JP2006351794A - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
JP2006351794A
JP2006351794A JP2005175394A JP2005175394A JP2006351794A JP 2006351794 A JP2006351794 A JP 2006351794A JP 2005175394 A JP2005175394 A JP 2005175394A JP 2005175394 A JP2005175394 A JP 2005175394A JP 2006351794 A JP2006351794 A JP 2006351794A
Authority
JP
Japan
Prior art keywords
gallium nitride
region
based semiconductor
semiconductor region
nitride based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005175394A
Other languages
Japanese (ja)
Other versions
JP4821178B2 (en
Inventor
Tatsuya Tanabe
達也 田辺
Makoto Kiyama
誠 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005175394A priority Critical patent/JP4821178B2/en
Publication of JP2006351794A publication Critical patent/JP2006351794A/en
Application granted granted Critical
Publication of JP4821178B2 publication Critical patent/JP4821178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a field effect transistor having a structure capable of utilizing a field plate effect. <P>SOLUTION: A conductive gallium nitride substrate 13 comprises a first region 13c having first dislocation density, and a second region 13d having second dislocation density smaller than the first dislocation density. A gate electrode 17 is provided on a second part 15d of a gallium nitride base semiconductor region 15. A drain electrode 19 is provided on the second part 15d of the semiconductor region 15. A source electrode 21 is provided on the semiconductor region 15, and connected to the second part 15d of the semiconductor region 15. The dislocation density of the first part 15c of the semiconductor region 15 is larger than that of the second part 15d of the gallium nitride base semiconductor region 15. The conductivity of the first part 15c of the semiconductor region 15 is larger than that of the second part 15d of the semiconductor region 15. The source electrode 21 is connected to the first part 15c of the semiconductor region 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界効果トランジスタに関する。   The present invention relates to a field effect transistor.

非特許文献1には、パワーデバイスの高耐圧化を実現するGaN−HEMTデバイスが記載されている。このGaN−HEMTデバイスはn型導電性SiC基板上に形成されている。SiC基板がソース電極に電気的に接続されており、これによってSiC基板にもフィールドプレート電極の役割を持たせている。   Non-Patent Document 1 describes a GaN-HEMT device that achieves higher breakdown voltage of a power device. This GaN-HEMT device is formed on an n-type conductive SiC substrate. The SiC substrate is electrically connected to the source electrode, whereby the SiC substrate also serves as a field plate electrode.

非特許文献2には、AlGaN/GaNパワーHFET(Heterostructure FieldEffect Transistor:HFET)が記載されている。AlGaN/GaNのHFETは導電性シリコン基板上に形成されている。表面ビアホールを介して、ソース電極をシリコン基板に接続している。これによって、導電性シリコン基板をフィールドプレート電極として作用させている。   Non-Patent Document 2 describes an AlGaN / GaN power HFET (Heterostructure Field Effect Transistor: HFET). The AlGaN / GaN HFET is formed on a conductive silicon substrate. The source electrode is connected to the silicon substrate through the surface via hole. As a result, the conductive silicon substrate acts as a field plate electrode.

特許文献1(特開2001−102307号公報)には、ファセット構造を利用して転位を集中させることによって低転位領域を形成するウエハ板作製技術が記載されている。この技術により、良質な窒化ガリウムウエハが作製される。この窒化ガリウムウエハを用いて、半導体レーザ素子が作製される。   Patent Document 1 (Japanese Patent Laid-Open No. 2001-102307) describes a wafer plate manufacturing technique for forming a low dislocation region by concentrating dislocations using a facet structure. With this technique, a high-quality gallium nitride wafer is produced. A semiconductor laser device is manufactured using this gallium nitride wafer.

特許文献2(特開2003−124115号公報)および特許文献3(特開2003−273470号公報)には、これらの基板を用いて半導体レーザ素子や窒化ガリウム系電子デバイスを作製する場合には、転位が集中しているコア領域を避けるようにデバイス構造を形成している。
電子情報通信学会技術研究報告ED2003-202 MW2003-230, (2004-01) 電子情報通信学会技術研究報告ED2004-212, MW2004-219, (2005-01) 特開2001−102307号公報 特開2003−124115号公報 特開2003−273470号公報
In Patent Document 2 (Japanese Patent Laid-Open No. 2003-124115) and Patent Document 3 (Japanese Patent Laid-Open No. 2003-273470), when manufacturing a semiconductor laser element or a gallium nitride electronic device using these substrates, The device structure is formed so as to avoid the core region where dislocations are concentrated.
IEICE technical report ED2003-202 MW2003-230, (2004-01) IEICE technical report ED2004-212, MW2004-219, (2005-01) JP 2001-102307 A JP 2003-124115 A JP 2003-273470 A

窒化ガリウム系半導体素子の高耐圧化には先行文献(非特許文献1、2)に記載されているように、導電性基板をソース電極と接地させることにより裏面フィールドプレート構造を形成する。そのためにはプロセス上複雑な工程が必要となる。   In order to increase the breakdown voltage of a gallium nitride based semiconductor device, a back surface field plate structure is formed by grounding a conductive substrate with a source electrode as described in the prior art (Non-Patent Documents 1 and 2). This requires a complicated process.

例えば、非特許文献2では、ソース電極パッドを基板の裏面に設けるためにソースビア構造を採用しており、この構造を形成するために、誘導結合プラズマドライエッチング装置を用いてビアホールを形成する。また、非特許文献1には詳細な記述がなされていないけれども、ソース電極と基板を同電位にするために、非特許文献2と同様のビアホール構造或いはソース電極を基板と接続する構造が必要である。そのためには、やはり複雑なプロセス工程が必要となる。求められていることは、より簡単な構造によりフィルードプレート効果を実現できる電界効果トランジスタである。   For example, in Non-Patent Document 2, a source via structure is adopted to provide a source electrode pad on the back surface of a substrate, and a via hole is formed using an inductively coupled plasma dry etching apparatus in order to form this structure. Although Non-Patent Document 1 does not describe in detail, in order to make the source electrode and the substrate have the same potential, a via hole structure similar to Non-Patent Document 2 or a structure in which the source electrode is connected to the substrate is required. is there. To that end, complicated process steps are still necessary. What is needed is a field effect transistor that can achieve the field plate effect with a simpler structure.

そこで、本発明は、上記の事情を鑑みて為されたものであり、フィルードプレート効果を利用可能な構造を有する電界効果トランジスタを提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a field effect transistor having a structure capable of using the field plate effect.

本発明の一側面によれば、電界効果トランジスタは、(a)表面及び裏面を有しており、前記裏面から前記表面に向かう第1の方向に伸びており第1の転位密度を有する第1の領域と前記第1の転位密度より小さな第2の転位密度を有する第2の領域とを含む導電性窒化ガリウム基板と、(b)前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含む窒化ガリウム系半導体領域と、(c)前記窒化ガリウム系半導体領域の前記第2の部分上に設けられたゲート電極と、(d)前記窒化ガリウム系半導体領域の前記第2の部分上に設けられたドレイン電極と、(e)前記窒化ガリウム系半導体領域上に設けられており前記窒化ガリウム系半導体領域の前記第1の部分に接続されたソース電極とを備え、前記窒化ガリウム系半導体領域の前記第1の部分の転位密度は、前記窒化ガリウム系半導体領域の前記第2の部分の転位密度より大きく、前記窒化ガリウム系半導体領域の前記第1の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きい。   According to one aspect of the present invention, a field effect transistor includes (a) a first surface having a front surface and a back surface, extending in a first direction from the back surface toward the surface, and having a first dislocation density. And a conductive gallium nitride substrate including a second region having a second dislocation density lower than the first dislocation density; and (b) provided on the first region of the conductive gallium nitride substrate. A gallium nitride based semiconductor region including a first portion formed and a second portion provided on the second region of the conductive gallium nitride substrate; and (c) the first portion of the gallium nitride based semiconductor region. A gate electrode provided on the second portion; (d) a drain electrode provided on the second portion of the gallium nitride based semiconductor region; and (e) provided on the gallium nitride based semiconductor region. The gallium nitride semiconductor A source electrode connected to the first portion of the region, and the dislocation density of the first portion of the gallium nitride based semiconductor region is greater than the dislocation density of the second portion of the gallium nitride based semiconductor region The conductivity of the first portion of the gallium nitride based semiconductor region is greater than the conductivity of the second portion of the gallium nitride based semiconductor region.

この電界効果トランジスタによれば、ソース電極が、窒化ガリウム系半導体領域の第1の部分を介して導電性窒化ガリウム基板と接続される。大きな転位密度を有する第1の部分にソース電極の電位が印加され、ソース電極の電位が導電性窒化ガリウム基板に伝わる。   According to this field effect transistor, the source electrode is connected to the conductive gallium nitride substrate through the first portion of the gallium nitride based semiconductor region. The potential of the source electrode is applied to the first portion having a large dislocation density, and the potential of the source electrode is transmitted to the conductive gallium nitride substrate.

本発明に係る電界効果トランジスタは、前記導電性窒化ガリウム基板の前記裏面上に設けられたソースパッド電極を更に備えることができる。この電界効果トランジスタによれば、ソースパッド電極が、電界効果トランジスタの基板の裏面に位置するので、電界効果トランジスタの表面にソースパッド電極を設けるのためのエリアが不要になると共に、窒化ガリウム系半導体領域の第1の部分および導電性窒化ガリウム基板を介してソース電極に電気的に接続される。   The field effect transistor according to the present invention may further include a source pad electrode provided on the back surface of the conductive gallium nitride substrate. According to this field effect transistor, since the source pad electrode is located on the back surface of the substrate of the field effect transistor, an area for providing the source pad electrode on the surface of the field effect transistor becomes unnecessary, and the gallium nitride based semiconductor Electrically connected to the source electrode through the first portion of the region and the conductive gallium nitride substrate.

本発明に係る電界効果トランジスタでは、前記導電性窒化ガリウム基板の前記第2の領域の前記第2の転位密度は、1×10cm−2以下であることができる。この電界効果トランジスタによれば、窒化ガリウム系半導体領域の第2の部分の結晶性が良好になる。 In the field effect transistor according to the present invention, the second dislocation density in the second region of the conductive gallium nitride substrate may be 1 × 10 6 cm −2 or less. According to this field effect transistor, the crystallinity of the second portion of the gallium nitride based semiconductor region is improved.

本発明に係る電界効果トランジスタでは、前記窒化ガリウム系半導体領域は、(b1)前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含んでおり第1の窒化ガリウム系半導体からなるチャネル層と、(b2)前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含んでおり第2の窒化ガリウム系半導体からなる電子障壁層とを含んでおり、前記電子障壁層および前記チャネル層の一方は他方の上に設けられており、前記チャネル層および前記電子障壁層はヘテロ接合を形成している。この電界効果トランジスタによれば、フィルードプレート効果を利用可能なヘテロ接合トランジスタが提供される。   In the field effect transistor according to the present invention, the gallium nitride based semiconductor region includes (b1) a first portion provided on the first region of the conductive gallium nitride substrate and the conductive gallium nitride substrate. A channel layer made of a first gallium nitride semiconductor and including a second portion provided on the second region, and (b2) provided on the first region of the conductive gallium nitride substrate. A first portion and a second portion provided on the second region of the conductive gallium nitride substrate, and an electron barrier layer made of a second gallium nitride semiconductor, One of the electron barrier layer and the channel layer is provided on the other, and the channel layer and the electron barrier layer form a heterojunction. According to this field effect transistor, a heterojunction transistor capable of using the field plate effect is provided.

