JP2006351876A - Evaluation method and evaluation equipment for dechuck characteristic of electrostatic chuck - Google Patents

Evaluation method and evaluation equipment for dechuck characteristic of electrostatic chuck Download PDF

Info

Publication number
JP2006351876A
JP2006351876A JP2005176770A JP2005176770A JP2006351876A JP 2006351876 A JP2006351876 A JP 2006351876A JP 2005176770 A JP2005176770 A JP 2005176770A JP 2005176770 A JP2005176770 A JP 2005176770A JP 2006351876 A JP2006351876 A JP 2006351876A
Authority
JP
Japan
Prior art keywords
wafer
electrostatic chuck
displacement
dechucking
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005176770A
Other languages
Japanese (ja)
Other versions
JP4553375B2 (en
Inventor
Kazuichi Yamamura
和市 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005176770A priority Critical patent/JP4553375B2/en
Publication of JP2006351876A publication Critical patent/JP2006351876A/en
Application granted granted Critical
Publication of JP4553375B2 publication Critical patent/JP4553375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method and evaluation equipment for dechuck characteristics of an electrostatic chuck which can determine dechuck characteristics of a wafer easily, mechanically and quantitatively. <P>SOLUTION: This method evaluates dechuck characteristics when a wafer 3 is removed from an electrostatic chuck. In the method, the lift-up of the wafer 3 from the electrostatic chuck 2 is started after the shutoff of a voltage applied to the electrostatic chuck 2 for the irradiation of a laser beam to the wafer, its reflective light is received for the measurement of the displacement of the wafer 3, and the swinging of the wafer 3 is determined from the relevant measurement data. The displacement of the wafer 3 is measured on the basis of a wafer move-up command signal for starting the lift-up of the wafer 3, then measured data are stored. The displacement of the wafer 3 during lifting-up is measured on a time-axis, and the swinging of the wafer 3 is determined on the basis of the displacement data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造用成膜装置などに用いられる静電チャックの製造にあたって、静電チャックのデチャック特性を評価するための評価方法および評価装置に関する。   The present invention relates to an evaluation method and an evaluation apparatus for evaluating dechuck characteristics of an electrostatic chuck when manufacturing an electrostatic chuck used in a film forming apparatus for semiconductor manufacturing.

半導体デバイスの製造工程において、ウェハは、減圧雰囲気中にてプラズマエッチング、CVD、イオンプレーティング等の処理が行われるが、ウェハの加熱に際して、ヒーター上にウェハを固定するために、静電力で吸着固定する静電チャックが使用されている。静電チャックは、被吸着物であるウェハの下面に薄い絶縁膜を介して電極が配置され、この電極に電圧を印加して静電力でウェハを固定している。   In the manufacturing process of semiconductor devices, wafers are processed by plasma etching, CVD, ion plating, etc. in a reduced-pressure atmosphere. When the wafer is heated, it is adsorbed by electrostatic force to fix the wafer on the heater. A fixed electrostatic chuck is used. In the electrostatic chuck, an electrode is disposed on a lower surface of a wafer as an object to be attracted via a thin insulating film, and a voltage is applied to the electrode to fix the wafer with an electrostatic force.

静電チャックの吸着力は、チャックへの印加電圧、絶縁膜の厚さ、その誘電率、電極面積に依存するが、さらにこれに静電力が加わる。この静電力は、電荷が絶縁膜中を移動することによって発生するため、時定数が非常に大きく、さらに絶縁膜の抵抗値、静電チャック表面の状態によっても大きく変わる。そのため、静電チャックの時定数は、形状・寸法、材質、表面の仕上げ等によって異なり、数秒〜数分に達する。   The adsorption force of the electrostatic chuck depends on the voltage applied to the chuck, the thickness of the insulating film, the dielectric constant thereof, and the electrode area, but an electrostatic force is further added thereto. This electrostatic force is generated by the movement of electric charges in the insulating film, so that the time constant is very large, and also varies greatly depending on the resistance value of the insulating film and the state of the electrostatic chuck surface. Therefore, the time constant of the electrostatic chuck varies depending on the shape / dimension, material, surface finish, etc., and reaches several seconds to several minutes.

静電チャック上に固定されたウェハは、加工処理後、下からリフトピンを上昇させて静電チャックから取り外されるが、ウェハに残留電荷が不均一に残っていると、揺れを生じてウェハが傾き、所定の位置からずれを生じることがある。   After processing, the wafer fixed on the electrostatic chuck is removed from the electrostatic chuck by lifting the lift pins from below, but if the residual charge remains unevenly on the wafer, the wafer is tilted and tilted. Deviation from a predetermined position may occur.

ウェハが所定の位置からずれると、自動化されたウェハ搬送機構がウェハを正しく把持できず、ウェハもしくは搬送機構が損傷する等の問題を引き起こす可能性がある。したがって、ウェハを静電チャックから取り外す(デチャック)には、ウェハに残留した電荷が除去されるまで待って行う必要があり、この待機時間は、静電チャックの時定数が大きいほど長くなり、生産性を低下させる。
そこで、予め決められた時間で、ウェハのデチャックが支障なく行えるかを確認しておく必要がある。
If the wafer is displaced from a predetermined position, the automated wafer conveyance mechanism cannot correctly hold the wafer, which may cause problems such as damage to the wafer or the conveyance mechanism. Therefore, in order to remove the wafer from the electrostatic chuck (dechuck), it is necessary to wait until the electric charge remaining on the wafer is removed. This waiting time becomes longer as the time constant of the electrostatic chuck becomes larger. Reduce sex.
Therefore, it is necessary to confirm whether the wafer can be dechucked without any trouble in a predetermined time.

したがって、静電チャックの一定時間内でのデチャック性能を確認しておくことは、半導体製造装置の信頼性を向上させるために非常に重要である。このため、従来は、静電チャックの評価装置のチャンバーの横にガラス製の覗き窓を設けて、デチャック操作を行う際、測定員が目視でウェハの状況を確認していた。目視による確認では、常に計測時間に合わせて測定員が立ち会う必要があり、測定員の行動が束縛されていた。また、微少の変動や揺れ等の目視判定には個人差があり、判定にバラツキが発生し、評価の安定性や信頼性に問題があった。   Therefore, it is very important to confirm the dechucking performance of the electrostatic chuck within a predetermined time in order to improve the reliability of the semiconductor manufacturing apparatus. For this reason, conventionally, when performing a dechucking operation by providing a glass viewing window next to the chamber of the electrostatic chuck evaluation device, a measurement person has visually confirmed the state of the wafer. In visual confirmation, it was necessary for the measurer to always be present according to the measurement time, and the measurer's behavior was constrained. In addition, there are individual differences in visual judgments such as slight fluctuations and shaking, and the judgments vary, and there are problems in the stability and reliability of evaluation.

また、特許文献1は、静電チャックの絶縁膜表面とウェハとの間に絶縁膜を配置してウェハを吸着固定し、ウェハと静電チャック用電極で構成される静電容量の変化を測定、すなわち、容量計の読みC(容量値)が定常値になるまで測定を続けることにより、静電チャックの時定数を求めている。しかし、時定数を求めるこの方法は、ウェハの位置ずれの原因である揺れを直接測定していないため、実使用条件でテストしている方法に比べれば、信頼性の問題がある。
また、時定数を調べる場合、静電チャックの最上層である絶縁膜の誘電率や厚さ等の静電チャックの構造に関係する要素が変化した場合、電気部品、例えば容量や周波数に関係した部品を交換する必要が生じるため、煩雑さが生じる等の問題があった。
特開平5-36806号
In Patent Document 1, an insulating film is arranged between the surface of the insulating film of the electrostatic chuck and the wafer, the wafer is sucked and fixed, and a change in electrostatic capacitance formed by the wafer and the electrostatic chuck electrode is measured. That is, the time constant of the electrostatic chuck is obtained by continuing the measurement until the reading C (capacitance value) of the capacitance meter reaches a steady value. However, this method for obtaining the time constant does not directly measure the fluctuation that causes the wafer position shift, and therefore has a reliability problem as compared with the method that is tested under actual use conditions.
Also, when examining the time constant, if factors related to the structure of the electrostatic chuck, such as the dielectric constant and thickness of the insulating film, which is the uppermost layer of the electrostatic chuck, change, it is related to the electrical components, such as capacity and frequency. Since it is necessary to replace the parts, there are problems such as complexity.
JP 5-36806

本発明は、上記した問題を解決するために、ウェハのデチャック特性を容易に、機械的かつ定量的に判定することのできる静電チャックのデチャック特性の評価方法及び評価装置を提供することを目的としている。   In order to solve the above-described problems, an object of the present invention is to provide an evaluation method and an evaluation apparatus for dechucking characteristics of an electrostatic chuck that can easily, mechanically and quantitatively determine the dechucking characteristics of a wafer. It is said.

本発明の静電チャックのデチャック特性の評価方法は、静電チャック上からウェハを取り外すときのデチャック特性を評価する方法であって、静電チャックへの印加電圧を遮断した後、静電チャック上からのウェハのリフトアップを開始してウェハ上にレーザ光を照射し、その反射光を受光してウェハの変位を測定し、該測定データからウェハの揺れを判定することを特徴としている。
レーザー光の照射は、ウェハを収納したチャンバーの真空引きを開始した後実施され、ウェハのリフトアップを開始するウェハ上昇指示信号に基づいて、ウェハの変位を測定し測定データの保存が行われる。ここで、ウェハの上昇指示信号とウェハの上昇は、同時タイミングではなく、データーの収集が開始されたのち上昇が始まるよう適当な静止時間を設けるとよい。
リフトアップ時のウェハの変位を時間軸で測定し、この変位データを元にウェハの揺れは判定される。また、この変位データを時間微分して得られるウェハの速度変化を元に、ウェハの揺れを判定することもできる。
The evaluation method of the dechuck characteristic of the electrostatic chuck of the present invention is a method for evaluating the dechuck characteristic when a wafer is removed from the electrostatic chuck, and after the voltage applied to the electrostatic chuck is cut off, The wafer is started to be lifted up, laser light is irradiated onto the wafer, the reflected light is received to measure the displacement of the wafer, and the shaking of the wafer is determined from the measured data.
The laser beam irradiation is performed after evacuation of the chamber containing the wafer is started, and the displacement of the wafer is measured and the measurement data is stored based on a wafer lift instruction signal for starting the lift-up of the wafer. Here, the wafer rise instruction signal and the wafer rise may be set at an appropriate rest time so that the rise starts after data collection is started, not at the same timing.
The wafer displacement at the time of lift-up is measured on the time axis, and the shaking of the wafer is determined based on this displacement data. Further, it is possible to determine the shaking of the wafer based on the change in the velocity of the wafer obtained by time differentiation of the displacement data.

本発明の静電チャックのデチャック特性の評価装置は、静電チャック上からウェハを取り外すときのデチャック特性を評価する装置であって、ウェハ上にレーザ光を照射し、静電チャック上からリフトアップされるウェハの変位を測定するレーザー変位計と、レーザー光が透過する窓と、測定して得られた変位データを保存する記録装置とを有することを特徴としている。
なお、レーザー変位計の測定時間は500μsec以下とし、ウェハの変位を測定する時間間隔は20msec以下とする。
The apparatus for evaluating dechuck characteristics of an electrostatic chuck according to the present invention is an apparatus for evaluating dechuck characteristics when a wafer is removed from the electrostatic chuck. The wafer is irradiated with laser light and lifted up from the electrostatic chuck. A laser displacement meter for measuring the displacement of the wafer to be measured, a window through which the laser beam is transmitted, and a recording device for storing the displacement data obtained by the measurement.
The measurement time of the laser displacement meter is 500 μsec or less, and the time interval for measuring the displacement of the wafer is 20 msec or less.

本発明の静電チャックのデチャック特性の評価方法及び評価装置によれば、静電チャックのウェハのデチャック特性を光学的に非接触で、ウェハの揺れや位置の変位を高い精度で直接測定することができる。しかも簡単な装置で無人でできるため、半導体製造装置に使用される静電チャックの信頼性を事前に評価することができ、ウェハ製造装置の信頼性の向上に寄与する。   According to the evaluation method and the evaluation apparatus for the dechuck characteristic of the electrostatic chuck of the present invention, the dechuck characteristic of the wafer of the electrostatic chuck is optically non-contacted, and the wafer shake and position displacement are directly measured with high accuracy. Can do. Moreover, since it is possible to perform unattended with a simple apparatus, the reliability of the electrostatic chuck used in the semiconductor manufacturing apparatus can be evaluated in advance, which contributes to the improvement of the reliability of the wafer manufacturing apparatus.

本発明の静電チャックの評価方法は、静電チャックを納めたチャンバー上面のガラス窓を介してレーザー光をウェハに照射し、レーザー変位計からウェハまでの距離をリフトアップ動作の開始から動作終了時まで測定して、静電チャック上からリフトピン等で持ち上げられるウェハの表面位置の変位を時間軸で記録し、これらのデータに基づいてウェハの揺れを判定するものである。   The electrostatic chuck evaluation method of the present invention irradiates the wafer with laser light through a glass window on the upper surface of the chamber containing the electrostatic chuck, and the distance from the laser displacement meter to the wafer is increased from the start of the lift-up operation to the end of the operation. By measuring until time, the displacement of the surface position of the wafer lifted from the electrostatic chuck by lift pins or the like is recorded on the time axis, and the shaking of the wafer is determined based on these data.

以下、本発明の評価方法及び評価装置について、図を用いてさらに詳細に説明する。
図1は、本発明の評価装置の一例を示すものであり、チャンバー1内に静電チャック2が納められ、ウェハ3はウェハリフトピン4によって持ち上げられる。レーザー変位計5からは、レーザー光がチャンバーの上面に設けられたガラス窓6を介してウェハ3上に照射され、その反射光を受光してウェハ3の変位が測定される。さらに、レーザー変位計5には、判定部でもあるデータ記録装置7が接続され、ウェハの上昇タイミングをトリガー信号としてデータの記録を開始するように構成されている。
Hereinafter, the evaluation method and the evaluation apparatus of the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows an example of an evaluation apparatus according to the present invention. An electrostatic chuck 2 is placed in a chamber 1 and a wafer 3 is lifted by wafer lift pins 4. From the laser displacement meter 5, laser light is irradiated onto the wafer 3 through a glass window 6 provided on the upper surface of the chamber, and the reflected light is received to measure the displacement of the wafer 3. Further, the laser displacement meter 5 is connected to a data recording device 7 which is also a determination unit, and is configured to start data recording with the rising timing of the wafer as a trigger signal.

デチャック特性の測定に際しては、チャンバー1内を真空ポンプ8で真空引きして減圧し、高圧直流電源9をオンにして静電チャック2に印加し、ウェハ3を静電チャック2上に吸着固定する。所定の時間経過後、静電チャックへの印加電圧を遮断する。静電チャック電極10に帯電していた電荷は、切り替えられた配線からアースへ導かれ除去される。ウェハ3及び静電チャック2から電荷が消去されるのを持ち、リフトアップの開始信号に基づいてレーザー変位計5とウェハ3までの距離の測定を開始し、ウェハ3の上昇終了まで連続的に距離を測定し、測定データをデータ記録装置7で記録する。   When measuring the dechuck characteristic, the inside of the chamber 1 is evacuated by the vacuum pump 8 and depressurized, the high voltage DC power supply 9 is turned on and applied to the electrostatic chuck 2, and the wafer 3 is attracted and fixed on the electrostatic chuck 2. . After a predetermined time has elapsed, the voltage applied to the electrostatic chuck is cut off. The electric charge charged in the electrostatic chuck electrode 10 is guided to the ground from the switched wiring and removed. The electric charge is erased from the wafer 3 and the electrostatic chuck 2, and the measurement of the distance between the laser displacement meter 5 and the wafer 3 is started based on the lift-up start signal, and continuously until the rising of the wafer 3 is finished. The distance is measured, and the measurement data is recorded by the data recording device 7.

得られた測定データ、すなわち、ウェハ3の変位データからウェハ3の揺れを判定する。同時に覗き窓11からも肉眼でウェハ3の揺れの有無を観察した。なお、測定は、所定のプログラムに基づいて制御装置(シーケンサ)12で制御した。レーザー変位計5の測定時間は、500μsec以下とするのが好ましく、これを超えると収集データが時間軸で移動平均される傾向が強くなり、信号の強弱を捉えにくくなるので好ましくない。また、時間間隔についても、20msec以下とするのが好ましい。測定に使用する周波数が小さくなるほど、その時間間隔を短く、また一点の測定に対する測定時間を短くすることが必要である。
このようにして得られるリフトアップ中のウェハの変位データは、ウェハ及び静電チャックから除去される静電容量の時間的変化を反映したものとなる。
The shaking of the wafer 3 is determined from the obtained measurement data, that is, the displacement data of the wafer 3. At the same time, the presence or absence of shaking of the wafer 3 was also observed from the viewing window 11 with the naked eye. The measurement was controlled by a control device (sequencer) 12 based on a predetermined program. The measurement time of the laser displacement meter 5 is preferably 500 μsec or less, and if it exceeds this time, the collected data tends to be moving average on the time axis, and it becomes difficult to catch the strength of the signal. Also, the time interval is preferably 20 msec or less. The smaller the frequency used for measurement, the shorter the time interval and the shorter the measurement time for a single measurement.
The displacement data of the wafer during lift-up obtained in this way reflects the temporal change in the capacitance removed from the wafer and the electrostatic chuck.

以下に、本発明の実施例を、双極型静電チャックのデチャック特性の測定を例に説明するが、本発明はこれらに限定されず、様々な態様が可能である。   Examples of the present invention will be described below by taking measurement of dechuck characteristics of a bipolar electrostatic chuck as an example. However, the present invention is not limited to these, and various modes are possible.

(実施例1)
厚さ100μmで、体積抵抗率5×10-12[Ωcm]の表面誘電体層が形成された双極型ヒーター付き静電チャックと、両面にSiO2膜(膜厚100nm)の設けられたSiウェハ(厚さ0.8mm)を用いて、表面温度約200℃で、電極間に±300VDCを約3分間印加し、その後、印可電圧をOFFにした。電圧をOFFにした29.5秒後に、制御用シーケンサからトリガー信号が出力され、シーケンサからの信号で変位データの記録装置が記録を始め、30秒後には、リフトピンが上昇を開始した。リフトアップが終了した時点で変位データの収集を停止した。
このとき、レーザー変位計のサンプリングレートは140μsecで4回の移動平均値を、2msec間隔で記録した。変位データを図2に示す。さらに、この変位データを時間微分して得た速度データを図3に示した。いずれの図からも、特に異常は認められなかった。また、チャンバーの横に設けられた窓からの肉眼観察でも、異常は観察されなかった。
Example 1
Si wafer with a thickness of 100μm and an electrostatic chuck with a bipolar heater on which a surface dielectric layer with a volume resistivity of 5 × 10 -12 [Ωcm] is formed, and an SiO 2 film (film thickness 100 nm) on both sides (With a thickness of 0.8 mm), ± 300 VDC was applied between the electrodes at a surface temperature of about 200 ° C. for about 3 minutes, and then the applied voltage was turned off. 29.5 seconds after the voltage was turned off, a trigger signal was output from the control sequencer, and the displacement data recording device started recording with the signal from the sequencer. After 30 seconds, the lift pin started to rise. Displacement data collection was stopped when the lift-up was completed.
At this time, the sampling rate of the laser displacement meter was 140 μsec, and four moving average values were recorded at intervals of 2 msec. The displacement data is shown in FIG. Furthermore, the speed data obtained by differentiating the displacement data with respect to time is shown in FIG. No abnormalities were found in any of the figures. Also, no abnormality was observed by visual observation through a window provided beside the chamber.

(実施例2)
厚さ100μmで、体積抵抗率9×10-11[Ωcm]の表面誘電体層が形成された、双極型ヒーター付き静電チャックと、両面にSiO2膜(膜厚100nm)の設けられたSiウェハ(厚さ0.8mm)を用いて、表面温度約200℃で、電極間に±300VDCを約3分間印加し、その後、印可電圧をOFFした。電圧をOFFにした29.3秒後に、制御用シーケンサからトリガー信号が出力され、シーケンサからの信号で変位データの記録装置が記録を始め、30秒後には、リフトピンが上昇を開始した。リフトアップが終了した時点で変位データの収集を停止した。
このとき、レーザー変位計のサンプリングレートは140μsecで、4回の移動平均値を2msec間隔で記録した。変位データを図4に示す。さらに、この変位データを時間微分して得た速度データを図5に示した。
図4からは、リフトアップ開始直後の異常変位が読み取れ、図5からも異常な速度が読み取れる。また、チャンバーの横に設けられた窓からの肉眼観察でも、ウェハの微かな揺れが観察された。
(Example 2)
An electrostatic chuck with a bipolar heater on which a surface dielectric layer with a volume resistivity of 9 × 10 -11 [Ωcm] is formed, and Si with a SiO 2 film (film thickness of 100 nm) on both sides Using a wafer (thickness 0.8 mm), ± 300 VDC was applied between the electrodes at a surface temperature of about 200 ° C. for about 3 minutes, and then the applied voltage was turned off. A trigger signal was output from the control sequencer 29.3 seconds after the voltage was turned off, and the displacement data recording device started recording with the signal from the sequencer. After 30 seconds, the lift pin started to rise. Displacement data collection was stopped when the lift-up was completed.
At this time, the sampling rate of the laser displacement meter was 140 μsec, and four moving average values were recorded at intervals of 2 msec. The displacement data is shown in FIG. Furthermore, the speed data obtained by differentiating the displacement data with respect to time is shown in FIG.
From FIG. 4, the abnormal displacement immediately after the start of lift-up can be read, and the abnormal speed can also be read from FIG. In addition, a slight shaking of the wafer was also observed by visual observation through a window provided beside the chamber.

(実施例3)
厚さ100μmで、体積抵抗率9×10-11[Ωcm]の表面誘電体層が形成された、双極型ヒーター付き静電チャックと、両面にSiO2膜(膜厚100nm)の設けられたSiウェハ(厚さ0.8mm)を用いて、実施例2と同様に測定して、変位データ及び速度データを得た。変位データを図6に、速度データを図7に示した。
図6からは、リフトアップ開始直後の異常変位が読み取れ、図7からも異常な速度が読み取れる。また、チャンバーの横に設けられた窓からの肉眼観察でも、微かなウェハの揺れが観察された。
(Example 3)
An electrostatic chuck with a bipolar heater on which a surface dielectric layer with a volume resistivity of 9 × 10 -11 [Ωcm] is formed, and Si with a SiO 2 film (film thickness of 100 nm) on both sides Using a wafer (thickness 0.8 mm), measurement was performed in the same manner as in Example 2 to obtain displacement data and velocity data. The displacement data is shown in FIG. 6 and the velocity data is shown in FIG.
From FIG. 6, the abnormal displacement immediately after the start of lift-up can be read, and the abnormal speed can also be read from FIG. In addition, slight wafer shaking was also observed by visual observation from a window provided beside the chamber.

(実施例4)
さらに、体積抵抗率9×10-11[Ωcm]の表面誘電体層が100μmの厚さで形成された、双極型ヒーター付き静電チャックと、裏面(チャック接触側)にポリシリコン300nmを堆積させた石英基板(厚さ1.2mm)を用いて、チャック表面の温度約200℃で、電極間に±300VDC を約3分間印加し、その後、印可電圧をOFFにした。電圧をOFFにした約30秒後に、制御用シーケンサからトリガー信号が出力された。変位データの記録装置は、制御用シーケンサからのトリガー信号で記録を始める。30秒後には、リフトピンが上昇を開始する。
リフトアップが終了したら、変位データの記録装置の収集を停止する。このとき、レーザー変位計のサンプリングレートは140μsで、4回の移動平均値を2msec間隔で記録した。この場合も、図示はしないが、同様に変位データーが測定されたが、揺れは確認されなかった。また、目視検査でも同様に揺れが確認されることはなかった。
Example 4
Furthermore, an electrostatic chuck with a bipolar heater in which a surface dielectric layer having a volume resistivity of 9 × 10 −11 [Ωcm] is formed to a thickness of 100 μm and polysilicon of 300 nm are deposited on the back surface (chuck contact side). Using a quartz substrate (thickness 1.2 mm), ± 300 VDC was applied between the electrodes for about 3 minutes at a chuck surface temperature of about 200 ° C., and then the applied voltage was turned off. About 30 seconds after the voltage was turned off, a trigger signal was output from the control sequencer. The displacement data recording apparatus starts recording with a trigger signal from the control sequencer. After 30 seconds, the lift pin begins to rise.
When the lift-up is completed, the collection of the displacement data recording device is stopped. At this time, the sampling rate of the laser displacement meter was 140 μs, and four moving average values were recorded at intervals of 2 msec. In this case as well, although not shown, displacement data was measured in the same manner, but no shaking was confirmed. In addition, no shaking was confirmed in the visual inspection as well.

(比較例1)
厚さ100μmで、体積抵抗率9×10-11[Ωcm]の表面誘電体層が形成された、双極型ヒーター付き静電チャックと、両面にSiO2膜(膜厚100nm)の設けられたSiウェハ(厚さ0.8mm)の裏面にさらに人の皮脂(手油等)をIPA(イソプロピルアルコール)で薄く拭き延ばしたものを使用して、レーザー変位計のサンプリングレートは140μsecで、128回の移動平均値を2msec間隔で記録した以外は、実施例2と同様にして測定し、変位データ及び速度データを得た。変位データを図8に、速度データを図9に示した。
図8からは、リフトアップ開始直後の異常はほとんど読み取れず、また、図9からも異常な速度は読み取れなかった。しかし、チャンバーの横に設けられた窓からの肉眼観察では、皮脂の汚れによる微かなウェハの揺れが観察された。
(Comparative Example 1)
An electrostatic chuck with a bipolar heater on which a surface dielectric layer with a volume resistivity of 9 × 10 -11 [Ωcm] is formed, and Si with a SiO 2 film (film thickness of 100 nm) on both sides Using the surface of the wafer (0.8 mm thick) with human sebum (hand oil) thinly wiped with IPA (isopropyl alcohol), the laser displacement meter has a sampling rate of 140 μsec and moves 128 times Except that the average value was recorded at intervals of 2 msec, measurement was performed in the same manner as in Example 2 to obtain displacement data and velocity data. The displacement data is shown in FIG. 8, and the velocity data is shown in FIG.
From FIG. 8, the abnormality immediately after the start of lift-up could hardly be read, and from FIG. 9, the abnormal speed could not be read. However, in the observation with the naked eye from the window provided beside the chamber, slight wafer shaking due to sebum dirt was observed.

上記実施例1〜3において、ウェハの変位データに異常な変位があると、速度データにも対応する時間に異常が認められ、しかも肉眼観察でもウェハの揺れが観察されている。従って、本発明によれば、測定員がつきっきりで観察していなくとも、極めて高い精度でリフトアップ時のウェハの揺れの有無を記録データから判定することができる。
なお、比較例1は、変位データを記録する際の移動平均値の数をあまり大きくすると、ウェハの表面位置の変位のデーターが平均化され、僅かな位置の変化を捉えることが難しくなることを示している。この数が1の場合、測定系や装置の震度等の影響を受ける変位信号が大きくハンチングする場合があり、判定に支障を来たすことがあった。従って、移動平均値の数は、2〜8回が好ましい。
In the first to third embodiments, if there is an abnormal displacement in the wafer displacement data, an abnormality is recognized in the time corresponding to the speed data, and the shaking of the wafer is also observed by visual observation. Therefore, according to the present invention, it is possible to determine from the recorded data whether or not the wafer is shaken at the time of lift-up with extremely high accuracy even if the measurer is not observing clearly.
In Comparative Example 1, if the number of moving average values when recording displacement data is too large, the displacement data of the wafer surface position is averaged, and it becomes difficult to capture a slight change in position. Show. When this number is 1, the displacement signal affected by the seismic intensity of the measurement system or device may hunt greatly, which may hinder the determination. Therefore, the number of moving average values is preferably 2 to 8 times.

静電チャックの信頼性を事前に評価することができるため、ウェハ製造装置の信頼性の向上に寄与する。   Since the reliability of the electrostatic chuck can be evaluated in advance, it contributes to the improvement of the reliability of the wafer manufacturing apparatus.

本発明の静電チャックのデチャック特性を評価する構成図である。It is a block diagram which evaluates the dechuck characteristic of the electrostatic chuck of this invention. 本発明の実施例1で得られた変位データを示す図である。It is a figure which shows the displacement data obtained in Example 1 of this invention. 本発明の実施例1で得られた速度データを示す図である。It is a figure which shows the speed data obtained in Example 1 of this invention. 本発明の実施例2で得られた変位データを示す図である。It is a figure which shows the displacement data obtained in Example 2 of this invention. 本発明の実施例2で得られた速度データを示す図である。It is a figure which shows the speed data obtained in Example 2 of this invention. 本発明の実施例3で得られた変位データを示す図である。It is a figure which shows the displacement data obtained in Example 3 of this invention. 本発明の実施例3で得られた速度データを示す図である。It is a figure which shows the speed data obtained in Example 3 of this invention. 比較例1で得られた変位データを示す図である。It is a figure which shows the displacement data obtained by the comparative example 1. 比較例1で得られた速度データを示す図である。It is a figure which shows the speed data obtained by the comparative example 1.

符号の説明Explanation of symbols

1…チャンバー、
2…静電チャック、
3…ウェハ、
4…ウェハリフトピン、
5…レーザー変位計、
6…ガラス窓、
7…データ記録装置、
8…真空ポンプ、
9…DC高圧電源、
10…静電チャック(電極部)、
11…覗き窓、
12…制御装置(制御シーケンサ)。
1 ... chamber,
2 ... electrostatic chuck,
3 ... wafer,
4 ... Wafer lift pins,
5 ... Laser displacement meter,
6 ... Glass window,
7: Data recording device,
8 ... Vacuum pump,
9 ... DC high voltage power supply,
10 ... Electrostatic chuck (electrode part),
11 ... Peeping window,
12 ... Control device (control sequencer).

Claims (8)

静電チャック上からウェハを取り外すときのデチャック特性を評価する方法であって、静電チャックへの印加電圧を遮断した後、静電チャック上からのウェハのリフトアップを開始してウェハ上にレーザ光を照射し、その反射光を受光してウェハの変位を測定し、該測定データからウェハの揺れを判定することを特徴とする静電チャックのデチャック特性の評価方法。 A method for evaluating dechucking characteristics when a wafer is removed from the electrostatic chuck. After the voltage applied to the electrostatic chuck is cut off, the wafer is lifted up from the electrostatic chuck and the laser is applied to the wafer. A method for evaluating dechucking characteristics of an electrostatic chuck, comprising: irradiating light, receiving reflected light thereof, measuring a displacement of the wafer, and determining a shake of the wafer from the measurement data. レーザー光の照射が、ウェハを収納したチャンバーの真空引きを開始した後実施される請求項1に記載の静電チャックのデチャック特性の評価方法。 The evaluation method of the dechuck characteristic of the electrostatic chuck according to claim 1, wherein the laser light irradiation is performed after evacuation of the chamber containing the wafer is started. ウェハのリフトアップを開始するウェハ上昇指示信号に基づいて、ウェハの変位を測定し測定データの保存が行われる請求項1又は2に記載の静電チャックのデチャック特性の評価方法。 3. The method for evaluating dechucking characteristics of an electrostatic chuck according to claim 1, wherein the displacement of the wafer is measured and the measurement data is stored based on a wafer lift instruction signal for starting the lift-up of the wafer. リフトアップ時のウェハの変位を時間軸で測定し、この変位データを元にウェハの揺れを判定する請求項1乃至3のいずれかに記載の静電チャックのデチャック特性の評価方法。 4. The method for evaluating dechucking characteristics of an electrostatic chuck according to claim 1, wherein the displacement of the wafer at the time of lift-up is measured on a time axis, and the shaking of the wafer is determined based on the displacement data. リフトアップ時のウェハの速度変化を元に、該ウェハの揺れを判定する請求項1乃至4のいずれかに記載の静電チャックのデチャック特性の評価方法。 5. The method for evaluating dechucking characteristics of an electrostatic chuck according to claim 1, wherein a swing of the wafer is determined based on a change in wafer speed during lift-up. 静電チャック上からウェハを取り外すときのデチャック特性を評価する装置であって、ウェハ上にレーザ光を照射し、静電チャック上からリフトアップされるウェハの変位を測定するレーザー変位計と、レーザー光が透過する窓と、測定して得られた変位データを保存する記録装置とを有することを特徴とする静電チャックのデチャック特性の評価装置。 An apparatus for evaluating dechucking characteristics when a wafer is removed from an electrostatic chuck, a laser displacement meter for irradiating a laser beam on the wafer and measuring the displacement of the wafer lifted up from the electrostatic chuck, and a laser An apparatus for evaluating dechucking characteristics of an electrostatic chuck, comprising: a window through which light passes; and a recording device for storing displacement data obtained by measurement. レーザー変位計の測定時間が500μsec以下である請求項6に記載の静電チャックのデチャック特性の評価装置。 The apparatus for evaluating dechucking characteristics of an electrostatic chuck according to claim 6, wherein the measurement time of the laser displacement meter is 500 μsec or less. ウェハの変位を測定する時間間隔が20msec以下である請求項6又は7に記載の静電チャックのデチャック特性の評価装置。

The apparatus for evaluating dechucking characteristics of an electrostatic chuck according to claim 6 or 7, wherein a time interval for measuring the displacement of the wafer is 20 msec or less.

JP2005176770A 2005-06-16 2005-06-16 Evaluation method and apparatus for dechucking characteristics of electrostatic chuck Active JP4553375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176770A JP4553375B2 (en) 2005-06-16 2005-06-16 Evaluation method and apparatus for dechucking characteristics of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176770A JP4553375B2 (en) 2005-06-16 2005-06-16 Evaluation method and apparatus for dechucking characteristics of electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2006351876A true JP2006351876A (en) 2006-12-28
JP4553375B2 JP4553375B2 (en) 2010-09-29

Family

ID=37647398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176770A Active JP4553375B2 (en) 2005-06-16 2005-06-16 Evaluation method and apparatus for dechucking characteristics of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4553375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018849A (en) * 2009-07-10 2011-01-27 Hitachi High-Technologies Corp Semiconductor inspection device and semiconductor inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162448A (en) * 1990-10-24 1992-06-05 Japan Synthetic Rubber Co Ltd Vacuum treatment equipment with electrostatic chuck device
JPH0536806A (en) * 1991-07-26 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> Transient characteristic of evaluation device and method for electrostatic chuck
JP2002009140A (en) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp Electrostatic chuck apparatus
JP2004534384A (en) * 2001-03-27 2004-11-11 ラム リサーチ コーポレーション Acoustic detection of dechuck and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162448A (en) * 1990-10-24 1992-06-05 Japan Synthetic Rubber Co Ltd Vacuum treatment equipment with electrostatic chuck device
JPH0536806A (en) * 1991-07-26 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> Transient characteristic of evaluation device and method for electrostatic chuck
JP2002009140A (en) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp Electrostatic chuck apparatus
JP2004534384A (en) * 2001-03-27 2004-11-11 ラム リサーチ コーポレーション Acoustic detection of dechuck and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018849A (en) * 2009-07-10 2011-01-27 Hitachi High-Technologies Corp Semiconductor inspection device and semiconductor inspection method

Also Published As

Publication number Publication date
JP4553375B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US6553277B1 (en) Method and apparatus for vacuum treatment
JP7420185B2 (en) Board bonding equipment and board bonding method
EP2221614A1 (en) Microstructure inspecting device, and microstructure inspecting method
EP1699092A2 (en) Piezoelectric element and method for manufacturing piezoelectric element
JP2002009140A (en) Electrostatic chuck apparatus
KR20160096021A (en) Peeling apparatus, peeling system, peeling method, and computer readable information storage medium
JP2003149213A (en) Ultrasonic inspecting apparatus, ultrasonic transducer, and inspecting apparatus
KR100657789B1 (en) Method of inspecting a leakage current characteristic of a dielectric layer and apparatus for performing the same
TWI289091B (en) Apparatus for endpoint detection during polishing
JP5732858B2 (en) Substrate thickness measuring apparatus and substrate thickness measuring method
JP4553375B2 (en) Evaluation method and apparatus for dechucking characteristics of electrostatic chuck
JP2009145154A (en) Substrate crack inspection device and substrate crack inspection method
JP2008537781A5 (en)
JP2008135716A (en) Method and device for evaluating wafer during production of solar cell
JP2001144059A (en) Method of manufacturing semiconductor device
JP2010060555A (en) Low-temperature measuring device
JP2008233053A (en) Method of measuring frequency characteristic of piezo-electric vibrating element
JPH03203343A (en) Inspecting method
JP2000031252A (en) Semiconductor manufacture device with electrostatic chuck and wafer removal method there from
JP3360683B2 (en) Thin film tensile tester
JP2006523837A (en) Method and apparatus for determining dielectric layer thickness
JP2015507739A (en) Infrared light sensor chip having high measurement accuracy, and method for manufacturing the infrared light sensor chip
CN106409818A (en) Method of acquiring flexible ferroelectric thin film capacitor nondestructively
JP2002196017A (en) Probing card
JP2002048519A (en) Method and instrument for measuring difference in level, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150