JP2006351912A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor Download PDF

Info

Publication number
JP2006351912A
JP2006351912A JP2005177520A JP2005177520A JP2006351912A JP 2006351912 A JP2006351912 A JP 2006351912A JP 2005177520 A JP2005177520 A JP 2005177520A JP 2005177520 A JP2005177520 A JP 2005177520A JP 2006351912 A JP2006351912 A JP 2006351912A
Authority
JP
Japan
Prior art keywords
acid
electrolyte
dioxane
water
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005177520A
Other languages
Japanese (ja)
Other versions
JP4641454B2 (en
Inventor
Tomonori Ito
智紀 伊東
Akihiro Matsuda
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005177520A priority Critical patent/JP4641454B2/en
Publication of JP2006351912A publication Critical patent/JP2006351912A/en
Application granted granted Critical
Publication of JP4641454B2 publication Critical patent/JP4641454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte capable of suppressing the increase of the leaking current of an electrolytic capacitor in the case of it at a high temperature and an unloaded condition, even when lowering the resistivity of the electrolyte by adding a water thereto. <P>SOLUTION: In the electrolyte, there are mixed with the solvent wherein an ethylene glycol and a water are blended, organic carboxylic acids comprising an adipic acid, an azelaic acid, a sebacic acid, a 1,6-decane dicarboxylic acid, and the like or the salts thereof, and a 1,4-dioxane-2,3-diol represented by a chemical formula I. The blending quantity of the 1,4-dioxane-2,3-diol is, for example, 0.1-10.0 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものであり、特に高温無負荷時の漏れ電流を改善した電解液に関するものである。   The present invention relates to an improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and more particularly to an electrolytic solution with improved leakage current at high temperature and no load.

近年のアルミニウム電解コンデンサの小型化に伴い、アルミニウム電解コンデンサの陽極箔にはエッチング倍率の高いものが使用されるようになり、比抵抗の低い電解液が要求されている。従来、中高圧用アルミニウム電解コンデンサの電解液などには、エチレングリコールを主溶媒とし、有機カルボン酸やホウ酸またはそのアンモニウム塩などを配合し、さらに、電解液の耐電圧を上昇させるためにマンニトール、ソルビトール等の多価アルコールを添加した電解液が提案されている(例えば、特許文献1〜3参照)。
特公平7−48459号公報(第1−4頁) 特公平7−48460号公報(第1−3頁) 特公平7−63047号公報(第1−4頁)
Along with the recent miniaturization of aluminum electrolytic capacitors, the anode foil of aluminum electrolytic capacitors has come to be used with a high etching magnification, and an electrolytic solution having a low specific resistance is required. Conventionally, electrolytes of medium- and high-pressure aluminum electrolytic capacitors contain ethylene glycol as the main solvent, organic carboxylic acid, boric acid or its ammonium salt, etc., and mannitol to increase the withstand voltage of the electrolyte. In addition, an electrolytic solution to which a polyhydric alcohol such as sorbitol is added has been proposed (see, for example, Patent Documents 1 to 3).
Japanese Examined Patent Publication No. 7-48459 (page 1-4) Japanese Patent Publication No. 7-48460 (page 1-3) Japanese Examined Patent Publication No. 7-63047 (page 1-4)

しかしながら、低比抵抗の電解液を得るには、電解質の濃度を高くするか、水を多量に混合しなければならないが、電解質濃度を高めた場合には電解質の析出や耐電圧低下が起こり、水を多量に混合した場合はアルミニウム電解コンデンサを高温下で無負荷放置したときに漏れ電流が著しく増大する。このため、電解液を低比抵抗化し、かつ、高温無負荷時の漏れ電流の増大が小さなアルミニウム電解コンデンサを実現できていないのが現状である。   However, in order to obtain an electrolyte with low specific resistance, the concentration of the electrolyte must be increased or a large amount of water must be mixed. However, when the electrolyte concentration is increased, electrolyte deposition and withstand voltage decrease occur, When a large amount of water is mixed, the leakage current increases remarkably when the aluminum electrolytic capacitor is left unloaded at high temperature. For this reason, it is the present condition that the electrolytic solution has a low specific resistance and an aluminum electrolytic capacitor with a small increase in leakage current at high temperature and no load cannot be realized.

