JP2006220689A - Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system - Google Patents

Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system Download PDF

Info

Publication number
JP2006220689A
JP2006220689A JP2005031315A JP2005031315A JP2006220689A JP 2006220689 A JP2006220689 A JP 2006220689A JP 2005031315 A JP2005031315 A JP 2005031315A JP 2005031315 A JP2005031315 A JP 2005031315A JP 2006220689 A JP2006220689 A JP 2006220689A
Authority
JP
Japan
Prior art keywords
optical element
optical
diffractive
optical material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005031315A
Other languages
Japanese (ja)
Inventor
Hidefumi Iwasa
英史 岩佐
Katsumoto Hosokawa
勝元 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005031315A priority Critical patent/JP2006220689A/en
Publication of JP2006220689A publication Critical patent/JP2006220689A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum ITO fine particle dispersion optical material which has excellent dispersion stability, has an excellent optical characteristic, that is, high light transparency and low optical scattering property, exhibits a refractive index high dispersion characteristic and a secondary dispersion characteristic and is capable of forming moldings, and to provide an optical element using the optical material. <P>SOLUTION: This invention relates to a fine particle dispersion type optical material, a molding method of an optical element using the optical material, an optical element molded by the molding method, a diffraction optical element, a multi-layer diffractive optical element and an optical system having the optical element. This invention further relates to an ultraviolet curable optical material in which ITO fine particles are dispersed in resin including at least a photopolymerization initiator, a dispersion agent and at least two acrylic groups, methacrylic groups or vinyl groups, or a mixture of the unsaturated ethylenic groups. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回折光学素子等の光学素子に使用される光学材料に関するものである。特に、屈折率分散が高い光学材料及びそれにより成形した光学素子、回折光学素子、積層型回折光学素子を有する光学系に関するものである。   The present invention relates to an optical material used for an optical element such as a diffractive optical element. In particular, the present invention relates to an optical material having a high refractive index dispersion and an optical system having an optical element, a diffractive optical element, and a laminated diffractive optical element molded thereby.

従来から光の屈折のみによって構成される屈折光学系においては、分散特性の異なる硝材を組み合わせることによって色収差を減らしている。例えば、望遠鏡等の対物レンズでは分散の小さい硝材を正レンズ、分散の大きい硝材を負レンズとし、これらを組み合わせて用いることで軸上に現れる色収差を補正している。このたる、レンズの構成、枚数が制限される場合や使用される硝材が限られている場合等では、色収差を十分に補正することが非常に困難である。   Conventionally, in a refractive optical system configured only by light refraction, chromatic aberration is reduced by combining glass materials having different dispersion characteristics. For example, in an objective lens such as a telescope, a glass material with small dispersion is used as a positive lens and a glass material with high dispersion is used as a negative lens, and these are used in combination to correct chromatic aberration appearing on the axis. In this case, it is very difficult to sufficiently correct chromatic aberration when the configuration and number of lenses are limited, or when the number of glass materials used is limited.

又、SPIE Vol.1354
International Lens Design Conference(1990)には、レンズ面や或は光学系の一部に、回折格子を有する回折光学素子を用いることで色収差を減じる方法が開示されている。これは、光学素子としての屈折面と回折面とでは、或る基準波長の光線に対する色収差の発生する方向が逆になるという物理現象を利用したものである。更に、このような回折光学素子は、その回折格子の周期的構造の周期を変化させることで、非球面レンズと同等の効果を持たせることができる。そのため、色収差の低減に非常に大きな効果がある。
SPIE Vol.1354
International Lens Design Conference (1990) discloses a method of reducing chromatic aberration by using a diffractive optical element having a diffraction grating on a lens surface or a part of an optical system. This utilizes the physical phenomenon that the direction in which chromatic aberration occurs with respect to a light beam having a certain reference wavelength is reversed between the refracting surface and the diffractive surface as an optical element. Furthermore, such a diffractive optical element can have the same effect as an aspherical lens by changing the period of the periodic structure of the diffraction grating. Therefore, there is a very great effect in reducing chromatic aberration.

屈折率分散の高い材料と低い材料において、屈折率分散の差が大きいほど構成される光学素子の回折効率は高くなり、光学素子の画角は広くなる。そのためには、より屈折率分散の高い(アッベ数が小さい)材料を使用する事が必要であり、それにより色収差をより正確に補正することができる。   In a material having a high refractive index dispersion and a material having a low refractive index dispersion, the greater the difference in refractive index dispersion, the higher the diffraction efficiency of the configured optical element, and the wider the angle of view of the optical element. For this purpose, it is necessary to use a material having a higher refractive index dispersion (small Abbe number), whereby chromatic aberration can be corrected more accurately.

しかしながら、回折光学素子の更なる機能向上のためには、単に屈折率分散の高い(アッべ数が小さい)材料を使用するだけでは、可視領域全域の回折効率は高まるがものの、使用波長領域において部分的に回折効率の落ち込みが発生してしまい、特に短波長領域における回折効率の低下が顕著である。そのため屈折率(nd )、アッベ数(νd )、2次分散(θg,F )との関係を考慮した光学材料を使用することで、可視領域全域における回折効率を向上させるとともに、各波長域における部分的な回折効率の落ち込みが発生しない、光学材料が開示されている(特許文献1)。この特許文献1において、そうした特性を付与するために、バインダー樹脂に微粒子としてITO、ATO、ZnO等の透明導電性金属酸化物を混合、分散させることが挙げられている。   However, in order to further improve the function of the diffractive optical element, simply using a material having a high refractive index dispersion (small Abbe number) increases the diffraction efficiency in the entire visible region, but in the wavelength region used. A drop in diffraction efficiency partially occurs, and the reduction in diffraction efficiency is particularly remarkable in the short wavelength region. Therefore, by using an optical material that considers the relationship between the refractive index (nd), Abbe number (νd), and second-order dispersion (θg, F), the diffraction efficiency in the entire visible region is improved, and in each wavelength region. An optical material that does not cause a partial drop in diffraction efficiency is disclosed (Patent Document 1). In Patent Document 1, in order to impart such characteristics, it is mentioned that transparent conductive metal oxides such as ITO, ATO, and ZnO are mixed and dispersed as fine particles in a binder resin.

しかし、微粒子の分散安定性の観点から、前記光学性能を充分に満たす光学材料が得られていないのが現状である。   However, from the viewpoint of dispersion stability of fine particles, an optical material that sufficiently satisfies the optical performance has not been obtained.

ここで、微粒子を樹脂に混合・分散安定化させる従来法ついて以下に説明する。   Here, a conventional method for mixing and stabilizing fine particles in a resin will be described below.

無機塩及び金属等の非有機物質の性質を、優れた光学特性、成形加工性を有する材料の特性として利用する場合に、一般に有機樹脂材料に該非有機物質を微粒子として分散する手法が用いられる。又、高度の透明性、低散乱特性を要求される光学材料に、斯かる手法を利用する場合、該微粒子は一般にバインダー樹脂との屈折率差を有するので、光散乱を低減するためにはその粒径を少なくとも使用する光の波長よりも小さくする必要がある。更に、レイリー散乱による透過光強度の減衰を低減するためには、特に粒径が15nm未満程度のナノ粒子をできる限り狭い粒径分布をもって調製して分散させることが好ましく、該微粒子の分散方法自体が最先端の研究課題となっているのが現状である。   When utilizing the properties of non-organic substances such as inorganic salts and metals as characteristics of materials having excellent optical properties and molding processability, generally, a technique of dispersing the non-organic materials as fine particles in an organic resin material is used. In addition, when such a method is used for an optical material that requires a high degree of transparency and low scattering characteristics, the fine particles generally have a refractive index difference from that of the binder resin. It is necessary to make the particle size at least smaller than the wavelength of light to be used. Further, in order to reduce attenuation of transmitted light intensity due to Rayleigh scattering, it is particularly preferable to prepare and disperse nanoparticles having a particle size of less than about 15 nm with a particle size distribution as narrow as possible. Is the state-of-the-art research subject.

特に、レンズ等の光学部材には、フレア等の問題から特に散乱を低減させる必要がある。微細な無機物質等の超微粒子(一次粒子)は凝集力が非常に強く、粉体とする製造工程、又は溶媒、バインダー樹脂への分散工程で一次粒子がクラスター状に凝集した二次粒子に凝集する。そのため、超微粒子を樹脂マトリクス中に含有させる場合、2次凝集を可及的に低減した状態で分散させる必要性が一般に認識されている。このような課題を解決するため、分散機器、分散剤の添加、超微粒子の表面修飾手法によって微粒子を分散安定化させる技術が提案されている。   In particular, in an optical member such as a lens, it is necessary to reduce scattering particularly due to problems such as flare. Ultrafine particles (primary particles) such as fine inorganic substances have a very strong cohesive force and aggregate into secondary particles in which the primary particles are aggregated in clusters in the production process of powder or dispersion process in a solvent or binder resin. To do. For this reason, when ultrafine particles are contained in the resin matrix, it is generally recognized that it is necessary to disperse in a state where secondary aggregation is reduced as much as possible. In order to solve such problems, there has been proposed a technique for dispersing and stabilizing fine particles by a dispersion device, addition of a dispersant, and a surface modification method of ultra fine particles.

分散機器を用いて微粒子を樹脂中に分散させる方法としては、樹脂中に直接に微粒子を添加して公知の粉砕機・混合機・分散機(例えば、ボールミル、振動ボールミル、遊星ボールミル、攪拌ボールミル、アニューラ型ボールミル、縦型サンドミル、ローラーミル、ピンミル、スパイクミル、コボールミル、キャディーミル、横型サンドミル、アトライター、サンドミル、サンドグラインダー、ホモジナイザー、超音波分散機等)を用いることが知られている。   As a method of dispersing the fine particles in the resin using a dispersing device, the fine particles are directly added to the resin, and a known pulverizer / mixer / disperser (for example, a ball mill, a vibration ball mill, a planetary ball mill, a stirring ball mill, It is known to use an annula type ball mill, vertical sand mill, roller mill, pin mill, spike mill, coball mill, caddy mill, horizontal sand mill, attritor, sand mill, sand grinder, homogenizer, ultrasonic disperser and the like.

又、樹脂の粘度が高く分散が困難な場合は、溶剤で樹脂を希釈して分散するか、予め溶剤に微粒子を分散してから樹脂に混合する方法が採用されている。その際に、分散剤を適量用いることは差し支えない。特許文献2には、シリコーンオイル等を分散媒体とした場合、分散剤としてポリエーテル変性シリコーンのようなシリコーン系界面活性剤を用いて酸化チタン超微粒子の分散液を調整している。混合・分散の際にはホモジナイザー、ホモミキサーを採用している。   Further, when the resin has a high viscosity and is difficult to disperse, a method of diluting the resin with a solvent and dispersing it, or dispersing fine particles in a solvent in advance and then mixing with the resin is employed. At that time, an appropriate amount of a dispersant may be used. In Patent Document 2, when silicone oil or the like is used as a dispersion medium, a dispersion of titanium oxide ultrafine particles is prepared using a silicone-based surfactant such as polyether-modified silicone as a dispersant. A homogenizer and homomixer are used for mixing and dispersion.

特許文献3には、ポリリン酸塩を分散剤として、酸化チタン超微粒子を水系溶媒に分散させることが記載されている。分散装置としてはサンドグラインダー、ダイノミル、ボールミル、その他各種ミキサーの他、連続式やバッチ式の混合機または混練機を好ましく使用している。又、特許文献4,5には、無機微粒子分散液とカチオン性ポリマーを超音波分散機又は高圧分散機等を使用して混合することが記載されている。   Patent Document 3 describes that titanium oxide ultrafine particles are dispersed in an aqueous solvent using polyphosphate as a dispersant. As the dispersing device, a sand grinder, dyno mill, ball mill, and other various mixers, as well as a continuous or batch mixer or kneader are preferably used. Patent Documents 4 and 5 describe mixing an inorganic fine particle dispersion and a cationic polymer using an ultrasonic disperser or a high-pressure disperser.

表面修飾手法としては特許文献6において、酸化チタン超微粒子の表面にトリアルコキシシラン類を結合させて樹脂マトリクスに分散させた樹脂組成物に関する技術が開示されている。特許文献7には、酸化珪素、酸化アルミニウム、酸化ジルコニウム等の酸化物超微粒子の表面に重合性を有する有機化合物等を結合し架橋樹脂マトリクスに分散させる技術が開示されている。特許文献8には、変性ポリシロキサン類を用いて、酸化チタン超微粒子の樹脂マトリクスへの分散性を向上させる技術が開示されている。   As a surface modification technique, Patent Document 6 discloses a technique relating to a resin composition in which trialkoxysilanes are bonded to the surface of titanium oxide ultrafine particles and dispersed in a resin matrix. Patent Document 7 discloses a technique in which a polymerizable organic compound or the like is bonded to the surface of oxide ultrafine particles such as silicon oxide, aluminum oxide, and zirconium oxide and dispersed in a crosslinked resin matrix. Patent Document 8 discloses a technique for improving the dispersibility of titanium oxide ultrafine particles in a resin matrix using modified polysiloxanes.

又、前記特許文献1に記載される光学材料の特性の付与を目的として若しくは目的とせずとも、微粒子としてITO等の透明導電性金属酸化物を樹脂中に分散・混合させているものとしては以下のものが開示されている。   In addition, for the purpose of imparting the characteristics of the optical material described in Patent Document 1 or not, the transparent conductive metal oxide such as ITO is dispersed and mixed in the resin as fine particles as follows. Are disclosed.

特許文献9には、具体的な分散剤の記載はないものの、ITO、ATO微粒子等を予め水、トルエン等の分散剤を含有する有機溶媒にボールミルを用いて混合させておき、後にポリカーボネート樹脂にブレンダー混合させ可視光透過率の優れたシート材を提供している。特許文献10には異形状のITO微粒子をアニオン系界面活性剤を用いてエタノール及びプロパノールを溶媒としてスラリーを調製し、透明導電性膜を提供している。   Although there is no description of a specific dispersing agent in Patent Document 9, ITO, ATO fine particles and the like are previously mixed with an organic solvent containing a dispersing agent such as water and toluene by using a ball mill, and later on a polycarbonate resin. A blender blended sheet material with excellent visible light transmittance is provided. Patent Document 10 provides a transparent conductive film by preparing a slurry of irregularly shaped ITO fine particles using an anionic surfactant and ethanol and propanol as solvents.

特許文献11には、同様に分散剤を用いて、ITO微粒子を含有した遮熱性能を有するポリビニルアセタール樹脂に層状珪酸塩を微細に分散させることにより、合わせガラス用中間膜を提供している。   Similarly, Patent Document 11 provides an interlayer film for laminated glass by finely dispersing a layered silicate in a polyvinyl acetal resin containing ITO fine particles and having a heat shielding performance using a dispersant.

特開2000−042600号公報JP 2000-042600 A 特開2002−338245号公報JP 2002-338245 A 特開2001−164136号公報JP 2001-164136 A 特開平11−321079号公報JP 11-321079 A 特開2000−094830号公報JP 2000-094830 A 特開平5−221640号公報JP-A-5-221640 特開2000−230107号公報JP 2000-230107 A 特開2000−002417号公報JP 2000-002417 A 特開2003−327717号公報JP 2003-327717 A 特開2003−104725号公報JP 2003-104725 A 特開2003−261360号公報JP 2003-261360 A

本発明では、微粒子の分散安定性を有しつつ、特に屈折率高分散特性(低アッベ数[νd ])、線形特性(2次分散[θg,F
])を付与させ、可視光領域全域における回折効率の向上及び各波長域における部分的な回折効率の落ち込み防止を得るため、樹脂にITO微粒子を添加している。
In the present invention, while maintaining the dispersion stability of fine particles, in particular, high refractive index dispersion characteristics (low Abbe number [νd]), linear characteristics (secondary dispersion [θg, F
In order to improve the diffraction efficiency in the entire visible light region and to prevent a partial drop in the diffraction efficiency in each wavelength region, ITO fine particles are added to the resin.

しかし、前記何れの特許文献においても混入させているITO等、微粒子は樹脂重量に対して相当に微量であり、ITO微粒子の添加量が高濃度においては凝集を生じてしまい、本発明の光学性能を充分に満たし得る高度の微粒子分散性(低散乱性)を有する樹脂組成物成形体を得ることは困難であった。   However, in any of the above-mentioned patent documents, ITO or the like mixed in a very small amount of fine particles with respect to the resin weight, aggregation occurs at a high concentration of the ITO fine particles, and the optical performance of the present invention It was difficult to obtain a resin composition molded article having a high degree of fine particle dispersibility (low scattering) that can sufficiently satisfy the above.

従来法によって調整された微粒子等分散材料においても、光学的散乱、透過率に改善向上は見られるものの、撮影・望遠レンズ等に採用される高性能レンズに用いるには未だ性能上対応し切れないのが現状である。そのため、高透明性、高分散性を保ち、且つ、優れた成膜・成形用途にも対応できる屈折率高分散且つ2次分散特性を有する微粒子分散系光学材料が望まれている。   Even with dispersion materials such as fine particles prepared by conventional methods, improvement in optical scattering and transmittance can be seen, but they are still inadequate in terms of performance for use in high-performance lenses such as photographing and telephoto lenses. is the current situation. Therefore, there is a demand for a fine particle-dispersed optical material having a high refractive index and a secondary dispersion characteristic that can maintain high transparency and high dispersibility and can be used for excellent film forming and molding applications.

このような状況に鑑み、本発明は、良好な分散安定性を有して、優れた光学特性、即ち高い透光性と低い光学的散乱性を示すと共に、屈折率高分散特性及び2次分散特性を示す成型体を形成できる最適なITO微粒子分散光学材料、該光学材料による光学素子の提供を目的とするものである。   In view of such a situation, the present invention has good dispersion stability and excellent optical characteristics, that is, high translucency and low optical scattering, and high refractive index and secondary dispersion. An object of the present invention is to provide an optimum ITO fine particle-dispersed optical material capable of forming a molded article exhibiting characteristics, and an optical element using the optical material.

そこで、本発明は、前述の課題を解決するために、以下の構成である微粒子分散系光学材料、該光学材料を用いた光学素子の成形方法、該成形方法によって成形された光学素子、回折光学素子、積層型回折光学素子及び該光学素子を有する光学系を提供している。   Accordingly, in order to solve the above-described problems, the present invention provides a fine particle dispersion type optical material having the following configuration, a method for molding an optical element using the optical material, an optical element molded by the molding method, and diffractive optics. Provided are an element, a laminated diffractive optical element, and an optical system having the optical element.

又、本発明は、少なくとも光重合開始剤、分散剤及び2個以上のアクリル基、メタクリル基若しくはビニル基又はこれら不飽和エチレン基の混合体を含有する樹脂にITO微粒子が分散していることを特徴とする紫外線硬化型の光学材料を提供している。   In the present invention, the ITO fine particles are dispersed in a resin containing at least a photopolymerization initiator, a dispersant, and two or more acrylic groups, methacrylic groups, vinyl groups, or a mixture of these unsaturated ethylene groups. An ultraviolet curable optical material is provided.

又、本発明は、前記ITO微粒子の粒径が0.050μm以下であり、前記記載の樹脂重量に対する割合が、15.0〜75.0重量%の範囲であることを特徴とする前記記載の光学材料を提供している。   In the present invention, the ITO fine particles have a particle size of 0.050 μm or less, and the ratio to the resin weight is in the range of 15.0 to 75.0% by weight. Provides optical materials.

又、本発明は、前記分散剤が4級アミン塩等のカチオン系界面活性剤に属する少なくとも1種以上であることを特徴とする記載記載の光学材料を提供している。   In addition, the present invention provides the optical material according to the description, wherein the dispersant is at least one or more belonging to a cationic surfactant such as a quaternary amine salt.

又、本発明は、前記記載の光学材料から成形することを特徴とする光学素子を提供している。   The present invention also provides an optical element formed from the optical material described above.

又、本発明は、光学素子を成形型によって成形する光学素子の成形方法において、前記光学素子の成形材料として前記の何れかに記載の光学材料を用いることを特徴とする光学素子の成形方法を提供している。   According to another aspect of the present invention, there is provided a method for molding an optical element, wherein the optical element according to any one of the above is used as a molding material for the optical element. providing.

又、本発明は、前記光学材料を用いて光学素子を成形するに際して、該光学材料を前記成形型に配し、光重合させることによって前記光学素子を成形することを特徴とする前記に記載の光学素子の成形方法を提供している。   Further, the present invention is characterized in that when the optical element is molded using the optical material, the optical material is placed in the mold and photopolymerized to mold the optical element. An optical element molding method is provided.

又、本発明は、前記記載の光学素子の表面は、回折形状が形成された回折面であることを特徴とする回折光学素子を提供している。   The present invention also provides a diffractive optical element characterized in that the surface of the optical element described above is a diffractive surface on which a diffractive shape is formed.

又、本発明は、前記記載の回折光学素子と、該回折光学素子と異なる光学特性を有する回折光学素子とを、互いの回折形状を有する表面を対向させて組み合わせることにより構成されていることを特徴とする積層型回折光学素子を提供している。   Further, the present invention is configured by combining the diffractive optical element described above and a diffractive optical element having optical characteristics different from the diffractive optical element with the surfaces having mutual diffractive shapes facing each other. A laminated diffractive optical element is provided.

又、本発明は、前記記載の光学素子の表面は、屈折形状が形成された屈折面であることを特徴とする屈折光学素子を提供している。   The present invention also provides a refractive optical element characterized in that the surface of the optical element described above is a refractive surface formed with a refractive shape.

又、本発明は、前記何れかに記載の光学素子を含むことを特徴とする光学系を提供している。   The present invention also provides an optical system including any one of the optical elements described above.

又、本発明は、前記光学系は、投影光学系であることを特徴とする前記記載の光学系を提供している。   The present invention also provides the above-described optical system, wherein the optical system is a projection optical system.

又、本発明は、前記光学系は、撮影光学系であることを特徴とする前記記載の光学系を提供している。   The present invention also provides the above-described optical system, wherein the optical system is a photographing optical system.

本発明によれば、少なくとも光重合開始剤、分散剤及び2個以上のアクリル基、メタクリル基若しくはビニル基又はこれら不飽和エチレン基の混合体を含有する樹脂に、粒径が0.050μm以下のITO微粒子が良好に分散安定化している光学材料を得ることができる。   According to the present invention, at least a photopolymerization initiator, a dispersant, and a resin containing two or more acrylic groups, methacrylic groups, vinyl groups, or a mixture of these unsaturated ethylene groups have a particle size of 0.050 μm or less. An optical material in which ITO fine particles are well dispersed and stabilized can be obtained.

又、得られた樹脂は微粒子の優れた分散安定性、即ち極めて低い光散乱率を示すと共に、ITO微粒子の特性に起因した屈折率高分散特性(アッベ数[νd ]が小)、2次分散特性([θg,F
])を示し、且つ、成型体を形成できる最適なITO微粒子分散系光学材料である。従って、この光学材料を用いることにより、回折効率の高い光学材料を提供でき、該光学材料を用いた光学素子の成形方法、該成形方法によって成形された光学素子、及び該光学素子を有する光学系を実現することが可能となる。
The obtained resin exhibits excellent dispersion stability of the fine particles, that is, extremely low light scattering rate, and high refractive index dispersion property due to the properties of ITO fine particles (small Abbe number [νd]), secondary dispersion. Characteristics ([θg, F
] And an optimum ITO fine particle dispersion type optical material capable of forming a molded body. Therefore, by using this optical material, an optical material having high diffraction efficiency can be provided, a method for molding an optical element using the optical material, an optical element molded by the molding method, and an optical system having the optical element Can be realized.

<実施の形態1>
本発明において、光重合開始剤、分散剤を用いた系にてITO微粒子を混合・分散させたアクリル系、メタクリル系若しくはビニル系又はこれら不飽和エチレン基の混合系のポリマー、オリゴマー、モノマー等を含有する樹脂を調整することで屈折率高分散特性、2次分散特性を有する光学材料を提供できる。この該光学材料を成形材料として用いることにより、色収差をより正確に補正された光学素子を提供できる。
<Embodiment 1>
In the present invention, a polymer, oligomer, monomer, etc. of acrylic, methacrylic or vinyl or mixed system of these unsaturated ethylene groups in which ITO fine particles are mixed and dispersed in a system using a photopolymerization initiator and a dispersant. By adjusting the resin to be contained, an optical material having a high refractive index high dispersion characteristic and a secondary dispersion characteristic can be provided. By using this optical material as a molding material, an optical element in which chromatic aberration is corrected more accurately can be provided.

しかし、回折光学素子等の光学素子の材料として用いるためには高い透明性のみなく、より光学的散乱の発生を抑えることが要求される。又、その材料を紫外線等により硬化させ組成物とした後も同様の特性が要求される。   However, in order to use it as a material for an optical element such as a diffractive optical element, it is required not only to have high transparency but also to suppress the occurrence of optical scattering. Further, the same characteristics are required even after the material is cured by ultraviolet rays or the like to form a composition.

微粒子に関して特に透明性、光学的散乱を左右する項目としては、微粒子のサイズ、濃度(添加量)、混合・分散の仕方(分散性)、表面特性が挙げられる。本発明に用いるITO微粒子において、分散安定性を良好にし光学的散乱を低減するためにはその粒径が0.050μm以下であることが望ましい。更には、レイリー散乱による透過光強度の減衰を低減するためには、特に粒径が15nm未満程度の粒子を用いることが好ましい。且つ、できる限り狭い粒径分布をもって調製して分散させることが好ましく、添加濃度としては樹脂体積に対する割合が、15.0〜75.0重量%の範囲であることが望ましい。   Items that particularly affect the transparency and optical scattering of the fine particles include the size, concentration (addition amount), mixing / dispersing method (dispersibility), and surface characteristics of the fine particles. In the ITO fine particles used in the present invention, the particle size is desirably 0.050 μm or less in order to improve dispersion stability and reduce optical scattering. Furthermore, in order to reduce the attenuation of transmitted light intensity due to Rayleigh scattering, it is particularly preferable to use particles having a particle size of less than about 15 nm. And it is preferable to prepare and disperse | distribute with the narrowest particle size distribution as possible, and as addition concentration, it is desirable that the ratio with respect to resin volume is the range of 15.0-75.0 weight%.

微粒子の量が多過ぎるとITO自身の有する着色のため高い透過率を確保することが困難になる。又、微粒子の多次凝集によって分散性を確保することが困難になり、光散乱が飛躍的に増大するため、更に好ましくは、60.0重量%以下であることが望ましい。余りに少量であるとITOに起因した屈折率分散特性、2次分散特性の効果が得られないため、微粒子添加量は35.0〜50.0重量%の範囲であることが望ましい。   If the amount of fine particles is too large, it will be difficult to ensure high transmittance due to the coloration of ITO itself. Further, since it becomes difficult to ensure dispersibility due to the multi-order aggregation of the fine particles and the light scattering is remarkably increased, the content is more preferably 60.0% by weight or less. If the amount is too small, the effect of refractive index dispersion characteristics and secondary dispersion characteristics due to ITO cannot be obtained, so the amount of fine particles added is preferably in the range of 35.0 to 50.0% by weight.

本発明において、上記ITO微粒子をバインダー樹脂に分散させる方法としては、分散剤、又、必要に応じて分散媒体を用いることができる。分散状態を左右する微粒子、樹脂に関して、実質的に同一の微粒子、樹脂に対してであっても、添加する分散剤の種類、添加量、分子量、極性、親和性等によって全く異なった分散状態を示すことが知られている。   In the present invention, as a method of dispersing the ITO fine particles in the binder resin, a dispersing agent or, if necessary, a dispersion medium can be used. With regard to fine particles and resins that influence the dispersion state, even for substantially the same fine particles and resin, the dispersion state is completely different depending on the type of added dispersant, amount added, molecular weight, polarity, affinity, etc. It is known to show.

本発明に使用する分散剤としては顔料の誘導体や樹脂型の分散剤や活性剤型の分散剤を好適に用いることができる。ここで、分散剤としては、カチオン系、弱カチオン系、ノニオン系或は両性界面活性剤が有効である。特にポリエステル系、ε−カプロラクトン系、ポリカルボン酸塩、ポリリン酸塩、ハイドロステアリン酸塩、アミドスルホン酸塩、ポリアクリル酸塩、オレフィンマレイン酸塩共重合物、アクリル−マレイン酸塩共重合物、アルキルアミン酢酸塩、アルキル脂肪酸塩、脂肪酸ポリエチレングリコールエステル系、シリコン系、フッ素系を用いることができるが、本発明においてはアンモニア及び有機アミン類から選択される少なくとも一種の塩基を用いることが望ましい。   As the dispersant used in the present invention, a pigment derivative, a resin-type dispersant, or an activator-type dispersant can be suitably used. Here, as the dispersant, a cationic, weakly cationic, nonionic or amphoteric surfactant is effective. Especially polyester-based, ε-caprolactone-based, polycarboxylate, polyphosphate, hydrostearate, amide sulfonate, polyacrylate, olefin maleate copolymer, acrylic-maleate copolymer, Alkylamine acetates, alkyl fatty acid salts, fatty acid polyethylene glycol esters, silicons, and fluorines can be used. In the present invention, it is desirable to use at least one base selected from ammonia and organic amines.

具体的にはディスパービックシリーズ(ビッグケミー・ジャパン社製)の中ではディスパービック161,162,163,164、ソルスパースシリーズ(ゼネガ社製)の中ではソルスパース3000,9000,17000,20000,24000,41090、或はTAMNシリーズ(日光ケミカル社製)の中ではTAMN−15等のアルキルアミンのPO若しくはEO変成物がある。斯かる分散剤として添加する量としては、分散溶媒の種類、分散剤の種類、微粒子を混合する分散樹脂の種類等に応じて異なってくるが、ITO微粒子の重量に対して0.1〜25.0重量%の範囲であることが望ましい。   Specifically, in the Dispersic Series (manufactured by Big Chemie Japan), Dispersic 161, 162, 163, and 164 are in the Dispersic Series (manufactured by Genega), and Solsperse 3000, 9000, 17000, 20000, 24000, 41090. In the TAMN series (manufactured by Nikko Chemical Co., Ltd.), there are PO or EO modified products of alkylamines such as TAMN-15. The amount to be added as such a dispersant varies depending on the type of the dispersion solvent, the type of the dispersant, the type of the dispersion resin in which the fine particles are mixed, etc., but is 0.1 to 25 with respect to the weight of the ITO fine particles. It is desirable to be in the range of 0.0% by weight.

分散剤の添加量が多過ぎると白濁の原因となり光学的散乱が生じてしまうため、又、微粒子を含有して得られた樹脂の光学特性を必要以上に低下させてしまうため、好ましくは8.0〜18.0重量%の範囲であることが望ましい。又、分散剤は1種類のみで使用することもでき、2種類以上を併用して使用することもできる。   If the amount of the dispersant added is too large, it will cause white turbidity and optical scattering will occur, and the optical properties of the resin obtained by containing fine particles will be unnecessarily lowered. The range of 0 to 18.0% by weight is desirable. Moreover, a dispersing agent can be used only by 1 type, and can also be used in combination of 2 or more types.

本発明に使用する分散樹脂は特に限定されないが、ITO微粒子を分散させた後の透明性が高く、相溶性の良いものが好ましい。好適な樹脂の例としては、アクリル系樹脂、メタクリル系樹脂、ビニル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ウレタン系樹脂、CAB系樹脂、メラミン系樹脂、エポキシ系樹脂等が挙げられるが、これらに限定されるものではない。本発明においては、少なくとも透明性、相溶性、分散性(安定性)、硬化性、成形性、耐久性等の点から、該ITO微粒子をアクリル系樹脂、メタクリル系樹脂若しくはビニル系樹脂又はそれら不飽和エチレン基の混合体に分散させることが望ましい。分散樹脂は、1種類のみで使用することもでき、2種類以上を併用して使用することもできる。   The dispersion resin used in the present invention is not particularly limited, but a resin having high transparency and good compatibility after the ITO fine particles are dispersed is preferable. Examples of suitable resins include acrylic resins, methacrylic resins, vinyl resins, polyester resins, polyamide resins, urethane resins, CAB resins, melamine resins, and epoxy resins. It is not limited to. In the present invention, at least in terms of transparency, compatibility, dispersibility (stability), curability, moldability, durability, etc., the ITO fine particles are made of an acrylic resin, a methacrylic resin, a vinyl resin, or an insoluble resin. It is desirable to disperse in a mixture of saturated ethylene groups. Dispersion resin can be used only by 1 type, and can also be used in combination of 2 or more types.

本発明に用いるのに適当な分散溶媒の例としては、バインダー樹脂を溶解するため若しくはITO微粒子を予備的に溶媒に分散させておくため、トルエン、ベンゼン、キシレン等の芳香族炭化水素、エタノール、イソプロパノール等のアルコール類、シクロヘキサン等の脂環式炭化水素、酢酸エチル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン等のケトン類、DMF、DMAc、NMP等のアミド系、ヘキサン、オクタン等の脂肪族炭化水素、ジエチルエーテル、ブチルカルビトール等のエチル類、ジクロロメタン、四塩化炭素等のハロゲン化炭化水素等が挙げられるが、これらに限定されるものではない。用いるITO微粒子の親和性に合わせて有機溶媒を選択することができ、又、有機溶媒は1種類のみで使用することもできるし、分散性を損なわない範囲において2種類以上を併用して使用することもできる。   Examples of suitable dispersion solvents for use in the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, ethanol, in order to dissolve the binder resin or to preliminarily disperse the ITO fine particles in the solvent. Alcohols such as isopropanol, alicyclic hydrocarbons such as cyclohexane, acetates such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, amides such as DMF, DMAc and NMP, fats such as hexane and octane Group hydrocarbons, ethyl ethers such as diethyl ether and butyl carbitol, halogenated hydrocarbons such as dichloromethane and carbon tetrachloride, and the like, but are not limited thereto. The organic solvent can be selected in accordance with the affinity of the ITO fine particles to be used, and the organic solvent can be used alone, or two or more organic solvents can be used in combination as long as the dispersibility is not impaired. You can also.

又、本発明における光重合開始剤としては、ラジカル開始剤を利用して、光照射によるラジカル生成機構を利用するものとでき、通常、レンズ等のレプリカ成形に好ましいものとなる。前記分散樹脂において、利用可能な光重合開始剤としては、例えば、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン、1−ヒドロキシ−シクロヘキシル−フェニル- ケトン、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、4−フェニルベンゾフェノン、4−フェノキシベンゾフェノン、4,4’−ジフェニルベンゾフェノン、4,4’−ジフェノキシベンゾフェノン等を好適なものとして挙げることができる。   Moreover, as a photoinitiator in this invention, a radical initiator can be utilized and the radical production | generation mechanism by light irradiation can be utilized, and it becomes a preferable thing for replica shaping | molding of a lens etc. normally. In the dispersion resin, usable photopolymerization initiators include, for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxy-cyclohexyl-phenyl-ketone, Preferred examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxybenzophenone, 4,4′-diphenylbenzophenone, 4,4′-diphenoxybenzophenone, and the like. be able to.

尚、分散樹脂に対する光重合開始剤の添加比率は、光照射量、更には、付加的な加熱温度に応じて適宜選択することができ、又、得られる重合体の目標とする平均分子量に応じて調整することもできる。本発明に係る樹脂の硬化・成形に利用する場合、可視光に吸収を有するITO微粒子の添加量にもよって異なってくるが、バインダー樹脂に対して、光重合開始剤の添加量はの0.01〜10.0重量%の範囲に選択することが好ましい。   The addition ratio of the photopolymerization initiator to the dispersion resin can be appropriately selected according to the amount of light irradiation and further the additional heating temperature, and also according to the target average molecular weight of the polymer to be obtained. Can also be adjusted. When used for the curing and molding of the resin according to the present invention, the addition amount of the photopolymerization initiator is 0. It is preferable to select in the range of 01 to 10.0% by weight.

次に、本発明において、係る樹脂、光重合開始剤、ITO微粒子、分散剤、分散溶媒を用いて成る該光学材料の調整工程について述べる。   Next, an adjustment process of the optical material using the resin, photopolymerization initiator, ITO fine particles, dispersant, and dispersion solvent in the present invention will be described.

先ず、選択した有機溶媒に最適化した分散剤を溶解させ、後にスターラーチップ等を用いて攪拌させながらITO微粒子を少しずつ添加混合させていく。その際、分散の程度を観察しながら最適に溶媒量を調整する。好適に分散していることを確認したら、前記樹脂及び光重合開始剤を同様に攪拌させながら徐々に添加、溶解させる。完全に溶解していることを確認した後、エバポレーターを用いて溶媒を除去する。この際、溶媒の沸点、残留溶媒量等に応じて減圧度を適宜調整することが望ましい。急激な溶媒の蒸発、除去により微粒子の凝集の程度を悪化させ、分散性を損なうことがある。   First, the dispersing agent optimized for the selected organic solvent is dissolved, and then ITO fine particles are added and mixed little by little while stirring using a stirrer chip or the like. At that time, the amount of solvent is optimally adjusted while observing the degree of dispersion. If it confirms that it has disperse | distributed suitably, the said resin and a photoinitiator will be gradually added and dissolved, stirring similarly. After confirming complete dissolution, the solvent is removed using an evaporator. At this time, it is desirable to appropriately adjust the degree of vacuum according to the boiling point of the solvent, the amount of residual solvent, and the like. Sudden evaporation and removal of the solvent may deteriorate the degree of aggregation of the fine particles and impair dispersibility.

又、減圧による溶媒除去の際、必要に応じて分散性を損なわない程度に加熱することも可能である。このようにして本発明の光学材料を得る。得られた光学材料には除去し切れなかった残留溶媒を含有することがあり、その含有率によっては後の成形品等における耐久性、光学特性に影響を及ぼすことが考えられる。そのため、残留溶媒の含有率は溶媒重量を差し引いた全重量に対して、0.01〜0.50重量%の範囲であることが望ましい。減圧度が高過ぎると、又は減圧と同時に加熱を伴うことで、若しくは長時間に渡る減圧工程を経ることで、溶媒と共に添加した分散剤及びバインダー樹脂を組成しているモノマー等も留去される恐れがある。そのため、個々の分子量、沸点、昇華性等を考慮した減圧度、温度、時間等の調整が必要である。   In addition, when removing the solvent by reducing the pressure, it is possible to heat to the extent that the dispersibility is not impaired, if necessary. In this way, the optical material of the present invention is obtained. The obtained optical material may contain a residual solvent that has not been completely removed, and depending on the content, it may be considered that the durability and optical characteristics of a later molded product or the like are affected. Therefore, the content of the residual solvent is desirably in the range of 0.01 to 0.50% by weight with respect to the total weight obtained by subtracting the solvent weight. When the degree of vacuum is too high, or when heating is performed simultaneously with the vacuum, or through a vacuum process for a long time, the monomer and the like constituting the dispersant and binder resin added together with the solvent are also distilled off. There is a fear. Therefore, it is necessary to adjust the degree of pressure reduction, temperature, time, etc. in consideration of individual molecular weight, boiling point, sublimation property, and the like.

本発明に係る回折光学素子の成形において、斯かる光重合法を利用して、上記光学材料より型成形体層を形成する過程を示す。基板に利用する光透過性材料上に膜厚の薄い層構造を形成する際には、例えば、ガラス平板を基板に利用し、一方、微細な回折格子構造に対応する型に金属材料を利用する際、両者の間に、流動性を示す該光学材料を流し込み、軽く抑えることで、型成形を成す。その状態に保ったまま、該光学材料の光重合を行う。斯かる光重合反応に供する光照射は、光重合開始剤を利用したラジカル生成に起因する機構に対応して、好適な波長の光、通常、紫外光若しくは可視光を利用して行う。例えば、前記基板に利用する光透過性材料、具体的には、ガラス平板を介して、成形されている光学材料調製用のモノマー等原料体に対して、均一に光照射を実施する。照射される光量は、光重合開始剤を利用したラジカル生成に起因する機構に応じて、又、含有される光重合開始剤の含有比率に応じて、適宜選択される。   In the molding of the diffractive optical element according to the present invention, a process of forming a mold molded body layer from the optical material using such a photopolymerization method is shown. When forming a thin layer structure on a light transmissive material used for a substrate, for example, a glass plate is used for the substrate, while a metal material is used for a mold corresponding to a fine diffraction grating structure. At this time, the mold is formed by pouring the optical material exhibiting fluidity between them and suppressing it lightly. While maintaining this state, the optical material is photopolymerized. The light irradiation used for such a photopolymerization reaction is performed using light of a suitable wavelength, usually ultraviolet light or visible light, corresponding to the mechanism resulting from radical generation using a photopolymerization initiator. For example, the light transmissive material used for the substrate, specifically, a raw material body such as a monomer for preparing an optical material that is molded is uniformly irradiated with light through a glass plate. The amount of light to be irradiated is appropriately selected according to the mechanism resulting from radical generation using the photopolymerization initiator and according to the content ratio of the contained photopolymerization initiator.

一方、斯かる光重合反応による該光学材料の型成形体層の作製においては、照射される光が型成形されているモノマー等原料体全体に均一に照射されることがより好ましい。従って、利用される光照射は、基板に利用する光透過性材料、例えば、ガラス平板を介して、均一に行うことが可能な波長の光を選択することが一層好ましい。その際、基板に利用する光透過性材料上に形成する該光学材料の型成形体を含む回折格子の総厚を薄くする形態は、本発明にはより好適なものとなる。同様に、熱重合法により型成形体層の作製を行うこともでき、この場合、全体の温度をより均一とすることが望ましく、基板に利用する光透過性材料上に形成する該光学材料の型成形体を含む回折格子の総厚を薄くする形態は、本発明にはより好適なものとなる。   On the other hand, in the production of the molded body layer of the optical material by such a photopolymerization reaction, it is more preferable that the irradiated light is uniformly irradiated to the entire raw material body such as a monomer that is molded. Therefore, it is more preferable to select light having a wavelength that can be uniformly applied through a light-transmitting material used for the substrate, for example, a glass flat plate. In this case, a mode in which the total thickness of the diffraction grating including the molded body of the optical material formed on the light transmissive material used for the substrate is made thinner is more suitable for the present invention. Similarly, it is also possible to produce a molded body layer by a thermal polymerization method. In this case, it is desirable to make the entire temperature more uniform, and the optical material formed on the light-transmitting material used for the substrate is preferably made. A mode in which the total thickness of the diffraction grating including the molded body is reduced is more suitable for the present invention.

本発明における光学材料を用いて上記方法を利用することで、光波長分散の異なる材料からなる層複数を基板上に積層し、使用波長域全域で特定次数(設計次数)の回折効率を高くする設計とした回折光学素子を、短時間で作製することが可能となる。又、必要に応じて2種類以上の光重合開始剤を用いても良い。又、同時に離型剤、増感剤、安定剤、増粘剤等を含有させても良い。   By using the above-described method using the optical material in the present invention, a plurality of layers made of materials having different optical wavelength dispersions are stacked on the substrate, and the diffraction efficiency of a specific order (design order) is increased over the entire use wavelength range. The designed diffractive optical element can be manufactured in a short time. Moreover, you may use 2 or more types of photoinitiators as needed. At the same time, a release agent, a sensitizer, a stabilizer, a thickener and the like may be contained.

以下、本発明の実施例について説明するが、本発明がそれらによって何ら制約されるものではない。   Examples of the present invention will be described below, but the present invention is not limited by them.

先ず、本発明における光学材料の調整について具体的に説明する。   First, the adjustment of the optical material in the present invention will be specifically described.

各実験例及び比較例で得た光学材料の分散安定性の評価、散乱率の測定結果を表1に示す。散乱率はU−4000(日立製作所製)を用いて測定した。又、表2に各実験例及び比較例で得られた光学材料の光学特性([nd ]、[νd ]、[θg,F ])を示す。測定にはアッベ屈折計(カルニュー光学工業製)を用いた。   Table 1 shows the evaluation results of the dispersion stability and the measurement results of the scattering rate of the optical materials obtained in each experimental example and comparative example. The scattering rate was measured using U-4000 (manufactured by Hitachi, Ltd.). Table 2 shows the optical properties ([nd], [νd], [θg, F]) of the optical materials obtained in each experimental example and comparative example. An Abbe refractometer (manufactured by Kalnew Optical Industry) was used for the measurement.

キシレン溶剤に分散剤としてDisperbyk-180
(ビッグケミー・ジャパン社製)を1.8wt%になるように分散剤含有キシレン溶液を調整した。続いて平均粒径10nmのITO微粒子を前記に得られたキシレン溶液に対して10.0wt%の濃度になるように添加、分散させた。得られたITO微粒子含有キシレン溶液856重量部に対して、アロニックスM−6200を30重量部、トリス(2−アクリロキシエチル)イソシアヌレートを18重量部、ペンタエリスリトールトリアクリレートを18重量部、ジシクロペンテニオキシエチルメタアクリレートを34重量部、1−ヒドロキシシクロエキシルフェニルケトン(IC184)を2重量部加え溶解させた。その後、約45℃のオイルバスで加熱しながら減圧吸引してキシレン溶剤を除去し光学材料11を調整した。得た光学材料11を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
Disperbyk-180 as a dispersant in xylene solvent
The dispersant-containing xylene solution was adjusted to 1.8 wt% (manufactured by Big Chemie Japan). Subsequently, ITO fine particles having an average particle diameter of 10 nm were added and dispersed so as to have a concentration of 10.0 wt% with respect to the xylene solution obtained above. 30 parts by weight of Aronix M-6200, 18 parts by weight of tris (2-acryloxyethyl) isocyanurate, 18 parts by weight of pentaerythritol triacrylate, 856 parts by weight of the obtained ITO fine particle-containing xylene solution, 34 parts by weight of pentenoxyethyl methacrylate and 2 parts by weight of 1-hydroxycyclohexyl phenyl ketone (IC184) were added and dissolved. Thereafter, the xylene solvent was removed by vacuum suction while heating in an oil bath at about 45 ° C. to prepare the optical material 11. A coating film having a thickness of 10 μm was prepared using the obtained optical material 11. The evaluation and measurement results are shown in Table 1.

前記の実施例1において、ITO微粒子含有キシレン溶液を1773重量部にした以外は、実施例1と同様にした。こうして得た光学材料12を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。   Example 1 was the same as Example 1 except that the xylene solution containing ITO fine particles was changed to 1773 parts by weight. A coating film having a thickness of 10 μm was produced using the optical material 12 thus obtained. The evaluation and measurement results are shown in Table 1.

キシレン溶剤に分散剤としてBYK-P104(ビッグケミー・ジャパン社製)を1.8wt%になるように分散剤含有キシレン溶液を調整した。続いて平均粒径10nmのITO微粒子を前記に得られたキシレン溶液に対して10.0wt%の濃度になるように添加、分散させた。得られたITO微粒子含有キシレン溶液856重量部に対して、アロニックスM−6200を30重量部、トリス(2−アクリロキシエチル)イソシアヌレートを18重量部、ペンタエリスリトールトリアクリレートを18重量部、ジシクロペンテニオキシエチルメタアクリレートを34重量部、1−ヒドロキシシクロエキシルフェニルケトン(IC184)を2重量部加え溶解させた。その後、約45℃のオイルバスで加熱しながら減圧吸引してキシレン溶剤を除去し光学材料13を調整した。得た光学材料13を用いて厚さ10μmの塗膜を作製した。その評価・測定を表1に示す。   A dispersant-containing xylene solution was prepared so that BYK-P104 (manufactured by Big Chemie Japan) as a dispersant in the xylene solvent was 1.8 wt%. Subsequently, ITO fine particles having an average particle diameter of 10 nm were added and dispersed so as to have a concentration of 10.0 wt% with respect to the xylene solution obtained above. 30 parts by weight of Aronix M-6200, 18 parts by weight of tris (2-acryloxyethyl) isocyanurate, 18 parts by weight of pentaerythritol triacrylate, 856 parts by weight of the obtained ITO fine particle-containing xylene solution, 34 parts by weight of pentenoxyethyl methacrylate and 2 parts by weight of 1-hydroxycyclohexyl phenyl ketone (IC184) were added and dissolved. Thereafter, the xylene solvent was removed by suction under reduced pressure while heating in an oil bath at about 45 ° C. to prepare the optical material 13. A coating film having a thickness of 10 μm was prepared using the obtained optical material 13. The evaluation / measurement is shown in Table 1.

前記実施例3において、ITO微粒子含有キシレン溶液を1773重量部にした以外は、実施例3と同様にした。こうして得た光学材料14を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
[比較例1]
キシレン溶剤に分散剤としてDisperbyk-108
(ビッグケミー・ジャパン社製)を1.8wt%になるように分散剤含有キシレン溶液を調整した。続いて平均粒径10nmのITO微粒子を前記に得られたキシレン溶液に対して10.0wt%の濃度になるように添加、分散させた。得られたITO微粒子含有キシレン溶液856重量部に対して、アロニックスM−6200を30重量部、トリス(2−アクリロキシエチル)イソシアヌレートを18重量部、ペンタエリスリトールトリアクリレートを18重量部、ジシクロペンテニオキシエチルメタアクリレートを34重量部、1−ヒドロキシシクロエキシルフェニルケトン(IC184)を2重量部加え溶解させた。その後、約45℃のオイルバスで加熱しながら減圧吸引してキシレン溶剤を除去し光学材料21を調整した。得た光学材料21を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
[比較例2]
前記の比較例1において、ITO微粒子含有キシレン溶液を1773重量部にした以外は、実施例1と同様にした。こうして得た光学材料22を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
[比較例3]
キシレン溶剤に分散剤としてDisperbyk-112
(ビッグケミー・ジャパン社製)を1.8wt%になるように分散剤含有キシレン溶液を調整した。続いて平均粒径10nmのITO微粒子を前記に得られたキシレン溶液に対して10.0wt%の濃度になるように添加、分散させた。得られたITO微粒子含有キシレン溶液800重量部に対して、アロニックスM−6200を30重量部、トリス(2−アクリロキシエチル)イソシアヌレートを18重量部、ペンタエリスリトールトリアクリレートを18重量部、ジシクロペンテニオキシエチルメタアクリレートを34重量部、1−ヒドロキシシクロエキシルフェニルケトン(IC184)を2重量部加え溶解させた。その後、約45℃のオイルバスで加熱しながら減圧吸引してキシレン溶剤を除去し光学材料23を調整した。得た光学材料23を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
[比較例4]
前記の比較例3において、ITO微粒子含有キシレン溶液を1773重量部にした以外は、実施例1と同様にした。こうして得た光学材料24を用いて厚さ10μmの塗膜を作製した。その評価・測定結果を表1に示す。
Example 3 was the same as Example 3 except that the ITO fine particle-containing xylene solution was changed to 1773 parts by weight. A coating film having a thickness of 10 μm was prepared using the optical material 14 thus obtained. The evaluation and measurement results are shown in Table 1.
[Comparative Example 1]
Disperbyk-108 as a dispersant in xylene solvent
The dispersant-containing xylene solution was adjusted to 1.8 wt% (manufactured by Big Chemie Japan). Subsequently, ITO fine particles having an average particle diameter of 10 nm were added and dispersed so as to have a concentration of 10.0 wt% with respect to the xylene solution obtained above. 30 parts by weight of Aronix M-6200, 18 parts by weight of tris (2-acryloxyethyl) isocyanurate, 18 parts by weight of pentaerythritol triacrylate, 856 parts by weight of the resulting ITO fine particle-containing xylene solution, 34 parts by weight of pentenoxyethyl methacrylate and 2 parts by weight of 1-hydroxycyclohexyl phenyl ketone (IC184) were added and dissolved. Thereafter, the xylene solvent was removed by suction under reduced pressure while heating in an oil bath at about 45 ° C. to prepare the optical material 21. A coating film having a thickness of 10 μm was prepared using the obtained optical material 21. The evaluation and measurement results are shown in Table 1.
[Comparative Example 2]
In Comparative Example 1, the same procedure as in Example 1 was performed except that the xylene solution containing ITO fine particles was changed to 1773 parts by weight. A coating film having a thickness of 10 μm was prepared using the optical material 22 thus obtained. The evaluation and measurement results are shown in Table 1.
[Comparative Example 3]
Disperbyk-112 as a dispersant in xylene solvent
The dispersant-containing xylene solution was adjusted to 1.8 wt% (manufactured by Big Chemie Japan). Subsequently, ITO fine particles having an average particle diameter of 10 nm were added and dispersed so as to have a concentration of 10.0 wt% with respect to the xylene solution obtained above. 30 parts by weight of Aronix M-6200, 18 parts by weight of tris (2-acryloxyethyl) isocyanurate, 18 parts by weight of pentaerythritol triacrylate, and 800 parts by weight of xylene solution containing ITO fine particles were obtained. 34 parts by weight of pentenoxyethyl methacrylate and 2 parts by weight of 1-hydroxycyclohexyl phenyl ketone (IC184) were added and dissolved. Thereafter, the xylene solvent was removed by suction under reduced pressure while heating in an oil bath at about 45 ° C. to prepare the optical material 23. A coating film having a thickness of 10 μm was prepared using the obtained optical material 23. The evaluation and measurement results are shown in Table 1.
[Comparative Example 4]
In Comparative Example 3, the same procedure as in Example 1 was performed except that the xylene solution containing ITO fine particles was changed to 1773 parts by weight. A coating film having a thickness of 10 μm was produced using the optical material 24 thus obtained. The evaluation and measurement results are shown in Table 1.

Figure 2006220689
表1ら分かるように、実施例3,4で調整した分散剤を用いた光学材料13,14が最も効果的な分散安定性を示し、散乱率が低い。比較例2で調整した分散剤を用いた光学材料22は特に分散安定性が悪く、材料調整後、1時間程度で樹脂とITO微粒子が完全な分離を生じた。又、各実験例及び比較例で調整した光学材料11〜14、21〜24は分散剤に拠らずITO微粒子の添加量が増加するに連れて粘度が急増した。表1記載の分散剤ごとの散乱率を測定したグラフを図1に示す。
Figure 2006220689
As can be seen from Table 1, the optical materials 13 and 14 using the dispersant prepared in Examples 3 and 4 exhibit the most effective dispersion stability and have a low scattering rate. The optical material 22 using the dispersant prepared in Comparative Example 2 was particularly poor in dispersion stability, and the resin and ITO fine particles were completely separated in about 1 hour after the material was adjusted. Further, the optical materials 11 to 14 and 21 to 24 prepared in each experimental example and comparative example rapidly increased in viscosity as the amount of ITO fine particles added increased without depending on the dispersant. The graph which measured the scattering rate for every dispersing agent of Table 1 is shown in FIG.

表2に、得られた光学材料の光学特性を示した。各光学材料のアッベ数νd 、2次分散特性θg,F は共にITO微粒子に起因して非常に低い値を示し、本発明における光学素子に好適なものである。比較例2,4で得られた光学材料は、ITO微粒子の分散性(凝集)の影響により非常に散乱率が大きくなったため、屈折率等測定不可能であった。   Table 2 shows the optical characteristics of the obtained optical material. The Abbe number νd and secondary dispersion characteristic θg, F of each optical material both show very low values due to the ITO fine particles, and are suitable for the optical element in the present invention. The optical materials obtained in Comparative Examples 2 and 4 had a very high scattering rate due to the dispersibility (aggregation) of the ITO fine particles, so that the refractive index and the like could not be measured.

Figure 2006220689
<実施の形態2>
図2及び図3を参照して、本発明における回折光学素子、積層型回折光学素子の構成とその製造方法を説明する。本実施の形態における回折光学素子は400nm〜700nmの波長領域の光束が設計次数に集中するように、回折光学素子43、回折光学素子44及び回折光学素子71の光学樹脂特性に合わせた素子を設計した。
Figure 2006220689
<Embodiment 2>
With reference to FIG.2 and FIG.3, the structure of the diffractive optical element in this invention and a lamination type diffractive optical element and its manufacturing method are demonstrated. The diffractive optical element in the present embodiment is designed to match the optical resin characteristics of the diffractive optical element 43, the diffractive optical element 44, and the diffractive optical element 71 so that the light flux in the wavelength region of 400 nm to 700 nm is concentrated in the design order. did.

図2(a)に示すように、回折格子形状に加工された金型22に実施の形態1の実施例3の光学材料13を供給した。次に、図2(b)に示すように、光学材料13上に平板ガラス(BK7)31を載せ、樹脂を加圧し所望の範囲まで延伸させ、UV露光機(EX250:HOYA−SCHOTT社製)
で15J/cm2 (40mW/cm2 )で照射した。その後、図2(c)に示すように、ガラス31と一体化した硬化物を金型33から離型して回折光学素子43を製造した。
As shown in FIG. 2A, the optical material 13 of Example 3 of Embodiment 1 was supplied to a mold 22 processed into a diffraction grating shape. Next, as shown in FIG. 2 (b), a flat glass (BK7) 31 is placed on the optical material 13, the resin is pressurized and stretched to a desired range, and a UV exposure machine (EX250: manufactured by HOYA-SCHOTT).
At 15 J / cm 2 (40 mW / cm 2 ). Thereafter, as shown in FIG. 2C, the cured product integrated with the glass 31 was released from the mold 33 to manufacture a diffractive optical element 43.

一方、もう1つの光学材料として光学特性が (nd =1.523、νd =51.9)の光硬化樹脂61(RC−C001:大日本インキ化学工業製)を準備した。図2(a)に示すように、回折格子形状に加工された金型35に光学材料61を供給した。次に、図2(b)に示すように、光学材料61上に平板ガラス(BK7)31を載せ、樹脂を加圧し所望の範囲まで延伸させ、UV露光機(EX250:HOYA−SCHOTT社製)で30J/cm2(40mW/cm2 )で照射した。その後、図2(c)に示すように、ガラス31と一体化した硬化物を金型35から離型して回折光学素子71を製造した。 On the other hand, a photocurable resin 61 (RC-C001: manufactured by Dainippon Ink & Chemicals, Inc.) having optical characteristics (nd = 1.523, νd = 51.9) was prepared as another optical material. As shown in FIG. 2A, an optical material 61 was supplied to a mold 35 processed into a diffraction grating shape. Next, as shown in FIG. 2B, a flat glass (BK7) 31 is placed on the optical material 61, the resin is pressurized and stretched to a desired range, and a UV exposure machine (EX250: manufactured by HOYA-SCHOTT). At 30 J / cm 2 (40 mW / cm 2 ). Thereafter, as shown in FIG. 2C, the cured product integrated with the glass 31 was released from the mold 35 to manufacture a diffractive optical element 71.

次に、上記で得た回折光学素子43と回折光学素子71の回折面に反射防止膜を成膜した後、図3に示すように、互いの回折格子が対向するように組み合わせて積層型回折光学素子83を製造した。32は回折光学素子43と回折光学素子71の間隔を決定するスペーサである。回折光学素子43と回折光学素子71のそれぞれの格子間ピッチは共に80.00μmである。回折光学素子43と回折光学素子71の互いの回折格子の谷間の間隔は24.00μm、山間の間隔は1.50μmである。回折光学素子43の山の高さは10.31μm、回折光学素子71の山の高さは12.19μmである。   Next, after forming an antireflection film on the diffraction surfaces of the diffractive optical element 43 and the diffractive optical element 71 obtained as described above, as shown in FIG. 3, the diffraction gratings are combined so that their diffraction gratings face each other. An optical element 83 was manufactured. A spacer 32 determines the distance between the diffractive optical element 43 and the diffractive optical element 71. The interstitial pitch of each of the diffractive optical element 43 and the diffractive optical element 71 is 80.00 μm. The distance between the valleys of the diffraction gratings of the diffractive optical element 43 and the diffractive optical element 71 is 24.00 μm, and the distance between the peaks is 1.50 μm. The peak height of the diffractive optical element 43 is 10.31 μm, and the peak height of the diffractive optical element 71 is 12.19 μm.

図2(a)に示すように、回折格子形状に加工された金型34に実施の形態1の実施例4の光学材料14を供給した。次に、図2(b)に示すように、光学材料14上に平板ガラス(BK7)31を載せ、樹脂を加圧し所望の範囲まで延伸させ、UV露光機(EX250:HOYA−SCHOTT社製)
で15J/cm2(40mW/cm2 )で照射した。その後、図2(c)に示すように、ガラス31と一体化した硬化物を金型34から離型して回折光学素子44を製造した。
As shown in FIG. 2A, the optical material 14 of Example 4 of Embodiment 1 was supplied to a mold 34 processed into a diffraction grating shape. Next, as shown in FIG. 2B, a flat glass (BK7) 31 is placed on the optical material 14, the resin is pressurized and stretched to a desired range, and a UV exposure machine (EX250: manufactured by HOYA-SCHOTT).
At 15 J / cm 2 (40 mW / cm 2 ). Thereafter, as shown in FIG. 2C, the cured product integrated with the glass 31 was released from the mold 34 to manufacture a diffractive optical element 44.

一方、もう1つの光学材料として光学特性が (nd =1.523、νd =51.9)の光硬化樹脂61(RC−C001:大日本インキ化学工業製)を準備した。図2(a)に示すように、回折格子形状に加工された金型36に光学材料61を供給した。次に、図2(b)に示すように、光学材料61上に平板ガラス(BK7)31を載せ、樹脂を加圧し所望の範囲まで延伸させ、UV露光機(EX250:HOYA−SCHOTT社製)で30J/cm2(40mW/cm2 )で照射した。その後、図2(c)に示すように、ガラス31と一体化した硬化物を金型36から離型して回折光学素子72を製造した。 On the other hand, a photocurable resin 61 (RC-C001: manufactured by Dainippon Ink & Chemicals, Inc.) having optical characteristics (nd = 1.523, νd = 51.9) was prepared as another optical material. As shown in FIG. 2A, an optical material 61 was supplied to a mold 36 processed into a diffraction grating shape. Next, as shown in FIG. 2B, a flat glass (BK7) 31 is placed on the optical material 61, the resin is pressurized and stretched to a desired range, and a UV exposure machine (EX250: manufactured by HOYA-SCHOTT). At 30 J / cm 2 (40 mW / cm 2 ). Thereafter, as shown in FIG. 2C, the cured product integrated with the glass 31 was released from the mold 36 to manufacture a diffractive optical element 72.

次に、上記で得た回折光学素子44と回折光学素子72の回折面に反射防止膜を成膜した後、図3に示すように、互いの回折格子が対向するように組み合わせて積層型回折光学素子84を製造した。32は回折光学素子44と回折光学素子72の間隔を決定するスペーサである。回折光学素子44と回折光学素子72のそれぞれの格子間ピッチは共に80.0μmである。回折光学素子44と回折光学素子72の互いの回折格子の谷間の間隔は19.73μm、山間の間隔は1.50μmである。回折光学素子44の山の高さは8.06μm、回折光学素子72の山の高さは10.17μmである。   Next, an antireflection film is formed on the diffraction surfaces of the diffractive optical element 44 and the diffractive optical element 72 obtained above, and then combined so that the diffraction gratings face each other as shown in FIG. An optical element 84 was manufactured. A spacer 32 determines the distance between the diffractive optical element 44 and the diffractive optical element 72. The interstitial pitch of each of the diffractive optical element 44 and the diffractive optical element 72 is 80.0 μm. The distance between the valleys of the diffraction gratings of the diffractive optical element 44 and the diffractive optical element 72 is 19.73 μm, and the distance between the peaks is 1.50 μm. The peak height of the diffractive optical element 44 is 8.06 μm, and the peak height of the diffractive optical element 72 is 10.17 μm.

実施例1,2で製造された積層型回折光学素子83,84における、入射角度0°の一次回折光の各波長(400nm〜700nm)における強度をそれぞれ図4−1、図4−2に示した。横軸は波長、縦軸は回折効率を示している。一般に積層型回折光学素子の回折効率は、99%以上であれば良好であると言える。そこで、今回実験におけるの良否の判定は400nm〜700nmの可視領域全域に亘って回折効率が99%以上かどうかにより決定した。   Intensity at each wavelength (400 nm to 700 nm) of primary diffracted light with an incident angle of 0 ° in the laminated diffractive optical elements 83 and 84 manufactured in Examples 1 and 2 is shown in FIGS. 4-1 and 4-2, respectively. It was. The horizontal axis indicates the wavelength, and the vertical axis indicates the diffraction efficiency. In general, it can be said that the diffraction efficiency of a laminated diffractive optical element is good if it is 99% or more. Therefore, the quality judgment in this experiment was determined by whether the diffraction efficiency was 99% or more over the entire visible region of 400 nm to 700 nm.

図4−1及び図4−2において、それぞれ波長400nmの時の回折効率は99.7%、99.9%、波長500nmの時の回折効率は100.0%、100.0%、波長600nmの時の回折効率は99.5%、100.0%、波長700nmの時の回折効率は99.2%、100.0%である。   4-1 and 4-2, the diffraction efficiencies at a wavelength of 400 nm are 99.7% and 99.9%, and the diffraction efficiencies at a wavelength of 500 nm are 100.0%, 100.0%, and a wavelength of 600 nm. In this case, the diffraction efficiency is 99.5% and 100.0%, and the diffraction efficiency at a wavelength of 700 nm is 99.2% and 100.0%.

実施例1に係る光学材料13及び光学材料61を用いて作製した積層型回折光学素子83の回折効率は、使用波長の全域において99%以上の強度を有しており、比較的良好で安定した波長分布の結果を示している。又、実施例2に係る光学材料14及び光学材料61を用いて作製した積層型回折光学素子84の回折効率も同様に、使用波長の全域において99%以上になっており、非常に良好な強度の波長分布を示していると言える。   The diffraction efficiency of the laminated diffractive optical element 83 produced using the optical material 13 and the optical material 61 according to Example 1 has a strength of 99% or more over the entire operating wavelength range, and is relatively good and stable. The result of wavelength distribution is shown. Similarly, the diffraction efficiency of the laminated diffractive optical element 84 manufactured using the optical material 14 and the optical material 61 according to Example 2 is 99% or more over the entire operating wavelength range, and has a very good strength. It can be said that the wavelength distribution is shown.

光学特性の測定結果を記載した表2及び回折効率結果、図4−1及び図4−2より、ITO微粒子の含有率が多いほど、ITO微粒子の特性に起因して2次分散特性[θg,F ]は低くなり、回折効率は高くなることが分かる。又、波長による部分的な回折効率の落ち込みの発生が少ない。同様にITO微粒子の含有量に起因してアッベ数[νd ]も低下する傾向になる。それにより回折光学素子の格子高さを低く設計することが可能になり、格子側面の影響によるフレア等を低減することができる。   From Table 2 describing the measurement results of the optical characteristics and the diffraction efficiency results, and FIGS. 4A and 4B, as the content of the ITO fine particles increases, the secondary dispersion characteristics [θg, It can be seen that F] is low and the diffraction efficiency is high. In addition, there is little occurrence of a drop in diffraction efficiency due to wavelength. Similarly, the Abbe number [νd] tends to decrease due to the content of ITO fine particles. Accordingly, the grating height of the diffractive optical element can be designed to be low, and flare due to the influence of the grating side surface can be reduced.

本発明によれば、少なくとも光重合開始剤、4級アミン塩等のカチオン系界面活性剤(分散剤)及び2個以上のアクリル基、メタクリル基若しくはビニル基又はそれら不飽和エチレン基の混合体を含有する樹脂に、粒径が0.050μm以下のITO微粒子が良好に分散安定化している光学材料を得ることができる。又、得られた樹脂は高い透光性と微粒子の優れた分散安定性、即ち低い光散乱を示すと共に、ITO微粒子の特性に起因した屈折率分散特性(アッベ数[νd ])、2次分散特性([θg,F ])を示し、これにより成型体を形成できる最適なITO微粒子分散系光学材料を提供できる。従って、屈折率、アッベ数、2次分散特性の関係を考慮したこの光学材料を用いることにより、波長による部分的な回折効率の落ち込みが発生せず、可視領域全域における各使用波長領域の回折効率が良好に安定した光学素子を提供することができる。又、同時に、積層型回折光学素子とすることで、色収差をより正確に補正された光学素子を提供することができる。   According to the present invention, at least a photopolymerization initiator, a cationic surfactant (dispersing agent) such as a quaternary amine salt, and a mixture of two or more acrylic groups, methacrylic groups or vinyl groups, or unsaturated ethylene groups thereof. An optical material in which ITO fine particles having a particle size of 0.050 μm or less are well dispersed and stabilized in the resin contained can be obtained. In addition, the obtained resin exhibits high translucency and excellent dispersion stability of fine particles, that is, low light scattering, and refractive index dispersion characteristics (Abbe number [νd]) due to the properties of ITO fine particles, secondary dispersion The characteristic ([θg, F]) is exhibited, and thus an optimum ITO fine particle dispersed optical material capable of forming a molded body can be provided. Therefore, by using this optical material in consideration of the relationship between the refractive index, Abbe number, and second-order dispersion characteristics, there is no partial drop in diffraction efficiency due to wavelength, and the diffraction efficiency of each used wavelength region in the entire visible region. Can provide a stable optical element. At the same time, by using a laminated diffractive optical element, it is possible to provide an optical element in which chromatic aberration is corrected more accurately.

本発明の実施例1,3、比較例1,3における光学材料の散乱率を示すグラフである。It is a graph which shows the scattering rate of the optical material in Example 1, 3 of this invention, and Comparative Examples 1 and 3. FIG. 本発明の実施例1,2における回折光学素子の成形プロセスを示す断面図である。It is sectional drawing which shows the shaping | molding process of the diffractive optical element in Example 1, 2 of this invention. 本発明の実施例1,2における積層型回折光学素子の構造を示す断面図である。It is sectional drawing which shows the structure of the laminated | stacked diffractive optical element in Example 1, 2 of this invention. 本発明の実施例1における積層型回折光学素子の一次回折光強度を示すグラフである。It is a graph which shows the 1st-order diffracted light intensity of the lamination type diffractive optical element in Example 1 of this invention. 本発明の実施例2における積層型回折光学素子の一次回折光強度を示すグラフである。It is a graph which shows the 1st-order diffracted light intensity of the lamination type diffractive optical element in Example 2 of this invention.

符号の説明Explanation of symbols

11〜14,21〜21,61 光学材料
31 平板ガラス
32 スペーサ
33〜36 金型
43,44,71 回折光学素子
83,84 積層型回折光学素子
11-14, 21-21, 61 Optical material 31 Flat glass 32 Spacer 33-36 Mold 43, 44, 71 Diffractive optical element 83, 84 Laminated diffractive optical element

Claims (12)

少なくとも光重合開始剤、分散剤及び2個以上のアクリル基、メタクリル基若しくはビニル基又はこれら不飽和エチレン基の混合体を含有する樹脂にITO微粒子が分散していることを特徴とする紫外線硬化型の光学材料。   An ultraviolet curable type in which ITO fine particles are dispersed in a resin containing at least a photopolymerization initiator, a dispersant, and two or more acrylic groups, methacrylic groups, vinyl groups, or a mixture of these unsaturated ethylene groups. Optical material. 前記ITO微粒子の粒径が0.050μm以下であり、前記記載の樹脂重量に対する割合が、15.0〜75.0重量%の範囲であることを特徴とする請求項1記載の光学材料。   2. The optical material according to claim 1, wherein a particle diameter of the ITO fine particles is 0.050 μm or less, and a ratio to the resin weight is in a range of 15.0 to 75.0% by weight. 前記分散剤が4級アミン塩等のカチオン系界面活性剤に属する少なくとも1種以上であることを特徴とする請求項1記載の光学材料。   The optical material according to claim 1, wherein the dispersant is at least one or more belonging to a cationic surfactant such as a quaternary amine salt. 請求項1〜3に記載の光学材料から成形することを特徴とする光学素子。   An optical element formed from the optical material according to claim 1. 光学素子を成形型によって成形する光学素子の成形方法において、
前記光学素子の成形材料として請求項1〜3の何れかに記載の光学材料を用いることを特徴とする光学素子の成形方法。
In the method of molding an optical element, which molds the optical element with a mold,
A method for molding an optical element, wherein the optical material according to claim 1 is used as a molding material for the optical element.
前記光学材料を用いて光学素子を成形するに際して、該光学材料を前記成形型に配し、光重合させることによって前記光学素子を成形することを特徴とする請求項5記載の光学素子の成形方法。   6. The method of molding an optical element according to claim 5, wherein when the optical element is molded using the optical material, the optical element is molded by placing the optical material on the mold and performing photopolymerization. . 請求項3〜6に記載の光学素子の表面は、回折形状が形成された回折面であることを特徴とする回折光学素子。   7. The diffractive optical element according to claim 3, wherein the surface of the optical element is a diffractive surface on which a diffractive shape is formed. 請求項7記載の回折光学素子と、前記回折光学素子と異なる光学特性を有する回折光学素子とを、互いの回折形状を有する表面を対向させて組み合わせることにより構成されることを特徴とする積層型回折光学素子。   A laminated type comprising: the diffractive optical element according to claim 7; and a diffractive optical element having optical characteristics different from those of the diffractive optical element, with the surfaces having mutual diffractive shapes facing each other. Diffractive optical element. 請求項3〜6記載の光学素子の表面は、屈折形状が形成された屈折面であることを特徴とする屈折光学素子。   7. The refractive optical element according to claim 3, wherein the surface of the optical element is a refractive surface on which a refractive shape is formed. 請求項3〜9の何れかに記載の光学素子を含むことを特徴とする光学系。   An optical system comprising the optical element according to claim 3. 投影光学系であることを特徴とする請求項10記載の光学系。   The optical system according to claim 10, wherein the optical system is a projection optical system. 撮影光学系であることを特徴とする請求項10記載の光学系。   The optical system according to claim 10, wherein the optical system is a photographing optical system.
JP2005031315A 2005-02-08 2005-02-08 Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system Withdrawn JP2006220689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031315A JP2006220689A (en) 2005-02-08 2005-02-08 Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031315A JP2006220689A (en) 2005-02-08 2005-02-08 Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system

Publications (1)

Publication Number Publication Date
JP2006220689A true JP2006220689A (en) 2006-08-24

Family

ID=36983085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031315A Withdrawn JP2006220689A (en) 2005-02-08 2005-02-08 Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system

Country Status (1)

Country Link
JP (1) JP2006220689A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115813A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing plastic product
JP2012018252A (en) * 2010-07-07 2012-01-26 Canon Inc Diffractive optical element and optical system having the same
US8124324B2 (en) * 2008-01-21 2012-02-28 Canon Kabushiki Kaisha Laminated diffractive optical element and resin composition therefor
US8159747B2 (en) 2007-12-03 2012-04-17 Canon Kabushiki Kaisha Diffractive optical element and optical system including the same
CN103018809A (en) * 2011-09-27 2013-04-03 佳能株式会社 Optical element and method for manufacturing the same
WO2016174798A1 (en) * 2015-04-27 2016-11-03 ソニー株式会社 Composition for hologram recording use, hologram recording medium, image display device, and method for producing hologram recording medium
WO2019177075A1 (en) * 2018-03-15 2019-09-19 富士フイルム株式会社 Curable resin composition, cured material, diffractive optical element, multilayer diffractive optical element, and method for manufacturing curable resin composition
WO2021033698A1 (en) * 2019-08-20 2021-02-25 富士フイルム株式会社 Cured product, curable resin composition, diffractive optical element, multilayer diffractive optical element, and method for manufacturing curable resin composition

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159747B2 (en) 2007-12-03 2012-04-17 Canon Kabushiki Kaisha Diffractive optical element and optical system including the same
US8124324B2 (en) * 2008-01-21 2012-02-28 Canon Kabushiki Kaisha Laminated diffractive optical element and resin composition therefor
JP2010115813A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing plastic product
JP2012018252A (en) * 2010-07-07 2012-01-26 Canon Inc Diffractive optical element and optical system having the same
CN104985842B (en) * 2011-09-27 2018-06-15 佳能株式会社 Optical element and its manufacturing method
CN103018809A (en) * 2011-09-27 2013-04-03 佳能株式会社 Optical element and method for manufacturing the same
EP2574966A3 (en) * 2011-09-27 2013-07-10 Canon Kabushiki Kaisha Optical element and method for manufacturing the same
CN104985842A (en) * 2011-09-27 2015-10-21 佳能株式会社 Optical element and method for manufacturing the same
EP3032295A1 (en) * 2011-09-27 2016-06-15 Canon Kabushiki Kaisha Method for making an optical element
EP3385760A1 (en) * 2011-09-27 2018-10-10 Canon Kabushiki Kaisha Optical element and method for manufacturing the same
US9835765B2 (en) 2011-09-27 2017-12-05 Canon Kabushiki Kaisha Optical element and method for manufacturing the same
CN107533318A (en) * 2015-04-27 2018-01-02 索尼公司 The manufacture method of holographic recording composition, holographic recording medium and holographic recording medium
JPWO2016174798A1 (en) * 2015-04-27 2018-02-15 ソニー株式会社 Hologram recording composition, hologram recording medium and image display device, and method for producing hologram recording medium
WO2016174798A1 (en) * 2015-04-27 2016-11-03 ソニー株式会社 Composition for hologram recording use, hologram recording medium, image display device, and method for producing hologram recording medium
US10444626B2 (en) 2015-04-27 2019-10-15 Sony Corporation Hologram recording composition, hologram recording medium, and method of producing hologram recording medium
WO2019177075A1 (en) * 2018-03-15 2019-09-19 富士フイルム株式会社 Curable resin composition, cured material, diffractive optical element, multilayer diffractive optical element, and method for manufacturing curable resin composition
JPWO2019177075A1 (en) * 2018-03-15 2021-02-04 富士フイルム株式会社 A method for producing a curable resin composition, a cured product, a diffractive optical element, a multi-layer diffractive optical element, and a curable resin composition.
US11377545B2 (en) 2018-03-15 2022-07-05 Fujifilm Corporation Curable resin composition, cured product, diffractive optical element, multilayer diffractive optical element, and method for producing curable resin composition
JP7150005B2 (en) 2018-03-15 2022-10-07 富士フイルム株式会社 Curable resin composition, cured product, diffractive optical element, multilayer diffractive optical element, and method for producing curable resin composition
WO2021033698A1 (en) * 2019-08-20 2021-02-25 富士フイルム株式会社 Cured product, curable resin composition, diffractive optical element, multilayer diffractive optical element, and method for manufacturing curable resin composition

Similar Documents

Publication Publication Date Title
JP4847351B2 (en) Diffractive optical element and diffraction grating using the same
JP5618510B2 (en) Optical material and optical element
JP5843524B2 (en) Organic-inorganic composite composition, organic-inorganic composite material, optical element and laminated diffractive optical element
JP5424623B2 (en) Resin composition and optical element, diffractive optical element and laminated diffractive optical element molded thereby
JP6108740B2 (en) Optical element and optical element manufacturing method
JP2006220689A (en) Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system
WO2010032347A1 (en) Diffractive optical element and manufacturing method thereof
JP5773579B2 (en) Multilayer diffractive optical element
JP2006276195A (en) Uv-curable resin composition, and optical element, laminated diffractive optical element and optical system molded by the same
JP5773668B2 (en) Multilayer diffractive optical element
JP6887761B2 (en) Manufacturing method of laminated diffractive optical element
JP2005316219A (en) Optical material
WO2013031174A1 (en) Optical material, and optical element containing same
JP4602713B2 (en) Composition for optical material and optical material
JP2009280731A (en) Material composition for optical use and optical element using the same
JP7224834B2 (en) Diffractive optical element, resin composition, optical equipment
JP4436720B2 (en) Composition for optical material and optical material
JP2006215295A (en) Composition for optical material and optical material
JP2006232907A (en) Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element
JP2011153185A (en) Material composition and optical element using the same
JP2018044063A (en) Optical resin composition and optical element using the same
WO2014129207A1 (en) Optical element, composite optical element, interchangeable lens, and imaging device
KR20200056146A (en) Composition for forming optical substrate and optical substrate comprising cured product thereof
JP2005316119A (en) Optical material
JP2010242033A (en) Energy-curable optical material and optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513