本発明に係る電界効果トランジスタでは、前記導電性窒化ガリウム基板は、前記第2の転位密度より大きな第3の転位密度を有しており前記第1の方向に伸びる第3の領域をさらに含み、前記窒化ガリウム系半導体領域は、前記導電性窒化ガリウム基板の前記第3の領域上に設けられた第3の部分を含み、前記窒化ガリウム系半導体領域の前記第3の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きく、前記窒化ガリウム系半導体領域は、前記窒化ガリウム系半導体領域の前記第3の部分を前記ドレイン電極から分離するためのアイソレーション領域を含み、前記アイソレーション領域の深さは、前記ヘテロ接合の位置より深い。   In the field effect transistor according to the present invention, the conductive gallium nitride substrate further includes a third region having a third dislocation density larger than the second dislocation density and extending in the first direction, The gallium nitride based semiconductor region includes a third portion provided on the third region of the conductive gallium nitride substrate, and the conductivity of the third portion of the gallium nitride based semiconductor region is The conductivity of the second portion of the gallium nitride based semiconductor region is larger than the conductivity of the second portion, and the gallium nitride based semiconductor region has an isolation region for separating the third portion of the gallium nitride based semiconductor region from the drain electrode. And the depth of the isolation region is deeper than the position of the heterojunction.

この電界効果トランジスタによれば、導電性窒化ガリウム基板の第1および第3の領域に転位を集めて、第2の領域の転位密度を減らすことができる。窒化ガリウム系半導体領域は、ソース電極に接続されていない第3の部分を含むことができ、この第3の部分はアイソレーション領域によってドレインから電気的に分離される。   According to this field effect transistor, dislocations can be collected in the first and third regions of the conductive gallium nitride substrate, and the dislocation density in the second region can be reduced. The gallium nitride based semiconductor region can include a third portion that is not connected to the source electrode, and the third portion is electrically isolated from the drain by the isolation region.

本発明に係る電界効果トランジスタでは、前記導電性窒化ガリウム基板の前記第1の領域は、前記第1の方向に交差する第2の方向に沿って伸びている。この電界効果トランジスタによれば、導電性窒化ガリウム基板の第1の領域に転位を集めて、第2の領域の転位密度を減らすことができる。第2の領域には、電界効果トランジスタのための良質の半導体結晶を作製可能である。   In the field effect transistor according to the present invention, the first region of the conductive gallium nitride substrate extends along a second direction intersecting the first direction. According to this field effect transistor, dislocations can be collected in the first region of the conductive gallium nitride substrate, and the dislocation density in the second region can be reduced. In the second region, a high-quality semiconductor crystal for a field effect transistor can be produced.

本発明に係る電界効果トランジスタでは、前記導電性窒化ガリウム基板は、前記第2の転位密度より大きな第3の転位密度を有しており前記第1の方向に伸びる複数の第3の領域をさらに含み、前記窒化ガリウム系半導体領域は、前記導電性窒化ガリウム基板の前記第3の領域上に設けられた第3の部分を含み、前記窒化ガリウム系半導体領域の前記第3の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きく、前記導電性窒化ガリウム基板の前記第1の領域および前記第3の領域は、前記第1の方向に交差する第2および第3の方向にアレイ状に配列されている。この電界効果トランジスタによれば、導電性窒化ガリウム基板の第1および第3の領域に転位を集めて、第2の領域の転位密度を減らすことができる。第2の領域には、電界効果トランジスタのための良質の半導体結晶を作製可能である。   In the field effect transistor according to the present invention, the conductive gallium nitride substrate has a third dislocation density larger than the second dislocation density, and further includes a plurality of third regions extending in the first direction. The gallium nitride based semiconductor region includes a third portion provided on the third region of the conductive gallium nitride substrate, and the conductivity of the third portion of the gallium nitride based semiconductor region is The second region of the gallium nitride based semiconductor region is larger than the conductivity of the second portion, and the first region and the third region of the conductive gallium nitride substrate intersect the first direction. They are arranged in an array in the third direction. According to this field effect transistor, dislocations can be collected in the first and third regions of the conductive gallium nitride substrate, and the dislocation density in the second region can be reduced. In the second region, a high-quality semiconductor crystal for a field effect transistor can be produced.

本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。   The above and other objects, features, and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments of the present invention, which proceeds with reference to the accompanying drawings.

以上説明したように、本発明によれば、フィルードプレート効果を利用可能な構造を有する電界効果トランジスタが提供される。   As described above, according to the present invention, a field effect transistor having a structure capable of using the field plate effect is provided.

本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の電界効果トランジスタに係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。   The knowledge of the present invention can be easily understood by considering the following detailed description with reference to the accompanying drawings shown as examples. Subsequently, embodiments of the field effect transistor of the present invention will be described with reference to the accompanying drawings. Where possible, the same parts are denoted by the same reference numerals.

(第1の実施の形態)
図1(A)は、第1の実施の形態に係る電界効果トランジスタを示す平面図である。図1(B)は、図1(A)に示されたI−I断面に沿ってとられた断面図である。電界効果トランジスタ11は、導電性窒化ガリウム基板13と、窒化ガリウム系半導体領域15と、ゲート電極17と、ドレイン電極19と、ソース電極21とを備える。導電性窒化ガリウム基板13は、表面13a及び裏面13bを有しており、第1の転位密度を有する第1の領域13cと第2の転位密度を有する第2の領域13dとを含む。第1の領域13cは、裏面13bから表面13aに向かうZ方向に伸びている。第2の領域13dは、第1の領域13cに隣接している。第1の領域13cは、2つの第2の領域13d間に位置している。第2の領域13dの第2の転位密度は、第1の領域13cの第1の転位密度より小さい。窒化ガリウム系半導体領域15は、第1の部分15cと第2の部分15dとを含む。第1の部分15cは、導電性窒化ガリウム基板13の第1の領域13c上に設けられている。第2の部分15dは、導電性窒化ガリウム基板13の第1の領域13c上に設けられている。ゲート電極17は、窒化ガリウム系半導体領域15の第2の部分15d上に設けられている。ドレイン電極19は、窒化ガリウム系半導体領域15の第2の部分15d上に設けられている。ソース電極21は、窒化ガリウム系半導体領域15上に設けられており、また窒化ガリウム系半導体領域15の第1の部分15cに接続されている。窒化ガリウム系半導体領域15の第1の部分15cの転位密度は、窒化ガリウム系半導体領域15の第2の部分15dの転位密度より大きい。窒化ガリウム系半導体領域15の第1の部分15cの導電率は、窒化ガリウム系半導体領域15の第2の部分15dの導電率より大きい。
(First embodiment)
FIG. 1A is a plan view showing the field effect transistor according to the first embodiment. FIG. 1B is a cross-sectional view taken along the I-I cross section shown in FIG. The field effect transistor 11 includes a conductive gallium nitride substrate 13, a gallium nitride based semiconductor region 15, a gate electrode 17, a drain electrode 19, and a source electrode 21. The conductive gallium nitride substrate 13 has a front surface 13a and a back surface 13b, and includes a first region 13c having a first dislocation density and a second region 13d having a second dislocation density. The first region 13c extends in the Z direction from the back surface 13b toward the front surface 13a. The second region 13d is adjacent to the first region 13c. The first region 13c is located between the two second regions 13d. The second dislocation density in the second region 13d is smaller than the first dislocation density in the first region 13c. The gallium nitride based semiconductor region 15 includes a first portion 15c and a second portion 15d. The first portion 15 c is provided on the first region 13 c of the conductive gallium nitride substrate 13. The second portion 15 d is provided on the first region 13 c of the conductive gallium nitride substrate 13. The gate electrode 17 is provided on the second portion 15 d of the gallium nitride based semiconductor region 15. The drain electrode 19 is provided on the second portion 15 d of the gallium nitride based semiconductor region 15. The source electrode 21 is provided on the gallium nitride based semiconductor region 15 and is connected to the first portion 15 c of the gallium nitride based semiconductor region 15. The dislocation density of the first portion 15 c of the gallium nitride based semiconductor region 15 is larger than the dislocation density of the second portion 15 d of the gallium nitride based semiconductor region 15. The conductivity of the first portion 15 c of the gallium nitride based semiconductor region 15 is larger than the conductivity of the second portion 15 d of the gallium nitride based semiconductor region 15.

この電界効果トランジスタ11によれば、ソース電極21が、窒化ガリウム系半導体領域15の第1の部分15cを介して導電性窒化ガリウム基板13と接続される。大きな転位密度を有する第1の部分15cにソース電極の電位が印加されて、このソース電極21の電位が導電性窒化ガリウム基板13に伝わる。小さい転位密度を有する第2の部分15dがドレインおよびチャネルのために利用される。   According to the field effect transistor 11, the source electrode 21 is connected to the conductive gallium nitride substrate 13 through the first portion 15 c of the gallium nitride based semiconductor region 15. The potential of the source electrode is applied to the first portion 15 c having a large dislocation density, and the potential of the source electrode 21 is transmitted to the conductive gallium nitride substrate 13. A second portion 15d having a low dislocation density is utilized for the drain and channel.

電界効果トランジスタ11では、導電性窒化ガリウム基板13の第1の領域13cと窒化ガリウム系半導体領域15の第1の部分15cとは、所定の面S1に沿って設けられている。つまり、転位密度の大きな領域13c、15cは、Z軸方向に伸びており、窒化ガリウム系半導体領域15の第1の部分15cは導電性窒化ガリウム基板13の第1の領域13cに直接に繋がっている。ソース電極21の少なくとも一部は、窒化ガリウム系半導体領域15の第1の部分15c上に位置しており、これにより窒化ガリウム系半導体領域15の第1の部分15cを介して導電性窒化ガリウム基板13の第1の領域13cに電気的に接続される。   In the field effect transistor 11, the first region 13c of the conductive gallium nitride substrate 13 and the first portion 15c of the gallium nitride based semiconductor region 15 are provided along a predetermined plane S1. That is, the regions 13c and 15c having a high dislocation density extend in the Z-axis direction, and the first portion 15c of the gallium nitride based semiconductor region 15 is directly connected to the first region 13c of the conductive gallium nitride substrate 13. Yes. At least a part of the source electrode 21 is located on the first portion 15 c of the gallium nitride based semiconductor region 15, and thereby the conductive gallium nitride substrate via the first portion 15 c of the gallium nitride based semiconductor region 15. Thirteen first regions 13c are electrically connected.