以上の問題点に鑑みて、本発明の課題は、水を添加して低比抵抗化を図ったときでも高温無負荷時の漏れ電流の増大を抑制可能な電解液を提供することにある。   In view of the above problems, an object of the present invention is to provide an electrolytic solution capable of suppressing an increase in leakage current at high temperature and no load even when water is added to reduce the specific resistance.

本発明は上記課題を解決するため、種々検討した結果発見したものであり、1,4−ジオキサン−2,3−ジオールに着目し、その特性を電解液に適用しようとするものである。   The present invention has been discovered as a result of various studies in order to solve the above-mentioned problems, and focuses on 1,4-dioxane-2,3-diol and attempts to apply the characteristics to an electrolytic solution.

すなわち、本発明に係るアルミニウム電解コンデンサの駆動用電解液では、少なくともエチレングリコールと水とを含む混合溶媒に対して、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示される1,4−ジオキサン−2,3−ジオールとが配合されていることを特徴とする。   That is, in the electrolytic solution for driving an aluminum electrolytic capacitor according to the present invention, at least an organic carboxylic acid or a salt thereof and 1,4-reaction represented by the following chemical formula with respect to a mixed solvent containing at least ethylene glycol and water. Dioxane-2,3-diol is blended.

Figure 2006351912
Figure 2006351912

本発明において、1,4−ジオキサン−2,3−ジオールの配合量は、電解液全体に対して0.1〜10.0wt%であることが好ましい。   In this invention, it is preferable that the compounding quantity of 1, 4- dioxane-2, 3-diol is 0.1-10.0 wt% with respect to the whole electrolyte solution.

本発明において、水の配合量は、電解液全体に対して2.0〜70.0wt%であることが好ましい。   In this invention, it is preferable that the compounding quantity of water is 2.0-70.0 wt% with respect to the whole electrolyte solution.

本発明において、上記の有機カルボン酸としては、ポリカルボン酸であるアゼライン酸、2−メチルアゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。
また、アルミニウム電解コンデンサの定格電圧、すなわち、低圧や中圧の場合には、有機カルボン酸として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、マレイン酸、フマル酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、チオジプロピオン酸などを用い、オキシカルボン酸として、グリコール酸、乳酸、酒石酸、サリチル酸、マンデル酸などを用い、モノカルボン酸として、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸、アクリル酸、メタクリル酸、オレイン酸、安息香酸、p−ニトロ安息香酸、アニス酸、クミン酸、ケイ皮酸、ナフトエ酸などを用いてもよい。
さらに、ボロジシュウ酸、ボロジグリコール酸、ボロジサリチル酸、エチレングリコールホウ酸エステルなどを併用してもよい。
In the present invention, the organic carboxylic acid includes polycarboxylic acids azelaic acid, 2-methyl azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene- Examples thereof include 1,16-dicarboxylic acid.
In addition, when the rated voltage of the aluminum electrolytic capacitor, that is, at low or medium pressure, the organic carboxylic acid is oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, maleic acid, fumaric acid. Acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, thiodipropionic acid, etc., as oxycarboxylic acid, glycolic acid, lactic acid, tartaric acid, salicylic acid, mandelic acid, etc. Monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, behenic acid, acrylic acid, methacrylic acid, Oleic acid, benzoic acid, p-nitrobenzoic acid, anisic acid, cumic acid, cinnamic acid, Etc. may be used Futoe acid.
Further, borodisoxalic acid, borodiglycolic acid, borodisalicylic acid, ethylene glycol borate ester and the like may be used in combination.

また、有機カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン、N,N−ジメチル−N−(2−メトキシエチル)アミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム等の四級アンモニウム塩等を例示することができる。   In addition to ammonium salts, organic carboxylic acid salts include primary amine salts such as methylamine, ethylamine, and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, and diethylamine, trimethylamine, diethylmethylamine, Examples thereof include tertiary amine salts such as ethyldimethylamine, triethylamine and N, N-dimethyl-N- (2-methoxyethyl) amine, and quaternary ammonium salts such as tetramethylammonium and triethylmethylammonium.

さらに、本発明に係る電解液には、漏れ電流の低減、耐電圧向上、ガス吸収等の目的で種々の添加剤を加えることができる。添加剤の例として、リン酸化合物、ホウ酸化合物、多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールのランダム共重合体およびブロック共重合体に代表される高分子化合物、ニトロ化合物等が挙げられる。   Furthermore, various additives can be added to the electrolytic solution according to the present invention for the purpose of reducing leakage current, improving withstand voltage, and absorbing gas. Examples of additives include phosphoric acid compounds, boric acid compounds, polyhydric alcohols, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, and polyoxyethylene polyoxypropylene glycol random copolymers and block copolymers. A molecular compound, a nitro compound, etc. are mentioned.

本発明に係る電解液には、1,4−ジオキサン−2,3−ジオールが配合されているため、水を含む溶媒を用いて低比抵抗化を図った場合でも、高温無負荷時の漏れ電流の増大を抑制することができ、アルミニウム電解コンデンサの信頼性を向上することができる。
また、低比抵抗化を図る場合でも電解質濃度を高める必要がないので、耐電圧が高い。
さらに、1,4−ジオキサン−2,3−ジオールは、エチレングリコールと水との混合溶媒に容易に溶解するため、析出などの問題がない。
Since 1,4-dioxane-2,3-diol is blended in the electrolytic solution according to the present invention, even when low resistivity is achieved using a solvent containing water, leakage at high temperature and no load is achieved. An increase in current can be suppressed, and the reliability of the aluminum electrolytic capacitor can be improved.
Further, even when the specific resistance is reduced, the withstand voltage is high because it is not necessary to increase the electrolyte concentration.
Furthermore, since 1,4-dioxane-2,3-diol is easily dissolved in a mixed solvent of ethylene glycol and water, there is no problem such as precipitation.

本発明に係るアルミニウム電解コンデンサの駆動用電解液では、少なくともエチレングリコールと水とを含む混合溶媒に対して、少なくとも、有機カルボン酸またはその塩と、1,4−ジオキサン−2,3−ジオールとが配合されている。
このため、水を含む溶媒を用いて低比抵抗化を図った場合でも、高温無負荷時の漏れ電流の増大を抑制でき、アルミニウム電解コンデンサの信頼性を向上することができる。
その理由は、1,4−ジオキサン−2,3−ジオールが電極箔表面に吸着して電極箔を保護するため、水の配合量が高くても、105℃という高温下での水と電極箔との水和反応を抑制するためと考えられる。
In the electrolytic solution for driving an aluminum electrolytic capacitor according to the present invention, at least an organic carboxylic acid or a salt thereof and 1,4-dioxane-2,3-diol with respect to a mixed solvent containing at least ethylene glycol and water. Is blended.
For this reason, even when the specific resistance is reduced using a solvent containing water, an increase in leakage current at high temperature and no load can be suppressed, and the reliability of the aluminum electrolytic capacitor can be improved.
The reason is that 1,4-dioxane-2,3-diol is adsorbed on the surface of the electrode foil to protect the electrode foil. Therefore, even when the amount of water is high, water and the electrode foil at a high temperature of 105 ° C. This is considered to suppress the hydration reaction.

以下、実施例に基づいて、本発明をより具体的に説明する。まず、表1に示す組成で電解液を調合した後、30℃における比抵抗を測定した。その結果を表1に示す。   Hereinafter, based on an Example, this invention is demonstrated more concretely. First, after preparing electrolyte solution with the composition shown in Table 1, the specific resistance in 30 degreeC was measured. The results are shown in Table 1.

Figure 2006351912
Figure 2006351912

表1に示す電解液を使用して、まず、従来例1〜3および実施例1〜14として、定格400V−22μF(φ16×25mmL)のアルミニウム電解コンデンサを各10個作製し、tanδ、漏れ電流について初期特性測定後、高温無負荷試験(105℃、1000時間放置)を行い、試験後のtanδ、漏れ電流を測定した。その結果を表2に示す。   First, as the conventional examples 1 to 3 and examples 1 to 14, using the electrolytic solution shown in Table 1, ten aluminum electrolytic capacitors each having a rating of 400V-22 μF (φ16 × 25 mmL) were produced, and tan δ, leakage current After measuring initial characteristics, a high temperature no-load test (left at 105 ° C. for 1000 hours) was performed, and tan δ and leakage current after the test were measured. The results are shown in Table 2.

また、表1に示す電解液を使用して、従来例4および実施例15〜18として、定格6.3V−1500μF(φ10×12.5mmL)のアルミニウム電解コンデンサを各10個作製し、tanδ、漏れ電流について初期特性測定後、高温無負荷試験(105℃、1000時間放置)を行い、試験後のtanδ、漏れ電流を測定した。その結果を表3に示す。   In addition, using the electrolytic solution shown in Table 1, 10 aluminum electrolytic capacitors each having a rating of 6.3 V-1500 μF (φ10 × 12.5 mmL) were produced as Conventional Example 4 and Examples 15 to 18, and tan δ, After measuring initial characteristics of the leakage current, a high temperature no-load test (left at 105 ° C. for 1000 hours) was performed, and tan δ and leakage current after the test were measured. The results are shown in Table 3.

Figure 2006351912
Figure 2006351912

Figure 2006351912
Figure 2006351912

表2より明らかなように、本発明の実施例1〜12に係る電解液を用いたアルミニウム電解コンデンサは、水を配合して電解液の低比抵抗化を図った割には、高温無負荷試験における漏れ電流の増加が小さい。より具体的には、水分配合量が等しいもの、例えば水の配合量が5wt%の従来例2と実施例2,3,5,7,9とを比較すると、1,4−ジオキサン−2,3−ジオールを配合した実施例2,3,5,7,9に係る電解液を用いたアルミニウム電解コンデンサの方が、高温負荷試験、高温無負荷試験において、漏れ電流の増大が抑制され、優れた特性を示している。   As is apparent from Table 2, the aluminum electrolytic capacitors using the electrolyte solutions according to Examples 1 to 12 of the present invention are not loaded with high temperature, although water is added to reduce the specific resistance of the electrolyte solution. The increase in leakage current in the test is small. More specifically, when the water content is the same, for example, when Conventional Example 2 having a water content of 5 wt% is compared with Examples 2, 3, 5, 7, and 9, 1,4-dioxane-2, The aluminum electrolytic capacitor using the electrolyte solution according to Examples 2, 3, 5, 7, and 9 blended with 3-diol is superior in that the increase in leakage current is suppressed in the high temperature load test and the high temperature no load test. Shows the characteristics.

但し、1,4−ジオキサン−2,3−ジオールの配合量が0.1wt%未満(実施例1)では、漏れ電流の増大を抑制する効果が十分でなく、また、配合量が10.0wt%を越える(実施例4)と、比抵抗が上昇するので、低比抵抗用途に不向きである。よって、1,4−ジオキサン−2,3−ジオールの配合量は、0.1〜10.0wt%の範囲が好ましい。また、水分の配合量が2.0wt%未満(実施例11)では比抵抗が高い。   However, when the blending amount of 1,4-dioxane-2,3-diol is less than 0.1 wt% (Example 1), the effect of suppressing an increase in leakage current is not sufficient, and the blending amount is 10.0 wt. If the ratio exceeds 50% (Example 4), the specific resistance increases, and is not suitable for low specific resistance applications. Therefore, the blending amount of 1,4-dioxane-2,3-diol is preferably in the range of 0.1 to 10.0 wt%. In addition, when the moisture content is less than 2.0 wt% (Example 11), the specific resistance is high.

また、このような効果は、有機カルボン酸としてセバシン酸アンモニウムを用いた場合(実施例13)や、アゼライン酸アンモニウムを用いた場合(実施例14)でも、同様である。   Moreover, such an effect is the same even when ammonium sebacate is used as the organic carboxylic acid (Example 13) or when ammonium azelaate is used (Example 14).

表3より明らかなように、本発明の実施例15〜17に係る電解液を用いたアルミニウム電解コンデンサは、水を配合して電解液の低比抵抗化を図った割には、高温無負荷試験における漏れ電流の増大が小さい。但し、水分配合量が70.0wt%以下(実施例15〜16)では、漏れ電流の増大を抑制する効果が顕著であるが、水分の配合量が75.0wt%(実施例17)では、漏れ電流が増大する傾向にある。よって、水分の配合量は2.0〜70.0wt%が好ましい。   As is apparent from Table 3, the aluminum electrolytic capacitors using the electrolytic solutions according to Examples 15 to 17 of the present invention were not loaded with high temperature, although water was added to reduce the specific resistance of the electrolytic solution. The increase in leakage current in the test is small. However, when the moisture content is 70.0 wt% or less (Examples 15 to 16), the effect of suppressing an increase in leakage current is significant, but when the moisture content is 75.0 wt% (Example 17), Leakage current tends to increase. Therefore, the blending amount of water is preferably 2.0 to 70.0 wt%.

なお、1,4−ジオキサン−2,3−ジオールを配合した効果は、上記実施例に限定されるものではなく、先に記載した有機カルボン酸やその塩を単独または複数配合した電解液に用いても同等の効果があった。   In addition, the effect | action which mix | blended 1,4-dioxane-2,3-diol is not limited to the said Example, It uses for the electrolyte solution which mix | blended the organic carboxylic acid or its salt described previously individually or in multiple numbers. But it had the same effect.

Claims (3)

少なくともエチレングリコールと水とを含む混合溶媒に対して、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示される1,4−ジオキサン−2,3−ジオールとが配合されていることを特徴とする電解コンデンサの駆動用電解液。
Figure 2006351912
The mixed solvent containing at least ethylene glycol and water contains at least an organic carboxylic acid or a salt thereof and 1,4-dioxane-2,3-diol represented by the following chemical formula. Electrolytic solution for driving electrolytic capacitors.
Figure 2006351912
請求項1記載の1,4−ジオキサン−2,3−ジオールの配合量が、電解液全体に対して0.1〜10.0wt%であることを特徴とする電解コンデンサの駆動用電解液。   An electrolytic solution for driving an electrolytic capacitor, wherein the amount of 1,4-dioxane-2,3-diol according to claim 1 is 0.1 to 10.0 wt% with respect to the entire electrolytic solution. 請求項1または請求項2記載の水の配合量が、電解液全体に対して2.0〜70.0wt%であることを特徴とする電解コンデンサの駆動用電解液。   3. The electrolytic solution for driving an electrolytic capacitor, wherein the amount of water according to claim 1 or 2 is 2.0 to 70.0 wt% with respect to the entire electrolytic solution.
JP2005177520A 2005-06-17 2005-06-17 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP4641454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177520A JP4641454B2 (en) 2005-06-17 2005-06-17 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177520A JP4641454B2 (en) 2005-06-17 2005-06-17 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JP2006351912A true JP2006351912A (en) 2006-12-28
JP4641454B2 JP4641454B2 (en) 2011-03-02

Family

ID=37647424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177520A Expired - Fee Related JP4641454B2 (en) 2005-06-17 2005-06-17 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP4641454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135580A1 (en) * 2022-12-21 2024-06-27 株式会社レゾナック Conductive polymer-containing dispersion liquid, solid electrolytic capacitor and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164260A (en) * 2000-11-27 2002-06-07 Nichicon Corp Electrolytic solution for driving electrolytic capacitor
JP2004247640A (en) * 2003-02-17 2004-09-02 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2004262174A (en) * 2003-03-04 2004-09-24 Mitsubishi Paper Mills Ltd Inkjet recording material
JP2005003862A (en) * 2003-06-11 2005-01-06 Tokyo Ohka Kogyo Co Ltd Negative resist composition and resist pattern forming method using the same
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164260A (en) * 2000-11-27 2002-06-07 Nichicon Corp Electrolytic solution for driving electrolytic capacitor
JP2004247640A (en) * 2003-02-17 2004-09-02 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2004262174A (en) * 2003-03-04 2004-09-24 Mitsubishi Paper Mills Ltd Inkjet recording material
JP2005003862A (en) * 2003-06-11 2005-01-06 Tokyo Ohka Kogyo Co Ltd Negative resist composition and resist pattern forming method using the same
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135580A1 (en) * 2022-12-21 2024-06-27 株式会社レゾナック Conductive polymer-containing dispersion liquid, solid electrolytic capacitor and method for producing same
WO2024135579A1 (en) * 2022-12-21 2024-06-27 株式会社レゾナック Conductive polymer-containing dispersion, solid electrolyte capacitor, and production method for same

Also Published As

Publication number Publication date
JP4641454B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4641454B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4571017B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2007142062A (en) Electrolyte for driving electrolytic capacitor
JP4391779B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4637648B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4576319B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006186208A (en) Driving electrolyte of electrolytic capacitor
JP4520286B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4441392B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4641458B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4637662B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4555158B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4668749B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006156709A (en) Electrolytic solution for driving aluminum electrolytic capacitor
JP4541230B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006156706A (en) Driving electrolyte of electrolytic capacitor
JP4641455B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4150249B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4637701B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4555152B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4555164B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006156708A (en) Electrolytic solution for driving aluminum electrolytic capacitor
JP2007095871A (en) Electrolyte for drive of electrolytic capacitor
JP2004186189A (en) Electrolyte for driving electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4641454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees