JP2006349829A - Manufacturing method of low refraction material and low refraction material manufactured by the method - Google Patents

Manufacturing method of low refraction material and low refraction material manufactured by the method Download PDF

Info

Publication number
JP2006349829A
JP2006349829A JP2005173761A JP2005173761A JP2006349829A JP 2006349829 A JP2006349829 A JP 2006349829A JP 2005173761 A JP2005173761 A JP 2005173761A JP 2005173761 A JP2005173761 A JP 2005173761A JP 2006349829 A JP2006349829 A JP 2006349829A
Authority
JP
Japan
Prior art keywords
refractive index
low refractive
bubbles
producing
index material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005173761A
Other languages
Japanese (ja)
Other versions
JP4614343B2 (en
Inventor
Hideaki Morita
英明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005173761A priority Critical patent/JP4614343B2/en
Publication of JP2006349829A publication Critical patent/JP2006349829A/en
Application granted granted Critical
Publication of JP4614343B2 publication Critical patent/JP4614343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a low refraction material by which the low refraction material can be mass-produced at a low cost and area increase can be easily attained by physically mixing air bubbles into a liquid hardenable material. <P>SOLUTION: In the manufacturing method of the low refraction material having a low refractive index, the air bubbles 1 are mixed into the liquid hardenable material 2 which is used after hardening from a liquid state to a solid state and the hardened material 2 is pulverized to physically mix minute air bubbles 1 therein. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低屈折材料の作製方法及びその方法で作製された低屈折材料に関し、特に、光学素子等の分野において反射防止、レリーフ型回折格子、交互多層膜等に用いる低屈折材料の作製方法と作製された低屈折材料に関するものである。   The present invention relates to a method for producing a low-refractive material and a low-refractive material produced by the method, and more particularly to a method for producing a low-refractive material used for antireflection, relief diffraction grating, alternating multilayer film, etc. in the field of optical elements and the like. It relates to the low refractive material produced.

ガラス等の透明体の反射防止手段として、従来、(1)透明体表面に低屈折材料1層の薄膜を形成して反射防止膜とすること、(2)透明体表面に低屈折材料を含む複数層の薄膜を形成して反射防止膜とすること、(3)透明体表面に周期が波長オーダー以下の周期構造の反射防止体(いわゆるモスアイ)を形成すること等が知られている。   Conventionally, as a means for preventing reflection of a transparent body such as glass, (1) forming a thin film of one layer of low refractive material on the surface of the transparent body to form an antireflection film, (2) including a low refractive material on the surface of the transparent body It is known to form an antireflection film by forming a plurality of thin films, and (3) to form an antireflection body (so-called moth eye) having a periodic structure with a period of a wavelength order or less on the transparent body surface.

また、レリーフ型回折格子は、微細な凹凸形状で、表面方向に周期的な(あるいは非周期的な)構造であって、透過回折又は反射回折を利用する、例えば、偏向、分光、偏光等の機能に用いられる。   In addition, the relief type diffraction grating has a fine concavo-convex shape and has a periodic (or aperiodic) structure in the surface direction, and uses transmission diffraction or reflection diffraction, for example, deflection, spectroscopy, polarization, etc. Used for functions.

また、低屈折率、高屈折率の交互多層膜は、高屈折材料と低屈折率材料を交互に積層した構造であって、反射回折を利用する、例えば、偏光分離機能に用いている。   The alternating multilayer film having a low refractive index and a high refractive index has a structure in which a high refractive material and a low refractive index material are alternately laminated, and is used for, for example, a polarization separation function using reflection diffraction.

このような光学素子に用いる低屈折材料は作製方法が難しく、大面積化が難しく、稀少で高価である。また、レリーフ型回折格子材料として凹凸の加工の難易度から向き不向きがあり、一般的な低屈折材料が必ずしも向いているとは言えない。   Low refractive materials used for such optical elements are difficult to produce, difficult to increase in area, are scarce and expensive. Further, the relief type diffraction grating material is unsuitable for the degree of difficulty in processing the unevenness, and it cannot be said that a general low refractive material is necessarily suitable.

ところで、従来、低屈折材料として透明材料中に微小空孔を分散させるものが種々知られている(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8等)。
特開平6−3501号公報 特開平10−282305号公報 特開2002−311210号公報 特開2004−171023号公報 国際公開WO00/37359号明細書 特開2003−261797号公報 特開平7−306529公報 特開2003−334548号公報
By the way, conventionally, various low-refractive materials that disperse micropores in a transparent material are known (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, etc.).
JP-A-6-3501 Japanese Patent Laid-Open No. 10-282305 JP 2002-311210 A JP 2004-171023 A International Publication WO00 / 37359 Specification JP 2003-261797 A JP-A-7-306529 JP 2003-334548 A

しかしながら、透明材料中に微小空孔を分散させた低屈折材料の作製方法として、安価に大量に作製でき、大面積化が容易な方法は知られていなかった。   However, as a method for producing a low-refractive material in which fine pores are dispersed in a transparent material, a method that can be produced in a large amount at a low cost and can be easily increased in area has not been known.

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、液体状の硬化型材料に物理的に気泡を混入することで、安価に大量に作製でき、大面積化が容易な低屈折材料の作製方法を提供することである。   The present invention has been made in view of such a situation in the prior art, and the object thereof is to physically produce bubbles in a liquid curable material, which can be produced in large quantities at low cost, and has a large area. It is an object of the present invention to provide a method for producing a low refractive material that is easy to perform.

上記目的を達成する本発明の低屈折率材料の作製方法は、液体の状態から固体に硬化させて用いる硬化型材料が液体の状態において、物理的に微小な気泡を混入させて屈折率を低くしたことを特徴とする方法である。   The method for producing a low refractive index material of the present invention that achieves the above object is to reduce the refractive index by physically mixing minute bubbles when the curable material used by curing from a liquid state to a solid is in a liquid state. It is the method characterized by having performed.

この場合に、液体の状態の硬化型材料中で、回転運動や往復運動等の運動により気泡を粉砕して小さくする工程と、その工程前あるいはその工程と同時に粉砕前の気泡を混入させる工程を含むことが望ましい。   In this case, in the curable material in a liquid state, a step of crushing and reducing bubbles by a motion such as a rotational motion or a reciprocating motion, and a step of mixing bubbles before or simultaneously with the step It is desirable to include.

また、気泡を粉砕して小さくする工程前あるいはその工程と同時に気泡を混入させる工程において、微細開口を通して気体を連続的又は断続的に液体の状態の硬化型材料中に送り込むことで粉砕前の気泡を混入させることができる。   In addition, before the step of crushing and reducing the bubbles, or in the step of mixing bubbles at the same time, the bubbles before pulverization are sent by continuously or intermittently sending the gas into the liquid curable material through the fine openings. Can be mixed.

また、硬化型材料に混入させた微小な気泡の平均的大きさが使用波長オーダー以下であることが望ましい。   In addition, it is desirable that the average size of minute bubbles mixed in the curable material is equal to or less than the wavelength used.

また、硬化型材料に混入させた微小な気泡の材料硬化後の平均的大きさが使用波長オーダー以下であることが望ましい。   In addition, it is desirable that the average size of the minute bubbles mixed in the curable material after curing the material is equal to or less than the wavelength used.

なお、硬化型材料としては、紫外線硬化型樹脂、熱硬化型樹脂がある。   The curable material includes an ultraviolet curable resin and a thermosetting resin.

本発明は、以上のような低屈折率材料の作製方法により作製された液体状若しくは固体化状の低屈折率材料を含むものである。   The present invention includes a liquid or solidified low refractive index material produced by the method for producing a low refractive index material as described above.

以上の本発明の低屈折率材料の作製方法により、低屈折材料を安価に大量に作製することができる。また、低屈折材料からなる板状透明体等の大面積化も容易となる。   By the above method for producing a low refractive index material of the present invention, a large amount of low refractive material can be produced at low cost. Further, it is easy to increase the area of a plate-like transparent body made of a low refractive material.

本発明の低屈折率材料の作製方法により作製した低屈折材料を用いることで、反射防止膜を始めとする光学素子を安価に実現することができる。   By using the low refractive material produced by the method for producing a low refractive index material of the present invention, an optical element such as an antireflection film can be realized at low cost.

本発明の低屈折材料の作製方法は、液体状の硬化型材料に物理的に気泡を混入することで屈折率を低くする方法であり、特に、気泡の平均径を使用波長オーダー以下にすることで散乱等の光学的ノイズをほとんどなくすことができるものである。   The method for producing a low refractive material of the present invention is a method for lowering the refractive index by physically mixing bubbles in a liquid curable material. The optical noise such as scattering can be almost eliminated.

以下に、実施例に基づいて本発明の低屈折材料の作製方法及びその方法で作製された低屈折材料を説明する。   Below, based on an Example, the manufacturing method of the low refractive material of this invention and the low refractive material manufactured by the method are demonstrated.

液体状の紫外線硬化型樹脂に、10μm径の管状の穴がアレイ状になった物体を挿入し、樹脂を流動させながら空気を反対側から断続的に送り込んだ。これにより、10μmオーダーの気泡群が該樹脂に含まれることになる。そして、この10μmオーダーの気泡群が混入された紫外線硬化型樹脂を泡立て装置に入れて、空気の泡を細かく粉砕することにより、混入している気泡の平均径が200nm程度の樹脂ができた。   An object having an array of 10 μm diameter tubular holes was inserted into a liquid ultraviolet curable resin, and air was intermittently fed from the opposite side while the resin was flowing. Thereby, a bubble group of the order of 10 μm is included in the resin. The ultraviolet curable resin mixed with bubbles of the order of 10 μm was put in a foaming device, and air bubbles were finely pulverized to obtain a resin having an average diameter of the mixed bubbles of about 200 nm.

用いた気泡の泡立て装置として、一般的なナノ粒子の粉砕装置を利用した。具体的には、ビーズミルと呼ばれる湿式微粉砕装置(例えば、アシザワ・ファインテック(株)製)であり、この粉砕装置では、図1(a)に装置の模式図を、図1(b)に粉砕の様子を示す模式図を示すように、粉砕してナノ粒子にする対象となる気体の泡1が未硬化の紫外線硬化型樹脂2中に浮いたスラリー3を入口5から容器4内に供給して、容器4内でスラリー3中にビーズ6を混入させ、回転体7によってビーズ6が混入したスラリー3を容器4内で回転運動させ、その回転運動中に泡1がビーズ6間に挟まれることでより細かい泡1’に粉砕されていく。   A general nanoparticle crusher was used as the foaming device used. Specifically, it is a wet pulverization apparatus called a bead mill (for example, manufactured by Ashizawa Finetech Co., Ltd.). In this pulverization apparatus, a schematic diagram of the apparatus is shown in FIG. 1 (a), and FIG. 1 (b). As shown in a schematic diagram showing the state of pulverization, a slurry 3 in which a gas bubble 1 to be pulverized into nanoparticles is floated in an uncured ultraviolet curable resin 2 is supplied from an inlet 5 into a container 4. Then, the beads 6 are mixed in the slurry 3 in the container 4, and the slurry 3 mixed with the beads 6 is rotated in the container 4 by the rotating body 7, and the foam 1 is sandwiched between the beads 6 during the rotating movement. As a result, it is crushed into finer bubbles 1 '.

ビーズ6の大きさは数十〜数百μm程度、気体の泡1の大きさは粉砕後の最終的な大きさを小さくするためにはやはり数十〜数百μmから始めるのが望ましい。なお、気体の泡1’が所望のナノ気泡(ナノ粒子)になった後、ビーズ6は出口8に配置された分離機構で分離される。   The size of the beads 6 is about several tens to several hundreds μm, and the size of the gas bubbles 1 is desirably started from several tens to several hundreds μm in order to reduce the final size after pulverization. Note that the beads 6 are separated by a separation mechanism disposed at the outlet 8 after the gas bubbles 1 ′ have become the desired nanobubbles (nanoparticles).

このように、粉砕装置を泡立て装置として用いて、気泡1の大きさが数十〜数百μmのものが含まれる紫外線硬化型樹脂2にビーズ6を混入して、回転運動により細かい泡1’に粉砕することで、さらに小さい気泡1’の混入した紫外線硬化型樹脂2を作製した。   In this way, using the pulverizer as a foaming device, the beads 6 are mixed into the ultraviolet curable resin 2 containing bubbles having a size of several tens to several hundreds of μm, and the fine bubbles 1 ′ are rotated by a rotational motion. The ultraviolet curable resin 2 mixed with smaller bubbles 1 'was produced.

ここで、紫外線硬化型樹脂2について、モノマーに数%の重合開始剤を添加したものを用いた。その屈折率、粘度等は、重合開始剤が少ないため、モノマーの特性近い。具体的に、モノマー:日本化薬(株)のSR−213(屈折率1.454、粘度8mPaS(25℃)、透明液体)、重合開始剤:チバ・スペシャリティ・ケミカルズ(株)のイルカキュア907を用いた。   Here, as the ultraviolet curable resin 2, a monomer obtained by adding several percent of a polymerization initiator was used. Its refractive index, viscosity, etc. are close to the characteristics of the monomer because there are few polymerization initiators. Specifically, monomer: SR-213 (refractive index 1.454, viscosity 8 mPaS (25 ° C.), transparent liquid) of Nippon Kayaku Co., Ltd., polymerization initiator: Dolphin Cure 907 of Ciba Specialty Chemicals Co., Ltd. Was used.

次に、2枚のガラスの各片面に離型剤を塗布し、これらを内側にしてスペーサで3mm厚に保ち、その間に気泡1’の混入した紫外線硬化型樹脂2を挟み、その樹脂2を紫外線で硬化させた。その結果、板状の樹脂の透明体が作製された。硬化後の気泡の平均径は硬化前とほとんど変わらず200nm程度であって、可視光域の波長400〜700nmに対して散乱等の光学的ノイズはほとんど見られなかった。   Next, a release agent is applied to each side of the two pieces of glass, and these are kept inside with a spacer at a thickness of 3 mm, and an ultraviolet curable resin 2 mixed with bubbles 1 ′ is sandwiched between them. Cured with UV light. As a result, a plate-shaped resin transparent body was produced. The average diameter of bubbles after curing was almost the same as that before curing and was about 200 nm, and optical noise such as scattering was hardly observed at wavelengths of 400 to 700 nm in the visible light region.

屈折率は、(1)樹脂に気泡を混入させずに硬化した場合は1.454であったのに対して、(2)混入させて硬化した板状の透明体では1.345であった。その光学特性は垂直入射に対して、以下の表1の通りとなった。ここでは以上の2通りの他に、(3)屈折率1.454の基板の片面に上記の気泡を混入した樹脂を均一膜厚(μmオーダー)で塗布して硬化させ、さらにもう片面にも同様に塗布した基板も(3)として載せてある。   The refractive index was 1.454 when cured without mixing bubbles in (1) resin, whereas it was 1.345 for a plate-shaped transparent body cured by mixing (2). . The optical characteristics were as shown in Table 1 below with respect to normal incidence. Here, in addition to the above two methods, (3) a resin mixed with the above-mentioned bubbles is applied to one side of a substrate having a refractive index of 1.454 with a uniform film thickness (μm order) and cured on the other side. Similarly, the coated substrate is also placed as (3).

通常のガラス板等に相当する(1)に対して、透過率は(2)>(3)>(1)と改善していることが分かる。
〔表1〕
屈折率 透過率[%](両面の反射を考慮;吸収なし)
(1)1.454 93.4
(2)1.345 95.8
(3)1.454 (両面に1.345 の薄膜) 95.1
本発明において、硬化型樹脂中に混入した気泡を使用波長オーダー以下の径に物理的に粉砕するために、以上のビーズミルに限定されず、回転運動や往復運動等の運動により気泡を粉砕する種々の方法が利用できる。
It can be seen that the transmittance is improved as (2)>(3)> (1) with respect to (1) corresponding to a normal glass plate or the like.
[Table 1]
Refractive index Transmittance [%] (considering reflection on both sides; no absorption)
(1) 1.454 93.4
(2) 1.345 95.8
(3) 1.454 (1.345 thin film on both sides) 95.1
In the present invention, in order to physically pulverize the bubbles mixed in the curable resin to a diameter less than or equal to the wavelength used, the present invention is not limited to the above bead mill, and various types of pulverization of bubbles by a motion such as a rotational motion and a reciprocating motion. Can be used.

また、気泡の泡立て装置(粉砕装置)から取り出された液体状の硬化型樹脂中に径の大きな気泡が残っている場合には、それを取り除くフィルター処理等をすることが望ましい。   Further, when bubbles having a large diameter remain in the liquid curable resin taken out from the bubble foaming device (pulverization device), it is desirable to perform a filter process or the like to remove the bubbles.

また、硬化型樹脂も紫外線硬化型樹脂に限定されず、熱硬化型樹脂、電子線硬化型樹脂等の他の硬化型樹脂を用いることができる。   Further, the curable resin is not limited to the ultraviolet curable resin, and other curable resins such as a thermosetting resin and an electron beam curable resin can be used.

さらに、泡立て装置(粉砕装置)で気泡を使用波長オーダー以下の径に粉砕する前に硬化型樹脂中に大きな径の気泡を混入する方法としては、微細開口を通して気体を連続的又は断続的に送り込む方法以外に、通常の食品加工用に用いる泡立て器(細いU次状のワイヤを高速で回転させる装置)を用いて気泡を混入させる方法等を利用してもよい。   Furthermore, as a method of mixing bubbles with a large diameter into the curable resin before the bubbles are pulverized to a diameter of the wavelength of the wavelength used or less with a foaming device (pulverization device), the gas is continuously or intermittently sent through a fine opening. In addition to the method, a method of mixing bubbles using a whisk (a device that rotates a thin U-shaped wire at high speed) used for normal food processing may be used.

なお、本発明による低屈折材料は、以上のような単体の光学素子用低屈折材料以外にも、反射防止膜、多層膜等に用いる低屈折材料として使用可能である。また、他の例として、レリーフ型回折格子の微細な凹凸が空気等の雰囲気に剥き出しになっているためにその凹凸が埋まり性能低下を来す問題に対して、その凹凸を本発明による低屈折材料で覆うことでその埋まりの問題を解消することができる。   The low refractive material according to the present invention can be used as a low refractive material used for an antireflection film, a multilayer film and the like in addition to the single low refractive material for an optical element as described above. As another example, in order to solve the problem that the unevenness of the relief type diffraction grating is exposed in an atmosphere such as air and the unevenness is buried, the performance is lowered. Covering with a material can solve the problem of filling.

以上、本発明の低屈折材料の作製方法及びその方法で作製された低屈折材料を実施例に基づいて説明してきたが、これら実施例に限定されず種々の変形が可能である。   As described above, the method for producing the low-refractive material of the present invention and the low-refractive material produced by the method have been described based on the examples. However, the present invention is not limited to these examples, and various modifications are possible.

本発明の1実施例の低屈折率材料の作製方法に用いる湿式微粉砕装置の模式図(a)とその装置を用いて気泡を粉砕する様子を示す模式図(b)である。It is a schematic diagram (a) of a wet pulverizing apparatus used in a method for producing a low refractive index material of one embodiment of the present invention, and a schematic diagram (b) showing how air bubbles are pulverized using the apparatus.

符号の説明Explanation of symbols

1…気体の泡
1’…粉砕された細かい泡
2…未硬化の紫外線硬化型樹脂
3…スラリー
4…容器
5…入口
6…ビーズ
7…回転体
8…出口
DESCRIPTION OF SYMBOLS 1 ... Gaseous bubble 1 '... Finely pulverized foam 2 ... Uncured ultraviolet curable resin 3 ... Slurry 4 ... Container 5 ... Inlet 6 ... Bead 7 ... Rotating body 8 ... Outlet

Claims (8)

液体の状態から固体に硬化させて用いる硬化型材料が液体の状態において、物理的に微小な気泡を混入させて屈折率を低くしたことを特徴とする低屈折率材料の作製方法。 A method for producing a low refractive index material, characterized in that, in a liquid state of a curable material used by curing from a liquid state to a solid, a fine bubble is physically mixed to lower the refractive index. 液体の状態の硬化型材料中で、回転運動や往復運動等の運動により気泡を粉砕して小さくする工程と、その工程前あるいはその工程と同時に粉砕前の気泡を混入させる工程を含むことを特徴とする請求項1記載の低屈折率材料の作製方法。 In a curable material in a liquid state, the method includes a step of crushing and reducing bubbles by a movement such as a rotational motion or a reciprocating motion, and a step of mixing bubbles before or simultaneously with the step. The method for producing a low refractive index material according to claim 1. 気泡を粉砕して小さくする工程前あるいはその工程と同時に気泡を混入させる工程において、微細開口を通して気体を連続的又は断続的に液体の状態の硬化型材料中に送り込むことで粉砕前の気泡を混入させることを特徴とする請求項1又は2記載の低屈折率材料の作製方法。 Before the process of crushing and reducing bubbles, or in the process of mixing bubbles at the same time, the gas before crushing is mixed by sending gas continuously or intermittently into the curable material in the liquid state through the fine openings. The method for producing a low refractive index material according to claim 1 or 2, wherein: 硬化型材料に混入させた微小な気泡の平均的大きさが使用波長オーダー以下であることを特徴とする請求項1から3の何れか1項記載の低屈折率材料の作製方法。 The method for producing a low refractive index material according to any one of claims 1 to 3, wherein an average size of minute bubbles mixed in the curable material is less than or equal to a wavelength used. 硬化型材料に混入させた微小な気泡の材料硬化後の平均的大きさが使用波長オーダー以下であることを特徴とする請求項1から4の何れか1項記載の低屈折率材料の作製方法。 The method for producing a low refractive index material according to any one of claims 1 to 4, wherein an average size of the fine bubbles mixed in the curable material after curing the material is equal to or less than the wavelength used. . 硬化型材料が紫外線硬化型樹脂であることを特徴とする請求項1から5の何れか1項記載の低屈折率材料の作製方法。 6. The method for producing a low refractive index material according to claim 1, wherein the curable material is an ultraviolet curable resin. 硬化型材料が熱硬化型樹脂であることを特徴とする請求項1から5の何れか1項記載の低屈折率材料の作製方法。 The method for producing a low refractive index material according to any one of claims 1 to 5, wherein the curable material is a thermosetting resin. 請求項1から7の何れか1項記載の低屈折率材料の作製方法により作製された液体状若しくは固体化状の低屈折率材料。 A liquid or solidified low refractive index material produced by the method for producing a low refractive index material according to claim 1.
JP2005173761A 2005-06-14 2005-06-14 Method for producing low refractive material Expired - Fee Related JP4614343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173761A JP4614343B2 (en) 2005-06-14 2005-06-14 Method for producing low refractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173761A JP4614343B2 (en) 2005-06-14 2005-06-14 Method for producing low refractive material

Publications (2)

Publication Number Publication Date
JP2006349829A true JP2006349829A (en) 2006-12-28
JP4614343B2 JP4614343B2 (en) 2011-01-19

Family

ID=37645790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173761A Expired - Fee Related JP4614343B2 (en) 2005-06-14 2005-06-14 Method for producing low refractive material

Country Status (1)

Country Link
JP (1) JP4614343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221510A (en) * 2010-03-26 2011-11-04 Panasonic Corp Diffraction optical element and optical instrument
JP2021001941A (en) * 2019-06-20 2021-01-07 共同印刷株式会社 Light-scattering resin molded body, manufacturing method therefor and screen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248553A (en) * 1991-02-04 1992-09-04 Brother Ind Ltd Recording medium
JPH07306529A (en) * 1994-03-17 1995-11-21 Dainippon Printing Co Ltd Foamable recording material film and foamable recording film and its production
JPH11319578A (en) * 1998-05-15 1999-11-24 Matsushita Electric Ind Co Ltd Transparent film and its manufacture
JP2000096035A (en) * 1998-09-25 2000-04-04 Sekisui Chem Co Ltd Sheet or tape for sealing
JP2002333507A (en) * 2001-03-07 2002-11-22 Nitto Denko Corp Resin sheet with attached color filter, method for manufacturing the same and liquid crystal display device
JP2003270633A (en) * 2002-03-13 2003-09-25 Nippon Zeon Co Ltd Prism sheet
JP2004095390A (en) * 2002-08-30 2004-03-25 Fujitsu Display Technologies Corp Lighting device and display device
JP2004325610A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Mining Co Ltd Optical fiber array, liquid resin material for optical fiber array, and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248553A (en) * 1991-02-04 1992-09-04 Brother Ind Ltd Recording medium
JPH07306529A (en) * 1994-03-17 1995-11-21 Dainippon Printing Co Ltd Foamable recording material film and foamable recording film and its production
JPH11319578A (en) * 1998-05-15 1999-11-24 Matsushita Electric Ind Co Ltd Transparent film and its manufacture
JP2000096035A (en) * 1998-09-25 2000-04-04 Sekisui Chem Co Ltd Sheet or tape for sealing
JP2002333507A (en) * 2001-03-07 2002-11-22 Nitto Denko Corp Resin sheet with attached color filter, method for manufacturing the same and liquid crystal display device
JP2003270633A (en) * 2002-03-13 2003-09-25 Nippon Zeon Co Ltd Prism sheet
JP2004095390A (en) * 2002-08-30 2004-03-25 Fujitsu Display Technologies Corp Lighting device and display device
JP2004325610A (en) * 2003-04-23 2004-11-18 Sumitomo Metal Mining Co Ltd Optical fiber array, liquid resin material for optical fiber array, and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221510A (en) * 2010-03-26 2011-11-04 Panasonic Corp Diffraction optical element and optical instrument
JP2021001941A (en) * 2019-06-20 2021-01-07 共同印刷株式会社 Light-scattering resin molded body, manufacturing method therefor and screen

Also Published As

Publication number Publication date
JP4614343B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
EP3047313B1 (en) Light diffuser comprising a composite system comprising a polymer matrix and core-shell nanoparticles, and process for preparing it
JP6108740B2 (en) Optical element and optical element manufacturing method
KR101555368B1 (en) Pigment for a Paint Composition Consisted of Photonic Crystals and Method for Preparing Thereof
Bourgeat-Lami et al. Silica encapsulation by miniemulsion polymerization: distribution and localization of the silica particles in droplets and latex particles
TW201725254A (en) Quantum dot, resine, quantum dot sheet and back light unit using the same
JPWO2009038134A1 (en) Resin composite type optical element and method for manufacturing the same
KR20060048107A (en) Methacrylic resin formed object having surface micro structure and method of manufacturing the same
WO2017014067A1 (en) Glass filler and resin composition for solid object modeling using same
JP2019502772A (en) Scintillator nanocomposite
JP4614343B2 (en) Method for producing low refractive material
JP2006220689A (en) Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system
CN107797329A (en) Optical component
Sim et al. Microfluidic molding of photonic microparticles with engraved elastomeric membranes
JP2010111805A (en) Transparent composite sheet
WO2019017423A1 (en) Ink composition, method for producing same, light conversion layer and color filter
KR102463851B1 (en) Metal particle aggregate, metal particle dispersion, heat ray shielding film, heat ray shielding glass, heat ray shielding fine particle dispersion and heat ray shielding laminated transparent substrate
JP5435783B2 (en) Optical element, directional diffusion film, and method of manufacturing optical element
JP2007030373A (en) Method for manufacturing molded body
JP4933819B2 (en) Method for producing light reflecting or shielding material using one or both of magnetic field and electric field
KR102115180B1 (en) Secure device using light reflection property
KR102146109B1 (en) Method for manufacturing secure device using light reflection property
JP7036336B2 (en) Method for manufacturing composite slurry
JP2011252939A (en) Manufacturing method of visibility improvement sheet, and visibility improvement sheet
WO2019208770A1 (en) Light-diffusing molded body, film for transparent screen, and method for evaluating light-diffusing molded body
Kim et al. Characteristics of optical diffusers for light-emitting diodes backlight unit prepared by melt-extrusion process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees