisilane, 1,1 1,1,2,2-pentaethoxy-2-methyldisilane, 1,1,1,2,2-pentaphenoxy-2-methyldisilane, 1,1,1,2,2-pentamethoxy-2-ethyldisilane 1,1,1,2,2-pentaethoxy-2-ethyldisilane, 1,1,1,2,2-pentaphenoxy-2-ethyldisilane, 1,1,1,2,2-pentamethoxy- 2-phenyldisilane, 1,1,1,2,2-pentaethoxy-2-phenyldisilane, 1,1,1,2,2-pentaphenoxy-2-phenyldisilane, 1,1,2,2-tetramethyl Xyl-1,2-dimethyldisilane, 1,1,2,2-tetraethoxy-1,2-dimethyldisilane, 1,1,2,2-tetraphenoxy-1,2-dimethyldisilane, 1,1,2, , 2-tetramethoxy-1,2-diethyldisilane, 1,1,2,2-tetraethoxy-1,2-diethyldisilane, 1,1,2,2-tetraphenoxy-1,2-diethyldisilane, , 1,2,2-tetramethoxy-1,2-diphenyldisilane, 1,1,2,2-tetraethoxy-1,2-diphenyldisilane, 1,1,2,2-tetraphenoxy-1,2- Diphenyldisilane, 1,1,2-trimethoxy-1,2,2-trimethyldisilane, 1,1,2-triethoxy-1,2,2-trimethyldisilane, 1,1,2-triphenoxy-1,2, 2- Limethyldisilane, 1,1,2-trimethoxy-1,2,2-triethyldisilane, 1,1,2-triethoxy-1,2,2-triethyldisilane, 1,1,2-triphenoxy-1,2 , 2-triethyldisilane, 1,1,2-trimethoxy-1,2,2-triphenyldisilane, 1,1,2-triethoxy-1,2,2-triphenyldisilane, 1,1,2-triphenoxy -1,2,2-triphenyldisilane, 1,2-dimethoxy-1,1,2,2-tetramethyldisilane, 1,2-diethoxy-1,1,2,2-tetramethyldisilane, 1,2 -Diphenoxy-1,1,2,2-tetramethyldisilane, 1,2-dimethoxy-1,1,2,2-tetraethyldisilane, 1,2-diethoxy-1,1,2,2-tetraethyldisilane 1,2-diphenoxy-1,1,2,2-tetraethyldisilane, 1,2-dimethoxy-1,1,2,2-tetraphenyldisilane, 1,2-diethoxy-1,1,2,2- Examples include tetraphenyldisilane and 1,2-diphenoxy-1,1,2,2-tetraphenyldisilane.

これらのうち、ヘキサメトキシジシラン、ヘキサエトキシジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシランなどを、好ましい例として挙げることができる。   Of these, hexamethoxydisilane, hexaethoxydisilane, 1,1,2,2-tetramethoxy-1,2-dimethyldisilane, 1,1,2,2-tetraethoxy-1,2-dimethyldisilane, 1, 1,2,2-tetramethoxy-1,2-diphenyldisilane, 1,2-dimethoxy-1,1,2,2-tetramethyldisilane, 1,2-diethoxy-1,1,2,2-tetramethyl Preferred examples include disilane, 1,2-dimethoxy-1,1,2,2-tetraphenyldisilane, 1,2-diethoxy-1,1,2,2-tetraphenyldisilane, and the like.

さらに、一般式(3)において、Rが−(CH−で表される基の化合物としては、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ−n−プロポキシシリル)メタン、ビス(トリ−i−プロポキシシリル)メタン、ビス(トリ−n−ブトキシシリル)メタン、ビス(トリ−sec−ブトキシシリル)メタン、ビス(トリ−t−ブトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1,2−ビス(トリ−n−プロポキシシリル)エタン、1,2−ビス(トリ−i−プロポキシシリル)エタン、1,2−ビス(トリ−n−ブトキシシリル)エタン、1,2−ビス(トリ−sec−ブトキシシリル)エタン、1,2−ビス(トリ−t−ブトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジ−n−プロポキシメチルシリル)−1−(トリ−n−プロポキシシリル)メタン、1−(ジ−i−プロポキシメチルシリル)−1−(トリ−i−プロポキシシリル)メタン、1−(ジ−n−ブトキシメチルシリル)−1−(トリ−n−ブトキシシリル)メタン、1−(ジ−sec−ブトキシメチルシリル)−1−(トリ−sec−ブトキシシリル)メタン、1−(ジ−t−ブトキシメチルシリル)−1−(トリ−t−ブトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、1−(ジ−n−プロポキシメチルシリル)−2−(トリ−n−プロポキシシリル)エタン、1−(ジ−i−プロポキシメチルシリル)−2−(トリ−i−プロポキシシリル)エタン、1−(ジ−n−ブトキシメチルシリル)−2−(トリ−n−ブトキシシリル)エタン、1−(ジ−sec−ブトキシメチルシリル)−2−(トリ−sec−ブトキシシリル)エタン、1−(ジ−t−ブトキシメチルシリル)−2−(トリ−t−ブトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、ビス(ジ−n−プロポキシメチルシリル)メタン、ビス(ジ−i−プロポキシメチルシリル)メタン、ビス(ジ−n−ブトキシメチルシリル)メタン、ビス(ジ−sec−ブトキシメチルシリル)メタン、ビス(ジ−t−ブトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(ジ−n−プロポキシメチルシリル)エタン、1,2−ビス(ジ−i−プロポキシメチルシリル)エタン、1,2−ビス(ジ−n−ブトキシメチルシリル)エタン、1,2−ビス(ジ−sec−ブトキシメチルシリル)エタン、1,2−ビス(ジ−t−ブトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,2−ビス(トリ−n−プロポキシシリル)ベンゼン、1,2−ビス(トリ−i−プロポキシシリル)ベンゼン、1,2−ビス(トリ−n−ブトキシシリル)ベンゼン、1,2−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,2−ビス(トリ−t−ブトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリ−n−プロポキシシリル)ベンゼン、1,3−ビス(トリ−i−プロポキシシリル)ベンゼン、1,3−ビス(トリ−n−ブトキシシリル)ベンゼン、1,3−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,3−ビス(トリ−t−ブトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリ−n−プロポキシシリル)ベンゼン、1,4−ビス(トリ−i−プロポキシシリル)ベンゼン、1,4−ビス(トリ−n−ブトキシシリル)ベンゼン、1,4−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,4−ビス(トリ−t−ブトキシシリル)ベンゼンなど挙げることができる。 Furthermore, in the general formula (3), R 7 is a group represented by — (CH 2 ) n — as bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, bis (tri-n -Propoxysilyl) methane, bis (tri-i-propoxysilyl) methane, bis (tri-n-butoxysilyl) methane, bis (tri-sec-butoxysilyl) methane, bis (tri-t-butoxysilyl) methane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1,2-bis (tri-n-propoxysilyl) ethane, 1,2-bis (tri-i-propoxy) Silyl) ethane, 1,2-bis (tri-n-butoxysilyl) ethane, 1,2-bis (tri-sec-butoxysilyl) ethane, 1,2-bis (tri- -Butoxysilyl) ethane, 1- (dimethoxymethylsilyl) -1- (trimethoxysilyl) methane, 1- (diethoxymethylsilyl) -1- (triethoxysilyl) methane, 1- (di-n-propoxymethyl) Silyl) -1- (tri-n-propoxysilyl) methane, 1- (di-i-propoxymethylsilyl) -1- (tri-i-propoxysilyl) methane, 1- (di-n-butoxymethylsilyl) -1- (Tri-n-butoxysilyl) methane, 1- (di-sec-butoxymethylsilyl) -1- (tri-sec-butoxysilyl) methane, 1- (di-t-butoxymethylsilyl) -1 -(Tri-t-butoxysilyl) methane, 1- (dimethoxymethylsilyl) -2- (trimethoxysilyl) ethane, 1- (diethoxymethylsilyl) -2- (Triethoxysilyl) ethane, 1- (di-n-propoxymethylsilyl) -2- (tri-n-propoxysilyl) ethane, 1- (di-i-propoxymethylsilyl) -2- (tri-i- Propoxysilyl) ethane, 1- (di-n-butoxymethylsilyl) -2- (tri-n-butoxysilyl) ethane, 1- (di-sec-butoxymethylsilyl) -2- (tri-sec-butoxysilyl) ) Ethane, 1- (di-tert-butoxymethylsilyl) -2- (tri-tert-butoxysilyl) ethane, bis (dimethoxymethylsilyl) methane, bis (diethoxymethylsilyl) methane, bis (di-n- Propoxymethylsilyl) methane, bis (di-i-propoxymethylsilyl) methane, bis (di-n-butoxymethylsilyl) methane, bis (di-sec-) Toximethylsilyl) methane, bis (di-t-butoxymethylsilyl) methane, 1,2-bis (dimethoxymethylsilyl) ethane, 1,2-bis (diethoxymethylsilyl) ethane, 1,2-bis (di -N-propoxymethylsilyl) ethane, 1,2-bis (di-i-propoxymethylsilyl) ethane, 1,2-bis (di-n-butoxymethylsilyl) ethane, 1,2-bis (di-sec -Butoxymethylsilyl) ethane, 1,2-bis (di-t-butoxymethylsilyl) ethane, 1,2-bis (trimethoxysilyl) benzene, 1,2-bis (triethoxysilyl) benzene, 1,2 -Bis (tri-n-propoxysilyl) benzene, 1,2-bis (tri-i-propoxysilyl) benzene, 1,2-bis (tri-n-butoxysilyl) , 1,2-bis (tri-sec-butoxysilyl) benzene, 1,2-bis (tri-t-butoxysilyl) benzene, 1,3-bis (trimethoxysilyl) benzene, 1,3-bis ( Triethoxysilyl) benzene, 1,3-bis (tri-n-propoxysilyl) benzene, 1,3-bis (tri-i-propoxysilyl) benzene, 1,3-bis (tri-n-butoxysilyl) benzene 1,3-bis (tri-sec-butoxysilyl) benzene, 1,3-bis (tri-t-butoxysilyl) benzene, 1,4-bis (trimethoxysilyl) benzene, 1,4-bis (tri Ethoxysilyl) benzene, 1,4-bis (tri-n-propoxysilyl) benzene, 1,4-bis (tri-i-propoxysilyl) benzene, 1,4-bis (to -n- butoxysilyl) benzene, 1,4-bis (tri -sec- butoxysilyl) benzene, can be cited such as 1,4-bis (tri -t- butoxysilyl) benzene.

これらのうち、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼンなどを好ましい例として挙げることができる。   Of these, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1- (dimethoxymethylsilyl) ) -1- (trimethoxysilyl) methane, 1- (diethoxymethylsilyl) -1- (triethoxysilyl) methane, 1- (dimethoxymethylsilyl) -2- (trimethoxysilyl) ethane, 1- (di Ethoxymethylsilyl) -2- (triethoxysilyl) ethane, bis (dimethoxymethylsilyl) methane, bis (diethoxymethylsilyl) methane, 1,2-bis (dimethoxymethylsilyl) ethane, 1,2-bis (di Ethoxymethylsilyl) ethane, 1,2-bis (trimethoxysilyl) benzene, 1,2-bis (triethoxy) Silyl) benzene, 1,3-bis (trimethoxysilyl) benzene, 1,3-bis (triethoxysilyl) benzene, 1,4-bis (trimethoxysilyl) benzene, 1,4-bis (triethoxysilyl) Benzene etc. can be mentioned as a preferable example.

本発明において、(A)成分を構成する化合物(1)〜(3)としては、上記化合物(1)、(2)および(3)の1種もしくは2種以上を用いることができる。   In the present invention, as the compounds (1) to (3) constituting the component (A), one or more of the above compounds (1), (2) and (3) can be used.

なお、上記化合物(1)〜(3)の群から選ばれた少なくとも1種のシラン化合物を加水分解、縮合させる際に、化合物(1)〜(3)の群から選ばれた少なくとも1種のシラン化合物1モル当たり20モルを越え150モル以下の水を用いることが好ましく、20モルを越え130モルの水を加えることが特に好ましい。添加する水の量が20モル以下であると塗膜の耐クラック性が劣る場合があり、150モルを越えると加水分解および縮合反応中のポリマーの析出やゲル化が生じる場合がある。   When at least one silane compound selected from the group of compounds (1) to (3) is hydrolyzed and condensed, at least one selected from the group of compounds (1) to (3) is used. It is preferable to use more than 20 moles and 150 moles or less of water per mole of silane compound, and it is particularly preferable to add more than 20 moles and 130 moles of water. If the amount of water added is 20 mol or less, the crack resistance of the coating film may be inferior, and if it exceeds 150 mol, polymer precipitation or gelation may occur during hydrolysis and condensation reactions.

本発明の(A)加水分解縮合物を製造するに際しては、上記化合物(1)〜(3)の群から選ばれた少なくとも1種のシラン化合物を加水分解、縮合させる際に、特定塩基性化合物を用いることが特徴である。   In producing the hydrolyzed condensate (A) of the present invention, a specific basic compound is used when hydrolyzing and condensing at least one silane compound selected from the group consisting of the compounds (1) to (3). It is the feature to use.

特定塩基性化合物を用いることにより、低比誘電率、高弾性率でありさらに基板との密着性に優れたシリカ系層間絶縁膜を得ることができる。   By using the specific basic compound, it is possible to obtain a silica-based interlayer insulating film having a low relative dielectric constant and a high elastic modulus and excellent adhesion to the substrate.

本発明で使用することのできる特定塩基性化合物としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウムなどの水酸化テトラアルキルアンモニウム、ピペリジン、1−メチルピペリジン、2−メチルピペリジン、3−メチルピペリジン、4−メチルピペリジン、ピペラジン、1−メチルピペラジン、2−メチルピペラジン、1,4−ジメチルピペラジン、ピロリジン、1−メチルピロリジン、ジアザビシクロオクタン、ジアザビシクロノナン、ジアザビシクロウンデセン、2−ピラゾリン、3−ピロリン、キヌキリジンなどの脂肪族環状有機アミン、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムなどの金属水酸化物を挙げることができ、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、ピペリジン、1−メチルピペリジン、ピペラジン、1−メチルピペラジン、1,4−ジメチルピペラジン、ピロリジン、1−メチルピロリジン、ジアザビシクロオクタン、ジアザビシクロノナン、ジアザビシクロウンデセン、水酸化ナトリウム、水酸化カリウム、水酸化リチウムがシリカ系層間絶縁膜の基板への密着性の点から特に好ましい。   Specific basic compounds that can be used in the present invention include, for example, tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, piperidine, 1 -Methylpiperidine, 2-methylpiperidine, 3-methylpiperidine, 4-methylpiperidine, piperazine, 1-methylpiperazine, 2-methylpiperazine, 1,4-dimethylpiperazine, pyrrolidine, 1-methylpyrrolidine, diazabicyclooctane, Metal water such as diazabicyclononane, diazabicycloundecene, aliphatic cyclic organic amines such as 2-pyrazoline, 3-pyrroline and quinuclidine, sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide Tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, piperidine, 1-methylpiperidine, piperazine, 1-methylpiperazine, 1,4-dimethylpiperazine , Pyrrolidine, 1-methylpyrrolidine, diazabicyclooctane, diazabicyclononane, diazabicycloundecene, sodium hydroxide, potassium hydroxide, and lithium hydroxide from the point of adhesion of the silica-based interlayer insulating film to the substrate Particularly preferred.

これらの特定塩基性化合物は、1種あるいは2種以上を同時に使用してもよい。   These specific basic compounds may be used alone or in combination of two or more.

上記特定塩基性化合物の使用量は、化合物(1)〜(3)中のRO−基,RO−基,RO−基およびRO−基で表される基の総量1モルに対して、通常、0.00001〜10モル、好ましくは0.00005〜5モル、特に好ましくは0.001〜1モル、さらに好ましくは0.01〜0.5モルである。特定塩基性化合物の使用量が上記範囲内であれば、反応中のポリマーの析出やゲル化の恐れが少ない。 The amount of the specific basic compound used is the total amount of groups represented by the R 1 O— group, R 2 O— group, R 4 O— group and R 5 O— group in the compounds (1) to (3). It is 0.00001-10 mol normally with respect to 1 mol, Preferably it is 0.00005-5 mol, Especially preferably, it is 0.001-1 mol, More preferably, it is 0.01-0.5 mol. If the usage-amount of a specific basic compound is in the said range, there is little possibility of polymer precipitation or gelation during reaction.

このようにして得られる(A)加水分解縮合物の慣性半径は、GPC(屈折率,粘度,光散乱測定)法による慣性半径で、5〜50nm、さらに好ましくは8〜40nm、特に好ましくは9〜20nmである。加水分解縮合物の慣性半径が5〜50nmであると、得られるシリカ系層間絶縁膜の比誘電率、弾性率および膜の均一性に特に優れるものとできる。   The radius of inertia of the hydrolyzed condensate (A) thus obtained is the radius of inertia according to the GPC (refractive index, viscosity, light scattering measurement) method, 5 to 50 nm, more preferably 8 to 40 nm, particularly preferably 9. ~ 20 nm. When the inertial radius of the hydrolysis-condensation product is 5 to 50 nm, the silica-based interlayer insulating film to be obtained can be particularly excellent in relative dielectric constant, elastic modulus, and film uniformity.

また、このようにして得られる(A)加水分解縮合物は、粒子状の形態をとっていないことにより、基板状への塗布性が優れるという特徴を有している。粒子状の形態をとっていないことは、例えば透過型電子顕微鏡観察(TEM)により確認される。   In addition, the hydrolyzed condensate (A) obtained in this way has a feature that it is excellent in applicability to a substrate because it is not in a particulate form. The absence of the particulate form is confirmed, for example, by transmission electron microscope observation (TEM).

なお、(A)成分中、各成分を完全加水分解縮合物に換算したときに、化合物(2)は、化合物(1)〜(3)の総量中、5〜75重量%、好ましくは10〜70重量%、さらに好ましくは15〜70重量%である。また、化合物(1)および/または(3)は、化合物(1)〜(3)の総量中、95〜25重量%、好ましくは90〜30重量%、さらに好ましくは85〜30重量%である。化合物(2)が、化合物(1)〜(3)の総量中、5〜75重量%であることが、得られる塗膜の弾性率が高く、かつ低誘電性に特に優れる。   In addition, when each component is converted into a complete hydrolysis condensate in the component (A), the compound (2) is 5 to 75% by weight, preferably 10 to 10% in the total amount of the compounds (1) to (3). 70% by weight, more preferably 15 to 70% by weight. Further, the compound (1) and / or (3) is 95 to 25% by weight, preferably 90 to 30% by weight, and more preferably 85 to 30% by weight in the total amount of the compounds (1) to (3). . When the compound (2) is 5 to 75% by weight in the total amount of the compounds (1) to (3), the resulting coating film has a high elastic modulus and is particularly excellent in low dielectric constant.

ここで、本発明において、完全加水分解縮合物とは、化合物(1)〜(3)中のRO−基,RO−基,RO−基およびRO−基が100%加水分解してSiOH基となり、さらに完全に縮合してシロキサン構造となったものをいう。 Here, in the present invention, the completely hydrolyzed condensate means that the R 1 O— group, R 2 O— group, R 4 O— group and R 5 O— group in the compounds (1) to (3) are 100. % Hydrolyzed to become SiOH groups, and further completely condensed to a siloxane structure.

また、(A)成分としては、得られる組成物の貯蔵安定性がより優れるので、化合物(1)および化合物(2)の加水分解縮合物であることが好ましい。   The component (A) is preferably a hydrolytic condensate of the compound (1) and the compound (2) because the storage stability of the resulting composition is more excellent.

さらに、(A)加水分解縮合物では、化合物(1)〜(3)の群から選ばれた少なくとも1種のシラン化合物を、特定塩基性化合物の存在下に加水分解・縮合して、加水分解縮合物とし、好ましくはその慣性半径を5〜50nmとなすが、その後、組成物のpHを7以下に調整することが好ましい。   Furthermore, in the (A) hydrolysis condensate, at least one silane compound selected from the group of the compounds (1) to (3) is hydrolyzed and condensed in the presence of a specific basic compound to hydrolyze. It is set as a condensate, Preferably the inertial radius shall be 5-50 nm, but it is preferable to adjust pH of a composition to 7 or less after that.

pHを調整する方法としては、
(1)pH調整剤を添加する方法、
(2)常圧または減圧下で、組成物中より特定塩基性化合物を留去する方法、
(3)窒素、アルゴンなどのガスをバブリングすることにより、組成物中から特定塩基性化合物を除去する方法、
(4)イオン交換樹脂により、組成物中から特定塩基性化合物を除く方法、
(5)抽出や洗浄によって特定塩基性化合物を系外に除去する方法、
などが挙げられる。これらの方法は、それぞれ、組み合わせて用いてもよい。
As a method of adjusting the pH,
(1) A method of adding a pH adjuster,
(2) A method of distilling off the specific basic compound from the composition under normal pressure or reduced pressure,
(3) A method of removing a specific basic compound from the composition by bubbling a gas such as nitrogen or argon,
(4) A method of removing a specific basic compound from the composition by an ion exchange resin,
(5) A method of removing a specific basic compound out of the system by extraction or washing,
Etc. Each of these methods may be used in combination.

ここで、上記pH調整剤としては、無機酸や有機酸が挙げられる。   Here, examples of the pH adjusting agent include inorganic acids and organic acids.

無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸、ホウ酸、シュウ酸などを挙げることができる。   Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, boric acid, oxalic acid, and the like.

また、有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、シキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸、コハク酸、フマル酸、イタコン酸、メサコン酸、シトラコン酸、リンゴ酸、グルタル酸の加水分解物、無水マレイン酸の加水分解物、無水フタル酸の加水分解物などを挙げることができる。   Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, and sebacic acid. Gallic acid, butyric acid, meritic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, Benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid, succinic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid , Malic acid, glutaric acid hydrolyzate, maleic anhydride hydrolyzate, phthalic anhydride Water decomposition products, and the like.

これら化合物は、1種あるいは2種以上を同時に使用してもよい。   These compounds may be used alone or in combination of two or more.

上記pH調整剤による組成物のpHは、7以下、好ましくは1〜6に調整される。このように、加水分解縮合物の慣性半径を5〜50nmとなしたのち、上記pH調整剤により上記範囲内にpHを調整することにより、得られる組成物の貯蔵安定性が向上するという効果が得られる。   The pH of the composition by the pH adjuster is adjusted to 7 or less, preferably 1 to 6. Thus, after making the inertial radius of a hydrolysis-condensation product into 5-50 nm, the effect that the storage stability of the composition obtained improves by adjusting pH in the said range with the said pH adjuster. can get.

pH調整剤の使用量は、組成物のpHが上記範囲内となる量であり、その使用量は、適宜選択される。   The amount of the pH adjuster used is an amount that makes the pH of the composition within the above range, and the amount used is appropriately selected.

(B)有機溶媒
本発明の層間絶縁膜形成用組成物は、(A)成分を、通常、(B)有機溶媒に溶解または分散してなる。
(B) Organic solvent The composition for forming an interlayer insulating film of the present invention is obtained by dissolving or dispersing the component (A) in an organic solvent (B).

この(B)有機溶媒としては、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒および非プロトン系溶媒の群から選ばれた少なくとも1種が挙げられる。   Examples of the organic solvent (B) include at least one selected from the group consisting of alcohol solvents, ketone solvents, amide solvents, ester solvents, and aprotic solvents.

ここで、アルコール系溶媒としては、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、ヘプタノール−3、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチルヘプタノール−4、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコールなどのモノアルコール系溶媒;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ペンタンジオール−2,4、2−メチルペンタンジオール−2,4、ヘキサンジオール−2,5、ヘプタンジオール−2,4、2−エチルヘキサンジオール−1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールなどの多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテルなどの多価アルコール部分エーテル系溶媒;
などを挙げることができる。
Here, as the alcohol solvent, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methyl Butanol, sec-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, heptanol-3, n-octanol, 2- Ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethylheptanol-4, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol Phenol, cyclohexanol, methyl cyclohexanol, 3,3,5-trimethyl cyclohexanol, benzyl alcohol, mono-alcohol solvents such as diacetone alcohol;
Ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexanediol-2,5, heptanediol-2,4, 2- Polyhydric alcohol solvents such as ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, polyhydric alcohol partial ether solvents such as dipropylene glycol monopropyl ether;
And so on.

これらのアルコール系溶媒は、1種あるいは2種以上を同時に使用してもよい。   These alcohol solvents may be used alone or in combination of two or more.

ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロヘキサノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョンなどのほか、アセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン、2,4−オクタンジオン、3,5−オクタンジオン、2,4−ノナンジオン、3,5−ノナンジオン、5−メチル−2,4−ヘキサンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1,5,5,5−ヘキサフルオロ−2,4−ヘプタンジオンなどのβ−ジケトン類などが挙げられる。   Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, and methyl-n-hexyl. In addition to ketones, di-i-butyl ketone, trimethylnonanone, cyclohexanone, 2-hexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, fenchon, acetylacetone, 2,4-hexanedione, 2 , 4-heptanedione, 3,5-heptanedione, 2,4-octanedione, 3,5-octanedione, 2,4-nonanedione, 3,5-nonanedione, 5-methyl-2,4-hexanedione, 2,2,6,6-tetramethyl-3, - heptanedione, 1,1,1,5,5,5 beta-diketones such as hexafluoro-2,4-heptane dione and the like.

これらのケトン系溶媒は、1種あるいは2種以上を同時に使用してもよい。   These ketone solvents may be used alone or in combination of two or more.

アミド系溶媒としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン、N−ホルミルモルホリン、N−ホルミルピペリジン、N−ホルミルピロリジン、N−アセチルモルホリン、N−アセチルピペリジン、N−アセチルピロリジンなどが挙げられる。   Examples of amide solvents include formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide N, N-diethylacetamide, N-methylpropionamide, N-methylpyrrolidone, N-formylmorpholine, N-formylpiperidine, N-formylpyrrolidine, N-acetylmorpholine, N-acetylpiperidine, N-acetylpyrrolidine, etc. Can be mentioned.

これらアミド系溶媒は、1種あるいは2種以上を同時に使用してもよい。   These amide solvents may be used alone or in combination of two or more.

エステル系溶媒としては、ジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。   Examples of ester solvents include diethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, and i-acetate. -Butyl, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-acetate -Nonyl, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl acetate Glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene Glycol acetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-lactate Examples include amyl, diethyl malonate, dimethyl phthalate, and diethyl phthalate.

これらエステル系溶媒は、1種あるいは2種以上を同時に使用してもよい。   These ester solvents may be used alone or in combination of two or more.

非プロトン系溶媒としては、アセトニトリル、ジメチルスルホキシド、N,N,N´,N´−テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N−メチルモルホロン、N−メチルピロール、N−エチルピロール、N−メチル−Δ3−ピロリン、N−メチルピペリジン、N−エチルピペリジン、N,N−ジメチルピペラジン、N−メチルイミダゾール、N−メチル−4−ピペリドン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロ−2(1H)−ピリミジノンなどを挙げることができる。   As aprotic solvents, acetonitrile, dimethyl sulfoxide, N, N, N ′, N′-tetraethylsulfamide, hexamethylphosphoric triamide, N-methylmorpholone, N-methylpyrrole, N-ethylpyrrole, N -Methyl-Δ3-pyrroline, N-methylpiperidine, N-ethylpiperidine, N, N-dimethylpiperazine, N-methylimidazole, N-methyl-4-piperidone, N-methyl-2-piperidone, N-methyl-2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyltetrahydro-2 (1H) -pyrimidinone and the like can be mentioned.

これらの有機溶剤の中で、特に下記一般式(4)で表される有機溶剤が好ましい。
O(CHCHCHO) ・・・・・(4)
(RおよびRは、それぞれ独立して水素原子、炭素数1〜4のアルキル基またはCHCO−から選ばれる1価の有機基を示し、eは1〜2の整数を表す。)
Among these organic solvents, an organic solvent represented by the following general formula (4) is particularly preferable.
R 8 O (CHCH 3 CH 2 O) e R 9 (4)
(R 8 and R 9 each independently represent a monovalent organic group selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or CH 3 CO—, and e represents an integer of 1 to 2)

上記の有機溶媒は、1種あるいは2種以上を混合して使用することができる。   Said organic solvent can be used 1 type or in mixture of 2 or more types.

本発明においては、化合物(1)〜(3)を加水分解し、縮合する際に、上記と同様の溶媒を使用することができる。   In the present invention, when the compounds (1) to (3) are hydrolyzed and condensed, the same solvent as described above can be used.

本発明の組成物の具体的な製造方法としては、化合物(1)〜(3)を溶解させた溶媒中に水または溶媒で希釈した水を断続的あるいは連続的に添加する。この際、特定塩基性化合物は溶媒中に予め添加しておいてもよいし、水添加時に水中に溶解あるいは分散させておいてもよい。この際の反応温度としては、通常、0〜100℃、好ましくは15〜90℃である。   As a specific method for producing the composition of the present invention, water or water diluted with a solvent is intermittently or continuously added to a solvent in which the compounds (1) to (3) are dissolved. At this time, the specific basic compound may be added in advance to the solvent, or may be dissolved or dispersed in water when water is added. As reaction temperature in this case, it is 0-100 degreeC normally, Preferably it is 15-90 degreeC.

[その他の添加剤]
本発明で得られる層間絶縁膜形成用組成物には、さらにコロイド状シリカ、コロイド状アルミナ、有機ポリマー、界面活性剤、シランカップリング剤、ラジカル発生剤、トリアゼン化合物などの成分を添加してもよい。
[Other additives]
The composition for forming an interlayer insulating film obtained in the present invention may further contain components such as colloidal silica, colloidal alumina, organic polymer, surfactant, silane coupling agent, radical generator, and triazene compound. Good.

コロイド状シリカとは、例えば、高純度の無水ケイ酸を前記親水性有機溶媒に分散した分散液であり、通常、平均粒径が5〜30nm、好ましくは10〜20nm、固形分濃度が10〜40重量%程度のものである。このような、コロイド状シリカとしては、例えば、日産化学工業(株)製、メタノールシリカゾルおよびイソプロパノールシリカゾル;触媒化成工業(株)製、オスカルなどが挙げられる。   Colloidal silica is, for example, a dispersion in which high-purity silicic acid is dispersed in the hydrophilic organic solvent. Usually, the average particle size is 5 to 30 nm, preferably 10 to 20 nm, and the solid content concentration is 10 to 10. About 40% by weight. Examples of such colloidal silica include Nissan Chemical Industries, Ltd., methanol silica sol and isopropanol silica sol; Catalyst Chemical Industries, Ltd., Oscar.

コロイド状アルミナとしては、日産化学工業(株)製のアルミナゾル520、同100、同200;川研ファインケミカル(株)製のアルミナクリアーゾル、アルミナゾル10、同132などが挙げられる。   Examples of the colloidal alumina include Alumina Sol 520, 100 and 200 manufactured by Nissan Chemical Industries, Ltd .; Alumina Clear Sol, Alumina Sol 10 and 132 manufactured by Kawaken Fine Chemical Co., Ltd., and the like.

有機ポリマーとしては、例えば、糖鎖構造を有する化合物、ビニルアミド系重合体、(メタ)アクリル系重合体、芳香族ビニル化合物、デンドリマー、ポリイミド,ポリアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジアゾール、フッ素系重合体、ポリアルキレンオキサイド構造を有する化合物などを挙げることができる。   Examples of the organic polymer include a compound having a sugar chain structure, a vinylamide polymer, a (meth) acrylic polymer, an aromatic vinyl compound, a dendrimer, a polyimide, a polyamic acid, a polyarylene, a polyamide, a polyquinoxaline, and a polyoxadi. Examples thereof include azoles, fluorine-based polymers, and compounds having a polyalkylene oxide structure.

ポリアルキレンオキサイド構造を有する化合物としては、ポリメチレンオキサイド構造、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンオキサイド構造、ポリブチレンオキシド構造などが挙げられる。   Examples of the compound having a polyalkylene oxide structure include a polymethylene oxide structure, a polyethylene oxide structure, a polypropylene oxide structure, a polytetramethylene oxide structure, and a polybutylene oxide structure.

具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエテチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸アルカノールアミド硫酸塩などのエーテルエステル型化合物、ポリエチレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステルなどのエーテルエステル型化合物などを挙げることができる。   Specifically, polyoxymethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative, ethylene oxide derivative of alkylphenol formalin condensate, polyoxyethylene poly Ether type compounds such as oxypropylene block copolymer, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid alkanolamide sulfate, etc. Ether ester type compound, polyethylene glycol fatty acid ester, ethylene glycol fat Esters, fatty acid monoglycerides, polyglycerol fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, and the like ether ester type compounds such as sucrose fatty acid esters.

ポリオキシチレンポリオキシプロピレンブロックコポリマーとしては下記のようなブロック構造を有する化合物が挙げられる。
−(X)j−(Y)k−
−(X)j−(Y)k−(X)l-
(式中、Xは−CHCHO−で表される基を、Yは−CHCH(CH)O−で表される基を示し、jは1〜90、kは10〜99、lは0〜90の数を示す)
Examples of the polyoxyethylene polyoxypropylene block copolymer include compounds having the following block structure.
-(X) j- (Y) k-
-(X) j- (Y) k- (X) l-
(In the formula, X represents a group represented by —CH 2 CH 2 O—, Y represents a group represented by —CH 2 CH (CH 3 ) O—, j represents 1 to 90, and k represents 10 to 10). 99, l represents a number from 0 to 90)

これらの中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、などのエーテル型化合物をより好ましい例として挙げることができる。   Among these, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, More preferred examples include ether type compounds.

これらは1種あるいは2種以上を同時に使用しても良い。   These may be used alone or in combination of two or more.

界面活性剤としては、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが挙げられ、さらには、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを挙げることができ、好ましくはフッ素系界面活性剤、シリコーン系界面活性剤を挙げることができる。   Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and further, fluorine surfactants, silicone surfactants, Polyalkylene oxide surfactants, poly (meth) acrylate surfactants and the like can be mentioned, and fluorine surfactants and silicone surfactants can be preferably mentioned.

フッ素系界面活性剤としては、例えば1,1,2,2−テトラフロロオクチル(1,1,2,2−テトラフロロプロピル)エーテル、1,1,2,2−テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10−デカフロロドデカン、1,1,2,2,3,3−ヘキサフロロデカン、N−[3−(パーフルオロオクタンスルホンアミド)プロピル]-N,N‘−ジメチル−N−カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル−N−エチルスルホニルグリシン塩、リン酸ビス(N−パーフルオロオクチルスルホニル−N−エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステル等の末端、主鎖および側鎖の少なくとも何れかの部位にフルオロアルキルまたはフルオロアルキレン基を有する化合物からなるフッ素系界面活性剤を挙げることができる。   Examples of the fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctyl hexyl ether, octa Ethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1,1,2, , 2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecyl sulfonate, 1,1,2,2,8,8 , 9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, N- [3- (perfluoroo Tansulfonamido) propyl] -N, N′-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylsulfonamidopropyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine salt, bis (N-perfluorophosphate) Octylsulfonyl-N-ethylaminoethyl), monoperfluoroalkylethyl phosphate ester, etc., a fluorine-based surfactant comprising a compound having a fluoroalkyl or fluoroalkylene group at least at any one of its terminal, main chain and side chain Can be mentioned.

また、市販品としてはメガファックF142D、同F172、同F173、同F183(以上、大日本インキ化学工業(株)製)、エフトップEF301、同303、同352(新秋田化成(株)製)、フロラードFC−430、同FC−431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(旭硝子(株)製)、BM−1000、BM−1100(裕商(株)製)、NBX−15((株)ネオス)などの名称で市販されているフッ素系界面活性剤を挙げることができる。これらの中でも、上記メガファックF172,BM−1000,BM−1100,NBX−15が特に好ましい。   Commercially available products include MegaFuck F142D, F172, F173, and F183 (above, manufactured by Dainippon Ink & Chemicals, Inc.), F-Top EF301, 303, and 352 (manufactured by Shin-Akita Kasei). , FLORARD FC-430, FC-431 (manufactured by Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC-104, SC -105, SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yusho Co., Ltd.), NBX-15 (Neos Co., Ltd.), etc. Mention may be made of surfactants. Among these, the above-mentioned Megafac F172, BM-1000, BM-1100, and NBX-15 are particularly preferable.

シリコーン系界面活性剤としては、例えばSH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン(株)製などを用いることが出来る。これらの中でも、上記SH28PA、SH30PAが特に好ましい。   As the silicone-based surfactant, for example, SH7PA, SH21PA, SH30PA, ST94PA (all manufactured by Toray Dow Corning Silicone Co., Ltd., etc.) can be used. Among these, the above-mentioned SH28PA and SH30PA are particularly preferable.

界面活性剤の使用量は、(A)成分(完全加水分解縮合物)に対して通常0.0001〜10重量部である。   The usage-amount of surfactant is 0.0001-10 weight part normally with respect to (A) component (complete hydrolysis-condensation product).

これらは1種あるいは2種以上を同時に使用しても良い。   These may be used alone or in combination of two or more.

シランカップリング剤としては、例えば3−グリシジロキシプロピルトリメトキシシラン、3−アミノグリシジロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、1−メタクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリエトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシランなどが挙げられる。   Examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-aminoglycidyloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 1- Methacryloxypropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3- Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl 3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-triethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4 , 7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N -Benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (Oxyethylene)- - aminopropyltrimethoxysilane, etc. N- bis (oxyethylene) -3-aminopropyltriethoxysilane and the like.

これらは1種あるいは2種以上を同時に使用しても良い。   These may be used alone or in combination of two or more.

ラジカル発生剤としては、例えばイソブチリルパーオキサイド、α、α’ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ−nプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、t−ヘキシルパーオキシネオデカノエート、ジメトキブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート、t−ブチルパーオキシネオデカノエート、2,4−ジクロロベンゾイルパーオキサイド、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエート、スクシニックパーオキサイド、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ2−エチルヘキサノエート、t−ヘキシルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシ2−エチルヘキサノエート、m−トルオイルアンドベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ジ−t−ブチルパーオキシ−2−メチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロデカン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ジ(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、ジ−t−ブチルパーオキシイソフタレート、α、α’ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、p−メンタンヒドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジイソプロピルベンゼンヒドロパーオキサイド、t−ブチルトリメチルシリルパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t−ヘキシルヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、2,3−ジメチル−2,3−ジフェニルブタン等を挙げることができる。   Examples of the radical generator include isobutyryl peroxide, α, α ′ bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-npropylperoxydicarbonate, diisopropylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, di-2 -Ethoxyethyl peroxydicarbonate, di (2-ethylhexylperoxy) dicarbonate, t-hexylperoxyneodecanoate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) Dicarbonate, t- Butyl peroxyneodecanoate, 2,4-dichlorobenzoyl peroxide, t-hexyl peroxypivalate, t-butyl peroxypivalate, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, Lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, succinic peroxide, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) Peroxy) hexane, 1-cyclohexyl-1-methylethylperoxy 2-ethylhexanoate, t-hexylperoxy 2-ethylhexanoate, t-butylperoxy 2-ethylhexanoate, m-toluoyl Andbenzoyl peroxide, benzoy Peroxide, t-butylperoxyisobutyrate, di-t-butylperoxy-2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1 -Bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2 -Bis (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclodecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t -Butylperoxy-3,3,5-trimethylhexanoate, t-butylperoxylaurate, 2 5-dimethyl-2,5-di (m-toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5- Dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-bis (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl-4,4- Bis (t-butylperoxy) valerate, di-t-butylperoxyisophthalate, α, α′bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5- Di (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl Peroxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, diisopropylbenzene hydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3 , 3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, 2,3-dimethyl-2,3-diphenylbutane, and the like.

ラジカル発生剤の配合量は、重合体100重量部に対し、0.1〜10重量部が好ましい。   The blending amount of the radical generator is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer.

これらは1種あるいは2種以上を同時に使用しても良い。   These may be used alone or in combination of two or more.

トリアゼン化合物としては、例えば、1,2−ビス(3,3−ジメチルトリアゼニル)ベンゼン、1,3−ビス(3,3−ジメチルトリアゼニル)ベンゼン、1,4−ビス(3,3−ジメチルトリアゼニル)ベンゼン、ビス(3,3−ジメチルトリアゼニルフェニル)エーテル、ビス(3,3−ジメチルトリアゼニルフェニル)メタン、ビス(3,3−ジメチルトリアゼニルフェニル)スルホン、ビス(3,3−ジメチルトリアゼニルフェニル)スルフィド、2,2−ビス〔4−(3,3−ジメチルトリアゼニルフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3,3−ジメチルトリアゼニルフェノキシ)フェニル〕プロパン、1,3,5−トリス(3,3−ジメチルトリアゼニル)ベンゼン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3−メチル−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3−フェニル−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3−プロペニル−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3−フルオロ−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3,5−ジフルオロ−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレン、2,7−ビス(3,3−ジメチルトリアゼニル)−9,9−ビス[3−トリフルオロメチル−4−(3,3−ジメチルトリアゼニル)フェニル]フルオレンなどが挙げられる。   Examples of the triazene compound include 1,2-bis (3,3-dimethyltriazenyl) benzene, 1,3-bis (3,3-dimethyltriazenyl) benzene, and 1,4-bis (3,3 -Dimethyltriazenyl) benzene, bis (3,3-dimethyltriazenylphenyl) ether, bis (3,3-dimethyltriazenylphenyl) methane, bis (3,3-dimethyltriazenylphenyl) sulfone, Bis (3,3-dimethyltriazenylphenyl) sulfide, 2,2-bis [4- (3,3-dimethyltriazenylphenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, 2,2-bis [4- (3,3-dimethyltriazenylphenoxy) phenyl] propane, 1,3,5-tris (3,3-dimethyltriazenyl) ben 2,7-bis (3,3-dimethyltriazenyl) -9,9-bis [4- (3,3-dimethyltriazenyl) phenyl] fluorene, 2,7-bis (3,3- Dimethyltriazenyl) -9,9-bis [3-methyl-4- (3,3-dimethyltriazenyl) phenyl] fluorene, 2,7-bis (3,3-dimethyltriazenyl) -9, 9-bis [3-phenyl-4- (3,3-dimethyltriazenyl) phenyl] fluorene, 2,7-bis (3,3-dimethyltriazenyl) -9,9-bis [3-propenyl- 4- (3,3-dimethyltriazenyl) phenyl] fluorene, 2,7-bis (3,3-dimethyltriazenyl) -9,9-bis [3-fluoro-4- (3,3-dimethyl) Triazenyl) phenyl] fluorene, 2,7-bis ( , 3-Dimethyltriazenyl) -9,9-bis [3,5-difluoro-4- (3,3-dimethyltriazenyl) phenyl] fluorene, 2,7-bis (3,3-dimethyltriazeni) ) -9,9-bis [3-trifluoromethyl-4- (3,3-dimethyltriazenyl) phenyl] fluorene.

これらは1種あるいは2種以上を同時に使用しても良い。   These may be used alone or in combination of two or more.

[層間絶縁膜形成用組成物の調製方法]
本発明の層間絶縁膜形成用組成物を調製するに際しては、例えば、溶媒中化合物(1)〜(3)を混合して、水を連続的または断続的に添加して、加水分解し、縮合し、(A)成分を調製したのち、これに(B)成分を添加すればよく、特に限定されない。
[Method for Preparing Composition for Forming Interlayer Insulating Film]
When preparing the composition for forming an interlayer insulating film of the present invention, for example, the compounds (1) to (3) are mixed in a solvent, and water is added continuously or intermittently to hydrolyze and condense. And after preparing (A) component, (B) component should just be added to this, It does not specifically limit.

本発明の組成物の調製方法の具体例としては、下記1)〜11)の方法などを挙げることができる。
1)(A)成分を構成する化合物(1)〜(3)、特定塩基性化合物および有機溶媒からなる混合物に、所定量の水を加えて、加水分解・縮合反応を行う方法。
2)(A)成分を構成する化合物(1)〜(3)、特定塩基性化合物および有機溶媒からなる混合物に、所定量の水を連続的あるいは断続的に添加して、加水分解、縮合反応を行う方法。
3)(A)成分を構成する化合物(1)〜(3)および有機溶媒からなる混合物に、所定量の水および特定塩基性化合物を加えて、加水分解・縮合反応を行う方法。
4)(A)成分を構成する化合物(1)〜(3)および有機溶剤からなる混合物に、所定量の水および特定塩基性化合物を連続的あるいは断続的に添加して、加水分解、縮合反応を行う方法。
5)有機溶剤、水および特定塩基性化合物からなる混合物に、所定量の(A)成分を構成する化合物(1)〜(3)を加えて、加水分解・縮合反応を行う方法。
6)有機溶剤、水および特定塩基性化合物からなる混合物に、所定量の(A)成分を構成する化合物(1)〜(3)を連続的あるいは断続的に添加して、加水分解・縮合反応を行う方法。
7)有機溶剤、水および特定塩基性化合物からなる混合物に、所定量の(A)成分を構成する化合物(1)〜(3)を加えて、加水分解・縮合反応を行い、pH調整剤を添加する方法。
8)有機溶剤、水および特定塩基性化合物からなる混合物に、所定量の(A)成分を構成する化合物(1)〜(3)を加えて、加水分解・縮合反応を行い、溶液の一定濃度に濃縮した後pH調整剤を添加する方法。
9)上記1)〜8)の方法で得られた溶液を、別な有機溶剤で抽出する方法。
10)上記1)〜8)の方法で得られた溶液を、別な有機溶剤で置換する方法。
11)上記1)〜8)の方法で得られた溶液を、別な有機溶剤で抽出した後、更に別な有機溶剤で置換する方法。
Specific examples of the method for preparing the composition of the present invention include the following methods 1) to 11).
1) A method in which a predetermined amount of water is added to a mixture composed of compounds (1) to (3), a specific basic compound and an organic solvent constituting the component (A), and a hydrolysis / condensation reaction is performed.
2) A predetermined amount of water is continuously or intermittently added to a mixture comprising the compounds (1) to (3), the specific basic compound and the organic solvent constituting the component (A), and then hydrolysis and condensation reactions are performed. How to do.
3) A method in which a predetermined amount of water and a specific basic compound are added to a mixture comprising the compounds (1) to (3) constituting the component (A) and an organic solvent to perform a hydrolysis / condensation reaction.
4) A predetermined amount of water and a specific basic compound are added continuously or intermittently to a mixture comprising the compounds (1) to (3) constituting the component (A) and an organic solvent, followed by hydrolysis and condensation reaction. How to do.
5) A method in which a predetermined amount of the compounds (1) to (3) constituting the component (A) is added to a mixture composed of an organic solvent, water and a specific basic compound, and a hydrolysis / condensation reaction is performed.
6) A predetermined amount of the compounds (1) to (3) constituting the component (A) is continuously or intermittently added to a mixture composed of an organic solvent, water and a specific basic compound, followed by hydrolysis / condensation reaction. How to do.
7) Add a predetermined amount of the compounds (1) to (3) constituting the component (A) to a mixture composed of an organic solvent, water, and a specific basic compound, and perform a hydrolysis / condensation reaction. How to add.
8) A predetermined amount of the compounds (1) to (3) constituting the component (A) is added to a mixture composed of an organic solvent, water and a specific basic compound, and a hydrolysis / condensation reaction is performed to obtain a constant concentration of the solution. A method of adding a pH adjusting agent after concentrating.
9) A method of extracting the solution obtained by the methods 1) to 8) with another organic solvent.
10) A method of replacing the solution obtained by the above methods 1) to 8) with another organic solvent.
11) A method in which the solution obtained by the above methods 1) to 8) is extracted with another organic solvent and then replaced with another organic solvent.

このようにして得られる本発明の組成物の全固形分濃度は、好ましくは、2〜30重量%であり、使用目的に応じて適宜調整される。組成物の全固形分濃度が2〜30重量%であると、塗膜の膜厚が適当な範囲となり、保存安定性もより優れるものである。   The total solid concentration of the composition of the present invention thus obtained is preferably 2 to 30% by weight, and is appropriately adjusted according to the purpose of use. When the total solid concentration of the composition is 2 to 30% by weight, the film thickness of the coating film is in an appropriate range, and the storage stability is further improved.

なお、この全固形分濃度の調整は、必要であれば、濃縮および上記(D)有機溶剤による希釈によって行われる。   In addition, adjustment of this total solid content density | concentration is performed by the concentration and the dilution with the said (D) organic solvent if necessary.

本発明の組成物を、シリコンウエハ、SiOウエハ、SiNウエハなどの基材に塗布する際には、スピンコート、浸漬法、ロールコート法、スプレー法などの塗装手段が用いられる。 When the composition of the present invention is applied to a substrate such as a silicon wafer, SiO 2 wafer, or SiN wafer, a coating means such as spin coating, dipping method, roll coating method, spray method or the like is used.

この際の膜厚は、乾燥膜厚として、1回塗りで厚さ0.05〜2.5μm程度、2回塗りでは厚さ0.1〜5.0μm程度の塗膜を形成することができる。その後、常温で乾燥するか、あるいは80〜600℃程度の温度で、通常、5〜240分程度加熱して乾燥することにより、ガラス質または巨大高分子の絶縁膜を形成することができる。   In this case, as a dry film thickness, a coating film having a thickness of about 0.05 to 2.5 μm can be formed by one coating, and a coating film having a thickness of about 0.1 to 5.0 μm can be formed by two coatings. . Thereafter, it is dried at normal temperature, or usually heated for about 5 to 240 minutes at a temperature of about 80 to 600 ° C., whereby a glassy or giant polymer insulating film can be formed.

この際の加熱方法としては、ホットプレート、オーブン、ファーネスなどを使用することが出来、加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下などで行うことができる。   As a heating method at this time, a hot plate, an oven, a furnace, or the like can be used, and a heating atmosphere is performed in the air, a nitrogen atmosphere, an argon atmosphere, a vacuum, a reduced pressure with a controlled oxygen concentration, or the like. Can do.

また、電子線や紫外線を照射することによっても塗膜を形成させることができる。   Moreover, a coating film can be formed also by irradiating an electron beam or an ultraviolet-ray.

また、上記塗膜の硬化速度を制御するため、必要に応じて、段階的に加熱したり、窒素、空気、酸素、減圧などの雰囲気を選択することができる。   Moreover, in order to control the curing rate of the coating film, it is possible to heat stepwise or select an atmosphere such as nitrogen, air, oxygen, reduced pressure, etc. as necessary.

このようにして得られる本発明のシリカ系膜は、膜密度が、通常、0.35〜1.2g/cm、好ましくは0.4〜1.1g/cm、さらに好ましくは0.5〜1.0g/cmである。膜密度が0.35g/cm未満では、塗膜の機械的強度が低下し、一方、1.2g/cmを超えると低比誘電率が得られない。 The silica-based film of the present invention thus obtained has a film density of usually 0.35 to 1.2 g / cm 3 , preferably 0.4 to 1.1 g / cm 3 , more preferably 0.5. -1.0 g / cm 3 . When the film density is less than 0.35 g / cm 3 , the mechanical strength of the coating film decreases, and when it exceeds 1.2 g / cm 3 , a low relative dielectric constant cannot be obtained.

また、本発明のシリカ系層間絶縁膜は、BJH法による細孔分布測定において、10nm以上の空孔が認められず、微細配線間の層間絶縁膜材料として好ましい。   Further, the silica-based interlayer insulating film of the present invention is preferable as an interlayer insulating film material between fine wirings because pores of 10 nm or more are not observed in the pore distribution measurement by the BJH method.

さらに、本発明のシリカ系層間絶縁膜は、吸水性が低い点に特徴を有し、例えば、塗膜を127℃、2.5atm、100%RHの環境に1時間放置した場合、放置後の塗膜のIRスペクトル観察からは塗膜への水の吸着は認められない。   Furthermore, the silica-based interlayer insulating film of the present invention is characterized by low water absorption. For example, when the coating film is left in an environment of 127 ° C., 2.5 atm, 100% RH for 1 hour, From the IR spectrum observation of the coating film, no water is adsorbed on the coating film.

この吸水性は、本発明における層間絶縁膜形成用組成物に用いられる化合物(1)のテトラアルコキシシラン類の量により、調整することができる。   This water absorption can be adjusted by the amount of the tetraalkoxysilanes of the compound (1) used in the composition for forming an interlayer insulating film in the present invention.

さらに、本発明のシリカ系層間絶縁膜の比誘電率は、通常、2.6〜1.2、好ましくは2.5〜1.2、さらに好ましくは2.4〜1.2である。   Furthermore, the relative dielectric constant of the silica-based interlayer insulating film of the present invention is generally 2.6 to 1.2, preferably 2.5 to 1.2, and more preferably 2.4 to 1.2.

このようにして得られる層間絶縁膜は、PCT後の比誘電率特性、PCT後のCMP耐性、PCT後の基板との密着性を示すことから、LSI、システムLSI、DRAM、SDRAM、RDRAM、D−RDRAMなどの半導体素子用層間絶縁膜やエッチングストッパー膜、半導体素子の表面コート膜などの保護膜、多層レジストを用いた半導体作製工程の中間層、多層配線基板の層間絶縁膜、液晶表示素子用の保護膜や絶縁膜などの用途に有用である。   The interlayer insulating film thus obtained exhibits a dielectric constant characteristic after PCT, CMP resistance after PCT, and adhesion to the substrate after PCT. Therefore, LSI, system LSI, DRAM, SDRAM, RDRAM, D -RDRAM and other interlayer insulating films for semiconductor elements, etching stopper films, protective films such as surface coating films for semiconductor elements, intermediate layers for semiconductor fabrication processes using multilayer resists, interlayer insulating films for multilayer wiring boards, and liquid crystal display elements It is useful for applications such as protective films and insulating films.

以下、本発明を実施例を挙げてさらに具体的に説明する。ただし、以下の記載は、本発明の態様例を概括的に示すものであり、特に理由なく、かかる記載により本発明は限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the following description shows the example of an aspect of this invention generally, and this invention is not limited by this description without a particular reason.

なお、実施例および比較例中の部および%は、特記しない限り、それぞれ重量部および重量%であることを示している。   In addition, unless otherwise indicated, the part and% in an Example and a comparative example have shown that they are a weight part and weight%, respectively.

また、各種の評価は、次のようにして行なった。   Various evaluations were performed as follows.

[慣性半径]
下記条件によるゲルパーミエーションクロマトグラフィー(GPC)(屈折率,粘度,光散乱測定)法により測定した。
[Inertia radius]
It was measured by gel permeation chromatography (GPC) (refractive index, viscosity, light scattering measurement) method under the following conditions.

試料溶液:シラン化合物の加水分解縮合物を、固形分濃度が0.25%となるように、10mMのLiBrを含むメタノールで希釈し、GPC(屈折率,粘度,光散乱測定)用試料溶液とした。
装置:東ソー(株)製、GPCシステム モデル GPC−8020
東ソー(株)製、カラム Alpha5000/3000
ビスコテック社製、粘度検出器および光散乱検出器
モデル T−60 デュアルメーター
キャリア溶液:10mMのLiBrを含むメタノール
キャリア送液速度:1ml/min
カラム温度:40℃
Sample solution: A hydrolysis condensate of a silane compound is diluted with methanol containing 10 mM LiBr so that the solid content concentration is 0.25%, and a sample solution for GPC (refractive index, viscosity, light scattering measurement) did.
Equipment: GPC system model GPC-8020, manufactured by Tosoh Corporation
Tosoh Co., Ltd., Column Alpha5000 / 3000
Viscotec's Viscosity Detector and Light Scattering Detector Model T-60 Dual Meter Carrier solution: Methanol containing 10 mM LiBr Carrier feeding speed: 1 ml / min
Column temperature: 40 ° C

[PCT後の比誘電率]
8インチシリコンウエハ上に、スピンコート法を用いて組成物試料を塗布し、ホットプレート上で90℃で3分間、窒素雰囲気200℃で3分間基板を乾燥し、さらに450℃の真空(50mTorr)ホットプレートで30分基板を焼成した。得られた層間絶縁膜に対して100℃、湿度100%RH、2気圧の条件でPCTを1時間行い、蒸着法によりアルミニウム電極パターンを形成させ比誘電率測定用サンプルを作成した。該サンプルを周波数100kHzの周波数で、横河・ヒューレットパッカード(株)製、HP16451B電極およびHP4284AプレシジョンLCRメータを用いてCV法により当該塗膜の比誘電率を測定した。
[Relative permittivity after PCT]
A composition sample is applied onto an 8-inch silicon wafer by spin coating, and the substrate is dried on a hot plate at 90 ° C. for 3 minutes and in a nitrogen atmosphere at 200 ° C. for 3 minutes, and further vacuumed at 450 ° C. (50 mTorr). The substrate was baked on a hot plate for 30 minutes. The obtained interlayer insulating film was subjected to PCT for 1 hour under the conditions of 100 ° C., humidity 100% RH, and 2 atmospheres, and an aluminum electrode pattern was formed by vapor deposition to prepare a sample for measuring relative dielectric constant. The relative permittivity of the coating film was measured by a CV method using a sample of Yokogawa-Hewlett-Packard Co., Ltd., HP16451B electrode, and HP4284A Precision LCR meter at a frequency of 100 kHz.

[PCT後のCMP耐性]
8インチシリコンウエハ上に、スピンコート法を用いて組成物試料を塗布し、ホットプレート上で90℃で3分間、窒素雰囲気200℃で3分間基板を乾燥し、さらに450℃の真空(50mTorr)ホットプレートで30分基板を焼成した。得られた膜に対して100℃、湿度100%RH、2気圧の条件でPCTを1時間行った。
得られた塗膜を以下の条件で研磨した。
スラリー:シリカ−過酸化水素系
研磨圧力:160g/cm
研磨時間:180秒
[CMP resistance after PCT]
A composition sample is applied onto an 8-inch silicon wafer by spin coating, and the substrate is dried on a hot plate at 90 ° C. for 3 minutes and in a nitrogen atmosphere at 200 ° C. for 3 minutes, and further vacuumed at 450 ° C. (50 mTorr). The substrate was baked on a hot plate for 30 minutes. The obtained film was subjected to PCT for 1 hour under the conditions of 100 ° C., humidity 100% RH, and 2 atmospheres.
The obtained coating film was polished under the following conditions.
Slurry: Silica-hydrogen peroxide system Polishing pressure: 160 g / cm 2
Polishing time: 180 seconds

CMP後の塗膜の外観を35万ルクスの表面観察用ランプで観察し、下記基準で評価した。   The appearance of the coated film after CMP was observed with a 350,000 lux surface observation lamp and evaluated according to the following criteria.

[塗膜の密着性]
8インチシリコンウエハ上に、スピンコート法を用いて組成物試料を塗布し、ホットプレート上で90℃で3分間、窒素雰囲気200℃で3分間基板を乾燥し、さらに450℃の真空(50mTorr)ホットプレートで30分基板を焼成した。得られた膜に対して100℃、湿度100%RH、2気圧の条件でPCTを1時間行った。得られた基板上にエポキシ樹脂を用いてスタッドピン10本を固定し、150℃で1時間乾燥させた。このスタッドピンをセバスチャン法を用いて引き抜き試験行い、以下の基準で密着性を評価した。
○:スタッドピン10本共シリコンウエハと塗膜の界面での剥離無し
×:シリコンウエハと塗膜の界面での剥離発生
[Coating adhesion]
A composition sample is applied onto an 8-inch silicon wafer by spin coating, and the substrate is dried on a hot plate at 90 ° C. for 3 minutes and in a nitrogen atmosphere at 200 ° C. for 3 minutes, and further vacuumed at 450 ° C. (50 mTorr). The substrate was baked on a hot plate for 30 minutes. The obtained film was subjected to PCT for 1 hour under the conditions of 100 ° C., humidity 100% RH, and 2 atmospheres. Ten stud pins were fixed on the obtained substrate using epoxy resin and dried at 150 ° C. for 1 hour. The stud pin was pulled out using the Sebastian method, and adhesion was evaluated according to the following criteria.
○: No peeling at the interface between the silicon wafer and the coating film with 10 stud pins ×: Generation of peeling at the interface between the silicon wafer and the coating film

[合成例1]
石英製セパラブルフラスコに、蒸留エタノール570g、イオン交換水160gと10%水酸化テトラメチルアンモニウム水溶液30gを入れ、均一に攪拌した。この溶液にメチルトリメトキシシラン136gとテトラエトキシシラン209gの混合物を添加した。溶液を55℃に保ったまま、2時間反応を行った。この溶液にプロピレングリコールモノプロピルエーテル300gを加え、その後、50℃のエバポレーターを用いて溶液を10%(完全加水分解縮合物換算)となるまで濃縮し、その後、酢酸の10%プロピレングリコールモノプロピルエーテル溶液10gを添加し、反応液(1)を得た。
[Synthesis Example 1]
In a quartz separable flask, 570 g of distilled ethanol, 160 g of ion-exchanged water and 30 g of 10% tetramethylammonium hydroxide aqueous solution were added and stirred uniformly. To this solution, a mixture of 136 g of methyltrimethoxysilane and 209 g of tetraethoxysilane was added. The reaction was carried out for 2 hours while keeping the solution at 55 ° C. To this solution was added 300 g of propylene glycol monopropyl ether, and then the solution was concentrated using an evaporator at 50 ° C. to 10% (in terms of complete hydrolysis condensate), and then 10% propylene glycol monopropyl ether of acetic acid. 10 g of a solution was added to obtain a reaction liquid (1).

このようにして得られた縮合物等の慣性半径は、13.4nmであった。   The inertia radius of the condensate and the like thus obtained was 13.4 nm.

[合成例2]
合成例1において、10%水酸化テトラメチルアンモニウム水溶液の代わりに10%ピペラジン水溶液を使用した以外は合成例1と同様にして、反応液(2)を得た。
[Synthesis Example 2]
In Synthesis Example 1, a reaction solution (2) was obtained in the same manner as in Synthesis Example 1, except that a 10% piperazine aqueous solution was used instead of the 10% tetramethylammonium hydroxide aqueous solution.

このようにして得られた縮合物等の慣性半径は、13.0nmであった。   The inertia radius of the condensate and the like thus obtained was 13.0 nm.

[合成例3]
合成例1において、10%水酸化テトラメチルアンモニウム水溶液の代わりに10%ジアザビシクロウンデセン水溶液を使用した以外は合成例1と同様にして、反応液(3)を得た。
[Synthesis Example 3]
A reaction solution (3) was obtained in the same manner as in Synthesis Example 1 except that a 10% diazabicycloundecene aqueous solution was used instead of the 10% tetramethylammonium hydroxide aqueous solution in Synthesis Example 1.

このようにして得られた縮合物等の慣性半径は、15.0nmであった。   The inertia radius of the condensate thus obtained was 15.0 nm.

[合成例4]
合成例1において、10%水酸化テトラメチルアンモニウム水溶液の代わりに10%水酸化ナトリウム水溶液を使用した以外は合成例1と同様にして、反応液(4)を得た。
[Synthesis Example 4]
In Synthesis Example 1, a reaction solution (4) was obtained in the same manner as in Synthesis Example 1 except that a 10% sodium hydroxide aqueous solution was used instead of the 10% tetramethylammonium hydroxide aqueous solution.

このようにして得られた縮合物等の慣性半径は、14.8nmであった。   The inertia radius of the condensate obtained in this manner was 14.8 nm.

[合成例5]
石英製セパラブルフラスコに、蒸留エタノール470.9g、イオン交換水226.5gと25%水酸化テトラメチルアンモニウム水溶液17.2gを入れ、均一に攪拌した。この溶液にメチルトリメトキシシラン44.9gとテトラエトキシシラン68.6gの混合物を添加した。溶液を55℃に保ったまま、2時間反応を行った。この溶液に20%硝酸水溶液50gを添加し、十分攪拌した後、室温まで冷却した。この溶液にプロピレングリコールモノプロピルエーテル400gを加え、その後、50℃のエバポレーターを用いて溶液を10%(完全加水分解縮合物換算)となるまで濃縮し、その後、マレイン酸の10%プロピレングリコールモノプロピルエーテル溶液10gを添加し、反応液(5)を得た。
[Synthesis Example 5]
In a quartz separable flask, 470.9 g of distilled ethanol, 226.5 g of ion-exchanged water, and 17.2 g of 25% tetramethylammonium hydroxide aqueous solution were added and stirred uniformly. To this solution was added a mixture of 44.9 g of methyltrimethoxysilane and 68.6 g of tetraethoxysilane. The reaction was carried out for 2 hours while keeping the solution at 55 ° C. To this solution, 50 g of a 20% nitric acid aqueous solution was added and stirred sufficiently, and then cooled to room temperature. To this solution was added 400 g of propylene glycol monopropyl ether, and then the solution was concentrated to 10% (in terms of complete hydrolysis condensate) using an evaporator at 50 ° C., and then 10% propylene glycol monopropyl maleate. 10 g of an ether solution was added to obtain a reaction liquid (5).

このようにして得られた縮合物等の慣性半径は、20.9nmであった。   The inertia radius of the condensate and the like thus obtained was 20.9 nm.

[合成例6]
合成例5において、25%水酸化テトラメチルアンモニウム水溶液の代わりに25%水酸化テトラブチルアンモニウム水溶液を使用したこと以外は合成例5と同様にして、反応液(6)を得た。
[Synthesis Example 6]
In Synthesis Example 5, a reaction liquid (6) was obtained in the same manner as in Synthesis Example 5 except that a 25% tetrabutylammonium hydroxide aqueous solution was used instead of the 25% tetramethylammonium hydroxide aqueous solution.

このようにして得られた縮合物等の慣性半径は、22.8nmであった。   The inertia radius of the condensate thus obtained was 22.8 nm.

[合成例7]
合成例5において、プロピレングリコールモノプロピルエーテルの代わりにプロピレングリコールモノエチルエーテルを使用したこと以外は合成例5と同様にして、反応液(7)を得た。
[Synthesis Example 7]
In Synthesis Example 5, a reaction liquid (7) was obtained in the same manner as in Synthesis Example 5 except that propylene glycol monoethyl ether was used instead of propylene glycol monopropyl ether.

このようにして得られた縮合物等の慣性半径は、20.8nmであった。   The inertia radius of the condensate and the like thus obtained was 20.8 nm.

[比較合成例1]
合成例1において、10%水酸化テトラメチルアンモニウム水溶液の代わりに10%ピリジン水溶液を使用した以外は合成例1と同様にして、反応液(8)を得た。
[Comparative Synthesis Example 1]
In Synthesis Example 1, a reaction liquid (8) was obtained in the same manner as in Synthesis Example 1 except that a 10% pyridine aqueous solution was used instead of the 10% tetramethylammonium hydroxide aqueous solution.

このようにして得られた縮合物等の慣性半径は、3.8nmであった。   The inertia radius of the condensate thus obtained was 3.8 nm.

[比較合成例2]
石英製セパラブルフラスコに、メチルトリメトキシシラン154.24g、テトラメトキシシラン288.83gと蒸留プロピレングリコールモノエチルエーテル250gを溶解し、マレイン酸10gを溶解したイオン交換水297gを1時間かけて溶液に滴下した。この溶液を50℃で3時間反応させることで反応液(9)を得た。
[Comparative Synthesis Example 2]
In a quartz separable flask, 154 g of methyltrimethoxysilane, 288.83 g of tetramethoxysilane and 250 g of distilled propylene glycol monoethyl ether were dissolved, and 297 g of ion-exchanged water in which 10 g of maleic acid was dissolved was added to the solution over 1 hour. It was dripped. This solution was reacted at 50 ° C. for 3 hours to obtain a reaction liquid (9).

このようにして得られた縮合物等の慣性半径は、0.2nmであった。   The inertia radius of the condensate thus obtained was 0.2 nm.

[実施例1]
合成例1で得られた反応液(1)を0.2μm孔径のテフロン(登録商標)製フィルターでろ過を行い本発明の層間絶縁膜形成用組成物を得た。
[Example 1]
The reaction solution (1) obtained in Synthesis Example 1 was filtered with a Teflon (registered trademark) filter having a pore size of 0.2 μm to obtain the composition for forming an interlayer insulating film of the present invention.

得られた組成物をスピンコート法でシリコンウエハ上に塗布した。
塗膜のPCT後の比誘電率は2.27と非常に低い値であり、PCT後の塗膜をCMPしても塗膜に傷は認められなかった。また、PCT後の塗膜の密着性も良好であった。
The obtained composition was applied onto a silicon wafer by spin coating.
The relative dielectric constant after PCT of the coating film was a very low value of 2.27, and no scratches were observed on the coating film even after CMP of the coating film after PCT. Moreover, the adhesiveness of the coating film after PCT was also favorable.

[実施例2〜7]
表1に示す組成で層間絶縁膜形成用組成物を作製し、実施例1と同様に評価を行った。評価結果を表1に併せて示す。
[Examples 2 to 7]
A composition for forming an interlayer insulating film having the composition shown in Table 1 was prepared and evaluated in the same manner as in Example 1. The evaluation results are also shown in Table 1.

Figure 2006352118
Figure 2006352118

[比較例1]
比較合成例1で得られた反応液(8)を使用した以外は実施例1と同様にして塗膜の評価を行った。
[Comparative Example 1]
The coating film was evaluated in the same manner as in Example 1 except that the reaction solution (8) obtained in Comparative Synthesis Example 1 was used.

塗膜のPCT後の比誘電率は2.67と比較的低い値であったが、PCT後の塗膜をCMP処理行った際に表面に傷が認められた。また、PCT後の塗膜の密着性評価を行ったところ、スタッドプルピンの5本でシリコンウエハと塗膜の界面での剥離が発生した。   Although the relative dielectric constant after PCT of the coating film was 2.67, which was a relatively low value, scratches were observed on the surface when the coating film after PCT was subjected to CMP treatment. Moreover, when the adhesion evaluation of the coating film after PCT was performed, peeling by the interface of a silicon wafer and a coating film generate | occur | produced with five stud pull pins.

[比較例2]
比較合成例2で得られた反応液(9)を使用した以外は実施例1と同様にして塗膜の評価を行った。
[Comparative Example 2]
The coating film was evaluated in the same manner as in Example 1 except that the reaction solution (9) obtained in Comparative Synthesis Example 2 was used.

PCT後の塗膜の比誘電率は3.88と高い値であった。また、PCT後の塗膜の密着性評価を行ったところ、スタッドプルピンの3本でシリコンウエハと塗膜の界面での剥離が発生した。   The relative dielectric constant of the coating film after PCT was a high value of 3.88. Moreover, when the adhesion evaluation of the coating film after PCT was performed, peeling at the interface between the silicon wafer and the coating film occurred with three stud pull pins.

Claims (9)

(A)下記一般式(1)で表される化合物、下記一般式(2)で表される化合物および下記一般式(3)で表される化合物の群から選ばれた少なくとも1種のシラン化合物を水酸化テトラアルキルアンモニウムと水の存在下で加水分解し、縮合した慣性半径が5〜50nmである加水分解縮合物
Si(OR4−a ・・・・・(1)
(式中、Rは水素原子、フッ素原子または1価の有機基、Rは1価の有機基、aは1〜2の整数を示す。)
Si(OR ・・・・・(2)
(式中、Rは1価の有機基を示す。)
(RO)3−bSi−(R−Si(O3−c ・・(3)
〔式中、R〜Rは同一または異なり、それぞれ1価の有機基、bおよびcは同一または異なり、0〜2の数を示し、Rは酸素原子、フェニレン基または−(CH−で表される基(ここで、nは1〜6の整数である)、dは0または1を示す。〕
ならびに(B)有機溶媒を含有することを特徴とする層間絶縁膜形成用組成物。
(A) At least one silane compound selected from the group consisting of a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (3) Is hydrolyzed in the presence of tetraalkylammonium hydroxide and water, and the condensed hydrolytic condensate having a radius of inertia of 5 to 50 nm R a Si (OR 1 ) 4-a (1)
(In the formula, R represents a hydrogen atom, a fluorine atom or a monovalent organic group, R 1 represents a monovalent organic group, and a represents an integer of 1 to 2)
Si (OR 2 ) 4 (2)
(Wherein R 2 represents a monovalent organic group.)
R 3 b (R 4 O) 3-b Si- (R 7) d -Si (O 5) 3-c R 6 c ·· (3)
[Wherein R 3 to R 6 are the same or different, each is a monovalent organic group, b and c are the same or different, and represent a number of 0 to 2, and R 7 represents an oxygen atom, a phenylene group or — (CH 2 ) A group represented by n- (where n is an integer of 1 to 6), d represents 0 or 1. ]
And (B) a composition for forming an interlayer insulating film, comprising an organic solvent.
水酸化テトラアルキルアンモニウムが水酸化テトラメチルアンモニウムであることを特徴とする請求項1記載の層間絶縁膜形成用組成物。   2. The interlayer insulating film forming composition according to claim 1, wherein the tetraalkylammonium hydroxide is tetramethylammonium hydroxide. 水酸化テトラアルキルアンモニウムの使用量が、シラン化合物のアルコキシル基の総量1モルに対して0.00001〜10モルであることを特徴とする請求項1記載の層間絶縁膜形成用組成物。   The composition for forming an interlayer insulating film according to claim 1, wherein the amount of tetraalkylammonium hydroxide used is 0.00001 to 10 mol per 1 mol of the total amount of alkoxyl groups of the silane compound. pHが7以下であることを特徴とする請求項1記載の層間絶縁膜形成用組成物。   The composition for forming an interlayer insulating film according to claim 1, wherein the pH is 7 or less. (B)有機溶剤が、下記一般式(4)で表される溶剤であることを特徴とする請求項1記載の層間絶縁膜形成用組成物。
O(CHCHCHO)e ・・・・・(4)
(RおよびRは、それぞれ独立して水素原子、炭素数1〜4のアルキル基またはCHCO−から選ばれる1価の有機基を示し、eは1〜2の整数を表す。)
2. The composition for forming an interlayer insulating film according to claim 1, wherein the organic solvent is a solvent represented by the following general formula (4).
R 8 O (CHCH 3 CH 2 O) e R 9 (4)
(R 8 and R 9 each independently represent a monovalent organic group selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or CH 3 CO—, and e represents an integer of 1 to 2)
上記一般式(1)で表される化合物が、上記一般式(1)においてaが1である化合物であることを特徴とする請求項1記載の層間絶縁膜形成用組成物。   The composition for forming an interlayer insulating film according to claim 1, wherein the compound represented by the general formula (1) is a compound in which a is 1 in the general formula (1). (A)シラン化合物が、上記一般式(1)で表される化合物および上記一般式(2)で表される化合物のうち少なくとも1種であることを特徴とする請求項1記載の層間絶縁膜形成用組成物。   2. The interlayer insulating film according to claim 1, wherein the silane compound is at least one of a compound represented by the general formula (1) and a compound represented by the general formula (2). Forming composition. 請求項1〜7項いずれかに記載の層間絶縁膜形成用組成物を基板に塗布し、加熱することを特徴とする層間絶縁膜の形成方法。   A method for forming an interlayer insulating film, comprising applying the composition for forming an interlayer insulating film according to claim 1 to a substrate and heating. 請求項8記載の層間絶縁膜の形成方法によって得られるシリカ系層間絶縁膜。   A silica-based interlayer insulating film obtained by the method for forming an interlayer insulating film according to claim 8.
JP2006160935A 2000-04-10 2006-06-09 Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film Pending JP2006352118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160935A JP2006352118A (en) 2000-04-10 2006-06-09 Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000108311 2000-04-10
JP2006160935A JP2006352118A (en) 2000-04-10 2006-06-09 Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000363513A Division JP4195773B2 (en) 2000-02-01 2000-11-29 Composition for forming interlayer insulating film, method for forming interlayer insulating film, and silica-based interlayer insulating film

Publications (1)

Publication Number Publication Date
JP2006352118A true JP2006352118A (en) 2006-12-28

Family

ID=37647569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160935A Pending JP2006352118A (en) 2000-04-10 2006-06-09 Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film

Country Status (1)

Country Link
JP (1) JP2006352118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220565A (en) * 2001-01-24 2002-08-09 Jsr Corp Composition for film-forming, method for forming film and silica-based film
WO2008081890A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Catalyst for dealcoholization condensation reaction and method for producing organopolysiloxane using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230420A (en) * 1988-03-11 1989-09-13 Nippon Shokubai Kagaku Kogyo Co Ltd Porous spherical silica fine particle having organic group within
JPH0410418A (en) * 1990-04-26 1992-01-14 Catalysts & Chem Ind Co Ltd Semiconductor device
WO2000012640A1 (en) * 1998-09-01 2000-03-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230420A (en) * 1988-03-11 1989-09-13 Nippon Shokubai Kagaku Kogyo Co Ltd Porous spherical silica fine particle having organic group within
JPH0410418A (en) * 1990-04-26 1992-01-14 Catalysts & Chem Ind Co Ltd Semiconductor device
WO2000012640A1 (en) * 1998-09-01 2000-03-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220565A (en) * 2001-01-24 2002-08-09 Jsr Corp Composition for film-forming, method for forming film and silica-based film
WO2008081890A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Catalyst for dealcoholization condensation reaction and method for producing organopolysiloxane using the same
US8030429B2 (en) 2006-12-28 2011-10-04 Dow Corning Toray Company, Ltd. Catalyst for dealcoholization condensation reaction and method for producing organopolysiloxane using the same
JP5356830B2 (en) * 2006-12-28 2013-12-04 東レ・ダウコーニング株式会社 Catalyst for dealcoholization condensation reaction and process for producing organopolysiloxane using the same

Similar Documents

Publication Publication Date Title
JP4195773B2 (en) Composition for forming interlayer insulating film, method for forming interlayer insulating film, and silica-based interlayer insulating film
US7128976B2 (en) Composition for film formation, method of film formation, and silica-based film
US6503633B2 (en) Composition for film formation, process for producing composition for film formation, method of film formation, and silica-based film
US20020045693A1 (en) Composition for film formation, method of film formation and silica-based film
JP4530113B2 (en) Method for producing film-forming composition, film-forming composition, film-forming method, and silica-based film
JP4117439B2 (en) Film-forming composition and silica-based film
EP1148105B1 (en) Composition for film formation, method of film formation, and silica-based film
JP2003064305A (en) Method for producing film-forming composition, film- forming composition, method for forming film and silica- based film
JP3705122B2 (en) Method for producing organosilicon polymer, film forming composition, film forming method, and silica film
JP4117436B2 (en) Film forming composition, film forming method, and silica-based film
JP4572444B2 (en) Film forming composition, film forming method, and silica-based film
JP5061412B2 (en) Film forming composition, film forming method, and silica-based film
JP4314963B2 (en) Method for producing film-forming composition, film-forming composition, and silica-based film
JP2002285087A (en) Composition for forming film, method for forming film and silica film
JP4483015B2 (en) Method for producing film-forming composition, film-forming composition, film-forming method, and silica-based film
JP3994258B2 (en) Method for producing forming composition and method for forming film
JP4655343B2 (en) Film forming composition and insulating film forming material
JP4117440B2 (en) Method for producing film-forming composition, film-forming composition, film-forming method, and silica-based film
JP4840547B2 (en) Insulating film forming composition, insulating film forming method, and silica-based film
JP4117441B2 (en) Method for producing film-forming composition, film-forming composition, film-forming method, and silica-based film
JP4678080B2 (en) Film forming composition, film forming method, and silica-based film
JP2006352118A (en) Composition for forming interlayer insulating film, method of forming interlayer insulating film, and silica-based interlayer insulating film
JP4568959B2 (en) Silicone-containing composition and film-forming composition
JP4117442B2 (en) Method for producing film forming material, film forming composition, film forming method, and silica-based film
JP2005097443A (en) Method for producing film-forming composition, film-forming composition and insulated film-forming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100922