JP2010242033A - Energy-curable optical material and optical element - Google Patents
Energy-curable optical material and optical element Download PDFInfo
- Publication number
- JP2010242033A JP2010242033A JP2009095296A JP2009095296A JP2010242033A JP 2010242033 A JP2010242033 A JP 2010242033A JP 2009095296 A JP2009095296 A JP 2009095296A JP 2009095296 A JP2009095296 A JP 2009095296A JP 2010242033 A JP2010242033 A JP 2010242033A
- Authority
- JP
- Japan
- Prior art keywords
- optical material
- fine particles
- energy
- inorganic fine
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、エネルギー硬化光学材料および光学素子に関し、特にナノ無機微粒子を用いた微粒子分散光学材料およびそれを用いた光学素子に関する。 The present invention relates to an energy curable optical material and an optical element, and more particularly to a fine particle dispersed optical material using nano-inorganic fine particles and an optical element using the same.
無機酸化物等のナノ微粒子を樹脂中に均一に分散させる方法は、望まれる効果を発揮する為に様々な技術分野で切望されている。例えば、屈折率を制御し、使用する膜厚で光散乱が少ない光学材料に用いる際には、TiO2、ZrO2、Al2O3やITO等の無機酸化物のナノ微粒子を樹脂中に均一に分散した光学材料が望ましい。ナノ微粒子を均一に分散させる為には、ボールミルやホモジナイザー等の一般的な混合機を用いた機械的混合分散と、ナノ微粒子表面を改質し、分散した微粒子が再凝集しないようにする方法が併用して行なわれる。 A method of uniformly dispersing nano-particles such as inorganic oxides in a resin is eagerly desired in various technical fields in order to exhibit a desired effect. For example, when the refractive index is controlled and used for an optical material with little light scattering at the film thickness to be used, inorganic oxide nanoparticles such as TiO 2 , ZrO 2 , Al 2 O 3 and ITO are uniformly distributed in the resin. An optical material dispersed in is desirable. In order to uniformly disperse the nanoparticles, there are mechanical mixing and dispersion using a general mixer such as a ball mill and a homogenizer, and a method of modifying the surface of the nanoparticles to prevent the dispersed particles from reaggregating. Performed in combination.
微粒子の表面の改質に関して説明すると、微粒子は表面を改質する事により、特にナノ微粒子において、分散したい材料および溶液と微粒子の親和性が高められる。そのことにより、微粒子の分散液及び分散材料は安定する。 The modification of the surface of the fine particles will be described. By modifying the surface of the fine particles, the affinity between the fine particles and the material to be dispersed and the fine particles can be increased, particularly in the case of nano fine particles. As a result, the fine particle dispersion and the dispersion material are stabilized.
通常、微粒子の表面を改質する方法として、(1)微粒子表面を化学修飾する、(2)微粒子表面に分散剤を吸着させる等の方法がある。通常、金属酸化物微粒子表面は親水性が強い為、カップリング剤系や有機酸系の処理剤や分散剤で微粒子表面を処理する。 Usually, there are methods for modifying the surface of the fine particles, such as (1) chemically modifying the surface of the fine particles, and (2) adsorbing a dispersant on the surface of the fine particles. Usually, since the surface of the metal oxide fine particles is strongly hydrophilic, the surface of the fine particles is treated with a coupling agent type or organic acid type treatment agent or dispersant.
その他に例えば特許文献1および特許文献2では、分散ポリマー中に水酸基やカルボキシル基等の親水基を付与することにより微粒子の分散が良くなることが開示されている。
通常、高分子量の分散剤も同様なメカニズムにより微粒子表面を取り囲む親水基の部分と、通常のポリマーとの親和性を保つ非親水基をあわせ持ち、基材となるモノマーやオリゴマーとの親和性を保っている。
In addition, for example,
Usually, high molecular weight dispersants also have a hydrophilic group that surrounds the surface of fine particles by a similar mechanism and a non-hydrophilic group that maintains affinity with ordinary polymers. I keep it.
分散剤を用いて微粒子を分散させた場合、分散剤の濃度が10v%以上の場合、余剰な分散剤の影響により、モノマーと表面に分散剤が付着した無機微粒子との親和性が保たれ、無機微粒子はモノマー中に均一な状態で存在する。 When fine particles are dispersed using a dispersant, when the concentration of the dispersant is 10 v% or more, the affinity between the monomer and the inorganic fine particles with the dispersant attached to the surface is maintained due to the influence of the excess dispersant. Inorganic fine particles exist in a uniform state in the monomer.
しかし、モノマーと分散剤の親和性が完全に一致していない場合、混合する無機微粒子濃度が10v%未満になると微粒子表面に吸着していない余剰な分散剤の濃度が低下する。その結果、モノマーと表面に分散剤が付着した無機微粒子との親和性が急激に低下する。その結果、室温で、表面に分散剤が付着した無機微粒子同士が凝集し、不均一となり、白濁する。そのために、エネルギー硬化の光学材料としては用いる事はできなくなる。 However, when the affinity between the monomer and the dispersant is not completely the same, when the concentration of the inorganic fine particles to be mixed is less than 10 v%, the concentration of excess dispersant not adsorbed on the surface of the fine particles decreases. As a result, the affinity between the monomer and the inorganic fine particles having the dispersant attached to the surface is drastically reduced. As a result, the inorganic fine particles having the dispersant attached to the surface aggregate at room temperature, become non-uniform, and become cloudy. Therefore, it cannot be used as an optical material for energy curing.
無機微粒子を白濁させない方法として、無機微粒子の表面に付着した分散剤に対して、親和性のあるモノマーを選択することも可能である。しかし、モノマーを変更すると、これまでの粘弾性、ガラス転移点、転写性、形状安定性などの物理物性が大きく変化し、光学素子の作成が不可能となったり、大きく作成条件を変更しなければならない可能性がある。 As a method for preventing the inorganic fine particles from becoming cloudy, it is possible to select a monomer having affinity for the dispersant adhering to the surface of the inorganic fine particles. However, if the monomer is changed, the physical properties such as viscoelasticity, glass transition point, transferability, and shape stability have changed greatly, making it impossible to create optical elements, or to greatly change the preparation conditions. It may be necessary.
また、濃度の低い分散剤を用いる事により、無機微粒子の白濁の問題を改善する方法もある。しかし、無機微粒子の濃度が少ない状態で分散剤の濃度が高くなると経時とともに分散剤が表面に析出したり、先のモノマーを変更した時と同様に粘弾性、ガラス転移点、転写性、形状安定性などの物理物性が大きく変化し、光学素子作成が不可能となったり、大きく作成条件を変更しなければならない可能性がある。 There is also a method of improving the problem of white turbidity of inorganic fine particles by using a dispersant having a low concentration. However, when the concentration of the dispersant increases with a low concentration of inorganic fine particles, the dispersant precipitates on the surface over time, and viscoelasticity, glass transition point, transferability, and shape stability are the same as when the previous monomer is changed. There is a possibility that the physical physical properties such as the property greatly change, making it impossible to produce the optical element, or to greatly change the production conditions.
本発明は、この様な背景技術に鑑みてなされたものであり、無機微粒子が低濃度でも白濁すること無く、散乱率および形状安定性が良好な無機微粒子が分散したエネルギー硬化光学材料およびそれを用いた光学素子を提供するものである。 The present invention has been made in view of such a background art, and an energy-curing optical material in which inorganic fine particles having good scattering rate and shape stability are dispersed without causing cloudiness even when the concentration of inorganic fine particles is low, and The optical element used is provided.
上記の課題を解決するエネルギー硬化光学材料は、表面処理された無機微粒子、モノマー、開始剤および添加剤を含有するエネルギー硬化光学材料であって、前記表面処理された無機微粒子の含有量が1v%以上10v%以下であり、前記添加剤はRCOOCH2=CH2(Rは炭素数が5以上の有機基を示す。)で表されるモノビニルエステルモノマーからなり、かつ前記添加剤の含有量が0.5v%以上10v%以下であることを特徴とする。 An energy curable optical material that solves the above-described problem is an energy curable optical material that includes surface-treated inorganic fine particles, a monomer, an initiator, and an additive, and the content of the surface-treated inorganic fine particles is 1 v%. and not more than 10v% or less, the content of the additive RCOOCH 2 = CH 2 (R is. showing a 5 or more organic groups having a carbon number) a monovinyl ester monomer represented by, and the additive is 0 It is characterized by being 5 v% or more and 10 v% or less.
上記の課題を解決する光学素子は、上記のエネルギー硬化光学材料によって形成された光学素子であることを特徴する。 An optical element that solves the above-described problems is an optical element formed of the energy-curable optical material.
本発明によれば、無機微粒子が低濃度でも白濁すること無く、散乱率および形状安定性が良好な無機微粒子が分散したエネルギー硬化光学材料およびそれを用いた光学素子を提供することができる。 According to the present invention, it is possible to provide an energy curable optical material in which inorganic fine particles having good scattering rate and shape stability are dispersed without causing clouding even when the concentration of inorganic fine particles is low, and an optical element using the same.
以下、本発明の実施の形態について詳細に説明する。
本発明に係るエネルギー硬化光学材料は、表面処理された無機微粒子、モノマー、開始剤および添加剤を含有するエネルギー硬化光学材料であって、前記表面処理された無機微粒子の含有量が1v%以上10v%以下であり、前記添加剤はRCOOCH2=CH2(Rは炭素数が5以上の有機基を示す。)で表されるモノビニルエステルモノマーからなり、かつ前記添加剤の含有量が0.5v%以上10v%以下であることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The energy curable optical material according to the present invention is an energy curable optical material containing surface-treated inorganic fine particles, a monomer, an initiator, and an additive, and the content of the surface-treated inorganic fine particles is 1 v% or more and 10 v or more. %, And the additive is composed of a monovinyl ester monomer represented by RCOOCH 2 = CH 2 (R represents an organic group having 5 or more carbon atoms), and the content of the additive is 0.5 v. % Or more and 10 v% or less.
本発明のエネルギー硬化光学材料には、表面処理された無機微粒子が均一に分散されている。
本発明において用いられる無機微粒子としては、Si,Ti,Zr,Al,In,Snなどの酸化物が挙げられるが、アッペ数が大きく、屈折率を高くすることを目的とした場合、酸化アルミニウム(Al2O3)や酸化ジリコニア(ZrO2)であることが好ましい。
In the energy curable optical material of the present invention, the surface-treated inorganic fine particles are uniformly dispersed.
Examples of the inorganic fine particles used in the present invention include oxides such as Si, Ti, Zr, Al, In, and Sn. For the purpose of increasing the Abbe number and increasing the refractive index, aluminum oxide ( Al 2 O 3 ) and zirconia oxide (ZrO 2 ) are preferable.
前記無機微粒子は分散剤で表面処理されており、分散剤にはシランカップリング剤やアルコール類や有機カルボン酸等があるが、安定性や汎用性を考えた場合、ポリエステル系を主鎖に持つ分散剤が好ましい。 The inorganic fine particles are surface-treated with a dispersant, and the dispersant includes a silane coupling agent, alcohols, organic carboxylic acid, etc., and has a polyester system in the main chain in consideration of stability and versatility. A dispersant is preferred.
前記無機微粒子の平均粒径は、5nm以上60nm以下、好ましくは5nm以上30nm以下が望ましい。
本発明のエネルギー硬化光学材料に含有される表面処理された無機微粒子の含有量は、体積百分率で1v%以上10v%以下である。1v%未満では光学特性やその他の物理物性の変化が明確でない。また、10v%よりも多い場合、余剰な分散剤の割合が多くなり、安定である為、添加剤を添加する必要は特にない。
The average particle size of the inorganic fine particles is 5 nm to 60 nm, preferably 5 nm to 30 nm.
The content of the surface-treated inorganic fine particles contained in the energy curable optical material of the present invention is 1 v% or more and 10 v% or less by volume percentage. If it is less than 1 v%, changes in optical properties and other physical properties are not clear. Further, when the amount is more than 10 v%, the ratio of the excess dispersant is increased and stable, so that it is not particularly necessary to add an additive.
本発明において用いられる添加剤は、RCOOCH2=CH2(Rは炭素数が5以上の有機基を示す。)で表されるモノビニルエステルモノマーが用いられる。モノビニルエステルモノマーには、ビニルエステル(−COOCH2=CH2)基が1個含まれる。前記モノビニルエステルモノマーは表面処理された無機微粒子とモノマーとの両方に親和性があり、無機微粒子を均一に分散する。 Additives used in the present invention, RCOOCH 2 = CH 2 (R is. Showing a 5 or more organic groups having a carbon number) monovinyl ester monomers represented by is used. The monovinyl ester monomer contains one vinyl ester (—COOCH 2 ═CH 2 ) group. The monovinyl ester monomer has affinity for both the surface-treated inorganic fine particles and the monomer, and uniformly disperses the inorganic fine particles.
RCOOCH2=CH2で表されるモノビニルエステルモノマーのRは炭素数が5以上の直鎖、分岐、環状の炭化水素基等からなる有機基が好ましい。Rは、炭素数が4以下またはビニルエステル基が2個以上含まれる場合、表面処理された無機微粒子との親和性が小さくなり、無機微粒子は室温で凝集する。 RCOOCH 2 = R in monovinyl ester monomer represented by CH 2 linear carbon atoms of 5 or more, the branch is preferably an organic group comprising a cyclic hydrocarbon group. When R has 4 or less carbon atoms or 2 or more vinyl ester groups, the affinity for the surface-treated inorganic fine particles decreases, and the inorganic fine particles aggregate at room temperature.
前記添加剤のモノビニルエステルモノマーの具体例としては、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、シクロヘキサンカルボン酸ビニルまたは桂皮酸ビニルが好ましい。 Specific examples of the monovinyl ester monomer as the additive are preferably vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl cyclohexanecarboxylate or vinyl cinnamate.
本発明のエネルギー硬化光学材料に含有されるモノビニルエステルモノマーの含有量は体積百分率で0.5v%以上10v%以下、好ましくは1v%以上5v%以下が望ましい。モノビニルエステルモノマーの含有量が0.5v%未満では表面処理された無機微粒子との親和性が小さくなり、無機微粒子は室温で凝集し、10v%よりも多い場合、無機微粒子は凝集しないが弾性率、成形性、環境耐久性等の機械物性が大きく変化する。 The content of the monovinyl ester monomer contained in the energy curable optical material of the present invention is 0.5 v% to 10 v%, preferably 1 v% to 5 v% by volume. If the content of the monovinyl ester monomer is less than 0.5 v%, the affinity with the surface-treated inorganic fine particles decreases, and the inorganic fine particles aggregate at room temperature. If the content exceeds 10 v%, the inorganic fine particles do not aggregate, but the elastic modulus. Mechanical properties such as moldability and environmental durability change greatly.
本発明において用いられるモノマーとしては、分子内に1個以上の2重結合や3重結合を有するものであれば、特に限定はされないが、以下に示すモノマーが挙げられる。不飽和基含有化合物のモノマー又はオリゴマーの具体的な例としては、1,4−ジビニルシクロヘキサン、1,4−シクロヘキサンジメタノールジビニルエーテル、4,4−ジメチル−ヘプタ−1−エン−6−イン、ジビニルベンゼン、1,6−ジビニルナフタレン、N−ビニルピロリドン、N−ビニルカプロラクタム、エトキシ化ビスフェノールAジビニルエーテル、プロポキシ化ビスフェノールAジビニルエーテル、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能のアクリレートやメタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレンジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオベンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリ(アクリロイロキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多価アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化したもの、特公昭50−6034号、特開昭51−37193号の各公報に記載されているようなウレタンアクリレート類、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号の各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレートを挙げることができる。モノマーは1種または2種以上で用いることができる。 The monomer used in the present invention is not particularly limited as long as it has one or more double bonds or triple bonds in the molecule, and examples thereof include the monomers shown below. Specific examples of the monomer or oligomer of the unsaturated group-containing compound include 1,4-divinylcyclohexane, 1,4-cyclohexanedimethanol divinyl ether, 4,4-dimethyl-hept-1-ene-6-in, Divinylbenzene, 1,6-divinylnaphthalene, N-vinylpyrrolidone, N-vinylcaprolactam, ethoxylated bisphenol A divinyl ether, propoxylated bisphenol A divinyl ether, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, Monofunctional acrylates and methacrylates such as phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene di (meth) acrylate, trimethylolethanetri (meth ) Acrylate, neoventyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol di (meth) acrylate, tri (acryloyl) (Roxyethyl) isocyanurate, polyhydric alcohols such as glycerin and trimethylolethane, and then (meth) acrylate after addition of ethylene oxide or propylene oxide, Japanese Patent Publication No. 50-6034, Japanese Patent Publication No. 51-37193 Urethane acrylates as described in each publication, polyester acrylates described in JP-A-48-64183, JP-B-49-43191, and JP-B-52-30490, Carboxymethyl resin and (meth) polyfunctional acrylates or methacrylates such as epoxy acrylates obtained by reacting an acrylic acid. A monomer can be used by 1 type (s) or 2 or more types.
上記のモノマーの中で、硬化した際の屈折率が1.51以上であり、アッペ数が大きいものとして、トリシクロデカンジメタノールアクリレート、ネオペンチルグリコール変性トリメチロールプロパンジアクリレートまたはジメチロールジシクロペンタンジアクリレートを用いることが好ましい。 Among the above monomers, a tricyclodecane dimethanol acrylate, neopentyl glycol-modified trimethylolpropane diacrylate or dimethylol dicyclopentane has a refractive index of 1.51 or more when cured and a large Appe number. It is preferable to use diacrylate.
本発明のエネルギー硬化光学材料に含有されるモノマーの含有量は、体積百分率で80v%以上98v%以下、好ましくは85v%以上97v%以下が望ましい。
モノマーはエネルギー硬化するが、エネルギー硬化の方法としてはプラズマ処理、熱処理、放射性、紫外線等のエネルギーにより開始剤を刺激して重合させることが可能であるが、レンズ等のレプリカ成形を考えた場合、光硬化であることが好ましい。
The content of the monomer contained in the energy curable optical material of the present invention is 80% to 98% by volume, preferably 85% to 97% by volume.
The monomer is energy-cured, but as an energy curing method, it is possible to polymerize the initiator by stimulating it with energy such as plasma treatment, heat treatment, radioactivity, and ultraviolet rays. Photocuring is preferred.
本発明において用いられる開始剤は、具体的に利用可能な光重合開始剤として、例えば、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、4−フェニルベンゾフェノン、4−フェノキシベンゾフェノン、4,4’−ジフェニルベンゾフェノン、4,4’−ジフェノキシベンゾフェノン等を好適なものとして挙げることができる。硬化した樹脂の透明性を考慮した場合、紫外線により硬化する1−ヒドロキシ−シクロヘキシル−フェニル−ケトンを用いるのが好ましい。 The initiator used in the present invention is a photopolymerization initiator that can be specifically used, for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxy- Cyclohexyl-phenyl-ketone, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxybenzophenone, 4,4′-diphenylbenzophenone, 4,4′-diphenoxybenzophenone, etc. Can be mentioned as suitable. In consideration of the transparency of the cured resin, it is preferable to use 1-hydroxy-cyclohexyl-phenyl-ketone which is cured by ultraviolet rays.
本発明のエネルギー硬化光学材料に含有される開始剤の含有量は、体積百分率で0.1v%以上10v%以下、好ましくは0.5v%以上5v%以下が望ましい。
本発明の光学素子は、上記のエネルギー硬化光学材料を重合して得られた硬化物からなる。エネルギー硬化光学材料を重合方法により、光学素子において、光学特性の微調整により、高効率な機能を発現する事が可能となる。
The content of the initiator contained in the energy curable optical material of the present invention is 0.1 v% or more and 10 v% or less, preferably 0.5 v% or more and 5 v% or less in volume percentage.
The optical element of the present invention comprises a cured product obtained by polymerizing the above energy curable optical material. It is possible to develop a highly efficient function by finely adjusting the optical characteristics of the energy curable optical material by a polymerization method and in the optical element.
本発明の光学素子としては、例えば回折光学素子、レプリカ成形による非球面レンズ等が挙げられる。 Examples of the optical element of the present invention include a diffractive optical element and an aspherical lens formed by replica molding.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤、分散剤はポリエステル系の分散剤を用いた。)22.70gを混合した。その後、エバポレーターでキシレンを除去した後、カプリン酸ビニル0.64gを混合し、17.08w%の酸化アルミニウムが分散した紫外線硬化樹脂A−1からなる光学材料を得た。サンプル(紫外線硬化樹脂)A−1の重量百分率(wt%)と、その体積百分率(Vol%)を表3に示す。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% A polyester-based dispersant was used as a dispersant and a dispersant.) 22.70 g was mixed. Then, after removing xylene with an evaporator, 0.64 g of vinyl caprate was mixed to obtain an optical material made of an ultraviolet curable resin A-1 in which 17.08 w% of aluminum oxide was dispersed. Table 3 shows the weight percentage (wt%) and the volume percentage (Vol%) of sample (ultraviolet curable resin) A-1.
酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)中の粒度分布を粒度分布計(DT−1200: Dispersion Technology社製)で測定した。平均粒径は25nmであった。 The particle size distribution in the aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% dispersant) was measured with a particle size distribution meter (DT-1200: manufactured by Dispersion Technology). The average particle size was 25 nm.
<安定性の検証>
図1に示す様に、前記紫外線硬化樹脂A−1を、室温で1mm厚のガラス(BK7)平板からなる2枚の基板1、2間に挟持した。一方の基板1の表面にはカップリング処理4が施されている。基板1を通して紫外線硬化樹脂A−1に紫外線50J/cm2を照射して硬化し、離型して紫外線硬化樹脂膜6からなる紫外線硬化したサンプルを作成した。その測定サンプルをA−1−1とする。
<Verification of stability>
As shown in FIG. 1, the ultraviolet curable resin A-1 was sandwiched between two
図2に示す様に、前記紫外線硬化樹脂A−1を、室温で1mm厚のガラス(BK7)平板からなる2枚の基板1、2間に挟持し、前記紫外線硬化樹脂A−1を50℃に加熱した。一方の基板1の表面にはカップリング処理4が施されている。他方の基板2はホットプレート13で加熱し50℃に温調されている。基板1を通して紫外線硬化樹脂A−1に紫外線50J/cm2を照射して硬化し、離型して紫外線硬化樹脂膜16からなる紫外線硬化したサンプルを作成した。そのサンプルをA−1−2とする。
As shown in FIG. 2, the ultraviolet curable resin A-1 is sandwiched between two
サンプルA−1−1,A−1−2を分光光度計U4000(日立製作所)にて散乱率を測定した。測定方法は、サンプルを積分球の入射光部に貼り付け、積分球の後ろを外すことにより、透過光を通過させ、散乱光のみを測定した。測定条件は、入射光の波長は400から700nm、サンプルの厚さは10から20μm(散乱率測定後、膜厚を測定)である。その測定結果を図3に示す。 The scattering rates of samples A-1-1 and A-1-2 were measured with a spectrophotometer U4000 (Hitachi). In the measurement method, the sample was attached to the incident light portion of the integrating sphere, and the back of the integrating sphere was removed to allow the transmitted light to pass through and only the scattered light was measured. The measurement conditions are that the wavelength of incident light is 400 to 700 nm, and the thickness of the sample is 10 to 20 μm (after measuring the scattering rate, the film thickness is measured). The measurement results are shown in FIG.
なお、測定サンプルは膜厚が若干異なる為、下記の式(1)により、10μmの膜厚に換算して比較した。
散乱率(10μm)=(測定散乱率/サンプル膜厚μm)×10μm・・・・(1)
散乱率は測定波長400nmで1.2%であり、測定サンプルA−1−1,A−1−2間ではほとんど差がみられなかった。
なお、表2に測定サンプルA−1−1の散乱率を示す。
In addition, since the film thicknesses of the measurement samples are slightly different, the film thickness was converted to a film thickness of 10 μm and compared by the following formula (1).
Scattering rate (10 μm) = (measured scattering rate / sample film thickness μm) × 10 μm (1)
The scattering rate was 1.2% at a measurement wavelength of 400 nm, and almost no difference was observed between the measurement samples A-1-1 and A-1-2.
Table 2 shows the scattering rate of the measurement sample A-1-1.
<屈折率>
屈折率(ng,nF,ne,nd,nC)を屈折計KPR−20V(株式会社島津デバイス製造製)にて測定した。それにより、分散(νd=(nd−1)/(nF−nC))を算出した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5508,1.5451,1.5405,1.5381,1.5351)であり、アッペ数(νd=53.37)であった。
<Refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer KPR-20V (manufactured by Shimadzu Device Manufacturing Co., Ltd.). Thereby, dispersion (νd = (nd−1) / (nF−nC)) was calculated. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5508, 1.5451, 1.5405, 1.5381, 1.5351) and the Abbe number (νd = 53.37).
<形状安定性(面ゆがみ)>
図4に示す様に、前記紫外線硬化樹脂A−1を、室温で1mm厚のガラス(BK7)平板からなる2枚の基板1、21間に挟持した。一方の基板1の表面にはカップリング処理4が施されている。他方の基板21は15μmの格子形状に形成されている。基板1を通して紫外線硬化樹脂A−1に紫外線50J/cm2を照射して硬化し、離型して紫外線硬化樹脂膜26からなる紫外線硬化した15μmの格子形状のサンプルを作成した。そのサンプルの転写性をNew view5000(zygo社製)で測定した。
その結果を「面ゆがみ」として表2に示す。成形面の形状転写性はよく、形状変形が20nm以下である。
<Shape stability (surface distortion)>
As shown in FIG. 4, the ultraviolet curable resin A-1 was sandwiched between two
The results are shown in Table 2 as “surface distortion”. The shape transferability of the molding surface is good, and the shape deformation is 20 nm or less.
比較例1
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.95gと酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70g混合した後、エバポレーターでキシレンを除去し、17.08w%(5.41v%)の酸化アルミニウムが分散した紫外線硬化樹脂H−1からなる光学材料を得た。
実施例1と異なり、カプリン酸ビニルの添加剤は添加しなかった。
Comparative Example 1
15.95 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone and aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% dispersion) Agent) After mixing with 22.70 g, xylene was removed by an evaporator to obtain an optical material composed of an ultraviolet curable resin H-1 in which 17.08 w% (5.41 v%) of aluminum oxide was dispersed.
Unlike Example 1, the vinyl caprate additive was not added.
<安定性の検証>
紫外線硬化樹脂H−1を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−1−1とする。
紫外線硬化樹脂H−1を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−1−2とする。
<Verification of stability>
A sample obtained by curing the ultraviolet curable resin H-1 at room temperature by the same method as that shown in FIG. The measurement sample is designated as H-1-1.
The ultraviolet curable resin H-1 was heated to 50 ° C., and an ultraviolet cured sample was prepared in the same manner as the method shown in FIG. The measurement sample is designated as H-1-2.
測定サンプルH−1−1,H−1−2を分光光度計U4000にて散乱率を測定した。その結果を図5に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
H−1−1の散乱率は測定波長400nmで4%、H−1−2の散乱率は1.5%であった。室温で成形したサンプルH−1−1は微粒子が凝集し、散乱率が大きい。
The scattering rates of the measurement samples H-1-1 and H-1-2 were measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate of H-1-1 was 4% at a measurement wavelength of 400 nm, and the scattering rate of H-1-2 was 1.5%. In Sample H-1-1 molded at room temperature, fine particles aggregate and the scattering rate is large.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。この際、H−1−1のサンプルは散乱が大きく、測定できなかったのでH−1−2で測定を行った。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5519,1.5463,1.5416,1.5392,1.5362)であり、アッペ数(νd=53.22)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. At this time, since the sample of H-1-1 was highly scattered and could not be measured, measurement was performed with H-1-2. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5519, 1.5463, 1.5416, 1.5392, 1.5362) and the Abbe number (νd = 53.22).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が20nm以下である。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 20 nm or less.
比較例2
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を11.95gと酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70g混合した後、エバポレーターでキシレンを除去した後、カプリン酸ビニル4.00gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂H−2からなる光学材料を得た。
Comparative Example 2
11.95 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone and aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% dispersion) Agent) After mixing 22.70 g, after removing xylene with an evaporator, 4.00 g of vinyl caprate is mixed, and from UV curable resin H-2 in which 17.08 w% (5.42 v%) of aluminum oxide is dispersed. An optical material was obtained.
実施例1とは異なり、添加剤であるモノビニルエステルモノマーがカプリン酸ビニルであり、その樹脂中の含有割合が10v%以上である。 Unlike Example 1, the monovinyl ester monomer as an additive is vinyl caprate, and the content in the resin is 10 v% or more.
<安定性の検証>
紫外線硬化樹脂H−2を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−2−1とする。
紫外線硬化樹脂H−2を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−2−2とする。
<Verification of stability>
A sample obtained by curing the ultraviolet curable resin H-2 at room temperature by the same method as that shown in FIG. The measurement sample is designated as H-2-1.
The ultraviolet curable resin H-2 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is designated as H-2-2.
測定サンプルH−2−1,H−2−2を分光光度計U4000にて散乱率を測定した。その結果を図6に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.3%であり、測定サンプルH−2−1,H−2−2間ではほとんど差がみられない。
The scattering rate of the measurement samples H-2-1 and H-2-2 was measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.3% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples H-2-1 and H-2-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5446,1.5391,1.5346,1.5322,1.5293)であり、アッペ数(νd=54.16)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5446, 1.5391, 1.5346, 1.5322, 1.5293) and the Abbe number (νd = 54.16).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性は悪く、形状変形(面ゆがみ)が100nm以上である。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is poor, and the shape deformation (surface distortion) is 100 nm or more.
比較例3
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、実施例1とは異なり、エステル基とビニル基以外の炭素鎖Rが4のアジピン酸ジビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂H−3からなる光学材料を得た。
Comparative Example 3
15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone and aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% dispersion) Agent) After mixing 22.70 g, after removing xylene with an evaporator, unlike Example 1, 0.64 g of divinyl adipate having a carbon chain R other than ester group and vinyl group of 4 was mixed; An optical material made of an ultraviolet curable resin H-3 in which 08 w% (5.42 v%) aluminum oxide was dispersed was obtained.
<安定性の検証>
紫外線硬化樹脂H−3を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−3−1とする。
紫外線硬化樹脂H−3を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをH−3−2とする。
<Verification of stability>
A sample obtained by curing the ultraviolet curable resin H-3 at room temperature by the same method as that shown in FIG. The measurement sample is designated as H-3-1.
The ultraviolet curable resin H-3 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is designated as H-3-2.
測定サンプルH−3−1,H−3−2を分光光度計U4000にて散乱率を測定した。その結果を図7に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。 The scattering rates of the measurement samples H-3-1 and H-3-2 were measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
サンプルH−3−1の散乱率は測定波長400nmで4.7%、サンプルH−3−2の散乱率は1.5%であった。室温で成形したサンプルH−3−1は微粒子が凝集し、散乱率が大きい。 The scattering rate of Sample H-3-1 was 4.7% at a measurement wavelength of 400 nm, and the scattering rate of Sample H-3-2 was 1.5%. In Sample H-3-1 molded at room temperature, fine particles aggregate and the scattering rate is large.
<屈折率の測定>
屈折率(ng,F,ne,nd,nC)を屈折計にて測定した。この際、サンプルH−3−1は散乱が大きく測定できなかったので、サンプルH−3−2で測定を行った。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5508,1.5451,1.5405,1.5381,1.5351)であり、アッペ数(νd=53.37)であった。。
<Measurement of refractive index>
The refractive index (ng, F, ne, nd, nC) was measured with a refractometer. At this time, since Sample H-3-1 was not able to be measured due to large scattering, measurement was performed using Sample H-3-2. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5508, 1.5451, 1.5405, 1.5381, 1.5351) and the Abbe number (νd = 53.37). .
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が20nm以下である。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 20 nm or less.
ネオペンチルグリコール変性トリメチロールプロパンジアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70g混合した後、エバポレーターでキシレンを除去した後、0.64gカプリン酸ビニルを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−2からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of neopentyl glycol-modified trimethylolpropane diacrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2 .76w% dispersant) After mixing with 22.70g, after removing xylene with an evaporator, 0.64g vinyl caprate is mixed and 17.08w% (5.42v%) aluminum oxide dispersed in UV curable resin An optical material consisting of A-2 was obtained.
<安定性の検証>
紫外線硬化樹脂A−2を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−2−1とする。
紫外線硬化樹脂A−2を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−2−2とする。
<Verification of stability>
A sample obtained by ultraviolet-curing the ultraviolet-curing resin A-2 at room temperature by the same method as that shown in FIG. The measurement sample is designated as A-2-1.
The ultraviolet curable resin A-2 was heated to 50 ° C., and an ultraviolet cured sample was prepared in the same manner as the method shown in FIG. The measurement sample is designated as A-2-2.
測定サンプルA−1−1,A−1−2を分光光度計U4000にて散乱率を測定した。その結果を図8に示す。
測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。散乱率は測定波長400nmで1.4%であり、測定サンプルA−2−1,A−2−2間ではほとんど差がみられない。
The scattering rates of the measurement samples A-1-1 and A-1-2 were measured with a spectrophotometer U4000. The result is shown in FIG.
Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared. The scattering rate is 1.4% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-2-1 and A-2-2.
<屈折率の測定>
屈折率(ng,F,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5495,1.5438,1.5392,1.5368,1.5338)であり、アッペ数(νd=53.24)であった。
<Measurement of refractive index>
The refractive index (ng, F, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5495, 1.5438, 1.5392, 1.5368, 1.5338) and the Abbe number (νd = 53.24).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が20nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 20 nm.
ジメチロールジシクロペンタンジアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、カプリン酸ビニル0.64gを混合し、17.08w%(5.40v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−3からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of dimethylol dicyclopentane diacrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w % Dispersant) 22.70 g was mixed, xylene was removed by an evaporator, 0.64 g of vinyl caprate was mixed, and 17.08 w% (5.40 v%) aluminum oxide was dispersed in UV curable resin A An optical material consisting of -3 was obtained.
<安定性の検証>
紫外線硬化樹脂A−3を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−3−1とする。
紫外線硬化樹脂A−3を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−3−2とする。
<Verification of stability>
A sample obtained by ultraviolet-curing the ultraviolet-curing resin A-3 at room temperature by the same method as that shown in FIG. The measurement sample is designated as A-3-1.
The ultraviolet curable resin A-3 was heated to 50 ° C., and an ultraviolet curable sample was prepared by the same method as that shown in FIG. The measurement sample is designated as A-3-2.
測定サンプルA−3−1,A−3−2を分光光度計U4000にて散乱率を測定した。その結果を図9に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.4%であり、測定サンプルA−3−1,A−3−2間ではほとんど差がみられない。
The scattering rates of the measurement samples A-3-1 and A-3-2 were measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.4% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-3-1 and A-3-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5493,1.5435,1.5390,1.5367,1.5337)であり、アッペ数(νd=54.64)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5493, 1.5435, 1.5390, 1.5367, 1.5337) and the Abbe number (νd = 54.64).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が23nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 23 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、カプロン酸ビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−4からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% Dispersant) After mixing 22.70 g, after removing xylene with an evaporator, 0.64 g of vinyl caproate was mixed, and UV curing resin A- in which 17.08 w% (5.42 v%) aluminum oxide was dispersed was dispersed. An optical material consisting of 4 was obtained.
<安定性の検証>
紫外線硬化樹脂A−4を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−4−1とする。
紫外線硬化樹脂A−4を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−4−2とする。
<Verification of stability>
A sample obtained by curing the ultraviolet curable resin A-4 at room temperature by the same method as that shown in FIG. The measurement sample is designated as A-4-1.
The ultraviolet curable resin A-4 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is designated as A-4-2.
測定サンプルA−4−1,A−4−2を分光光度計U4000にて散乱率を測定した。その結果を図10に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.3%であり、測定サンプルA−4−1,A−4−2間ではほとんど差がみられない。
The scattering rates of the measurement samples A-4-1 and A-4-2 were measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.3% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-4-1 and A-4-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5511,1.5453,1.5408,1.5385,1.5353)であり、アッペ数(νd=53.41)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5111, 1.5453, 1.5408, 1.5385, 1.5353) and the Abbe number (νd = 53.41).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が21nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 21 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、カプリル酸ビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−5からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% Dispersant) After mixing 22.70 g, xylene was removed by an evaporator, 0.64 g of vinyl caprylate was mixed, and UV curing resin A- in which 17.08 w% (5.42 v%) aluminum oxide was dispersed was dispersed. An optical material consisting of 5 was obtained.
<安定性の検証>
紫外線硬化樹脂A−5を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−5−1とする。
紫外線硬化樹脂A−5を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−5−2とする。
<Verification of stability>
A sample obtained by UV-curing the UV-curable resin A-5 at room temperature was prepared in the same manner as the method shown in FIG. The measurement sample is designated as A-5-1.
The ultraviolet curable resin A-5 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is designated as A-5-2.
測定サンプルA−5−1,A−5−2を分光光度計U4000にて散乱率を測定した。その結果を図11に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.4%であり、測定サンプルA−5−1,A−5−2間ではほとんど差がみられない。
The scattering rate of the measurement samples A-5-1 and A-5-2 was measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.4% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-5-1 and A-5-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5506,1.5450,1.5404,1.5380,1.5348)であり、アッペ数(νd=52.58)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.506, 1.5450, 1.5404, 1.5380, 1.5348) and the Abbe number (νd = 52.58).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が23nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 23 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、ラウリン酸ビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−6からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% Dispersant) After mixing 22.70 g, after removing xylene by an evaporator, 0.64 g of vinyl laurate was mixed, and UV curing resin A- in which 17.08 w% (5.42 v%) aluminum oxide was dispersed was dispersed. An optical material consisting of 6 was obtained.
<安定性の検証>
紫外線硬化樹脂A−6を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−6−1とする。
紫外線硬化樹脂A−6を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−6−2とする。
<Verification of stability>
A sample obtained by UV-curing the UV-curable resin A-6 at room temperature was prepared in the same manner as the method shown in FIG. The measurement sample is designated as A-6-1.
The ultraviolet curable resin A-6 was heated to 50 ° C., and an ultraviolet curable sample was prepared by the same method as that shown in FIG. The measurement sample is designated as A-6-2.
測定サンプルA−6−1,A−6−2を分光光度計U4000にて散乱率を測定した。その結果を図12に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.3%であり、測定サンプルA−6−1,A−6−2間ではほとんど差がみられない。
The scattering rate of the measurement samples A-6-1 and A-6-2 was measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.3% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-6-1 and A-6-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5504,1.5446,1.5401,1.5378,1.5346)であり、アッペ数(νd=53.34)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5044, 1.5446, 1.5401, 1.5378, 1.5346) and the Abbe number (νd = 53.34).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が25nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 25 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、シクロヘキサンカルボン酸ビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−7からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% Dispersant) After mixing 22.70 g, after removing xylene with an evaporator, 0.64 g of vinylcyclohexanecarboxylate was mixed, and UV curing resin A in which 17.08 w% (5.42 v%) aluminum oxide was dispersed An optical material consisting of -7 was obtained.
<安定性の検証>
紫外線硬化樹脂A−7を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−7−1とする。
紫外線硬化樹脂A−7を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−7−2とする。
<Verification of stability>
A sample obtained by ultraviolet-curing the ultraviolet-curing resin A-7 at room temperature by the same method as shown in FIG. The measurement sample is designated as A-7-1.
The ultraviolet curable resin A-7 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is A-7-2.
測定サンプルA−7−1,A−7−2を分光光度計U4000にて散乱率を測定した。その結果を図13に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.2%であり、測定サンプルA−7−1,A−7−2間ではほとんど差がみられない。
The scattering rate of the measurement samples A-7-1 and A-7-2 was measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.2% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-7-1 and A-7-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5510,1.5454,1.5407,1.5383,1.5352)であり、アッペ数(νd=53.12)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5510, 1.5454, 1.5407, 1.5383, 1.5352) and the Abbe number (νd = 53.12).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が20nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 20 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化アルミニウム微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)22.70gを混合した後、エバポレーターでキシレンを除去した後、桂皮酸ビニル0.64gを混合し、17.08w%(5.42v%)の酸化アルミニウムが分散した紫外線硬化樹脂A−8からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, aluminum oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% Dispersant) After mixing 22.70 g, after removing xylene with an evaporator, 0.64 g of vinyl cinnamate was mixed, and UV curing resin A- in which 17.08 w% (5.42 v%) of aluminum oxide was dispersed was dispersed. An optical material consisting of 8 was obtained.
<安定性の検証>
紫外線硬化樹脂A−8を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−8−1とする。
紫外線硬化樹脂A−8を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをA−8−2とする。
<Verification of stability>
A sample obtained by curing the ultraviolet curable resin A-8 at room temperature by the same method as that shown in FIG. The measurement sample is designated as A-8-1.
The ultraviolet curable resin A-8 was heated to 50 ° C., and an ultraviolet cured sample was prepared by the same method as that shown in FIG. The measurement sample is A-8-2.
測定サンプルA−8−1,A−8−2を分光光度計U4000にて散乱率を測定した。その結果を図14に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで1.3%であり、測定サンプルA−8−1,A−8−2間ではほとんど差がみられない。
The scattering rates of the measurement samples A-8-1 and A-8-2 were measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 1.3% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples A-8-1 and A-8-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5523,1.5465,1.5421,1.5396,1.5365)であり、アッペ数(νd=53.52)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5523, 1.5465, 1.5421, 1.5396, 1.5365) and the Abbe number (νd = 53.52).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が15nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 15 nm.
トリシクロデカンジメタノールアクリレート98重量部と、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン2重量部の混合物を15.31gと、酸化ジリコニア微粒子分散/キシレン溶液(15.00w%酸化ジリコニア、1.83w%分散剤)34.38gを混合した後、エバポレーターでキシレンを除去した後、カプリン酸ビニル0.64gを混合し、23.70w%(5.43v%)の酸化ジリコニアが分散した紫外線硬化樹脂Z−1からなる光学材料を得た。 15.31 g of a mixture of 98 parts by weight of tricyclodecane dimethanol acrylate and 2 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone, zirconia oxide fine particle dispersion / xylene solution (15.00 w% zirconia oxide, 1.83 w%) (Dispersant) After mixing 34.38 g, xylene was removed by an evaporator, then 0.64 g of vinyl caprate was mixed, and UV curable resin Z- in which 23.70 w% (5.43 v%) of zirconia oxide was dispersed was dispersed. An optical material consisting of 1 was obtained.
酸化ジリコニア微粒子分散/キシレン溶液(15.04w%酸化アルミニウム、2.76w%分散剤)中の粒度分布を粒度分布計(DT−1200: Dispersion Technology社製)で測定した。その平均粒径は27nmであった。 The particle size distribution in the zirconia oxide fine particle dispersion / xylene solution (15.04 w% aluminum oxide, 2.76 w% dispersant) was measured with a particle size distribution meter (DT-1200: manufactured by Dispersion Technology). The average particle size was 27 nm.
<安定性の検証>
紫外線硬化樹脂Z−1を、室温で、実施例1の図1に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをZ−1−1とする。
紫外線硬化樹脂Z−1を50℃に加熱し、実施例1の図2に示す方法と同様の方法で、紫外線硬化したサンプルを作成した。その測定サンプルをZ−1−2とする。
<Verification of stability>
A sample obtained by ultraviolet-curing the ultraviolet-curing resin Z-1 at room temperature by the same method as that shown in FIG. Let the measurement sample be Z-1-1.
The ultraviolet curable resin Z-1 was heated to 50 ° C., and an ultraviolet cured sample was prepared in the same manner as the method shown in FIG. Let the measurement sample be Z-1-2.
測定サンプルZ−1−1,Z−1−2を分光光度計U4000にて散乱率を測定した。その結果を図15に示す。測定サンプルは膜厚が若干異なる為、前記式(1)にて10μmの膜厚に換算して比較した。
散乱率は測定波長400nmで2.6%であり、測定サンプルZ−1−1,Z−1−2間ではほとんど差がみられない。
The scattering rate of the measurement samples Z-1-1 and Z-1-2 was measured with a spectrophotometer U4000. The result is shown in FIG. Since the film thickness of the measurement sample is slightly different, the film thickness was converted into a film thickness of 10 μm using the formula (1) and compared.
The scattering rate is 2.6% at a measurement wavelength of 400 nm, and there is almost no difference between the measurement samples Z-1-1 and Z-1-2.
<屈折率の測定>
屈折率(ng,nF,ne,nd,nC)を屈折計にて測定した。その結果を表1に示す。屈折率(ng,nF,ne,nd,nC=1.5630,1.5570,1.5518,1.5492,1.5460)であり、アッペ数(νd=50.31)であった。
<Measurement of refractive index>
The refractive index (ng, nF, ne, nd, nC) was measured with a refractometer. The results are shown in Table 1. The refractive index (ng, nF, ne, nd, nC = 1.5630, 1.5570, 1.5518, 1.5492, 1.5460) and the Abbe number (νd = 50.31).
<形状安定性(面ゆがみ)>
図4に示す様に15μmの格子形状で成形し、その転写性をNew view5000(zygo社製)で測定した。その結果を表2に示す。成形面の形状転写性はよく、形状変形(面ゆがみ)が15nmである。
<Shape stability (surface distortion)>
As shown in FIG. 4, it was molded in a 15 μm lattice shape, and its transferability was measured with New view 5000 (manufactured by zygo). The results are shown in Table 2. The shape transferability of the molding surface is good, and the shape deformation (surface distortion) is 15 nm.
実施例1の紫外線硬化樹脂A−1を、図4に示す方法により、格子の高さ(段差)が11.8μmの格子形状に成形した。この格子形状のサンプルをA−1−3とする。
図16に示す様に、格子形状のサンプルA−1−3(符号32)を形成した基板33の格子形状サンプルA−1−3上に、フッ素系のモノマーに11.7v%ITOナノ微粒子を分散した材料(硬化後の屈折率nd=1.4886、νd=20.17、θgF=0.41)31を滴下し、その上から表面にカップリング処理4が施されているガラス基板30を載置した。基板30を通してフッ素系のモノマー材料31に紫外線50J/cm2を照射して硬化し、多層回折光学素子A−1−4(符号34)を作成した。
The ultraviolet curable resin A-1 of Example 1 was formed into a lattice shape having a lattice height (step) of 11.8 μm by the method shown in FIG. This lattice-shaped sample is designated as A-1-3.
As shown in FIG. 16, 11.7 v% ITO nanoparticles are added to a fluorine-based monomer on a lattice-shaped sample A-1-3 of a
図17に多層回折光学素子A−1−4の回折効率は同素子の設計次数の回折光と素子と同等の樹脂厚の素子(回折格子なし)の透過率と比較することにより算出した結果を示す。可視域において,回折効率が99.8%以上となっていることがわかる。 In FIG. 17, the diffraction efficiency of the multilayer diffractive optical element A-1-4 is calculated by comparing the diffracted light of the designed order of the element with the transmittance of the element (without the diffraction grating) having the same resin thickness as the element. Show. It can be seen that the diffraction efficiency is 99.8% or more in the visible region.
本発明のエネルギー硬化光学材料は、散乱率および形状安定性が良好なので、回折光学素子、レプリカ成形による非球面レンズ等の光学素子に利用することができる。 Since the energy curable optical material of the present invention has good scattering rate and shape stability, it can be used for optical elements such as diffractive optical elements and replica-molded aspherical lenses.
1、2 基板
3 紫外線硬化樹脂
4 カップリング処理
6、16、26 紫外線樹脂硬化膜
13 ホットプレート
21 基板
23 金型
30、33 基板
31 11.7v%ITOナノ微粒子分散フッ素モノマー材料
32 格子形状サンプルA−1−3
34 多層回折光学素子A−1−4
1, 2
34 Multilayer diffractive optical element A-1-4
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095296A JP2010242033A (en) | 2009-04-09 | 2009-04-09 | Energy-curable optical material and optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095296A JP2010242033A (en) | 2009-04-09 | 2009-04-09 | Energy-curable optical material and optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010242033A true JP2010242033A (en) | 2010-10-28 |
Family
ID=43095405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009095296A Pending JP2010242033A (en) | 2009-04-09 | 2009-04-09 | Energy-curable optical material and optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010242033A (en) |
-
2009
- 2009-04-09 JP JP2009095296A patent/JP2010242033A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618510B2 (en) | Optical material and optical element | |
JP4847351B2 (en) | Diffractive optical element and diffraction grating using the same | |
US6844950B2 (en) | Microstructure-bearing articles of high refractive index | |
US8133428B2 (en) | Photocurable composition, process for producing fine patterned product and optical element | |
JP5885585B2 (en) | Curable composition and cured product thereof | |
JP6921005B2 (en) | Anti-reflective film and display device | |
JP5361613B2 (en) | Optical material and optical element | |
JP2020079958A (en) | Antireflection film and display device | |
KR101748025B1 (en) | High reflective organic-inorganic hybrid coating composition and its manufacturing method for prism film using soft mold | |
JP2018533065A (en) | Antireflection film and display device | |
TWI784116B (en) | Photocurable composition for imprint | |
JP2013053201A (en) | Organic-inorganic composite composition, organic-inorganic composite material, optical element, and laminated diffractive optical element | |
CN111183164A (en) | Curable composition and cured product | |
WO2012114986A1 (en) | Curable composition and cured substance thereof | |
JP2006220689A (en) | Optical material, optical element and its molding method, diffractive optical element, and diffractive optical element and optical system | |
TWI682809B (en) | Zirconium oxide particle dispersion composition and its hardened product | |
JP2006276195A (en) | Uv-curable resin composition, and optical element, laminated diffractive optical element and optical system molded by the same | |
JP2004204206A (en) | Photocurable composition and its manufacturing method, as well as cured product | |
CN110483700B (en) | Cured product, and optical element, diffractive optical element, optical instrument, and imaging device using same | |
JP2010242033A (en) | Energy-curable optical material and optical element | |
US11603457B2 (en) | Curable composition, cured product, and lens unit | |
JP2006052325A (en) | Optical material composition and optical material | |
JP2006342254A (en) | Method for producing photo-setting resin composition | |
CN113655554B (en) | Antiglare film and polarizing plate having the same | |
JP2006215295A (en) | Composition for optical material and optical material |