この実施例では、導電性窒化ガリウム基板13の第1の領域13cは、Z方向に交差するY方向に沿って伸びている。この電界効果トランジスタ11によれば、導電性窒化ガリウム基板13の第1の領域13cに転位を集めて、第2の領域13dの転位密度を減らすことができる。第2の領域13d上には、MOVPE法またはMBE法を用いて電界効果トランジスタ11のために良質の半導体結晶を作製可能である。例えば、導電性窒化ガリウム基板13の第2の領域13の第2の転位密度は、約1×10cm−2以下であることができる。この電界効果トランジスタ11によれば、窒化ガリウム系半導体領域15の第2の部分15dの結晶性が良好になる。 In this embodiment, the first region 13c of the conductive gallium nitride substrate 13 extends along the Y direction that intersects the Z direction. According to the field effect transistor 11, dislocations can be collected in the first region 13c of the conductive gallium nitride substrate 13 and the dislocation density in the second region 13d can be reduced. A high-quality semiconductor crystal for the field effect transistor 11 can be formed on the second region 13d using the MOVPE method or the MBE method. For example, the second dislocation density of the second region 13 of the conductive gallium nitride substrate 13 can be about 1 × 10 6 cm −2 or less. According to this field effect transistor 11, the crystallinity of the second portion 15d of the gallium nitride based semiconductor region 15 is improved.

また、一実施例の導電性窒化ガリウム基板13では、第1の領域13cの結晶軸は、第2の領域13dの結晶軸と逆向きである。例えば、導電性窒化ガリウム基板13の裏面13bに現れた第1の領域13cは、窒化ガリウムのN面およびGa面の一方であり、また裏面13bに現れた第2の領域13dは、窒化ガリウムのN面およびGa面の他方である。   Further, in the conductive gallium nitride substrate 13 of one embodiment, the crystal axis of the first region 13c is opposite to the crystal axis of the second region 13d. For example, the first region 13c that appears on the back surface 13b of the conductive gallium nitride substrate 13 is one of the N and Ga surfaces of gallium nitride, and the second region 13d that appears on the back surface 13b is made of gallium nitride. The other of the N plane and the Ga plane.

引き続いて、電界効果トランジスタ11の一例として、高電子移動度トランジスタを説明する。窒化ガリウム系半導体領域15は、第1の窒化ガリウム系半導体からなるチャネル層23と、第2の窒化ガリウム系半導体からなる電子障壁層25とを含むことができる。第1の窒化ガリウム系半導体は、第2の窒化ガリウム系半導体と異なる。導電性窒化ガリウム基板13上において、チャネル層23および電子障壁層25の一方は他方の上に設けられており、チャネル層23および電子障壁層25はヘテロ接合27を形成している。   Subsequently, a high electron mobility transistor will be described as an example of the field effect transistor 11. The gallium nitride based semiconductor region 15 can include a channel layer 23 made of a first gallium nitride based semiconductor and an electron barrier layer 25 made of a second gallium nitride based semiconductor. The first gallium nitride based semiconductor is different from the second gallium nitride based semiconductor. On the conductive gallium nitride substrate 13, one of the channel layer 23 and the electron barrier layer 25 is provided on the other, and the channel layer 23 and the electron barrier layer 25 form a heterojunction 27.

本実施例は、電子障壁層25がチャネル層23上に形成されている。チャネル層23は、第1の部分23cと第2の部分25cとを含む。第1の部分23cは、導電性窒化ガリウム基板13の第1の領域13c上に設けられている。また、第2の部分23dは、導電性窒化ガリウム基板23の第2の領域23d上に設けられている。電子障壁層25は、第1の部分25cと第2の部分25dを含む。第1の部分25cは、チャネル層23の第1の部分23c上に設けられている。第2の部分25dは、チャネル層23の第2の部分23d上に設けられている。第1の領域13cは、2つの第2の領域13d間に位置している。第2の領域13dの第2の転位密度が第1の領域13cの第1の転位密度より小さいので、第2の部分23dの第2の転位密度は、第1の部分23cの第1の転位密度より小さく、また第2の部分25dの第2の転位密度は、第1の部分25cの第1の転位密度より小さい。   In this embodiment, the electron barrier layer 25 is formed on the channel layer 23. The channel layer 23 includes a first portion 23c and a second portion 25c. The first portion 23 c is provided on the first region 13 c of the conductive gallium nitride substrate 13. The second portion 23 d is provided on the second region 23 d of the conductive gallium nitride substrate 23. The electron barrier layer 25 includes a first portion 25c and a second portion 25d. The first portion 25 c is provided on the first portion 23 c of the channel layer 23. The second portion 25 d is provided on the second portion 23 d of the channel layer 23. The first region 13c is located between the two second regions 13d. Since the second dislocation density of the second region 13d is smaller than the first dislocation density of the first region 13c, the second dislocation density of the second portion 23d is the first dislocation of the first portion 23c. The second dislocation density of the second portion 25d is smaller than the first dislocation density of the first portion 25c.

この電界効果トランジスタ11によれば、ヘテロ接合トランジスタのソース電極は、チャネル層23の第1の部分23cおよび電子障壁層25の第1の部分25cを介して導電性窒化ガリウム基板13に電気的に接続される。これ故に、フィルードプレート効果を利用可能なヘテロ接合トランジスタが提供される。   According to the field effect transistor 11, the source electrode of the heterojunction transistor is electrically connected to the conductive gallium nitride substrate 13 through the first portion 23 c of the channel layer 23 and the first portion 25 c of the electron barrier layer 25. Connected. Therefore, a heterojunction transistor capable of utilizing the field plate effect is provided.

電子障壁層25の窒化ガリウム系半導体のバンドギャップは、チャネル層23の窒化ガリウム系半導体のバンドギャップより大きく、これ故に、チャネル層23内にはヘテロ接合27に沿って二次元電子ガス29が形成される。二次元電子ガス29がソース電極21からドレイン電極19に向かって流れ、二次元電子ガス29の密度はゲート電極17によって制御される。好適な実施例では、チャネル層23はアンドープ半導体から成り、また電子障壁層25はアンドープ半導体から成る。   The band gap of the gallium nitride semiconductor of the electron barrier layer 25 is larger than the band gap of the gallium nitride semiconductor of the channel layer 23. Therefore, a two-dimensional electron gas 29 is formed along the heterojunction 27 in the channel layer 23. Is done. A two-dimensional electron gas 29 flows from the source electrode 21 toward the drain electrode 19, and the density of the two-dimensional electron gas 29 is controlled by the gate electrode 17. In the preferred embodiment, the channel layer 23 comprises an undoped semiconductor and the electron barrier layer 25 comprises an undoped semiconductor.

電界効果トランジスタ11は、窒化ガリウム系半導体領域15上に設けられた保護膜31を含むことができる。保護膜31は、例えばSiOといったシリコン酸化物、SiNといったシリコン窒化膜、Alといったアルミニウム酸化物のような絶縁物からなり、ソース電極21とゲート電極17との間において半導体領域15上およびドレイン電極19とゲート電極17との間において半導体領域15上に位置している。 The field effect transistor 11 can include a protective film 31 provided on the gallium nitride based semiconductor region 15. The protective film 31 is made of an insulator such as a silicon oxide such as SiO 2 , a silicon nitride film such as SiN, or an aluminum oxide such as Al 2 O 3, and is formed on the semiconductor region 15 between the source electrode 21 and the gate electrode 17. And located on the semiconductor region 15 between the drain electrode 19 and the gate electrode 17.

電界効果トランジスタ11では、窒化ガリウム系半導体領域15は、一または複数の第3の領域13eをさらに含むことができる。第3の領域13eはZ方向に伸びており、第2の領域13dの転位密度より大きい第3の転位密度を有する。また、第3の転位密度は第1の転位密度と実質的に等しい。窒化ガリウム系半導体領域15は、第3の部分15eを含んでおり、第3の部分15eは、導電性窒化ガリウム基板13の第3の領域13e上に設けられている。第3の部分15eおよび第3の領域13eは、所定の面S2に沿って設けられている。つまり、転位密度の大きな領域13e、15eは、Z軸方向に伸びており、窒化ガリウム系半導体領域15の第3の部分15eは導電性窒化ガリウム基板13の第3の領域13eに直接に繋がっている。所定の面S2と所定の面S1との間隔D1は、例えば100マイクロメートル程度であり、更なる高転位領域が所定のピッチで配列されていることができる。窒化ガリウム系半導体領域15がチャネル層23および電子障壁層25を含むとき、第3の部分15eは、チャネル層23の第3の部分23eと電子障壁層25の第3の部分25eとを含む。   In the field effect transistor 11, the gallium nitride based semiconductor region 15 may further include one or more third regions 13e. The third region 13e extends in the Z direction and has a third dislocation density higher than that of the second region 13d. The third dislocation density is substantially equal to the first dislocation density. The gallium nitride based semiconductor region 15 includes a third portion 15 e, and the third portion 15 e is provided on the third region 13 e of the conductive gallium nitride substrate 13. The third portion 15e and the third region 13e are provided along the predetermined surface S2. That is, the regions 13e and 15e having a high dislocation density extend in the Z-axis direction, and the third portion 15e of the gallium nitride based semiconductor region 15 is directly connected to the third region 13e of the conductive gallium nitride substrate 13. Yes. A distance D1 between the predetermined surface S2 and the predetermined surface S1 is, for example, about 100 micrometers, and further high dislocation regions can be arranged at a predetermined pitch. When the gallium nitride based semiconductor region 15 includes the channel layer 23 and the electron barrier layer 25, the third portion 15 e includes the third portion 23 e of the channel layer 23 and the third portion 25 e of the electron barrier layer 25.

窒化ガリウム系半導体領域15の第3の部分15eの導電率は、窒化ガリウム系半導体領域15の第2の部分15dの導電率より大きく、また窒化ガリウム系半導体領域15の第1の部分15cの導電率と実質的に同じ程度である。第3の部分15eは、導電性窒化ガリウム基板13を介して窒化ガリウム系半導体領域15の第1の部分15cに接続されるので、第3の部分15eの電位は第1の部分15cと同電位になる。窒化ガリウム系半導体領域15は、窒化ガリウム系半導体領域15の第3の部分15eをドレイン電極19から分離するためのアイソレーション領域33を含む。アイソレーション領域33によって、窒化ガリウム系半導体領域15の第3の部分15eがドレイン電極19と低抵抗で電気的に繋がることを避けることができる。   The conductivity of the third portion 15 e of the gallium nitride based semiconductor region 15 is larger than the conductivity of the second portion 15 d of the gallium nitride based semiconductor region 15, and the conductivity of the first portion 15 c of the gallium nitride based semiconductor region 15. Is substantially the same as the rate. Since the third portion 15e is connected to the first portion 15c of the gallium nitride based semiconductor region 15 through the conductive gallium nitride substrate 13, the potential of the third portion 15e is the same as that of the first portion 15c. become. The gallium nitride based semiconductor region 15 includes an isolation region 33 for separating the third portion 15 e of the gallium nitride based semiconductor region 15 from the drain electrode 19. The isolation region 33 can prevent the third portion 15e of the gallium nitride based semiconductor region 15 from being electrically connected to the drain electrode 19 with a low resistance.

窒化ガリウム系半導体領域15がチャネル層23および電子障壁層25を含む場合には、アイソレーション領域33の深さは、ヘテロ接合27の位置より深い。これによって二次元電子ガス29がアイソレーション領域33によって互いに分離される。   When the gallium nitride based semiconductor region 15 includes the channel layer 23 and the electron barrier layer 25, the isolation region 33 is deeper than the heterojunction 27. As a result, the two-dimensional electron gas 29 is separated from each other by the isolation region 33.

アイソレーション領域33として、電気的な分離のため溝を窒化ガリウム系半導体領域15に形成することができる。或いは、アイソレーション領域33として、電気的な分離のための高い抵抗率を有する領域を窒化ガリウム系半導体領域15内に形成することができる。   As the isolation region 33, a groove can be formed in the gallium nitride based semiconductor region 15 for electrical isolation. Alternatively, as the isolation region 33, a region having a high resistivity for electrical separation can be formed in the gallium nitride based semiconductor region 15.

また、電界効果トランジスタ11では、窒化ガリウム系半導体領域15は、ソース電極21の下に位置する第1の部分15cに沿って伸びるアイソレーション領域35を含むことができる。   Further, in the field effect transistor 11, the gallium nitride based semiconductor region 15 can include an isolation region 35 extending along the first portion 15 c located below the source electrode 21.

図2は、第1の実施の形態に係る電界効果トランジスタの変形例を示す図面である。変形例の電界効果トランジスタ11aは、導電性窒化ガリウム基板13の裏面13b上に設けられたソースパッド電極37を更に備えることができる。ソースパッド電極37が、電界効果トランジスタ11aの基板13の裏面13bに位置するので、電界効果トランジスタ11aの表面にソースパッド電極を設けるのためのエリアが不要になる。   FIG. 2 is a diagram illustrating a modification of the field effect transistor according to the first embodiment. The field effect transistor 11 a of the modification can further include a source pad electrode 37 provided on the back surface 13 b of the conductive gallium nitride substrate 13. Since the source pad electrode 37 is located on the back surface 13b of the substrate 13 of the field effect transistor 11a, an area for providing the source pad electrode on the surface of the field effect transistor 11a becomes unnecessary.

以上説明したように、本実施の形態は、複雑なプロセスを必要とせず裏面フィールドプレート構造を採用することができる。また、第1および第2の領域を有する窒化ガリウム基板を用いるので、この基板上に形成されるエピタキシャル膜の結晶性が向上される。これ故に、窒化ガリウム系パワーデバイスの耐圧を向上できる。   As described above, the present embodiment can employ the back surface field plate structure without requiring a complicated process. Further, since the gallium nitride substrate having the first and second regions is used, the crystallinity of the epitaxial film formed on the substrate is improved. Therefore, the breakdown voltage of the gallium nitride power device can be improved.

(実施例1)
2×10cm−2の低転位領域、厚さ350μm、2×1018cm−3のキャリア濃度のGaN基板を準備する。この種のGaN基板として、10μm〜1mm間隔でストライプ状の高転位領域(以下、この実施例でコア領域として参照する)を有するものが得られる。このGaN基板上に、有機金属気相成長法(MOCVD法)を用いて、1.5μmのアンドープGaN層、ついで30nmのアンドープAlGa1−XN障壁層(例えば、X=0.25)を形成する。これにより、ヘテロ構造電界効果トランジスタ(HFET)のためのエピタキシャル基板が作製される。上記の実施の形態のように、低転位領域上にゲート電極およびドレイン電極を形成する。ゲート電極にはNi/Au構造を用い、ドレイン電極にはTi/Al構造を用いる。ゲート長Lgは1.5μmであり、ゲート幅Wgは200μmである。ソース電極は、その一部がコア領域に接するように形成される。ソース電極は、ドレイン電極と同じTi/Al構造を有し、ドレイン電極の形成時に同時にソース電極も形成する。ゲート電極、ドレイン電極およびソース電極のパッド電極は、トランジスタの表面に設けられている。また、素子間分離のために、GaN層およびAlGa1−XN障壁層のエッチングをRIE法で行った。さらに、保護膜としてSiOを用いる。図3(A)に模式的に示されるH−FET11bを作製する。試作したヘテロ構造電界効果トランジスタの最大相互コンダクタンス(gm)は180mS/mmで、最大ドレイン電流は800mA/mmであった。オフ耐圧は960ボルトと高い値である。オン抵抗は2.3mΩcmであり、この値は、パワースイッチングデバイスとしては良好な低い値である。
(Example 1)
A GaN substrate having a low dislocation region of 2 × 10 5 cm −2 , a thickness of 350 μm, and a carrier concentration of 2 × 10 18 cm −3 is prepared. As this kind of GaN substrate, a substrate having stripe-shaped high dislocation regions (hereinafter referred to as a core region in this embodiment) at intervals of 10 μm to 1 mm is obtained. On this GaN substrate, using a metal organic chemical vapor deposition method (MOCVD method), an undoped GaN layer of 1.5 μm, and then an undoped Al X Ga 1-X N barrier layer (for example, X = 0.25) of 30 nm. Form. This produces an epitaxial substrate for the heterostructure field effect transistor (HFET). As in the above embodiment, the gate electrode and the drain electrode are formed on the low dislocation region. A Ni / Au structure is used for the gate electrode, and a Ti / Al structure is used for the drain electrode. The gate length Lg is 1.5 μm, and the gate width Wg is 200 μm. The source electrode is formed so that a part thereof is in contact with the core region. The source electrode has the same Ti / Al structure as the drain electrode, and the source electrode is formed simultaneously with the formation of the drain electrode. The gate electrode, the drain electrode, and the pad electrode of the source electrode are provided on the surface of the transistor. In addition, the GaN layer and the Al X Ga 1-X N barrier layer were etched by RIE for element isolation. Further, SiO 2 is used as a protective film. An H-FET 11b schematically shown in FIG. The prototyped heterostructure field effect transistor had a maximum transconductance (gm) of 180 mS / mm and a maximum drain current of 800 mA / mm. The off breakdown voltage is a high value of 960 volts. The on-resistance is 2.3 mΩcm 2 , which is a good low value for a power switching device.

なお、オーミック抵抗低減のためにキャップ層を形成することもできる。また、さらに、ゲート電極、ドレイン電極およびソース電極の少なくともいずれか一つがリセス構造を有することができる。これらの場合でも、本実施の形態に係る利点は変わりなく発揮される。   Note that a cap layer can be formed to reduce ohmic resistance. Furthermore, at least one of the gate electrode, the drain electrode, and the source electrode may have a recess structure. Even in these cases, the advantages according to the present embodiment are exhibited without change.

(実施例2)
実施例1と同様にして、コア領域と低転位領域とを持つGaN基板上にAlGaN/GaN−HFET構造のためのエピタキシャル基板を形成した。ソースパッド電極は、変形例に示されるように基板の裏面に形成される。このソースパッド電極の材料はTi/Al構造を用いる。図3(B)に模式的に示されるH−FET11cを作製する。その結果、オフ耐圧は1000ボルトまで若干向上する。さらに、ソース配線抵抗を低減させることができるので、オン抵抗が1.8mΩcmと低い値となった。
(Example 2)
In the same manner as in Example 1, an epitaxial substrate for an AlGaN / GaN-HFET structure was formed on a GaN substrate having a core region and a low dislocation region. The source pad electrode is formed on the back surface of the substrate as shown in the modification. The material of the source pad electrode uses a Ti / Al structure. An H-FET 11c schematically shown in FIG. As a result, the off breakdown voltage is slightly improved up to 1000 volts. Furthermore, since the source wiring resistance can be reduced, the on-resistance is as low as 1.8 mΩcm 2 .

(実施例3)
2×10cm−2の低転位領域、厚さ350μm、2×1018cm−3のキャリア濃度のGaN基板を準備する。この種のGaN基板は、10μm〜1mm間隔でストライプ状のコア領域を有する。このGaN基板上に、MOCVD法を用いて、1.49μmのアンドープGaN層、0.01μmのアンドープGaIn1−XN層(例えば、X=0.05)、30nmのアンドープAlGa1−YN障壁層(例えば、Y=0.2)を形成する。これにより、HFETのためのエピタキシャル基板が作製される。実施例1と同様にして、図3(C)に模式的に示されるHFET11dを作製した。その結果、オフ耐圧は820ボルトであり、オン抵抗は0.9mΩcmである。
(Example 3)
A GaN substrate having a low dislocation region of 2 × 10 5 cm −2 , a thickness of 350 μm, and a carrier concentration of 2 × 10 18 cm −3 is prepared. This type of GaN substrate has a striped core region at intervals of 10 μm to 1 mm. A 1.49 μm undoped GaN layer, a 0.01 μm undoped Ga X In 1-X N layer (for example, X = 0.05), a 30 nm undoped Al Y Ga 1 film on the GaN substrate by MOCVD. -YN A barrier layer (for example, Y = 0.2) is formed. This produces an epitaxial substrate for the HFET. In the same manner as in Example 1, an HFET 11d schematically shown in FIG. As a result, the off breakdown voltage is 820 volts, and the on resistance is 0.9 mΩcm 2 .

以上説明したように、上記の実施例では、コア領域とその領域を除いた低転位領域を持つ窒化ガリウム半導体基板上に窒化ガリウム系電界効果型トランジスタが形成されている。コア領域の高い密度の多数の転位は窒化ガリウム基板からその上方まで引き継がれて表面まで達している。このため窒化ガリウム系電界効果型トランジスタ表面においてもコア領域とその領域を除いた低転位領域が形成されている。ゲート電極、ドレイン電極が上記低転位領域の表面に設けられ、ソース電極がコア領域に接するように設けられている。ゲート電極とソース電極およびドレイン電極との間にはコア領域が存在しないので、チャネル層等の動作領域は低転位領域に形成されることになり、良好なトランジスタ特性を得ることができる。一方、ソース電極は、引き継がれたコア領域を介して窒化ガリウム基板と電気的に接続される。このため、ソースビア構造などの複雑な構造を採用することなく、窒化ガリウム基板をソース電極と同電位に保つことが可能となり、裏面フィールドプレート作用によってトランジスタの耐圧が高くできる。さらに、窒化ガリウム基板を用いているので、上記動作領域は優れた結晶性となり、先行技術では成し得なかった良好な特性を得ることができる。また、ソースパッド電極を基板の裏面に設けると、チップサイズの縮小に加えて、オン抵抗の低減や寄生ソースインダクタンスが低減される。高転位の領域は規則的に配列されている場合には、電極形成位置が容易に設計できる。このため、パワースイッチング用デバイスを歩留まり良く量産化することができる。   As described above, in the above embodiment, a gallium nitride field effect transistor is formed on a gallium nitride semiconductor substrate having a core region and a low dislocation region excluding the core region. A number of high-density dislocations in the core region are inherited from the gallium nitride substrate to the upper surface and reach the surface. For this reason, a core region and a low dislocation region excluding the region are also formed on the surface of the gallium nitride field effect transistor. A gate electrode and a drain electrode are provided on the surface of the low dislocation region, and a source electrode is provided in contact with the core region. Since the core region does not exist between the gate electrode, the source electrode, and the drain electrode, the operation region such as the channel layer is formed in the low dislocation region, and good transistor characteristics can be obtained. On the other hand, the source electrode is electrically connected to the gallium nitride substrate through the inherited core region. Therefore, the gallium nitride substrate can be kept at the same potential as the source electrode without adopting a complicated structure such as a source via structure, and the breakdown voltage of the transistor can be increased by the back surface field plate action. Further, since the gallium nitride substrate is used, the operation region has excellent crystallinity, and good characteristics that cannot be achieved by the prior art can be obtained. Further, when the source pad electrode is provided on the back surface of the substrate, the on-resistance and the parasitic source inductance are reduced in addition to the reduction of the chip size. When the high dislocation regions are regularly arranged, the electrode formation position can be easily designed. For this reason, the power switching device can be mass-produced with a high yield.

(第2の実施の形態)
図4(A)は、第2の実施の形態に係る電界効果トランジスタを示す平面図である。図4(B)は、図4(A)に示されたII−II断面に沿ってとられた断面図である。図5は、図4(A)に示されたIII−III断面に沿ってとられた断面図である。電界効果トランジスタ11eは、導電性窒化ガリウム基板43と、窒化ガリウム系半導体領域45と、ゲート電極17と、ドレイン電極19と、ソース電極21とを備える。導電性窒化ガリウム基板43は、表面43a及び裏面43bを有しており、第1の転位密度を有する複数の第1の領域43cと第2の転位密度を有する第2の領域43dとを含む。第1の領域13cは、裏面43bから表面43aに向かうZ方向に伸びている。各第1の領域43cは、第2の領域43dに囲まれている。第2の領域43dの第2の転位密度は、第1の領域43cの第1の転位密度より小さい。窒化ガリウム系半導体領域45は、第1の部分45cと第2の部分45dとを含む。第1の部分45cは、導電性窒化ガリウム基板43の第1の領域43c上に設けられている。第2の部分45dは、導電性窒化ガリウム基板43の第2の領域43d上に設けられている。ゲート電極17は、窒化ガリウム系半導体領域45の第2の部分45d上に設けられている。ドレイン電極19は、窒化ガリウム系半導体領域45の第2の部分45d上に設けられている。ソース電極21は、窒化ガリウム系半導体領域45上に設けられており、また窒化ガリウム系半導体領域45の第1の部分45cに接続されている。窒化ガリウム系半導体領域45の第1の部分45cの転位密度は、窒化ガリウム系半導体領域45の第2の部分45dの転位密度より大きい。窒化ガリウム系半導体領域45の第1の部分45cの導電率は、窒化ガリウム系半導体領域45の第2の部分45dの導電率より大きい。
(Second Embodiment)
FIG. 4A is a plan view showing a field effect transistor according to the second embodiment. FIG. 4B is a cross-sectional view taken along the II-II cross section shown in FIG. FIG. 5 is a cross-sectional view taken along the III-III cross section shown in FIG. The field effect transistor 11 e includes a conductive gallium nitride substrate 43, a gallium nitride based semiconductor region 45, a gate electrode 17, a drain electrode 19, and a source electrode 21. The conductive gallium nitride substrate 43 has a front surface 43a and a back surface 43b, and includes a plurality of first regions 43c having a first dislocation density and a second region 43d having a second dislocation density. The first region 13c extends in the Z direction from the back surface 43b toward the front surface 43a. Each first region 43c is surrounded by a second region 43d. The second dislocation density in the second region 43d is smaller than the first dislocation density in the first region 43c. The gallium nitride based semiconductor region 45 includes a first portion 45c and a second portion 45d. The first portion 45 c is provided on the first region 43 c of the conductive gallium nitride substrate 43. The second portion 45 d is provided on the second region 43 d of the conductive gallium nitride substrate 43. The gate electrode 17 is provided on the second portion 45 d of the gallium nitride based semiconductor region 45. The drain electrode 19 is provided on the second portion 45 d of the gallium nitride based semiconductor region 45. The source electrode 21 is provided on the gallium nitride based semiconductor region 45 and is connected to the first portion 45 c of the gallium nitride based semiconductor region 45. The dislocation density of the first portion 45 c of the gallium nitride based semiconductor region 45 is larger than the dislocation density of the second portion 45 d of the gallium nitride based semiconductor region 45. The conductivity of the first portion 45 c of the gallium nitride based semiconductor region 45 is greater than the conductivity of the second portion 45 d of the gallium nitride based semiconductor region 45.

この電界効果トランジスタ11eによれば、ソース電極21が、窒化ガリウム系半導体領域45の第1の部分45cを介して導電性窒化ガリウム基板43と接続される。大きな転位密度を有する第1の部分45cにソース電極の電位が印加されて、このソース電極の電位が導電性窒化ガリウム基板に伝わる。小さい転位密度を有する第2の部分45dがドレインおよびチャネルのために利用される。   According to the field effect transistor 11 e, the source electrode 21 is connected to the conductive gallium nitride substrate 43 through the first portion 45 c of the gallium nitride based semiconductor region 45. The potential of the source electrode is applied to the first portion 45c having a large dislocation density, and the potential of the source electrode is transmitted to the conductive gallium nitride substrate. A second portion 45d having a low dislocation density is utilized for the drain and channel.

電界効果トランジスタ11eでは、導電性窒化ガリウム基板43の各第1の領域43cと窒化ガリウム系半導体領域45の各第1の部分45cとは、所定の面S3に沿って配列されている。つまり、転位密度の大きな領域43c、45cは、Z軸方向に伸びており、窒化ガリウム系半導体領域45の第1の部分45cは導電性窒化ガリウム基板43の第1の領域43cに直接に繋がっている。ソース電極21の一部は、窒化ガリウム系半導体領域45の第1の部分45c上に位置しており、これにより窒化ガリウム系半導体領域45の第1の部分45cを介して導電性窒化ガリウム基板43の第1の領域43cに電気的に接続される。   In the field effect transistor 11e, the first regions 43c of the conductive gallium nitride substrate 43 and the first portions 45c of the gallium nitride based semiconductor region 45 are arranged along a predetermined plane S3. That is, the regions 43c and 45c having a high dislocation density extend in the Z-axis direction, and the first portion 45c of the gallium nitride based semiconductor region 45 is directly connected to the first region 43c of the conductive gallium nitride substrate 43. Yes. A part of the source electrode 21 is located on the first portion 45 c of the gallium nitride based semiconductor region 45, whereby the conductive gallium nitride substrate 43 is interposed via the first portion 45 c of the gallium nitride based semiconductor region 45. Electrically connected to the first region 43c.

この実施例では、図5に示されるように、導電性窒化ガリウム基板43の第1の領域43cは、Z方向に交差するY方向に配列されて列を成す。この電界効果トランジスタ11eによれば、導電性窒化ガリウム基板43の第1の領域43cに転位を集めて、第2の領域43dの転位密度を減らすことができる。例えば、導電性窒化ガリウム基板43の第2の領域43dの第2の転位密度は、約1×10cm−2以下であることができる。この電界効果トランジスタ11eによれば、窒化ガリウム系半導体領域45の第2の部分45dの結晶性が良好になる。 In this embodiment, as shown in FIG. 5, the first regions 43c of the conductive gallium nitride substrate 43 are arranged in the Y direction intersecting the Z direction to form a row. According to this field effect transistor 11e, dislocations can be collected in the first region 43c of the conductive gallium nitride substrate 43, and the dislocation density in the second region 43d can be reduced. For example, the second dislocation density of the second region 43d of the conductive gallium nitride substrate 43 can be about 1 × 10 6 cm −2 or less. According to this field effect transistor 11e, the crystallinity of the second portion 45d of the gallium nitride based semiconductor region 45 is improved.

電界効果トランジスタ11eでは、図4に示されるように、窒化ガリウム系半導体基板43は、一または複数の第3の領域43eをさらに含むことができる。第3の領域43eはZ方向に伸びており、第2の領域43dの転位密度より大きい第3の転位密度を有する。また、第3の転位密度は第1の転位密度とほぼ等しい。窒化ガリウム系半導体領域45は、第3の部分45eを含んでおり、第3の部分45eは、導電性窒化ガリウム基板43の第3の領域43e上に設けられている。第3の部分45eおよび第3の領域43eは、所定の面S4に沿って設けられている。つまり、転位密度の大きな領域43e、45eは、Z軸方向に伸びており、窒化ガリウム系半導体領域45の第3の部分45eは導電性窒化ガリウム基板43の第3の領域43eに直接に繋がっている。所定の面S3と所定の面S4との間隔D2は、例えば100マイクロメートル程度であり、更なる高転位領域の列が所定のピッチで配列されていることができる。   In the field effect transistor 11e, as shown in FIG. 4, the gallium nitride based semiconductor substrate 43 may further include one or a plurality of third regions 43e. The third region 43e extends in the Z direction and has a third dislocation density higher than that of the second region 43d. Further, the third dislocation density is substantially equal to the first dislocation density. The gallium nitride based semiconductor region 45 includes a third portion 45 e, and the third portion 45 e is provided on the third region 43 e of the conductive gallium nitride substrate 43. The third portion 45e and the third region 43e are provided along a predetermined surface S4. That is, the regions 43e and 45e having a high dislocation density extend in the Z-axis direction, and the third portion 45e of the gallium nitride based semiconductor region 45 is directly connected to the third region 43e of the conductive gallium nitride substrate 43. Yes. A distance D2 between the predetermined surface S3 and the predetermined surface S4 is, for example, about 100 micrometers, and rows of further high dislocation regions can be arranged at a predetermined pitch.

窒化ガリウム系半導体領域45の第3の部分45eの導電率は、窒化ガリウム系半導体領域45の第2の部分45dの導電率より大きく、また窒化ガリウム系半導体領域45の第1の部分45cの導電率とほぼ同じ程度である。第3の部分45eは、導電性窒化ガリウム基板43を介して第1の部分45cに接続されているので、第3の部分45eは第1の部分45cと同電位である。窒化ガリウム系半導体領域45は、窒化ガリウム系半導体領域45の第3の部分45eをドレイン電極19から分離するためのアイソレーション領域63を含む。アイソレーション領域63によって、窒化ガリウム系半導体領域45の第3の部分45eがドレイン電極19と電気的に繋がることを避けることができる。   The conductivity of the third portion 45e of the gallium nitride based semiconductor region 45 is larger than the conductivity of the second portion 45d of the gallium nitride based semiconductor region 45, and the conductivity of the first portion 45c of the gallium nitride based semiconductor region 45. About the same rate. Since the third portion 45e is connected to the first portion 45c through the conductive gallium nitride substrate 43, the third portion 45e has the same potential as the first portion 45c. The gallium nitride based semiconductor region 45 includes an isolation region 63 for separating the third portion 45 e of the gallium nitride based semiconductor region 45 from the drain electrode 19. The isolation region 63 can prevent the third portion 45 e of the gallium nitride based semiconductor region 45 from being electrically connected to the drain electrode 19.

引き続いて、電界効果トランジスタ11eの一例として、高電子移動度トランジスタを説明する。窒化ガリウム系半導体領域45は、第1の窒化ガリウム系半導体からなるチャネル層53と、第2の窒化ガリウム系半導体からなる電子障壁層55とを含むことができる。導電性窒化ガリウム基板43上において、チャネル層53および電子障壁層55の一方は他方の上に設けられており、チャネル層53および電子障壁層55はヘテロ接合57を形成している。   Subsequently, a high electron mobility transistor will be described as an example of the field effect transistor 11e. The gallium nitride based semiconductor region 45 can include a channel layer 53 made of a first gallium nitride based semiconductor and an electron barrier layer 55 made of a second gallium nitride based semiconductor. On the conductive gallium nitride substrate 43, one of the channel layer 53 and the electron barrier layer 55 is provided on the other, and the channel layer 53 and the electron barrier layer 55 form a heterojunction 57.

本実施例は、電子障壁層55がチャネル層53上に形成されている。チャネル層53は、第1の部分53cと第2の部分55cとを含む。第1の部分53cは、導電性窒化ガリウム基板43の第1の領域43c上に設けられている。また、第2の部分53dは、導電性窒化ガリウム基板53の第2の領域53d上に設けられている。電子障壁層55は、第1の部分55cと第2の部分55dを含む。第1の部分55cは、チャネル層23の第1の部分53c上に設けられている。第2の部分55dは、チャネル層53の第2の部分53d上に設けられている。第1の領域43cは、2つの第2の領域43d間に位置している。第2の領域43dの第2の転位密度が第1の領域43cの第1の転位密度より小さいので、第2の部分53dの第2の転位密度は、第1の部分53cの第1の転位密度より小さく、また第2の部分55dの第2の転位密度は、第1の部分55cの第1の転位密度より小さい。窒化ガリウム系半導体領域45がチャネル層53および電子障壁層55を含むとき、第3の部分45eは、チャネル層53の第3の部分53eと電子障壁層55の第3の部分55eとを含む。   In this embodiment, the electron barrier layer 55 is formed on the channel layer 53. The channel layer 53 includes a first portion 53c and a second portion 55c. The first portion 53 c is provided on the first region 43 c of the conductive gallium nitride substrate 43. The second portion 53 d is provided on the second region 53 d of the conductive gallium nitride substrate 53. The electron barrier layer 55 includes a first portion 55c and a second portion 55d. The first portion 55 c is provided on the first portion 53 c of the channel layer 23. The second portion 55 d is provided on the second portion 53 d of the channel layer 53. The first region 43c is located between the two second regions 43d. Since the second dislocation density in the second region 43d is smaller than the first dislocation density in the first region 43c, the second dislocation density in the second portion 53d is the first dislocation in the first portion 53c. The second dislocation density of the second portion 55d is smaller than the first dislocation density of the first portion 55c. When the gallium nitride based semiconductor region 45 includes the channel layer 53 and the electron barrier layer 55, the third portion 45 e includes the third portion 53 e of the channel layer 53 and the third portion 55 e of the electron barrier layer 55.

この電界効果トランジスタ11eによれば、フィルードプレート効果を利用可能なヘテロ接合トランジスタが提供される。ヘテロ接合トランジスタのソース電極は、チャネル層53の第1の部分53cおよび電子障壁層55の第1の部分55cを介して導電性窒化ガリウム基板43に電気的に接続される。   According to the field effect transistor 11e, a heterojunction transistor capable of using the field plate effect is provided. The source electrode of the heterojunction transistor is electrically connected to the conductive gallium nitride substrate 43 through the first portion 53 c of the channel layer 53 and the first portion 55 c of the electron barrier layer 55.

窒化ガリウム系半導体領域45がチャネル層53および電子障壁層55を含む場合には、アイソレーション領域63の深さは、ヘテロ接合57の位置より深い。これによって二次元電子ガス59がアイソレーション領域63に分離される。   When the gallium nitride based semiconductor region 45 includes the channel layer 53 and the electron barrier layer 55, the isolation region 63 is deeper than the heterojunction 57. As a result, the two-dimensional electron gas 59 is separated into the isolation region 63.

また、電界効果トランジスタ11eでは、窒化ガリウム系半導体領域45は、ソース電極21の下に位置する第1の部分45cに沿って伸びるアイソレーション領域65を含むことができる。   Further, in the field effect transistor 11e, the gallium nitride based semiconductor region 45 can include an isolation region 65 extending along the first portion 45c located under the source electrode 21.

電界効果トランジスタの変形例11aと同様に、ソースパッド電極が導電性窒化ガリウム基板43の裏面43b上に設けられることができる。   Similar to the field effect transistor modification 11 a, the source pad electrode can be provided on the back surface 43 b of the conductive gallium nitride substrate 43.

(第3の実施の形態)
図6は、第3の実施の形態に係る電界効果トランジスタを示す平面図である。図7は、図6に示されたIV−IV断面に沿ってとられた断面図である。電界効果トランジスタ11fは、導電性窒化ガリウム基板13と、窒化ガリウム系半導体領域15とを備える。窒化ガリウム系半導体領域15上には、X方向に順に、ソース電極21a、ゲート電極17a、ドレイン電極19a、ゲート電極17b、ソース電極21bが配列されている。ゲート電極17a、17bは、窒化ガリウム系半導体領域15の第2の部分15d上に設けられている。ドレイン電極19aは、窒化ガリウム系半導体領域15の第2の部分15d上に設けられている。ソース電極21aは、窒化ガリウム系半導体領域15上に設けられており、また窒化ガリウム系半導体領域15の第1の部分15cに接続されている。ソース電極21bは、窒化ガリウム系半導体領域15上に設けられており、また窒化ガリウム系半導体領域15の第3の部分15eに接続されている。
(Third embodiment)
FIG. 6 is a plan view showing a field effect transistor according to the third embodiment. FIG. 7 is a cross-sectional view taken along the IV-IV cross section shown in FIG. The field effect transistor 11 f includes a conductive gallium nitride substrate 13 and a gallium nitride based semiconductor region 15. On the gallium nitride based semiconductor region 15, a source electrode 21a, a gate electrode 17a, a drain electrode 19a, a gate electrode 17b, and a source electrode 21b are arranged in this order in the X direction. The gate electrodes 17 a and 17 b are provided on the second portion 15 d of the gallium nitride based semiconductor region 15. The drain electrode 19 a is provided on the second portion 15 d of the gallium nitride based semiconductor region 15. The source electrode 21 a is provided on the gallium nitride based semiconductor region 15 and is connected to the first portion 15 c of the gallium nitride based semiconductor region 15. The source electrode 21 b is provided on the gallium nitride based semiconductor region 15 and is connected to the third portion 15 e of the gallium nitride based semiconductor region 15.

この電界効果トランジスタ11fによれば、ソース電極21a、21bが、それぞれ、窒化ガリウム系半導体領域15の第1の部分15cおよび第3の部分15eを介して導電性窒化ガリウム基板13と接続される。大きな転位密度を有する第1の部分15cおよび第3の部分15eにソース電極21a、21bの電位が印加されて、このソース電極21a、21bの電位が導電性窒化ガリウム基板13に伝わる。小さい転位密度を有する第2の部分15dがドレインおよびチャネルのために利用される。2つのドレイン電極19bの間に、ソース電極21a、ゲート電極17a、ドレイン電極19a、ゲート電極17b、ソース電極21bが置かれている。   According to the field effect transistor 11f, the source electrodes 21a and 21b are connected to the conductive gallium nitride substrate 13 via the first portion 15c and the third portion 15e of the gallium nitride based semiconductor region 15, respectively. The potentials of the source electrodes 21 a and 21 b are applied to the first portion 15 c and the third portion 15 e having a large dislocation density, and the potentials of the source electrodes 21 a and 21 b are transmitted to the conductive gallium nitride substrate 13. A second portion 15d having a low dislocation density is utilized for the drain and channel. A source electrode 21a, a gate electrode 17a, a drain electrode 19a, a gate electrode 17b, and a source electrode 21b are placed between the two drain electrodes 19b.

また、電界効果トランジスタ11fでは、窒化ガリウム系半導体領域15は、ソース電極21a、21bの下に位置する第1の部分15c、15eに沿ってそれぞれ伸びるアイソレーション領域35aを含むことができる。   In the field effect transistor 11f, the gallium nitride based semiconductor region 15 can include isolation regions 35a extending along the first portions 15c and 15e located under the source electrodes 21a and 21b, respectively.

(実施例4)
窒化ガリウム基板の複数のコア領域(ストライプ状)が100μm間隔で規則的に配列された平面に沿って伸びており、低転位領域の転位密度が1×10cm−2であり、厚みが400μmであり、キャリア濃度が4×1018cm−3である。実施例1と同様に、HFETデバイスを作製した。この場合、コア間の距離が電極間の距離と一致することとなり、窒化ガリウム基板と電極配置とを組み合わせた大電流用のHFET構造デバイスが設計される。ソース電極長Lsは24μmであり、ゲート-ソース間Lgsは1.5μmであり、ゲート長Lgは1.5μmであり、ゲート幅は200μm(2×100μm)であり、ゲート-ドレイン間Lgdは10μmであり、ドレイン電極長Ldは50μmである。このHFETでは、オフ耐圧は900ボルトであり、オン抵抗は2.5mΩcmであり、最大ドレイン電流は120アンペアである。
(Example 4)
A plurality of core regions (stripe shapes) of the gallium nitride substrate extend along a plane regularly arranged at intervals of 100 μm, the dislocation density of the low dislocation regions is 1 × 10 5 cm −2 , and the thickness is 400 μm. And the carrier concentration is 4 × 10 18 cm −3 . Similar to Example 1, an HFET device was fabricated. In this case, the distance between the cores coincides with the distance between the electrodes, and a high-current HFET structure device in which the gallium nitride substrate and the electrode arrangement are combined is designed. The source electrode length Ls is 24 μm, the gate-source Lgs is 1.5 μm, the gate length Lg is 1.5 μm, the gate width is 200 μm (2 × 100 μm), and the gate-drain Lgd is 10 μm. The drain electrode length Ld is 50 μm. In this HFET, the off breakdown voltage is 900 volts, the on resistance is 2.5 mΩcm 2 , and the maximum drain current is 120 amperes.

(第4の実施の形態)
図8は、第4の実施の形態に係る電界効果トランジスタを示す平面図である。図9は、図8に示されたV−V断面に沿ってとられた断面図である。電界効果トランジスタ11gは、導電性窒化ガリウム基板43と、窒化ガリウム系半導体領域45とを備える。窒化ガリウム系半導体領域45上には、X方向に順に、ソース電極21a、ゲート電極17a、ドレイン電極19a、ゲート電極17b、ソース電極21bが配列されている。ゲート電極17a、17bは、窒化ガリウム系半導体領域45の第2の部分45d上に設けられている。ドレイン電極19aは、窒化ガリウム系半導体領域45の第2の部分45d上に設けられている。ソース電極21aは、窒化ガリウム系半導体領域45上に設けられており、また窒化ガリウム系半導体領域45の第1の部分45cに接続されている。ソース電極21bは、窒化ガリウム系半導体領域45上に設けられており、また窒化ガリウム系半導体領域45の第3の部分45eに接続されている。
(Fourth embodiment)
FIG. 8 is a plan view showing a field effect transistor according to the fourth embodiment. FIG. 9 is a cross-sectional view taken along the VV cross section shown in FIG. The field effect transistor 11 g includes a conductive gallium nitride substrate 43 and a gallium nitride based semiconductor region 45. On the gallium nitride semiconductor region 45, a source electrode 21a, a gate electrode 17a, a drain electrode 19a, a gate electrode 17b, and a source electrode 21b are arranged in this order in the X direction. The gate electrodes 17 a and 17 b are provided on the second portion 45 d of the gallium nitride based semiconductor region 45. The drain electrode 19 a is provided on the second portion 45 d of the gallium nitride based semiconductor region 45. The source electrode 21 a is provided on the gallium nitride based semiconductor region 45 and is connected to the first portion 45 c of the gallium nitride based semiconductor region 45. The source electrode 21 b is provided on the gallium nitride based semiconductor region 45 and is connected to the third portion 45 e of the gallium nitride based semiconductor region 45.

この電界効果トランジスタ11gによれば、ソース電極21a、21bが、それぞれ、窒化ガリウム系半導体領域45の第1の部分45cおよび第3の部分45eを介して導電性窒化ガリウム基板43と接続される。大きな転位密度を有する第1の部分45cおよび第3の部分45eにソース電極21a、21bの電位が印加されて、このソース電極21a、21bの電位が導電性窒化ガリウム基板43に伝わる。小さい転位密度を有する第2の部分45dがドレインおよびチャネルのために利用される。2つのドレイン電極19bの間に、ソース電極21a、ゲート電極17a、ドレイン電極19a、ゲート電極17b、ソース電極21bが置かれている。   According to the field effect transistor 11g, the source electrodes 21a and 21b are connected to the conductive gallium nitride substrate 43 through the first portion 45c and the third portion 45e of the gallium nitride based semiconductor region 45, respectively. The potentials of the source electrodes 21 a and 21 b are applied to the first portion 45 c and the third portion 45 e having a large dislocation density, and the potentials of the source electrodes 21 a and 21 b are transmitted to the conductive gallium nitride substrate 43. A second portion 45d having a low dislocation density is utilized for the drain and channel. A source electrode 21a, a gate electrode 17a, a drain electrode 19a, a gate electrode 17b, and a source electrode 21b are placed between the two drain electrodes 19b.

また、電界効果トランジスタ11gでは、窒化ガリウム系半導体領域45は、ソース電極21a、21bの下に位置する第1の部分15c、15eに沿ってそれぞれ伸びるアイソレーション領域65aを含むことができる。   In the field effect transistor 11g, the gallium nitride based semiconductor region 45 can include isolation regions 65a extending along the first portions 15c and 15e located under the source electrodes 21a and 21b, respectively.

(実施例5)
窒化ガリウム基板のコア領域(島状)が100μm間隔で規則的に配列された平面に沿って伸びている。窒化ガリウム基板の低転位領域の転位密度が1×10cm−2であり、厚みが400μmであり、キャリア濃度が4×1018cm−3である。実施例4と同様に、HFET構造のデバイスを作製した。この場合、コア間の距離が電極間の距離と一致することとなり、窒化ガリウム基板と電極配置とを組み合わせた大電流用デバイスが設計される。総ゲート幅が200μmであるとき、オフ耐圧は940ボルトであり、オン抵抗は2.0mΩcmであり、最大ドレイン電流は140アンペアである。
(Example 5)
The core region (island shape) of the gallium nitride substrate extends along a plane regularly arranged at intervals of 100 μm. The dislocation density in the low dislocation region of the gallium nitride substrate is 1 × 10 5 cm −2 , the thickness is 400 μm, and the carrier concentration is 4 × 10 18 cm −3 . A device having an HFET structure was fabricated in the same manner as in Example 4. In this case, the distance between the cores coincides with the distance between the electrodes, and a device for high current combining the gallium nitride substrate and the electrode arrangement is designed. When the total gate width is 200 μm, the off breakdown voltage is 940 volts, the on resistance is 2.0 mΩcm 2 , and the maximum drain current is 140 amperes.

窒化ガリウム系パワーデバイスを構成する窒化ガリウム系半導体の格子定数および熱膨張係数は、SiCやSiの格子定数および熱膨張係数と異なるので、窒化ガリウム系半導体と異なる異種材料からなる基板として形成した窒化ガリウム系エピタキシャル結晶は良好な結晶性を示さない。デバイスの高耐圧化は、結晶性の良否にも依存するので、窒化ガリウム基板を用いるとき、先行技術で用いられるSiC基板およびSi基板を用いて達成されるデバイス特性よりも優れた特性の電界効果トランジスタが提供される。   Since the lattice constant and thermal expansion coefficient of the gallium nitride semiconductor constituting the gallium nitride power device are different from those of SiC and Si, the nitride formed as a substrate made of a different material from the gallium nitride semiconductor. Gallium-based epitaxial crystals do not show good crystallinity. Since the high breakdown voltage of a device depends on the quality of crystallinity, when using a gallium nitride substrate, the field effect of the characteristics superior to the device characteristics achieved using the SiC substrate and the Si substrate used in the prior art A transistor is provided.

上記のいくつかの実施の形態に係る電界効果トランジスタは、少なくともチャネル層として、第1の(AlIn1−XGa1−YN層(0≦X<1、0≦Y≦1)を含む。また、該電界効果トランジスタは、電子障壁層として、第1の(AlIn1−XGa1−YN層より大きなバンドギャップエネルギーを有する第2の(AlIn1−UGa1−VN(0≦U≦1、0≦V<1)を含むことができる。これ故に、二次元電子ガスを利用することで良好なヘテロ構造電界効果型トランジスタ(HFET)が提供される。以上のように、本発明に係る実施の形態によれば、高耐圧および低オン抵抗を有する窒化ガリウム系パワースイッチングデバイスを提供できる。 In the field effect transistors according to some of the embodiments described above, at least the first (Al X In 1-X ) Y Ga 1-Y N layer (0 ≦ X <1, 0 ≦ Y ≦ 1) is used as the channel layer. )including. In addition, the field effect transistor has a second (Al U In 1-U ) V having a larger band gap energy than the first (Al X In 1-X ) Y Ga 1-Y N layer as an electron barrier layer. Ga 1-V N (0 ≦ U ≦ 1, 0 ≦ V <1) may be included. Therefore, a good heterostructure field effect transistor (HFET) is provided by using a two-dimensional electron gas. As described above, according to the embodiment of the present invention, a gallium nitride power switching device having a high breakdown voltage and a low on-resistance can be provided.

好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。   While the principles of the invention have been illustrated and described in the preferred embodiments, it will be appreciated by those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. We therefore claim all modifications and changes that come within the scope and spirit of the following claims.

図1(A)は、第1の実施の形態に係る電界効果トランジスタを示す平面図である。図1(B)は、図1(A)に示されたI−I断面に沿ってとられた断面図である。FIG. 1A is a plan view showing the field effect transistor according to the first embodiment. FIG. 1B is a cross-sectional view taken along the I-I cross section shown in FIG. 図2は、第1の実施の形態に係る電界効果トランジスタの変形例を示す図面である。FIG. 2 is a diagram illustrating a modification of the field effect transistor according to the first embodiment. 図3(A)、図3(B)および図3(C)は、第1の実施の形態に係る実施例を示す図面である。FIG. 3A, FIG. 3B, and FIG. 3C are drawings showing examples according to the first embodiment. 図4(A)は、第2の実施の形態に係る電界効果トランジスタを示す平面図である。図4(B)は、図4(A)に示されたII−II断面に沿ってとられた断面図である。FIG. 4A is a plan view showing a field effect transistor according to the second embodiment. FIG. 4B is a cross-sectional view taken along the II-II cross section shown in FIG. 図5は、図4(A)に示されたIII−III断面に沿ってとられた断面図である。FIG. 5 is a cross-sectional view taken along the III-III cross section shown in FIG. 図6は、第3の実施の形態に係る電界効果トランジスタを示す平面図である。FIG. 6 is a plan view showing a field effect transistor according to the third embodiment. 図7は、図6に示されたIV−IV断面に沿ってとられた断面図である。FIG. 7 is a cross-sectional view taken along the IV-IV cross section shown in FIG. 図8は、第4の実施の形態に係る電界効果トランジスタを示す平面図である。FIG. 8 is a plan view showing a field effect transistor according to the fourth embodiment. 図9は、図8に示されたV−V断面に沿ってとられた断面図である。FIG. 9 is a cross-sectional view taken along the VV cross section shown in FIG.

符号の説明Explanation of symbols

11、11a、11b、11c、11d、11e、11f、11g…電界効果トランジスタ、13…導電性窒化ガリウム基板、13a…導電性窒化ガリウム基板表面、13b…導電性窒化ガリウム基板の裏面、13c…第1の領域(高転位領域)、13d…第2の領域(低転位領域)、13e…第3の領域(高転位領域)、15…窒化ガリウム系半導体領域、15c…第1の部分、15d…第2の部分、15e…第3の部分、17…ゲート電極、17a…ゲート電極、17b…ゲート電極、19…ドレイン電極、19a…ドレイン電極、19b…ドレイン電極、21…ソース電極、21a…ソース電極、21b…ソース電極、23…チャネル層、23c…第1の部分、23d…第2の部分、23e…第3の部分、25…電子障壁層、25c…第1の部分、25d…第2の部分、25e…第3の部分、27…ヘテロ接合、29…二次元電子ガス、31…保護膜、33、35、35a…アイソレーション領域、37…ソースパッド電極、43…導電性窒化ガリウム基板、43a…導電性窒化ガリウム基板表面、43b…導電性窒化ガリウム基板裏面、43c…第1の領域、43d…第2の領域、43e…第3の領域、45…窒化ガリウム系半導体領域、45c…第1の部分、45d…第2の部分、45e…第3の部分、53…チャネル層、55…電子障壁層、57…ヘテロ接合、59…二次元電子ガス、63、65、65a…アイソレーション領域、 11, 11 a, 11 b, 11 c, 11 d, 11 e, 11 f, 11 g ... field effect transistor, 13 ... conductive gallium nitride substrate, 13a ... conductive gallium nitride substrate surface, 13b ... back surface of conductive gallium nitride substrate, 13c ... 1 region (high dislocation region), 13d ... second region (low dislocation region), 13e ... third region (high dislocation region), 15 ... gallium nitride based semiconductor region, 15c ... first portion, 15d ... Second part, 15e ... third part, 17 ... gate electrode, 17a ... gate electrode, 17b ... gate electrode, 19 ... drain electrode, 19a ... drain electrode, 19b ... drain electrode, 21 ... source electrode, 21a ... source Electrode, 21b ... Source electrode, 23 ... Channel layer, 23c ... First part, 23d ... Second part, 23e ... Third part, 25 ... Electron barrier layer, 25c ... 1 part, 25d ... 2nd part, 25e ... 3rd part, 27 ... heterojunction, 29 ... two-dimensional electron gas, 31 ... protective film, 33, 35, 35a ... isolation region, 37 ... source pad electrode 43 ... conductive gallium nitride substrate, 43a ... conductive gallium nitride substrate surface, 43b ... conductive gallium nitride substrate back surface, 43c ... first region, 43d ... second region, 43e ... third region, 45 ... Gallium nitride semiconductor region, 45c ... first portion, 45d ... second portion, 45e ... third portion, 53 ... channel layer, 55 ... electron barrier layer, 57 ... heterojunction, 59 ... two-dimensional electron gas, 63, 65, 65a ... isolation region,

Claims (7)

表面及び裏面を有しており、前記裏面から前記表面に向かう第1の方向に伸びており第1の転位密度を有する第1の領域と前記第1の転位密度より小さな第2の転位密度を有する第2の領域とを含む導電性窒化ガリウム基板と、
前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含む窒化ガリウム系半導体領域と、
前記窒化ガリウム系半導体領域の前記第2の部分上に設けられたゲート電極と、
前記窒化ガリウム系半導体領域の前記第2の部分上に設けられたドレイン電極と、
前記窒化ガリウム系半導体領域上に設けられており前記窒化ガリウム系半導体領域の前記第1の部分に接続されたソース電極と
を備え、
前記窒化ガリウム系半導体領域の前記第1の部分の転位密度は、前記窒化ガリウム系半導体領域の前記第2の部分の転位密度より大きく、
前記窒化ガリウム系半導体領域の前記第1の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きい、ことを特徴とする電界効果トランジスタ。
A first region having a front surface and a back surface, extending in a first direction from the back surface toward the front surface and having a first dislocation density, and a second dislocation density smaller than the first dislocation density A conductive gallium nitride substrate including a second region having;
A gallium nitride based semiconductor including a first portion provided on the first region of the conductive gallium nitride substrate and a second portion provided on the second region of the conductive gallium nitride substrate. Area,
A gate electrode provided on the second portion of the gallium nitride based semiconductor region;
A drain electrode provided on the second portion of the gallium nitride based semiconductor region;
A source electrode provided on the gallium nitride based semiconductor region and connected to the first portion of the gallium nitride based semiconductor region;
The dislocation density of the first portion of the gallium nitride based semiconductor region is greater than the dislocation density of the second portion of the gallium nitride based semiconductor region,
The field effect transistor according to claim 1, wherein the conductivity of the first portion of the gallium nitride based semiconductor region is greater than the conductivity of the second portion of the gallium nitride based semiconductor region.
前記導電性窒化ガリウム基板の前記裏面上に設けられたソースパッド電極を更に備える、ことを特徴とする請求項1に記載された電界効果トランジスタ。   The field effect transistor according to claim 1, further comprising a source pad electrode provided on the back surface of the conductive gallium nitride substrate. 前記導電性窒化ガリウム基板の前記第2の領域の前記第2の転位密度は、1×10cm−2以下である、ことを特徴とする請求項1または請求項2に記載された電界効果トランジスタ。 3. The field effect according to claim 1, wherein the second dislocation density in the second region of the conductive gallium nitride substrate is 1 × 10 6 cm −2 or less. Transistor. 前記窒化ガリウム系半導体領域は、
前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含んでおり第1の窒化ガリウム系半導体からなるチャネル層と、
前記導電性窒化ガリウム基板の前記第1の領域上に設けられた第1の部分と前記導電性窒化ガリウム基板の前記第2の領域上に設けられた第2の部分とを含んでおり第2の窒化ガリウム系半導体からなる電子障壁層と
を含んでおり、
前記電子障壁層および前記チャネル層の一方は他方の上に設けられており、
前記チャネル層および前記電子障壁層はヘテロ接合を形成している、ことを特徴とする請求項1〜請求項3のいずれかに記載された電界効果トランジスタ。
The gallium nitride based semiconductor region is
A first portion provided on the first region of the conductive gallium nitride substrate; and a second portion provided on the second region of the conductive gallium nitride substrate. A channel layer made of a gallium nitride based semiconductor,
A first portion provided on the first region of the conductive gallium nitride substrate and a second portion provided on the second region of the conductive gallium nitride substrate; And an electron barrier layer made of a gallium nitride based semiconductor,
One of the electron barrier layer and the channel layer is provided on the other,
The field effect transistor according to any one of claims 1 to 3, wherein the channel layer and the electron barrier layer form a heterojunction.
前記導電性窒化ガリウム基板は、前記第2の転位密度より大きな第3の転位密度を有しており前記第1の方向に伸びる第3の領域をさらに含み、
前記窒化ガリウム系半導体領域は、前記導電性窒化ガリウム基板の前記第3の領域上に設けられた第3の部分を含み、
前記窒化ガリウム系半導体領域の前記第3の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きく、
前記窒化ガリウム系半導体領域は、前記窒化ガリウム系半導体領域の前記第3の部分を前記ドレイン電極から分離するためのアイソレーション領域を含み、
前記アイソレーション領域の深さは、前記ヘテロ接合の位置より深い、ことを特徴とする請求項4に記載された電界効果トランジスタ。
The conductive gallium nitride substrate further includes a third region having a third dislocation density greater than the second dislocation density and extending in the first direction;
The gallium nitride based semiconductor region includes a third portion provided on the third region of the conductive gallium nitride substrate,
The conductivity of the third portion of the gallium nitride based semiconductor region is greater than the conductivity of the second portion of the gallium nitride based semiconductor region,
The gallium nitride based semiconductor region includes an isolation region for separating the third portion of the gallium nitride based semiconductor region from the drain electrode,
The field effect transistor according to claim 4, wherein a depth of the isolation region is deeper than a position of the heterojunction.
前記導電性窒化ガリウム基板の前記第1の領域は、前記第1の方向に交差する第2の方向に沿って伸びている、ことを特徴とする請求項1〜請求項5のいずれかに記載された電界効果トランジスタ。   The said 1st area | region of the said electroconductive gallium nitride substrate is extended along the 2nd direction which cross | intersects the said 1st direction, The Claim 1 characterized by the above-mentioned. Field effect transistor. 前記導電性窒化ガリウム基板は、前記第2の転位密度より大きな第3の転位密度を有しており前記第1の方向に伸びる複数の第3の領域をさらに含み、
前記窒化ガリウム系半導体領域は、前記導電性窒化ガリウム基板の前記第3の領域上に設けられた第3の部分を含み、
前記窒化ガリウム系半導体領域の前記第3の部分の導電率は、前記窒化ガリウム系半導体領域の前記第2の部分の導電率より大きく、
前記導電性窒化ガリウム基板の前記第1の領域および前記第3の領域は、前記第1の方向に交差する第2および第3の方向にアレイ状に配列されている、ことを特徴とする請求項1〜請求項5のいずれかに記載された電界効果トランジスタ。
The conductive gallium nitride substrate further includes a plurality of third regions having a third dislocation density greater than the second dislocation density and extending in the first direction;
The gallium nitride based semiconductor region includes a third portion provided on the third region of the conductive gallium nitride substrate,
The conductivity of the third portion of the gallium nitride based semiconductor region is greater than the conductivity of the second portion of the gallium nitride based semiconductor region,
The first region and the third region of the conductive gallium nitride substrate are arranged in an array in second and third directions intersecting the first direction. The field effect transistor according to claim 1.
JP2005175394A 2005-06-15 2005-06-15 Field effect transistor Expired - Fee Related JP4821178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175394A JP4821178B2 (en) 2005-06-15 2005-06-15 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175394A JP4821178B2 (en) 2005-06-15 2005-06-15 Field effect transistor

Publications (2)

Publication Number Publication Date
JP2006351794A true JP2006351794A (en) 2006-12-28
JP4821178B2 JP4821178B2 (en) 2011-11-24

Family

ID=37647325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175394A Expired - Fee Related JP4821178B2 (en) 2005-06-15 2005-06-15 Field effect transistor

Country Status (1)

Country Link
JP (1) JP4821178B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043037A (en) * 2005-06-27 2007-02-15 Toshiba Corp Substrate for semiconductor layer deposition, field effect semiconductor device, and manufacturing method thereof
JP2010062552A (en) * 2008-08-08 2010-03-18 Furukawa Electric Co Ltd:The Field-effect transistor and method of manufacturing the same
US8563984B2 (en) 2009-07-10 2013-10-22 Sanken Electric Co., Ltd. Semiconductor device
JPWO2014041736A1 (en) * 2012-09-13 2016-08-12 パナソニックIpマネジメント株式会社 Nitride semiconductor structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274521A (en) * 2000-03-24 2001-10-05 Nec Corp Nitride semiconductor light emitting element
JP2004327879A (en) * 2003-04-28 2004-11-18 Sharp Corp Nitride semiconductor laser device and optical device
JP2004363563A (en) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274521A (en) * 2000-03-24 2001-10-05 Nec Corp Nitride semiconductor light emitting element
JP2004327879A (en) * 2003-04-28 2004-11-18 Sharp Corp Nitride semiconductor laser device and optical device
JP2004363563A (en) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043037A (en) * 2005-06-27 2007-02-15 Toshiba Corp Substrate for semiconductor layer deposition, field effect semiconductor device, and manufacturing method thereof
JP2010062552A (en) * 2008-08-08 2010-03-18 Furukawa Electric Co Ltd:The Field-effect transistor and method of manufacturing the same
US8563984B2 (en) 2009-07-10 2013-10-22 Sanken Electric Co., Ltd. Semiconductor device
JPWO2014041736A1 (en) * 2012-09-13 2016-08-12 パナソニックIpマネジメント株式会社 Nitride semiconductor structure

Also Published As

Publication number Publication date
JP4821178B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US11114554B2 (en) High-electron-mobility transistor having a buried field plate
JP6522521B2 (en) Electrode of semiconductor device and method of manufacturing the same
JP6754782B2 (en) Semiconductor device
JP5675084B2 (en) Nitride diode
JP5037594B2 (en) Field effect transistor
US8405125B2 (en) Semiconductor device and method for producing the same
KR101231077B1 (en) Semiconductor device
JP5203725B2 (en) III-nitride power semiconductor devices
CN102648527A (en) Semiconductor device and method for manufacturing same
WO2009110254A1 (en) Field effect transistor and method for manufacturing the same
US9666705B2 (en) Contact structures for compound semiconductor devices
US20120061729A1 (en) Nitride semiconductor device and method for fabricating the same
KR20060050861A (en) Epitaxial substrate and semiconductor element
JP2009231508A (en) Semiconductor device
CN104425618A (en) Nitride-based transistor and method of fabricating the same
WO2009119479A1 (en) Semiconductor device, and method for manufacturing the same
US10971614B2 (en) High electron mobility transistor with reverse arrangement of channel layer and barrier layer
JP2007128994A (en) Semiconductor device
JP2008258299A (en) Field-effect transistor
US11973135B2 (en) Semiconductor device
JP4821178B2 (en) Field effect transistor
KR102019768B1 (en) Semiconductor device
JP2007180330A (en) Semiconductor device and its manufacturing method
JP2006313859A (en) Vertical transistor
JP5055773B2 (en) Semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees