JP2006349590A - Three-dimensional measuring device, three-dimensional measuring method and three-dimensional measuring program - Google Patents

Three-dimensional measuring device, three-dimensional measuring method and three-dimensional measuring program Download PDF

Info

Publication number
JP2006349590A
JP2006349590A JP2005178601A JP2005178601A JP2006349590A JP 2006349590 A JP2006349590 A JP 2006349590A JP 2005178601 A JP2005178601 A JP 2005178601A JP 2005178601 A JP2005178601 A JP 2005178601A JP 2006349590 A JP2006349590 A JP 2006349590A
Authority
JP
Japan
Prior art keywords
functions
function
light intensity
value
cosine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005178601A
Other languages
Japanese (ja)
Other versions
JP4674121B2 (en
Inventor
Hisatoshi Fujiwara
久利 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005178601A priority Critical patent/JP4674121B2/en
Publication of JP2006349590A publication Critical patent/JP2006349590A/en
Application granted granted Critical
Publication of JP4674121B2 publication Critical patent/JP4674121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional measuring device, capable of removing harmonic waves contained in a deformed lattice fringe image by projecting a binary pattern to a measuring object. <P>SOLUTION: This device comprises: an imaging device 350 taking a plurality of deformed lattice fringe images formed by projecting the binary pattern of contrast to the measuring object; a light intensity acquisition part 310 acquiring a plurality of light intensity functions from the plurality of deformed lattice fringe images; a cosine function calculation part 412 calculating a plurality of cosine functions; a sine function calculation part 421 calculating a plurality of sine functions by multiplying the plurality of light intensity functions by a trigonometric function with a phase difference obtained by subtracting a value of moire phase from 90°; a harmonic wave removing part 411 calculating a real function that is the sum of the plurality of cosine functions and an imaginary function that is the sum of the plurality of sine functions and removing harmonic waves contained in a plurality of sine and cosine functions; and a height calculation part 316 calculating the height of the measuring object from moire phases extracted from the imaginary function and the real function. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は3次元計測技術に関し、特に物体表面の高さを計測する3次元計測装置、3次元計測方法及び3次元計測プログラムに関する。   The present invention relates to a three-dimensional measurement technique, and more particularly to a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program for measuring the height of an object surface.

被測定物体の三次元形状を測定する手法に格子投影型モアレ法がある。「格子投影型モアレ法」においては、まず被測定物体に正弦状の透過率分布を有する格子パターンを投影する(例えば非特許文献1参照。)。さらに格子パターンを被測定物体に投影して得られる変形格子像に対して計算機内の仮想的な格子モデルを乗算することにより、モアレを生成する(例えば非特許文献2参照。)。しかし、正弦状の透過率分布を有する格子パターンをマスク基板上に形成するのは困難であり、製造コストも高い。そのため、矩形状の透過率分布を有する格子パターン(以下、バイナリパターン)が設けられたマスク基板を利用する簡易な格子投影型モアレ法が多く採用されている。バイナリパターンをマスク基板上に製造するのは容易であり、製造コストも低い。しかし、格子投影型モアレ法は正弦状の透過率分布を有する格子パターンの投影を前提としているため、バイナリパターンを被測定物体に投影すると変形格子像が高調波を含むため測定誤差が生じるという問題があった。
吉澤徹、「格子パターン投影方式三次元計測システム」、三次元光学、第1巻、光技術コミュニケーションズ、1993年、p.83−99 加藤純一、山口一郎、「位相シフト電子モアレを用いた縞画像の実時間処理」、センサ技術、第12巻、第7号、1992年、p.39−44
There is a lattice projection type moire method as a method for measuring the three-dimensional shape of an object to be measured. In the “grid projection type moire method”, first, a lattice pattern having a sinusoidal transmittance distribution is projected onto an object to be measured (see, for example, Non-Patent Document 1). Further, a moire is generated by multiplying the deformed lattice image obtained by projecting the lattice pattern onto the object to be measured by a virtual lattice model in the computer (see, for example, Non-Patent Document 2). However, it is difficult to form a lattice pattern having a sinusoidal transmittance distribution on a mask substrate, and the manufacturing cost is high. Therefore, a simple lattice projection type moire method using a mask substrate provided with a lattice pattern (hereinafter referred to as a binary pattern) having a rectangular transmittance distribution is often employed. It is easy to manufacture a binary pattern on a mask substrate, and the manufacturing cost is low. However, since the grating projection type moire method is premised on the projection of a grating pattern having a sinusoidal transmittance distribution, if a binary pattern is projected onto an object to be measured, the deformation grating image contains harmonics, resulting in a measurement error. was there.
Toru Yoshizawa, “Lattice pattern projection type 3D measurement system”, 3D optics, Volume 1, Optical Technology Communications, 1993, p. 83-99 Junichi Kato and Ichiro Yamaguchi, “Real-time processing of fringe images using phase shift electronic moire”, Sensor Technology, Vol. 12, No. 7, 1992, p. 39-44

バイナリパターンを被測定物体に投影することにより変形格子像に含まれる高調波に基づく測定誤差を除去可能な3次元計測装置、3次元計測方法及び3次元計測プログラムを提供する。   Provided are a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program capable of removing measurement errors based on harmonics contained in a deformed lattice image by projecting a binary pattern onto a measurement object.

上記目的を達成するために本発明の第1の特徴は、(イ)被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像する撮像装置と、(ロ)複数の変形格子像から複数の光強度関数を各々取得する光強度取得部と、(ハ)被測定物体が複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、複数の光強度関数のそれぞれに対し第1の値の位相差がある第1の三角関数を複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出する余弦関数算出部と、(ニ)90度から第1の値を差し引いた値を第2の値とし、複数の光強度関数のそれぞれに対し第2の値の位相差がある第2の三角関数を複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出する正弦関数算出部と、(ホ)複数の余弦関数の和である実部関数及び複数の正弦関数の和である虚部関数を算出することにより、複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去する高調波除去部と、(ヘ)虚部関数及び実部関数から抽出されるモアレ位相に基づいて被測定物体の高さを算出する高さ算出部とを備える3次元計測装置であることを要旨とする。   In order to achieve the above object, the first feature of the present invention is: (a) an imaging device that captures a plurality of deformed grid images formed by projecting a binary pattern onto an object to be measured; and (b) a plurality of deformations. A light intensity acquisition unit for acquiring a plurality of light intensity functions from the lattice image, and (c) a moire phase value given to each of the plurality of deformed lattice images by the measured object as a first value, and a plurality of light intensity functions. A cosine function calculator for calculating a plurality of cosine functions by multiplying each of the plurality of light intensity functions by a first trigonometric function having a first value phase difference for each of the The second value is obtained by subtracting the value of, and the plurality of light intensity functions are multiplied by a second trigonometric function having a phase difference of the second value for each of the plurality of light intensity functions. A sine function calculator for calculating the function and (e) the sum of multiple cosine functions Calculating a imaginary part function that is the sum of a real part function and a plurality of sine functions, thereby removing a harmonic contained in each of the plurality of cosine functions and the sine function; and (f) an imaginary part function. And a three-dimensional measurement apparatus including a height calculation unit that calculates the height of the measurement object based on the moire phase extracted from the real part function.

本発明の第2の特徴は、(イ)被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像するステップと、(ロ)複数の変形格子像から複数の光強度関数を各々取得するステップと、(ハ)被測定物体が複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、複数の光強度関数のそれぞれに対し第1の値の位相差がある第1の三角関数を複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出するステップと、(ニ)90度から第1の値を差し引いた値を第2の値とし、複数の光強度関数のそれぞれに対し第2の値の位相差がある第2の三角関数を複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出するステップと、(ホ)複数の余弦関数の和である実部関数及び複数の正弦関数の和である虚部関数を算出することにより、複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去するステップと、(ヘ)虚部関数及び実部関数から抽出されるモアレ位相に基づいて被測定物体の高さを算出するステップとを含む3次元計測方法であることを要旨とする。   The second feature of the present invention is that (a) imaging a plurality of deformed lattice images formed by projecting a binary pattern onto an object to be measured, and (b) a plurality of light intensity functions from the plurality of deformed lattice images. And (c) a moiré phase value given to each of the plurality of deformed lattice images by the measured object is a first value, and a phase difference of the first value for each of the plurality of light intensity functions Multiplying each of the plurality of light intensity functions by a first trigonometric function to calculate a plurality of cosine functions, and (d) a value obtained by subtracting the first value from 90 degrees is set as the second value. Multiplying each of the plurality of light intensity functions by a second trigonometric function having a phase difference of a second value for each of the light intensity functions, and (e) a plurality of cosine functions. Real part function that is the sum of imaginary parts and imaginary part that is the sum of multiple sine functions Calculating the function, removing harmonics included in each of the cosine function and sine function, and (f) the moiré phase extracted from the imaginary part function and the real part function, The gist of the present invention is a three-dimensional measurement method including a step of calculating a height.

本発明の第3の特徴は、被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、3次元計測装置に、(イ)被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像する手順と、(ロ)複数の変形格子像から複数の光強度関数を各々取得する手順と、(ハ)被測定物体が複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、複数の光強度関数のそれぞれに対し第1の値の位相差がある第1の三角関数を複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出する手順と、(ニ)90度から第1の値を差し引いた値を第2の値とし、複数の光強度関数のそれぞれに対し第2の値の位相差がある第2の三角関数を複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出する手順と、(ホ)複数の余弦関数の和である実部関数及び複数の正弦関数の和である虚部関数を算出することにより、複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去する手順と、(ヘ)虚部関数及び実部関数から抽出されるモアレ位相に基づいて被測定物体の高さを算出する手順とを実行させる3次元計測プログラムであることを要旨とする。   A third feature of the present invention is a three-dimensional measurement program for driving and controlling a three-dimensional measurement apparatus that measures the surface shape of the object to be measured. The three-dimensional measurement apparatus uses (a) a binary pattern on the object to be measured. (B) a procedure for acquiring a plurality of light intensity functions from the plurality of modified grid images, and (c) a plurality of modified grid images of the object to be measured. And the first trigonometric function having a phase difference of the first value for each of the plurality of light intensity functions is multiplied by each of the plurality of light intensity functions. And (d) a value obtained by subtracting the first value from 90 degrees is set as the second value, and a second value having a phase difference of the second value with respect to each of the plurality of light intensity functions. Is multiplied by each of the multiple light intensity functions to obtain multiple sine functions. Included in each of the cosine function and sine function by calculating the number and (e) calculating the real part function that is the sum of the cosine functions and the imaginary part function that is the sum of the sine functions. And (f) a three-dimensional measurement program that executes a procedure for calculating the height of the object to be measured based on the moire phase extracted from the imaginary part function and the real part function. The gist.

本発明によれば、バイナリパターンを被測定物体に投影することにより変形格子像に含まれる高調波に基づく測定誤差を除去可能な3次元計測装置、3次元計測方法及び3次元計測プログラムを提供可能である。
According to the present invention, it is possible to provide a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program capable of removing a measurement error based on harmonics included in a deformed lattice image by projecting a binary pattern onto a measurement object. It is.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本発明の実施の形態に係る3次元計測装置は、図1に示すように、被測定物体に周期的な明暗からなるバイナリパターンを投影して形成される複数の変形格子像を撮像する撮像装置350、及び撮像装置350に接続された中央処理装置(CPU)400を有する。CPU400は、光強度取得部310、余弦関数算出部412、正弦関数算出部421、高調波除去部411、及び高さ算出部316を有する。光強度取得部310は、複複数の変形格子像から複数の光強度関数を各々取得する。余弦関数算出部412は、被測定物体が複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、複数の光強度関数のそれぞれに対し第1の値の位相差がある第1の三角関数を複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出する。正弦関数算出部421は、90度から第1の値を差し引いた値を第2の値とし、複数の光強度関数のそれぞれに対し第2の値の位相差がある第2の三角関数を複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出する。高調波除去部411は、複数の余弦関数の和である実部関数及び複数の正弦関数の和である虚部関数を算出することにより、複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去する。高さ算出部316は、虚部関数及び実部関数から抽出されるモアレ位相に基づいて被測定物体の高さを算出する。   As shown in FIG. 1, the three-dimensional measuring apparatus according to the embodiment of the present invention captures a plurality of deformed lattice images formed by projecting a binary pattern consisting of periodic light and dark on an object to be measured. 350 and a central processing unit (CPU) 400 connected to the imaging device 350. The CPU 400 includes a light intensity acquisition unit 310, a cosine function calculation unit 412, a sine function calculation unit 421, a harmonic removal unit 411, and a height calculation unit 316. The light intensity acquisition unit 310 acquires a plurality of light intensity functions from a plurality of modified lattice images. The cosine function calculating unit 412 sets the moire phase value given to each of the plurality of deformed lattice images by the object to be measured as the first value, and has a first value phase difference with respect to each of the plurality of light intensity functions. A plurality of cosine functions are calculated by multiplying each of the plurality of light intensity functions by one trigonometric function. The sine function calculation unit 421 sets the value obtained by subtracting the first value from 90 degrees as the second value, and sets a plurality of second trigonometric functions having a phase difference of the second value for each of the plurality of light intensity functions. A plurality of sine functions are calculated by multiplying each of the light intensity functions. The harmonic removal unit 411 calculates a real part function that is a sum of a plurality of cosine functions and an imaginary part function that is a sum of a plurality of sine functions, thereby generating a harmonic included in each of the plurality of cosine functions and the sine function. Remove. The height calculation unit 316 calculates the height of the object to be measured based on the moire phase extracted from the imaginary part function and the real part function.

撮像装置350は、図2に示すように、測定対象である被測定物体5に光を照射する光源10、光源10より照射された光を平行光にする第1のレンズ11、平行光が照射される格子3、格子3を透過した光が照射される被測定物体5を搭載するステージ80、被測定物体5からの反射光を集光する第2のレンズ21、集光された反射光の焦点近傍に配置されるスペイシャルフィルタ23、スペイシャルフィルタ23を通過した反射光を受けるイメージセンサ20、ステージ80の配置位置を移動させるステージ駆動部42及び格子3の配置位置を移動させる格子駆動部15を備える。   As shown in FIG. 2, the imaging device 350 includes a light source 10 that irradiates light to the measurement object 5 to be measured, a first lens 11 that converts the light emitted from the light source 10 into parallel light, and parallel light irradiation. Grating 3, the stage 80 on which the object 5 to be measured irradiated with the light transmitted through the grating 3, the second lens 21 for condensing the reflected light from the object 5 to be measured, and the reflected light collected. Spatial filter 23 arranged in the vicinity of the focal point, image sensor 20 that receives reflected light that has passed through spatial filter 23, stage drive unit 42 that moves the arrangement position of stage 80, and grating drive unit that moves the arrangement position of grating 3 With 15.

ここで光源10は、蛍光放電管、低圧水銀灯、キセノンランプ等の線光源等が使用可能である。第1のレンズ11はシリンドリカルレンズ等が使用可能であり、第2のレンズ21はテレセントリックレンズ等が使用可能である。格子3の表面を模式的に示したのが図3(a)であり、格子3は図3(b)に示すようには周期的な矩形状の透過率分布を有する。光源10より格子3に光を照射することにより、被測定物体5の表面には、ピッチPを有する周期的な明暗からなるバイナリパターンが投影される。イメージセンサ20は電荷結合素子(CCD)カメラ等が使用可能であり、CCDカメラの光電変換機能により、被測定物体5からの反射光が形成する変形格子像の明暗を電圧の大小に変換する。さらにイメージセンサ20は、縦(x)方向及び横(y)方向にマトリックス状に配置された複数の画素から構成される変形格子像のデジタル画像を図1に示す変形格子像入力部309へ伝達する。   Here, a linear light source such as a fluorescent discharge tube, a low-pressure mercury lamp, or a xenon lamp can be used as the light source 10. A cylindrical lens or the like can be used as the first lens 11, and a telecentric lens or the like can be used as the second lens 21. FIG. 3A schematically shows the surface of the grating 3, and the grating 3 has a periodic rectangular transmittance distribution as shown in FIG. 3B. By irradiating the grating 3 with light from the light source 10, a binary pattern consisting of periodic light and dark having a pitch P is projected onto the surface of the object 5 to be measured. A charge coupled device (CCD) camera or the like can be used as the image sensor 20, and the light and darkness of the deformed lattice image formed by the reflected light from the object to be measured 5 is converted into a voltage level by the photoelectric conversion function of the CCD camera. Further, the image sensor 20 transmits a digital image of a deformed lattice image composed of a plurality of pixels arranged in a matrix in the vertical (x) direction and the horizontal (y) direction to the deformed lattice image input unit 309 shown in FIG. To do.

CPU400にはさらに 撮像装置制御部200及び変形格子像入力部309が含まれる。撮像装置制御部200は、制御信号等を撮像装置350に供給することにより、図2に示すステージ駆動部42を制御し、ステージ80の配置位置を制御する。同様に格子駆動部15を制御し、格子3の配置位置を格子3の周期パターン方向に移動させる。さらに撮像装置制御部200は光源10の光強度の調整、イメージセンサ20のシャッタースピード等の制御を行う。   The CPU 400 further includes an imaging device control unit 200 and a modified grid image input unit 309. The imaging device control unit 200 controls the stage driving unit 42 illustrated in FIG. 2 and the arrangement position of the stage 80 by supplying a control signal and the like to the imaging device 350. Similarly, the grating driving unit 15 is controlled to move the arrangement position of the grating 3 in the periodic pattern direction of the grating 3. Further, the imaging device control unit 200 performs adjustment of the light intensity of the light source 10, control of the shutter speed of the image sensor 20, and the like.

図1に示す変形格子像入力部309は、所定の位置に配置された図2に示す格子3を光源10で照射し、イメージセンサ20で撮像された被測定物体5のデジタル画像を第1の変形格子像と定義する。また、第1の変形格子像の撮影位置に対し、格子駆動部15により格子3を移動させて、被測定物体5の表面の明暗のパターンをピッチPの八分の一の距離を移動させ撮像したデジタル画像を第2の変形格子像と定義する。以下同様に、被測定物体5の表面の明暗のパターンを、ピッチPの八分の一の距離を順次移動させ撮像したデジタル画像を第3の変形格子像、第4の変形格子像、第5の変形格子像、第6の変形格子像、第7の変形格子像、及び第8の変形格子像とそれぞれ定義する。   The deformed grid image input unit 309 shown in FIG. 1 irradiates the grid 3 shown in FIG. 2 arranged at a predetermined position with the light source 10, and the digital image of the measured object 5 captured by the image sensor 20 is a first image This is defined as a deformed lattice image. In addition, the grating 3 is moved by the grating driving unit 15 with respect to the shooting position of the first deformed grating image, and the light and dark pattern on the surface of the object to be measured 5 is moved by an eighth distance of the pitch P. This digital image is defined as a second deformed lattice image. In the same manner, a digital image obtained by sequentially moving the light / dark pattern on the surface of the object to be measured 5 by moving an eighth distance of the pitch P, a third modified lattice image, a fourth modified lattice image, a fifth Are defined as a modified lattice image, a sixth modified lattice image, a seventh modified lattice image, and an eighth modified lattice image, respectively.

図1に示す光強度取得部310は、マトリックス状に配置された複数の画素から構成される第1乃至第8の変形格子像のそれぞれから、x方向に1列に並ぶ複数の画素を抽出する。ここで、各画素は光強度のデータを有しており、第1の変形格子像から抽出される座標xにおける画素の第1の光強度関数I1(x)は下記(1)式で表される。以下同様に、第2の変形格子像から抽出される座標xにおける画素の第2の光強度関数I2(x)は下記(2)式で表され、第3の変形格子像から抽出される座標xにおける画素の第3の光強度関数I3(x)は下記(3)式で表され、第4の変形格子像から抽出される座標xにおける画素の第4の光強度関数I4(x)は下記(4)式で表される。また、第5の変形格子像から抽出される座標xにおける画素の第5の光強度関数I5(x)は下記(5)式で表され、第6の変形格子像から抽出される座標xにおける画素の第6の光強度関数I6(x)は下記(6)式で表され、第7の変形格子像から抽出される座標xにおける画素の第7の光強度関数I7(x)は下記(7)式で表され、第8の変形格子像から抽出される座標xにおける画素の第8の光強度関数I8(x)は下記(8)式で表される。 The light intensity acquisition unit 310 illustrated in FIG. 1 extracts a plurality of pixels arranged in one column in the x direction from each of the first to eighth modified lattice images formed of a plurality of pixels arranged in a matrix. . Here, each pixel has light intensity data, and the first light intensity function I 1 (x) of the pixel at the coordinate x extracted from the first deformed lattice image is expressed by the following equation (1). Is done. Similarly, the second light intensity function I 2 (x) of the pixel at the coordinate x extracted from the second modified lattice image is expressed by the following equation (2) and extracted from the third modified lattice image: The third light intensity function I 3 (x) of the pixel at the coordinate x is expressed by the following equation (3), and the fourth light intensity function I 4 (4) of the pixel at the coordinate x extracted from the fourth modified lattice image. x) is expressed by the following equation (4). Further, the fifth light intensity function I 5 (x) of the pixel at the coordinate x extracted from the fifth modified lattice image is expressed by the following equation (5), and the coordinate x extracted from the sixth modified lattice image: The sixth light intensity function I 6 (x) of the pixel at is expressed by the following equation (6), and the seventh light intensity function I 7 (x) of the pixel at the coordinate x extracted from the seventh modified lattice image Is represented by the following equation (7), and the eighth light intensity function I 8 (x) of the pixel at the coordinate x extracted from the eighth modified lattice image is represented by the following equation (8).

I1(x) = A×{cos(2πx / P +φ(x))- (1/3)cos(3(2πx / P +φ(x))}+ B …(1)
I2(x)
=A×{cos(2πx /P+φ(x)+π/4)- (1/3)cos(3(2πx /P+φ(x)+π/4)}+B …(2)
I3(x)= A×{cos(2πx /P+φ(x)+π/2)- (1/3)cos(3(2πx / P +φ(x)+π/2)}+ B
= - A×sin(2πx / P +φ(x)) - (A/3)sin(3(2πx / P +φ(x)) + B …(3)
I4(x)
= A×{cos(2πx / P +φ(x)+ 3π/4)- (1/3)cos(3(2πx / P +φ(x)+3π/4)}+ B
= - A×sin(2πx/P+φ(x)+π/4)- (A/3)sin(3(2πx/ P +φ(x)+π/4)+ B …(4)
I5(x)= A×{cos(2πx / P +φ(x)+ π)- (1/3)cos(3(2πx / P +φ(x)+π)}+ B
= - A×cos(2πx / P +φ(x))+ (A/3)cos(3(2πx / P +φ(x))+ B …(5)
I6(x)
= A×{cos(2πx / P +φ(x)+ 5π/4)- (1/3)cos(3(2πx / P +φ(x)+5π/4)}+ B
= - A×cos(2πx/P+φ(x)+π/4)+ (A/3)cos(3(2πx/P +φ(x)+π/4)+ B …(6)
I7(x)
= A×{cos(2πx / P +φ(x)+ 3π/2)- (1/3)cos(3(2πx / P +φ(x)+3π/2)}+ B
= A×sin(2πx / P +φ(x))+ (A/3)sin(3(2πx / P +φ(x))+ B …(7)
I8(x)
= A×{cos(2πx / P +φ(x)+ 7π/4)- (1/3)cos(3(2πx / P +φ(x)+7π/4)}+ B
= A×sin(2πx/ P +φ(x)+π/4)+ (A/3)sin(3(2πx/P +φ(x)+π/4)+ B …(8)
ここで、A、Bは定数であり、Aは振幅を、Bはバイアス項を示す。Aの値は図2に示す第1及び第2のレンズ11, 21等の光学系や、被測定物体5の表面の反射率によって定まる。Bの値は、レンズ等の光学系や、被測定物体5の表面の反射率の他に、迷光等の要因によって定まる。φ(x)は被測定物体5が第1乃至第8の変形格子像のそれぞれに与えるモアレ位相を示す。なお(1)乃至(8)式においては、3次の高調波までを表している。例えば(1)式においては、1次の高調波A cos(2πx / P +φ(x))と、3次の高調波- (A/3)cos(3(2πx / P +φ(x))とを含んでいる。
I 1 (x) = A × {cos (2πx / P + φ (x))-(1/3) cos (3 (2πx / P + φ (x))} + B… (1)
I 2 (x)
= A × {cos (2πx / P + φ (x) + π / 4)-(1/3) cos (3 (2πx / P + φ (x) + π / 4)} + B (2)
I 3 (x) = A × {cos (2πx / P + φ (x) + π / 2)-(1/3) cos (3 (2πx / P + φ (x) + π / 2)} + B
=-A × sin (2πx / P + φ (x))-(A / 3) sin (3 (2πx / P + φ (x)) + B… (3)
I 4 (x)
= A × {cos (2πx / P + φ (x) + 3π / 4)-(1/3) cos (3 (2πx / P + φ (x) + 3π / 4)} + B
=-A × sin (2πx / P + φ (x) + π / 4)-(A / 3) sin (3 (2πx / P + φ (x) + π / 4) + B… (4)
I 5 (x) = A × {cos (2πx / P + φ (x) + π)-(1/3) cos (3 (2πx / P + φ (x) + π)} + B
=-A × cos (2πx / P + φ (x)) + (A / 3) cos (3 (2πx / P + φ (x)) + B… (5)
I 6 (x)
= A × {cos (2πx / P + φ (x) + 5π / 4)-(1/3) cos (3 (2πx / P + φ (x) + 5π / 4)} + B
=-A × cos (2πx / P + φ (x) + π / 4) + (A / 3) cos (3 (2πx / P + φ (x) + π / 4) + B… (6)
I 7 (x)
= A × {cos (2πx / P + φ (x) + 3π / 2)-(1/3) cos (3 (2πx / P + φ (x) + 3π / 2)} + B
= A × sin (2πx / P + φ (x)) + (A / 3) sin (3 (2πx / P + φ (x)) + B… (7)
I 8 (x)
= A × {cos (2πx / P + φ (x) + 7π / 4)-(1/3) cos (3 (2πx / P + φ (x) + 7π / 4)} + B
= A × sin (2πx / P + φ (x) + π / 4) + (A / 3) sin (3 (2πx / P + φ (x) + π / 4) + B… (8)
Here, A and B are constants, A represents an amplitude, and B represents a bias term. The value A is determined by the optical system such as the first and second lenses 11 and 21 shown in FIG. The value of B is determined by factors such as stray light in addition to the reflectance of the optical system such as a lens and the surface of the object 5 to be measured. φ (x) represents the moiré phase that the measured object 5 gives to each of the first to eighth modified lattice images. In addition, in the formulas (1) to (8), it represents up to the third harmonic. For example, in Equation (1), the first order harmonic A cos (2πx / P + φ (x)) and the third order harmonic-(A / 3) cos (3 (2πx / P + φ (x)) ).

図1に示すメモリ格子記憶装置432は、下記(9)乃至(16)式で表され、それぞれ位相がπ/4ずつ異なる三角関数であるメモリ格子関数S1(x), S2(x), S3(x), S4(x), S5(x), S6(x), S7(x), S8(x)を保存する。 The memory grid storage device 432 shown in FIG. 1 is expressed by the following equations (9) to (16), and each of the memory grid functions S 1 (x), S 2 (x) is a trigonometric function having a phase difference of π / 4. , S 3 (x), S 4 (x), S 5 (x), S 6 (x), S 7 (x), S 8 (x).

S1(x) = cos(2πx / P) …(9)
S2(x) = cos(2πx / P + π/ 4) …(10)
S3(x) = cos(2πx / P + π/ 2) = - sin(2πx / P) …(11)
S4(x) = cos(2πx / P + 3π/ 4) = - sin(2πx / P+ π/ 4) …(12)
S5(x) = cos(2πx / P+ π) = - cos(2πx / P) …(13)
S6(x) = cos(2πx / P + 5π/ 4) = - cos(2πx / P + π/ 4) …(14)
S7(x) = cos(2πx / P + 3π/ 2) = sin(2πx / P) …(15)
S8(x) = cos(2πx / P + 7π/ 4) = sin(2πx / P+ π/ 4) …(16)
余弦関数算出部412は、上記(1)式で与えられる第1の光強度関数I1(x)に対し、上記(9)式で与えられるメモリ格子関数S1(x)を乗ずる下記(17)式に示す計算を行い、第1の余弦関数N1(x)を算出する。また、上記(2)式で与えられる第2の光強度関数I2(x)に対して上記(10)式で与えられるメモリ格子関数S2(x)を乗ずる下記(18)式に示す計算を行い、第2の余弦関数N2(x)を算出する。同様に、上記(3)式で与えられる第3の光強度関数I3(x)に対して上記(11)式で与えられるメモリ格子関数S3(x)を乗ずる下記(19)式に示す計算と、上記(4)式で与えられる第4の光強度関数I4(x)に対して上記(12)式で与えられるメモリ格子関数S4(x)を乗ずる下記(20)式に示す計算と、上記(5)式で与えられる第5の光強度関数I5(x)に対して上記(13)式で与えられるメモリ格子関数S5(x)を乗ずる下記(21)式に示す計算とを行い、余弦関数算出部412は第3の余弦関数N3(x)、第4の余弦関数N4(x)、及び第5の余弦関数N5(x)のそれぞれを算出する。さらに余弦関数算出部412は、上記(6)式で与えられる第6の光強度関数I6(x)に対して上記(14)式で与えられるメモリ格子関数S6(x)を乗ずる下記(22)式に示す計算と、上記(7)式で与えられる第7の光強度関数I7(x)に対して上記(15)式で与えられるメモリ格子関数S7(x)を乗ずる下記(23)式に示す計算と、上記(8)式で与えられる第8の光強度関数I8(x)に対して上記(16)式で与えられるメモリ格子関数S8(x)を乗ずる下記(24)式に示す計算とを行い、第6の余弦関数N6(x)、第7の余弦関数N7(x)、及び第8の余弦関数N8(x)のそれぞれを算出する。
S 1 (x) = cos (2πx / P)… (9)
S 2 (x) = cos (2πx / P + π / 4)… (10)
S 3 (x) = cos (2πx / P + π / 2) =-sin (2πx / P)… (11)
S 4 (x) = cos (2πx / P + 3π / 4) =-sin (2πx / P + π / 4)… (12)
S 5 (x) = cos (2πx / P + π) =-cos (2πx / P)… (13)
S 6 (x) = cos (2πx / P + 5π / 4) =-cos (2πx / P + π / 4)… (14)
S 7 (x) = cos (2πx / P + 3π / 2) = sin (2πx / P)… (15)
S 8 (x) = cos (2πx / P + 7π / 4) = sin (2πx / P + π / 4)… (16)
The cosine function calculation unit 412 multiplies the first light intensity function I 1 (x) given by the above equation (1) by the memory lattice function S 1 (x) given by the above equation (9) (17 ) To calculate the first cosine function N 1 (x). Further, the calculation shown in the following equation (18) is performed by multiplying the second light intensity function I 2 (x) given by the above equation (2) by the memory lattice function S 2 (x) given by the above equation (10). To calculate a second cosine function N 2 (x). Similarly, the following equation (19) is obtained by multiplying the third light intensity function I 3 (x) given by the above equation (3) by the memory lattice function S 3 (x) given by the above equation (11). The calculation and the fourth light intensity function I 4 (x) given by the above formula ( 4 ) are multiplied by the memory lattice function S 4 (x) given by the above formula (12). The calculation and the fifth light intensity function I 5 (x) given by the above formula ( 5 ) are multiplied by the memory lattice function S 5 (x) given by the above formula (13), as shown in the following formula (21) The cosine function calculation unit 412 calculates each of the third cosine function N 3 (x), the fourth cosine function N 4 (x), and the fifth cosine function N 5 (x). Further, the cosine function calculation unit 412 multiplies the sixth light intensity function I 6 (x) given by the above equation (6) by the memory lattice function S 6 (x) given by the above equation (14) ( 22) and the following calculation of multiplying the seventh light intensity function I 7 (x) given by the above formula (7) by the memory lattice function S 7 (x) given by the above formula (15) ( 23) Multiplying the eighth light intensity function I 8 (x) given by equation (8) above by the memory lattice function S 8 (x) given by equation (16) The calculation shown in Equation 24) is performed to calculate each of the sixth cosine function N 6 (x), the seventh cosine function N 7 (x), and the eighth cosine function N 8 (x).

N1(x) = I1(x) × S1(x)
= B ×cos(2πx / P)
+ (A / 2) {cos(4πx / P +φ(x))+ cos(φ(x))}
- (A / 6){cos(8πx / P+ 3φ(x))+cos(4πx / P + 3φ(x))} …(17)
N2(x) = I2(x) × S2(x)
= B ×cos(2πx / P + π/ 4)
+ (A / 2){cos(4πx / P +φ(x)+ π/2)+ cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x)+π)+ cos(4πx / P + 3φ(x)+π/2)} …(18)
N3(x) = I3(x) × S3(x)
= - B ×sin(2πx / P)
- (A / 2) {cos(4πx / P + φ(x))- cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x))- cos(4πx / P + 3φ(x))} …(19)
N4(x) = I4(x) × S4(x)
= - B ×sin(2πx / P + π/ 4)
- (A / 2){cos(4πx / P + φ(x)+ π/2)- cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x)+π) - cos(4πx / P + 3φ(x)+π/2)} …(20)
N5(x) = I5(x) × S5(x)
= - B ×cos(2πx / P)
+ (A / 2) {cos(4πx / P + φ(x)) + cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x)) + cos(4πx / P + 3φ(x))} …(21)
N6(x) = I6(x) × S6(x)
= - B ×cos(2πx / P + π/ 4)
+ (A / 2){cos(4πx / P + φ(x)+ π/2)+ cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x)+π) + cos(4πx / P + 3φ(x)+π/2)} …(22)
N7(x) = I7(x) × S7(x)
= B ×sin(2πx / P)
- (A / 2) {cos(4πx / P + φ(x))- cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x))- cos(4πx / P + 3φ(x))} …(23)
N8(x) = I8(x) × S8(x)
= B ×sin(2πx / P + π/ 4)
- (A / 2) {cos(4πx / P + φ(x)+ π/2)- cos(φ(x))}
- (A / 6){cos(8πx / P + 3φ(x)+π) - cos(4πx / P + 3φ(x)+π/2)} …(24)
以上示したように、余弦関数算出部412は第1乃至第8の光強度関数I1(x)〜I8(x)の第1項に対し、メモリ格子関数S1(x)〜S8(x)のうちφ(x)の位相差がある第1の三角関数を各々乗じることにより、第1乃至第8の余弦関数N1(x)〜N8(x)を算出する。ここで(17)式に示すように、第1の余弦関数N1(x)は、モアレ成分である(A / 2) cosφ(x)と、基本波である1次の高調波B ×cos(2πx / P)、2次の高調波(A / 2) cos(4πx / P +φ(x)) - (A / 6)cos(4πx / P + 3φ(x))、及び4次の高調波- (A / 6)cos(8πx / P+ 3φ(x))とを含んでいる。また(18)乃至(24)式に示すように、第2乃至第8の余弦関数N2(x)〜N8(x)のそれぞれもモアレ成分と、1次、2次、及び4次の高調波とを含んでいる。
N 1 (x) = I 1 (x) × S 1 (x)
= B × cos (2πx / P)
+ (A / 2) {cos (4πx / P + φ (x)) + cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x)) + cos (4πx / P + 3φ (x))}… (17)
N 2 (x) = I 2 (x) × S 2 (x)
= B × cos (2πx / P + π / 4)
+ (A / 2) {cos (4πx / P + φ (x) + π / 2) + cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x) + π) + cos (4πx / P + 3φ (x) + π / 2)}… (18)
N 3 (x) = I 3 (x) × S 3 (x)
=-B × sin (2πx / P)
-(A / 2) {cos (4πx / P + φ (x))-cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x))-cos (4πx / P + 3φ (x))}… (19)
N 4 (x) = I 4 (x) × S 4 (x)
=-B × sin (2πx / P + π / 4)
-(A / 2) {cos (4πx / P + φ (x) + π / 2)-cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x) + π)-cos (4πx / P + 3φ (x) + π / 2)}… (20)
N 5 (x) = I 5 (x) × S 5 (x)
=-B × cos (2πx / P)
+ (A / 2) {cos (4πx / P + φ (x)) + cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x)) + cos (4πx / P + 3φ (x))}… (21)
N 6 (x) = I 6 (x) × S 6 (x)
=-B × cos (2πx / P + π / 4)
+ (A / 2) {cos (4πx / P + φ (x) + π / 2) + cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x) + π) + cos (4πx / P + 3φ (x) + π / 2)}… (22)
N 7 (x) = I 7 (x) × S 7 (x)
= B × sin (2πx / P)
-(A / 2) {cos (4πx / P + φ (x))-cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x))-cos (4πx / P + 3φ (x))}… (23)
N 8 (x) = I 8 (x) × S 8 (x)
= B × sin (2πx / P + π / 4)
-(A / 2) {cos (4πx / P + φ (x) + π / 2)-cos (φ (x))}
-(A / 6) {cos (8πx / P + 3φ (x) + π)-cos (4πx / P + 3φ (x) + π / 2)}… (24)
As described above, the cosine function calculation unit 412 calculates the memory lattice functions S 1 (x) to S 8 for the first term of the first to eighth light intensity functions I 1 (x) to I 8 (x). First to eighth cosine functions N 1 (x) to N 8 (x) are calculated by multiplying the first trigonometric functions having a phase difference of φ (x) among (x). Here, as shown in the equation (17), the first cosine function N 1 (x) is the moire component (A / 2) cosφ (x) and the fundamental harmonic B × cos that is the fundamental wave (2πx / P), 2nd harmonic (A / 2) cos (4πx / P + φ (x))-(A / 6) cos (4πx / P + 3φ (x)), and 4th harmonic Wave- (A / 6) cos (8πx / P + 3φ (x)). Further, as shown in the equations (18) to (24), the second to eighth cosine functions N 2 (x) to N 8 (x) are also moiré components, and the first, second, and fourth order. Including harmonics.

正弦関数算出部421は、上記(1)式で与えられる第1の光強度関数I1(x)に対して上記(11)式で与えられるメモリ格子関数S3(x)を乗ずることにより、下記(25)式に示す第1の正弦関数O1(x)を算出する。また、上記(2)式で与えられる第2の光強度関数I2(x)に対して上記(12)式で与えられるメモリ格子関数S4(x)を乗ずる下記(26)式に示す計算を行い、第2の正弦関数O2(x)を算出する。同様に、上記(3)式で与えられる第3の光強度関数I3(x)に対して上記(13)式で与えられるメモリ格子関数S5(x)を乗ずる下記(27)式に示す計算と、上記(4)式で与えられる第4の光強度関数I4(x)に対して上記(14)式で与えられるメモリ格子関数S6(x)を乗ずる下記(28)式に示す計算と、上記(5)式で与えられる第5の光強度関数I5(x)に対して上記(15)式で与えられるメモリ格子関数S7(x)を乗ずる下記(29)式に示す計算とを行い、正弦関数算出部421は第3の正弦関数O3(x)、第4の正弦関数O4(x)、及び第5の正弦関数O5(x)を算出する。さらに正弦関数算出部421は、上記(6)式で与えられる第6の光強度関数I6(x)に対して上記(16)式で与えられるメモリ格子関数S8(x)を乗ずる下記(30)式に示す計算と、上記(7)式で与えられる第7の光強度関数I7(x)に対して上記(9)式で与えられるメモリ格子関数S1(x)を乗ずる下記(31)式に示す計算と、上記(8)式で与えられる第8の光強度関数I8(x)に対して上記(10)式で与えられるメモリ格子関数S2(x)を乗ずる下記(32)式に示す計算とを行い、第6の正弦関数O6(x)、第7の正弦関数O7(x)、及び第8の正弦関数O8(x)を算出する。:
O1(x) = I1(x) × S3(x)
= - B ×sin(2πx / P)
- (A / 2){sin(4πx / P + φ(x))- sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x))- sin(4πx / P + 3φ(x))} …(25)
O2(x) = I2(x) × S4(x)
= - B ×sin(2πx / P + π/ 4)
- (A / 2){sin(4πx / P + φ(x) + π/ 2)- sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x)+π) - sin(4πx / P + 3φ(x)+π/2)} …(26)
O3(x) = I3(x) × S5(x)
= - B ×cos(2πx / P )
+ (A / 2){sin(4πx / P + φ(x))+ sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x))+sin(4πx / P + 3φ(x))} …(27)
O4(x) = I4(x) × S6(x)
= - B ×cos(2πx / P + π/ 4)
+ (A / 2){sin(4πx / P + φ(x)+ π/ 2)+ sin(φ(x))}
+ (A/6){sin(8πx / P + 3φ(x)+π) + sin(4πx / P + 3φ(x)+π/2)} …(28)
O5(x) = I5(x) × S7(x)
= B ×sin(2πx / P)
- (A / 2) {sin(4πx / P + φ(x))- sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x))- sin(4πx / P + 3φ(x))} …(29)
O6(x) = I6(x) × S8(x)
= B ×sin(2πx / P + π/ 4)
- (A / 2){sin(4πx / P + φ(x) + π/ 2)- sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x)+π) - sin(4πx / P + 3φ(x)+π/2)} …(30)
O7(x) = I7(x) × S1(x)
= B ×cos(2πx / P )
+ (A / 2) {sin(4πx / P + φ(x))+ sin(φ(x))}
+ (A / 6){sin(8πx / P + 3φ(x))+sin(4πx / P + 3φ(x))} …(31)
O8(x) = I8(x) × S2(x)
= B ×cos(2πx / P + π/ 4)
+ (A / 2){sin(4πx / P + φ(x)+ π/ 2)+ sin(φ(x))}
+ (A/6){sin(8πx / P + 3φ(x)+π) + sin(4πx / P + 3φ(x)+π/2)} …(32)
以上示したように、正弦関数算出部421は第1乃至第8の光強度関数I1(x)〜I8(x)の第1項に対し、メモリ格子関数S1(x)〜S8(x)のうち(π/2 - φ(x))の位相差がある第2の三角関数を各々乗じることにより、第1乃至第8の正弦関数O1(x)〜O8(x)を算出する。ここで(25)式に示すように、第1の正弦関数O1(x)は、モアレ成分である(A / 2)sinφ(x)と、基本波である1次の高調波- B ×sin(2πx / P)、2次の高調波- (A / 2)sin(4πx / P + φ(x)) - (A / 6)sin(4πx / P + 3φ(x))、及び4次の高調波 (A / 6)sin(8πx / P + 3φ(x))とを含んでいる。また(26)乃至(32)式に示すように、第2乃至第8の正弦関数O2(x)〜O8(x)のそれぞれもモアレ成分と、1次、2次、及び4次の高調波とを含んでいる。
The sine function calculation unit 421 multiplies the first light intensity function I 1 (x) given by the above equation (1) by the memory lattice function S 3 (x) given by the above equation (11), The first sine function O 1 (x) shown in the following equation (25) is calculated. Further, the calculation shown in the following equation (26) is performed by multiplying the second light intensity function I 2 (x) given by the above equation (2) by the memory lattice function S 4 (x) given by the above equation (12). To calculate the second sine function O 2 (x). Similarly, the following expression (27) is obtained by multiplying the third light intensity function I 3 (x) given by the above expression (3) by the memory lattice function S 5 (x) given by the above expression (13). The following equation (28) is calculated and multiplied by the memory lattice function S 6 (x) given by the above equation (14) to the fourth light intensity function I 4 (x) given by the above equation (4). The calculation and the fifth light intensity function I 5 (x) given by the above formula (5) are multiplied by the memory lattice function S 7 (x) given by the above formula (15), and the following formula (29) is shown. The sine function calculation unit 421 calculates the third sine function O 3 (x), the fourth sine function O 4 (x), and the fifth sine function O 5 (x). Further, the sine function calculation unit 421 multiplies the sixth light intensity function I 6 (x) given by the above expression (6) by the memory lattice function S 8 (x) given by the above expression (16) ( (30) and the seventh light intensity function I 7 (x) given by equation (7) above is multiplied by the memory lattice function S 1 (x) given by equation (9) below ( The calculation shown in Equation 31) and the eighth light intensity function I 8 (x) given in Equation (8) above are multiplied by the memory lattice function S 2 (x) given in Equation (10) below ( The sixth sine function O 6 (x), the seventh sine function O 7 (x), and the eighth sine function O 8 (x) are calculated by performing the calculation shown in the equation (32). :
O 1 (x) = I 1 (x) × S 3 (x)
=-B × sin (2πx / P)
-(A / 2) {sin (4πx / P + φ (x))-sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x))-sin (4πx / P + 3φ (x))}… (25)
O 2 (x) = I 2 (x) × S 4 (x)
=-B × sin (2πx / P + π / 4)
-(A / 2) {sin (4πx / P + φ (x) + π / 2)-sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x) + π)-sin (4πx / P + 3φ (x) + π / 2)}… (26)
O 3 (x) = I 3 (x) × S 5 (x)
=-B × cos (2πx / P )
+ (A / 2) {sin (4πx / P + φ (x)) + sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x)) + sin (4πx / P + 3φ (x))}… (27)
O 4 (x) = I 4 (x) × S 6 (x)
=-B × cos (2πx / P + π / 4)
+ (A / 2) {sin (4πx / P + φ (x) + π / 2) + sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x) + π) + sin (4πx / P + 3φ (x) + π / 2)}… (28)
O 5 (x) = I 5 (x) × S 7 (x)
= B × sin (2πx / P)
-(A / 2) {sin (4πx / P + φ (x))-sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x))-sin (4πx / P + 3φ (x))}… (29)
O 6 (x) = I 6 (x) × S 8 (x)
= B × sin (2πx / P + π / 4)
-(A / 2) {sin (4πx / P + φ (x) + π / 2)-sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x) + π)-sin (4πx / P + 3φ (x) + π / 2)}… (30)
O 7 (x) = I 7 (x) × S 1 (x)
= B × cos (2πx / P )
+ (A / 2) {sin (4πx / P + φ (x)) + sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x)) + sin (4πx / P + 3φ (x))}… (31)
O 8 (x) = I 8 (x) × S 2 (x)
= B × cos (2πx / P + π / 4)
+ (A / 2) {sin (4πx / P + φ (x) + π / 2) + sin (φ (x))}
+ (A / 6) {sin (8πx / P + 3φ (x) + π) + sin (4πx / P + 3φ (x) + π / 2)}… (32)
As described above, the sine function calculation unit 421 performs the memory lattice functions S 1 (x) to S 8 for the first term of the first to eighth light intensity functions I 1 (x) to I 8 (x). The first to eighth sine functions O 1 (x) to O 8 (x) are respectively multiplied by the second trigonometric functions having a phase difference of (π / 2-φ (x)) among (x). Is calculated. Here, as shown in the equation (25), the first sine function O 1 (x) includes (A / 2) sinφ (x) that is a moire component and the first-order harmonic that is a fundamental wave − B × sin (2πx / P), 2nd harmonic-(A / 2) sin (4πx / P + φ (x))-(A / 6) sin (4πx / P + 3φ (x)), and 4th order (A / 6) sin (8πx / P + 3φ (x)). Further, as shown in the equations (26) to (32), each of the second to eighth sine functions O 2 (x) to O 8 (x) also has a moire component, a first order, a second order, and a fourth order. Including harmonics.

高調波除去部411は、それぞれ上記(17)乃至(24)式で与えられる第1乃至第8の余弦関数N1(x)〜N8(x)の和をとる下記(33)式に示す計算を行い、実部関数R(x)を算出する。高調波除去部411は実部関数R(x)を算出することにより、第1乃至第8の余弦関数N1(x)〜N8(x)に含まれる1次、2次、及び4次の高調波を除去する。:
R(x)= N1(x) + N2(x) + N3(x) + N4(x) + N5(x) + N6(x) + N7(x) + N8(x)
= 4A cosφ(x) …(33)
また高調波除去部411は、それぞれ上記(25)乃至(32)式で与えられる第1乃至第8の正弦関数O1(x)〜O8(x)の和をとる下記(34)式に示す計算を行い、虚部関数J(x)を算出する。高調波除去部411は虚部関数J(x)を算出することにより、第1乃至第8の正弦関数O1(x)〜O8(x)に含まれる1次、2次、及び4次の高調波を除去する。:
J(x) = O1(x) + O2(x) + O3(x) + O4(x) + O5(x) + O6(x) + O7(x) + O8(x)
= 4A sinφ(x) …(34)
位相抽出部413は、下記(35)式に示すように、虚部関数J(x)を実部関数R(x)で割り、その逆正接をとることによりモアレ位相φ(x)を抽出する。:
φ(x) = tan-1 (J(x) / R(x)) … (35)
高さ算出部316は、モアレ位相φ(x)の単位系の変換を行い、図2に示す被測定物体5の高さ関数H(x)を算出する。ここで、ステージ80に対して垂直な方向と、格子3を透過した平行光の進行方向がなす角度をθとすると、撮像装置350の測定レンジはP / tanθで与えられ、P / tanθは2πと等価になる。したがって、モアレ位相φ(x)を下記(36)式に代入することにより、単位系の変換を行い、座標xにおける被測定物体5の高さを与える高さ関数H(x)を算出する。:
H(x) = (φ(x) / 2π) × P / tanθ … (36)
CPU400にはデータ記憶装置331、プログラム記憶装置330、入力装置340、及び出力装置341がさらに接続される。データ記憶装置331は、CPU400による演算結果を逐次格納する。また、プログラム記憶装置330は、CPU400を制御するオペレーティングシステム等を保存する。データ記憶装置331及びプログラム記憶装置330としては、例えば半導体メモリ、磁気ディスク、光ディスク、光磁気ディスクや磁気テープなどのプログラムを記録する記録媒体等が使用可能である。入力装置340としては、例えばキーボード、マウスやボイスデバイス等が使用可能である。出力装置341としては、プリンタ、液晶ディスプレイ(LCD)やCRTディスプレイ等が使用可能である。
The harmonic removal unit 411 is represented by the following equation (33) that takes the sum of the first to eighth cosine functions N 1 (x) to N 8 (x) given by the above equations (17) to (24), respectively. Calculation is performed to calculate the real part function R (x). The harmonic removal unit 411 calculates the real part function R (x), thereby obtaining the first, second, and fourth order included in the first to eighth cosine functions N 1 (x) to N 8 (x). Remove harmonics. :
R (x) = N 1 (x) + N 2 (x) + N 3 (x) + N 4 (x) + N 5 (x) + N 6 (x) + N 7 (x) + N 8 ( x)
= 4A cosφ (x) (33)
Further, the harmonic removal unit 411 takes the sum of the first to eighth sine functions O 1 (x) to O 8 (x) given by the above expressions (25) to (32), respectively, to the following expression (34): The imaginary function J (x) is calculated by performing the calculation shown in FIG. The harmonic removal unit 411 calculates the imaginary part function J (x), and thereby includes the first, second, and fourth order included in the first to eighth sine functions O 1 (x) to O 8 (x). Remove harmonics. :
J (x) = O 1 (x) + O 2 (x) + O 3 (x) + O 4 (x) + O 5 (x) + O 6 (x) + O 7 (x) + O 8 ( x)
= 4A sinφ (x) (34)
The phase extraction unit 413 extracts the moire phase φ (x) by dividing the imaginary part function J (x) by the real part function R (x) and taking its arc tangent as shown in the following equation (35). . :
φ (x) = tan -1 (J (x) / R (x))… (35)
The height calculation unit 316 converts the unit system of the moire phase φ (x) and calculates the height function H (x) of the measured object 5 shown in FIG. Here, if the angle between the direction perpendicular to the stage 80 and the traveling direction of the parallel light transmitted through the grating 3 is θ, the measurement range of the imaging device 350 is given by P / tanθ, and P / tanθ is 2π. Is equivalent to Therefore, by substituting the moire phase φ (x) into the following equation (36), the unit system is converted, and the height function H (x) that gives the height of the measured object 5 at the coordinate x is calculated. :
H (x) = (φ (x) / 2π) × P / tanθ… (36)
The CPU 400 is further connected to a data storage device 331, a program storage device 330, an input device 340, and an output device 341. The data storage device 331 sequentially stores the calculation results by the CPU 400. The program storage device 330 stores an operating system that controls the CPU 400. As the data storage device 331 and the program storage device 330, for example, a recording medium for recording a program such as a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, and a magnetic tape can be used. As the input device 340, for example, a keyboard, a mouse, a voice device, or the like can be used. As the output device 341, a printer, a liquid crystal display (LCD), a CRT display, or the like can be used.

次に本発明の実施の形態に係る3次元計測方法を、図4のフローチャートを参照して説明する。なお、図1に示すCPU400による演算結果は、データ記憶装置331に逐次格納される。   Next, a three-dimensional measurement method according to an embodiment of the present invention will be described with reference to the flowchart of FIG. Note that the calculation results by the CPU 400 shown in FIG. 1 are sequentially stored in the data storage device 331.

(a) まずステップS90で、図2に示す3次元計測に用いる格子3及び被測定物体5を用意する。被測定物体5はステージ80上に配置する。次にステップS91で図1に示す撮像装置制御部200から図2に示すステージ駆動部42に制御信号を送り、被測定物体5の3次元計測が好適に行われる場所までステージ80を移動させる。また撮像装置制御部200から光源10に制御信号を送り、光源10から照射される光の光強度を調整する。ステップS92に進み、3次元計測を行う計測条件の設定をする。計測条件の設定とは、被測定物体5が存在しない場所を自動的に検出してその場所のデータを削除する設定等をさす。  (a) First, in step S90, the lattice 3 and the measured object 5 used for the three-dimensional measurement shown in FIG. 2 are prepared. The object to be measured 5 is placed on the stage 80. Next, in step S91, a control signal is sent from the imaging device control unit 200 shown in FIG. 1 to the stage drive unit 42 shown in FIG. 2, and the stage 80 is moved to a place where the three-dimensional measurement of the measured object 5 is suitably performed. Further, a control signal is sent from the imaging device control unit 200 to the light source 10 to adjust the light intensity of the light emitted from the light source 10. Proceeding to step S92, measurement conditions for performing three-dimensional measurement are set. The setting of measurement conditions refers to a setting for automatically detecting a place where the measured object 5 does not exist and deleting data at that place.

(b) ステップS93で、光源10から第1のレンズ11に向けて光を射出する。第1のレンズ11に入射した光は、平行光となり格子3に入射する。格子3を透過した平行光は、被測定物体5表面にピッチPを有する周期的な明暗のバイナリパターンを形成する。ここで、撮像装置制御部200からイメージセンサ20に制御信号が送られ、イメージセンサ20はシャッターを開き、被測定物体5から反射される光が形成する変形格子像を撮像する。次に、撮像装置制御部200から格子駆動部15に制御信号が送られ、格子3を移動させることにより、被測定物体5の表面のピッチPを有する周期的な明暗のバイナリパターンを、ピッチPの八分の一の距離だけバイナリパターンの周期パターン方向に移動させ、新たな変形格子像を撮像する。さらに、格子3の移動及び変形格子像の撮像を繰り返して、合計8枚の変形格子像を取得する。  (b) In step S93, light is emitted from the light source 10 toward the first lens 11. The light incident on the first lens 11 becomes parallel light and enters the grating 3. The parallel light transmitted through the grating 3 forms a periodic bright and dark binary pattern having a pitch P on the surface of the object 5 to be measured. Here, a control signal is sent from the imaging device control unit 200 to the image sensor 20, and the image sensor 20 opens the shutter and captures a deformed lattice image formed by the light reflected from the measured object 5. Next, a control signal is sent from the imaging device control unit 200 to the grating driving unit 15, and by moving the grating 3, a periodic light / dark binary pattern having the pitch P of the surface of the object to be measured 5 is converted to the pitch P. Is moved in the direction of the periodic pattern of the binary pattern by a distance of 1/8 of the distance, and a new deformed lattice image is captured. Further, the movement of the lattice 3 and the imaging of the deformed lattice image are repeated to obtain a total of eight deformed lattice images.

(c) 取得された8枚の変形格子像は、ステップS94で図1に示す変形格子像入力部309に順次取り込まれ、それぞれ第1の変形格子像、第2の変形格子像、第3の変形格子像、第4の変形格子像、第5の変形格子像、第6の変形格子像、第7の変形格子像、及び第8の変形格子像と定義される。次にステップS100で、光強度取得部310は、第1乃至第8の変形格子像のそれぞれから上記(1)乃至(8)式に示す第1乃至第8の光強度関数I1(x)〜I8(x)を抽出する。 (c) The acquired eight modified lattice images are sequentially taken into the modified lattice image input unit 309 shown in FIG. 1 in step S94, and the first modified lattice image, the second modified lattice image, and the third modified lattice image, respectively. They are defined as a modified lattice image, a fourth modified lattice image, a fifth modified lattice image, a sixth modified lattice image, a seventh modified lattice image, and an eighth modified lattice image. Next, in step S100, the light intensity acquisition unit 310 calculates the first to eighth light intensity functions I 1 (x) shown in the above equations (1) to (8) from the first to eighth modified lattice images. Extract ~ I 8 (x).

(d) ステップS201で、余弦関数算出部412は光強度取得部310から第1乃至第8の光強度関数I1(x)〜I8(x)のそれぞれを受信する。さらに余弦関数算出部412は、上記(9)〜(16)式に示すメモリ格子関数S1(x)〜S8(x)のそれぞれをメモリ格子記憶装置432から読み出す。次に余弦関数算出部412は、第1乃至第8の光強度関数I1(x)〜I8(x)のそれぞれに対し、メモリ格子関数S1(x)〜S8(x)のうち位相差がφ(x)あるものを乗じ、上記(17)〜(24)式に示す第1乃至第8の余弦関数N1(x)〜N8(x)を算出する。ここで第1乃至第8の余弦関数N1(x)〜N8(x)にはモアレ成分と、1次、2次、及び4次の高調波とが含まれる。 (d) In step S201, the cosine function calculation unit 412 receives the first to eighth light intensity functions I 1 (x) to I 8 (x) from the light intensity acquisition unit 310. Further, the cosine function calculation unit 412 reads out each of the memory lattice functions S 1 (x) to S 8 (x) shown in the equations (9) to (16) from the memory lattice storage device 432. Next, the cosine function calculation unit 412 includes the memory lattice functions S 1 (x) to S 8 (x) for each of the first to eighth light intensity functions I 1 (x) to I 8 (x). The first to eighth cosine functions N 1 (x) to N 8 (x) shown in the above equations (17) to (24) are calculated by multiplying those having a phase difference of φ (x). Here, the first to eighth cosine functions N 1 (x) to N 8 (x) include moire components and first, second, and fourth harmonics.

(e) ステップS202で、正弦関数算出部421は光強度取得部310から第1乃至第8の光強度関数I1(x)〜I8(x)のそれぞれを受信する。さらに正弦関数算出部421は、上記(9)〜(16)式に示すメモリ格子関数S1(x)〜S8(x)のそれぞれをメモリ格子記憶装置432から読み出す。次に正弦関数算出部421は、第1乃至第8の光強度関数I1(x)〜I8(x)のそれぞれに対し、メモリ格子関数S1(x)〜S8(x)のうち位相差が(π/2 - φ(x))であるものを乗じることにより、上記(25)〜(32)式に示す第1乃至第8の正弦関数O1(x)〜O8(x)を算出する。ここで第1乃至第8の正弦関数O1(x)〜O8(x)にはモアレ成分と、1次、2次、及び4次の高調波とが含まれる。 (e) In step S202, the sine function calculation unit 421 receives each of the first to eighth light intensity functions I 1 (x) to I 8 (x) from the light intensity acquisition unit 310. Further, the sine function calculation unit 421 reads each of the memory grid functions S 1 (x) to S 8 (x) shown in the above equations (9) to (16) from the memory grid storage device 432. Next, the sine function calculation unit 421 includes the memory lattice functions S 1 (x) to S 8 (x) for each of the first to eighth light intensity functions I 1 (x) to I 8 (x). By multiplying the phase difference by (π / 2-φ (x)), the first to eighth sine functions O 1 (x) to O 8 (x ) Is calculated. Here, the first to eighth sine functions O 1 (x) to O 8 (x) include moire components and first-order, second-order, and fourth-order harmonics.

(f) ステップS203で、高調波除去部411は余弦関数算出部412から第1乃至第8の余弦関数N1(x)〜N8(x)を受信する。高調波除去部411は第1乃至第8の余弦関数N1(x)〜N8(x)の和をとる上記(33)式に示す計算を行い、実部関数R(x)を算出する。実部関数R(x)を算出することにより、第1乃至第8の余弦関数N1(x)〜N8(x)に含まれる1次、2次、及び4次の高調波が除去される。次にステップS204で、高調波除去部411は正弦関数算出部421から第1乃至第8の正弦関数O1(x)〜O8(x)を受信する。高調波除去部411は第1乃至第8の正弦関数O1(x)〜O8(x)の和をとる上記(34)式に示す計算を行い、虚部関数J(x)を算出する。虚部関数J(x)を算出することにより、第1乃至第8の正弦関数O1(x)〜O8(x)に含まれる1次、2次、及び4次の高調波が除去される。 (f) In step S203, the harmonic removal unit 411 receives the first to eighth cosine functions N 1 (x) to N 8 (x) from the cosine function calculation unit 412. The harmonic removal unit 411 performs the calculation shown in the above equation (33) that takes the sum of the first to eighth cosine functions N 1 (x) to N 8 (x), and calculates the real part function R (x). . By calculating the real part function R (x), first, second, and fourth harmonics included in the first to eighth cosine functions N 1 (x) to N 8 (x) are removed. The Next, in step S204, the harmonic removing unit 411 receives the first to eighth sine functions O 1 (x) to O 8 (x) from the sine function calculating unit 421. The harmonic removal unit 411 performs the calculation shown in the above equation (34) that takes the sum of the first to eighth sine functions O 1 (x) to O 8 (x), and calculates the imaginary part function J (x). . By calculating the imaginary part function J (x), the first, second, and fourth harmonics included in the first to eighth sine functions O 1 (x) to O 8 (x) are removed. The

(d) ステップS205で、位相抽出部413は高調波除去部411から実部関数R(x)及び虚部関数J(x)を受信する。次に位相抽出部413は、上記(35)式に示すように、虚部関数J(x)を実部関数R(x)で割り、その逆正接をとることによりモアレ位相φ(x)を抽出する。ステップS206で高さ算出部316は位相抽出部413からモアレ位相φ(x)を受信する。その後高さ算出部316は、上記(36)式に示すように、モアレ位相φ(x)に基づいて図1に示す被測定物体5の座標xにおける高さ関数H(x)を算出し、実施の形態に係る3次元計測方法を終了する。   (d) In step S205, the phase extraction unit 413 receives the real part function R (x) and the imaginary part function J (x) from the harmonic removal unit 411. Next, as shown in the above equation (35), the phase extraction unit 413 divides the imaginary part function J (x) by the real part function R (x) and takes its arc tangent to obtain the moire phase φ (x). Extract. In step S206, the height calculation unit 316 receives the moire phase φ (x) from the phase extraction unit 413. Thereafter, the height calculation unit 316 calculates the height function H (x) at the coordinate x of the measured object 5 shown in FIG. 1 based on the moire phase φ (x) as shown in the above equation (36), The three-dimensional measurement method according to the embodiment ends.

以上示した本発明の実施の形態に係る3次元計測装置及び3次元計測方法によれば、図3(a)及び図3(b)に示すように、格子3の透過率分布が正弦状ではなく矩形状であり、被測定物体5の表面に明暗のバイナリパターンが投影される場合においても、図4に示すステップS203及びステップS204で第1乃至第8の余弦関数N1(x)〜N8(x)及び第1乃至第8の正弦関数O1(x)〜O8(x)に含まれていた1次以上の高調波が除去されるため、1次以上の高調波に起因する測定誤差を除去することが可能となる。 According to the three-dimensional measuring apparatus and the three-dimensional measuring method according to the embodiment of the present invention described above, the transmittance distribution of the grating 3 is sinusoidal as shown in FIGS. 3 (a) and 3 (b). Even in the case where a light and dark binary pattern is projected on the surface of the object 5 to be measured, the first to eighth cosine functions N 1 (x) to N 1 in step S203 and step S204 shown in FIG. The first and higher harmonics included in 8 (x) and the first to eighth sine functions O 1 (x) to O 8 (x) are removed, resulting in the first and higher harmonics. Measurement errors can be eliminated.

ここでステップS93で取得される変形格子像の数と、ステップS203及びステップS204で除去される高調波の次数の関係について図5を参照して説明する。上記(1)式に示したように、第1の光強度関数I1(x)を3次の高調波まで含む関数で表した場合、上記(9)式で示したように1次の高調波のみを含むメモリ格子関数S1(x)とのモアレである上記(17)式で示される第1の余弦関数は、モアレ成分である(A / 2)sinφ(x)と、1次、2次、及び4次の高調波とを含む。モアレ成分(A / 2)sinφ(x)は図1に示す被測定物体5の高さの算出に必要であるため、1次、2次、及び4次の高調波のみを除去する必要がある。そこで、まず4次の高調波を除去するためには、(17)式に含まれる4次の高調波に対して位相差がπの4次の高調波を含む(18)式が必要となる。4次の高調波の位相をπシフトした場合、1次の高調波は位相がπ/4シフトし、2次の高調波は位相がπ/2シフトする。 Here, the relationship between the number of deformed lattice images acquired in step S93 and the order of harmonics removed in steps S203 and S204 will be described with reference to FIG. As shown in the above equation (1), when the first light intensity function I 1 (x) is represented by a function including up to the third harmonic, the first harmonic as shown in the above equation (9). The first cosine function expressed by the above equation (17), which is a moiré with the memory lattice function S 1 (x) including only the wave, is a moire component (A / 2) sinφ (x), Includes 2nd and 4th harmonics. Since the moiré component (A / 2) sinφ (x) is necessary to calculate the height of the measured object 5 shown in FIG. 1, only the first, second, and fourth harmonics need to be removed. . Therefore, in order to remove the fourth-order harmonics first, the equation (18) including the fourth-order harmonics having a phase difference of π with respect to the fourth-order harmonics included in the equation (17) is required. . When the phase of the fourth harmonic is shifted by π, the phase of the first harmonic is shifted by π / 4, and the phase of the second harmonic is shifted by π / 2.

4次の高調波を除去した後、2次の高調波を除去する。4次の高調波を除去することにより、(17)式に含まれる2次の高調波に対して位相差がπ/2の2次の高調波が(18)式に表れる。(17)式及び(18)式に含まれる計2つの2次の高調波を除去するためには、(17)式に含まれる2次の高調波に対して位相差がπの2次の高調波を含む(19)式と、(18)式に含まれる2次の高調波に対して位相差がπの2次の高調波を含む(20)式が必要となる。この時点で、(17)乃至(20)式の4つの余弦関数が必要となる。(17)式に含まれる2次の高調波の位相をπシフトした場合、(19)式に示すように1次の高調波は位相がπ/2シフトし、(18)式に含まれる2次の高調波の位相をπシフトした場合、(20)式に示すように1次の高調波は(17)式に含まれる1次の高調波に対して位相が3π/4シフトする。   After removing the 4th harmonic, remove the 2nd harmonic. By removing the fourth-order harmonics, the second-order harmonics having a phase difference of π / 2 with respect to the second-order harmonics included in the formula (17) appear in the formula (18). In order to remove the total of the 2nd order harmonics included in (17) and (18), the 2nd order harmonics with a phase difference of π with respect to the 2nd order harmonics included in (17) Equation (19) including harmonics and Equation (20) including second harmonics having a phase difference of π with respect to the second harmonics included in Equation (18) are required. At this point, the four cosine functions (17) to (20) are required. When the phase of the second harmonic included in equation (17) is shifted by π, the phase of the first harmonic is shifted by π / 2 as shown in equation (19), and 2 included in equation (18). When the phase of the next harmonic is shifted by π, the phase of the first harmonic is shifted by 3π / 4 with respect to the first harmonic included in equation (17) as shown in equation (20).

最後に1次の高調波を除去する。2次及び4次の高調波を除去することにより、(17)式に含まれる1次の高調波に対してそれぞれ位相差がπ/4、π/2、3π/4である3つの1次の高調波が(18)乃至(20)式に表れる。(17)式乃至(20)式に含まれる計4つの1次の高調波を除去するためには、(17)式に含まれる1次の高調波に対して位相差がπの1次の高調波を含む(21)式と、(18)式に含まれる1次の高調波に対して位相差がπの1次の高調波を含む(22)式と、(19)式に含まれる1次の高調波に対して位相差がπの1次の高調波を含む(23)式と、(20)式に含まれる1次の高調波に対して位相差がπの1次の高調波を含む(24)式とが必要となる。なお(18)乃至(24)式で新たに生じる2次及び4次の高調波は、互いに相殺される。したがって第1の光強度関数I1(x)を3次の高調波まで含む関数で表した場合、(17)式に含まれる1次以上の高調波を除去するためには、さらに(16)乃至(24)式で与えられる7つの余弦関数が必要となる。そのため、ステップS93で8枚の変形格子像を撮像して(1)乃至(8)式に示す第1乃至第8の光強度関数I1(x)〜I8(x)を取得することが必要となる。なお(25)乃至(32)式で与えられる第1乃至第8の正弦関数O1(x)〜O8(x)に含まれる1次以上の高調波も、第1乃至第8の余弦関数N1(x)〜N8(x)に含まれる1次以上の高調波と同様に相殺されて除去されるため、説明は省略する。 Finally, remove the first harmonic. By removing the 2nd and 4th harmonics, the 3rd primary with phase differences of π / 4, π / 2, and 3π / 4, respectively, with respect to the 1st harmonic contained in Equation (17) The harmonics of (18) to (20) appear. In order to remove a total of four first-order harmonics included in Equations (17) to (20), the first-order harmonics with a phase difference of π with respect to the first-order harmonics included in Equation (17) Included in Eq. (21), which includes harmonics, and Eq. (22), which includes first-order harmonics with a phase difference of π with respect to the first-order harmonics included in Eq. (18), and (19) Equation (23) including the first harmonic with a phase difference of π with respect to the first harmonic, and the first harmonic with a phase difference of π with respect to the first harmonic included in the equation (20). Equation (24) including waves is required. Note that the second and fourth harmonics newly generated in the equations (18) to (24) cancel each other. Therefore, when the first light intensity function I 1 (x) is represented by a function including up to the third harmonic, in order to remove the first and higher harmonics included in the equation (17), (16) The seven cosine functions given by Equation (24) are required. Therefore, the first to eighth light intensity functions I 1 (x) to I 8 (x) shown in the equations (1) to (8) can be acquired by capturing eight deformed lattice images in step S93. Necessary. Note that the first and higher harmonics included in the first to eighth sine functions O 1 (x) to O 8 (x) given by the equations (25) to (32) are also the first to eighth cosine functions. Since it is canceled and removed in the same manner as the first and higher harmonics included in N 1 (x) to N 8 (x), the description is omitted.

次に図6を参照して、第1の光強度関数I1(x)を5次の高調波まで含む関数で表した場合について説明する。第1の光強度関数I1(x)を5次の高調波まで含む関数で表した場合、第1の光強度関数I1(x)はモアレ成分と、1次、3次、及び5次の高調波を含むことになる。したがって、1次の高調波のみを含むメモリ格子関数S1(x)とのモアレである第1の余弦関数は、1次、2次、4次、及び6次の高調波を含むことになる。そのため、第1の余弦関数に含まれる6次の高調波を除去するためには、位相差がπの6次の高調波を含む新たな余弦関数が必要となる。6次の高調波の位相をπシフトした場合、1次の高調波は位相がπ/6シフトし、2次の高調波は位相がπ/3シフトし、4次の高調波は位相が2π/3シフトする。 Next, a case where the first light intensity function I 1 (x) is expressed by a function including up to the fifth harmonic will be described with reference to FIG. When the first light intensity function I 1 (x) is expressed by a function including up to the fifth harmonic, the first light intensity function I 1 (x) is a moiré component, and the first, third, and fifth orders. Of harmonics. Thus, the first cosine function, which is a moiré with the memory lattice function S 1 (x) containing only the first harmonic, will contain the first, second, fourth, and sixth harmonics. . Therefore, in order to remove the 6th harmonic contained in the first cosine function, a new cosine function including a 6th harmonic having a phase difference of π is required. When the phase of the 6th harmonic is shifted by π, the phase of the 1st harmonic is shifted by π / 6, the phase of the 2nd harmonic is shifted by π / 3, and the phase of the 4th harmonic is 2π / 3 shift.

6次の高調波を除去した後、4次の高調波を除去する。6次の高調波を除去することにより、第1の余弦関数に含まれる4次の高調波に対し2π/3の位相差がある4次の高調波が新たに生じる。2つの4次の高調波を除去するためには、第1の余弦関数に含まれる4次の高調波に対して位相差がπの4次の高調波を含む余弦関数と、位相差が5π/3の4次の高調波を含む余弦関数がそれぞれ新たに必要となる。この時点で、4つの余弦関数が必要となる。第1の余弦関数に含まれる4次の高調波の位相をπシフトした場合、1次の高調波は位相がπ/4シフトし、2次の高調波は位相がπ/2シフトする。第1の余弦関数に含まれる4次の高調波の位相を5π/3シフトした場合、1次の高調波は位相が3π/4シフトし、2次の高調波は位相が5π/6シフトする。   After removing the 6th harmonic, remove the 4th harmonic. By removing the sixth-order harmonic, a new fourth-order harmonic having a phase difference of 2π / 3 with respect to the fourth-order harmonic included in the first cosine function is generated. In order to remove two fourth-order harmonics, a cosine function including a fourth-order harmonic having a phase difference of π with respect to a fourth-order harmonic included in the first cosine function and a phase difference of 5π A new cosine function including the 4th harmonic of / 3 is required. At this point, four cosine functions are needed. When the phase of the fourth-order harmonic included in the first cosine function is shifted by π, the phase of the first-order harmonic is shifted by π / 4, and the phase of the second-order harmonic is shifted by π / 2. When the phase of the 4th harmonic contained in the first cosine function is shifted by 5π / 3, the phase of the 1st harmonic is shifted by 3π / 4, and the phase of the 2nd harmonic is shifted by 5π / 6. .

4次の高調波を除去した後、2次の高調波を除去する。6次の高調波及び4次の高調波を除去することにより、第1の余弦関数に含まれる2次の高調波に対してそれぞれ位相差がπ/3、π/2、5π/6である3つの2次の高調波が新たに生じる。したがって4つの2次の高調波を除去するためには、第1の余弦関数に含まれる2次の高調波に対してそれぞれ位相差がπ、4π/3、3π/2、11π/6の2次の高調波を含むさらに4つの余弦関数が新たに必要となる。この時点で、8つの余弦関数が必要となる。第1の余弦関数に含まれる2次の高調波の位相をπ、4π/3、3π/2、及び11π/6シフトした場合、1次の高調波の位相は各々π/2、2π/3、3π/4、及び11π/12シフトする。   After removing the 4th harmonic, remove the 2nd harmonic. By removing the 6th and 4th harmonics, the phase differences are π / 3, π / 2, and 5π / 6, respectively, for the 2nd harmonic contained in the first cosine function. Three new second harmonics are generated. Therefore, in order to remove the four second-order harmonics, the phase differences are π, 4π / 3, 3π / 2, and 11π / 6, respectively, with respect to the second-order harmonics included in the first cosine function. Four more cosine functions are needed, including the next harmonic. At this point, 8 cosine functions are needed. When the phase of the second harmonic contained in the first cosine function is shifted by π, 4π / 3, 3π / 2, and 11π / 6, the phase of the first harmonic is π / 2, 2π / 3, respectively. , 3π / 4, and 11π / 12 shifts.

最後に1次の高調波を除去する。2次、4次、及び6次の高調波を除去することにより、第1の余弦関数に含まれる1次の高調波に対してそれぞれ位相差がπ/6、π/4、5π/12、π/2、2π/3、3π/4、11π/12である7つの1次の高調波が新たに生じる。したがって8つの1次の高調波を除去するためには、第1の余弦関数に含まれる1次の高調波に対してそれぞれ位相差がπ、7π/6、5π/4、17π/12、3π/2、5π/3、7π/4、23π/12の1次の高調波を含むさらに8つの余弦関数が新たに必要となる。この時点で、16の余弦関数が必要となる。なお1次の高調波を除去するために新たに生じた余弦関数に含まれる2次、4次、及び6次の高調波は、互いに相殺される。したがって第1の光強度関数I1(x)を5次の高調波まで含む関数で表した場合、16の余弦関数が必要となる。そのため、ステップS93で16枚の変形格子像を撮像することが必要となる。 Finally, remove the first harmonic. By removing the second-order, fourth-order, and sixth-order harmonics, the phase difference is π / 6, π / 4, 5π / 12, respectively, with respect to the first-order harmonics included in the first cosine function. Seven new first-order harmonics are generated: π / 2, 2π / 3, 3π / 4, and 11π / 12. Therefore, in order to remove the eight first-order harmonics, the phase differences for the first-order harmonics included in the first cosine function are π, 7π / 6, 5π / 4, 17π / 12, 3π, respectively. Eight more cosine functions are required, including the first harmonics of / 2, 5π / 3, 7π / 4, and 23π / 12. At this point, 16 cosine functions are needed. Note that the second, fourth, and sixth harmonics included in the cosine function newly generated to remove the first harmonic are canceled out. Accordingly, when the first light intensity function I 1 (x) is expressed by a function including up to the fifth harmonic, 16 cosine functions are required. Therefore, it is necessary to capture 16 deformed lattice images in step S93.

結果として、余弦関数に含まれる高調波の種類の数、例えば、余弦関数に1次、2次、及び4次の高調波の3種類の高調波が含まれている場合は、23である8枚の変形格子像が必要である。また、余弦関数に1次、2次、4次、及び6次の高調波の4種類の高調波が含まれている場合は、24である16枚の変形格子像が必要である。余弦関数に含まれる高調波の種類の数が5種類以上の場合でも同様であり、余弦関数にn種類の高調波が含まれている場合は、2n枚の変形格子像が必要である。 As a result, the number of types of harmonics of the cosine function, for example, primary to a cosine function, secondary, and order if three harmonics of harmonics are included 4, are 2 3 Eight deformed grid images are required. Further, primary to a cosine function, secondary, fourth, and if four harmonics sixth-order harmonics are included, it is necessary to 16 sheets of deformable grating image is two 4. The same applies when the number of types of harmonics included in the cosine function is five or more, and when n types of harmonics are included in the cosine function, 2 n deformed lattice images are required.

次に、図4のステップS90で図2に示したステージ80に被測定物体5として平坦なミラーを配置し、ステップS93で図7に示す第1の変形格子像及び順次位相がπ/4異なる第2乃至第8の変形格子像を取り込んだ場合の具体例を示す。ステップS201で、上記(9)で与えられるメモリ格子関数S1(x)は画像化すると図8に示すような格子になる。この場合、ステップS205で算出されるモアレ位相φ(x)を画像化したものが図9であり、A-A方向に示す断面図が図10である。これに対し、変形格子像を4枚のみ取り込んだ場合に算出されるモアレ位相φ(x)を画像化したものが図11であり、A-A方向に示す断面図が図12である。さらに、第2乃至第8の変形格子像を取り込んだが、メモリ格子関数を1種類のみ用意した場合に算出されるモアレ位相φ(x)を画像化したものが図13であり、A-A方向に示す断面図が図14である。図12に示すように、変形格子像を4枚のみ取り込んだ場合は、光強度関数に含まれる3次の高調波による誤差成分がモアレ位相φ(x)に重畳するため、測定結果にノイズが現れる。また図14に示すようにメモリ格子関数を1種類のみ用意した場合は、高調波による位相とびが激しくなり、測定不能となる。これらに対し、実施の形態に係る3次元計測装置及び3次元計測方法によれば、第1乃至第8の光強度関数I1(x)〜I8(x)のそれぞれに含まれる3次の高調波に起因する誤差成分を除去されるため、図10に示すようにノイズが少なく精度の高い3次元計測が可能となる。 Next, in step S90 of FIG. 4, a flat mirror is arranged as the object to be measured 5 on the stage 80 shown in FIG. 2, and in step S93, the first deformed grating image shown in FIG. A specific example when the second to eighth modified lattice images are captured will be described. In step S201, the memory lattice function S 1 (x) given in (9) above becomes a lattice as shown in FIG. 8 when imaged. In this case, FIG. 9 is an image of the moire phase φ (x) calculated in step S205, and FIG. 10 is a cross-sectional view in the AA direction. On the other hand, FIG. 11 shows an image of the moire phase φ (x) calculated when only four deformed lattice images are captured, and FIG. 12 shows a cross-sectional view in the AA direction. Furthermore, FIG. 13 is an image of the moire phase φ (x) calculated when the second to eighth modified lattice images are captured but only one type of memory lattice function is prepared, and is shown in the AA direction. A cross-sectional view is shown in FIG. As shown in FIG. 12, when only four deformed lattice images are captured, the error component due to the third harmonic included in the light intensity function is superimposed on the moire phase φ (x), so noise is present in the measurement result. appear. Further, when only one type of memory lattice function is prepared as shown in FIG. 14, the phase jump due to the harmonics becomes severe and measurement is impossible. On the other hand, according to the three-dimensional measurement apparatus and the three-dimensional measurement method according to the embodiment, the third-order included in each of the first to eighth light intensity functions I 1 (x) to I 8 (x) Since the error component caused by the harmonics is removed, three-dimensional measurement with less noise and high accuracy is possible as shown in FIG.

(変形例)
図1に示すメモリ格子記憶装置432の説明において、(9)乃至(16)式で示されるメモリ格子関数S1(x)〜S8(x)を保存すると説明したが、(13)式のメモリ格子関数S5(x)は(9)式のメモリ格子関数S1(x)と符号のみ異なる。また、(14)式のメモリ格子関数S6(x)は(10)式のメモリ格子関数S2(x)と符号のみ異なり、(15)式のメモリ格子関数S7(x)は(11)式のメモリ格子関数S3(x)と符号のみ異なり、(16)式のメモリ格子関数S8(x)は(12)式のメモリ格子関数S4(x)と符号のみ異なる。よって、メモリ格子記憶装置432は(9)乃至(12)式で与えられるメモリ格子関数S1(x)〜S4(x)のみを保存してもよい。
(Modification)
In the description of the memory grid storage device 432 illustrated in FIG. 1, it has been described that the memory grid functions S 1 (x) to S 8 (x) represented by the formulas (9) to (16) are stored. The memory lattice function S 5 (x) differs from the memory lattice function S 1 (x) in the equation (9) only in sign. Further, the memory lattice function S 6 (x) in the equation (14) differs from the memory lattice function S 2 (x) in the equation (10) only in sign, and the memory lattice function S 7 (x) in the equation (15) is (11 Only the sign differs from the memory lattice function S 3 (x) in Expression (16), and the memory lattice function S 8 (x) in Expression (16) differs from the memory lattice function S 4 (x) in Expression (12) only in sign. Therefore, the memory grid storage device 432 may store only the memory grid functions S 1 (x) to S 4 (x) given by the equations (9) to (12).

この場合、余弦関数算出部412は下記(37)乃至(40)式により第5乃至第8の余弦関数N5(x)〜N8(x)のそれぞれを算出し、正弦関数算出部421は下記(41)乃至(44)式により第3乃至第6の正弦関数O3(x)〜O6(x)のそれぞれを算出すればよい。 In this case, the cosine function calculation unit 412 calculates each of the fifth to eighth cosine functions N 5 (x) to N 8 (x) by the following equations (37) to (40), and the sine function calculation unit 421 Each of the third to sixth sine functions O 3 (x) to O 6 (x) may be calculated by the following equations (41) to (44).

N5(x) = I5(x) × ( - S1(x)) …(37)
N6(x) = I6(x) × ( - S2(x)) …(38)
N7(x) = I7(x) × ( - S3(x)) …(39)
N8(x) = I8(x) × ( - S4(x)) …(40)
O3(x) = I3(x) × ( - S1(x)) …(41)
O4(x) = I4(x) × ( - S2(x)) …(42)
O5(x) = I5(x) × ( - S3(x)) …(43)
O6(x) = I6(x) × ( - S4(x)) …(44)
さらに、実施の形態に係る3次元計測方法は図4に示した順序に限定されないのは勿論である。例えばステップS100の次にステップS202に進み第1乃至第8の正弦関数O1(x)〜O8(x)を算出し、ステップS204で虚部関数J(x)を算出した後に、ステップS201、ステップS203、ステップS205と進んでもよい。
N 5 (x) = I 5 (x) × (-S 1 (x))… (37)
N 6 (x) = I 6 (x) × (-S 2 (x))… (38)
N 7 (x) = I 7 (x) × (-S 3 (x))… (39)
N 8 (x) = I 8 (x) × (-S 4 (x))… (40)
O 3 (x) = I 3 (x) × (-S 1 (x))… (41)
O 4 (x) = I 4 (x) × (-S 2 (x))… (42)
O 5 (x) = I 5 (x) × (-S 3 (x))… (43)
O 6 (x) = I 6 (x) × (-S 4 (x))… (44)
Furthermore, the three-dimensional measuring method according to the embodiment is not limited to the order shown in FIG. For example, after step S100, the process proceeds to step S202 to calculate the first to eighth sine functions O 1 (x) to O 8 (x), and after calculating the imaginary part function J (x) in step S204, step S201 is performed. Step S203 and Step S205 may be proceeded to.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図1に示す位相抽出部413は、上記(35)式に示すように、虚部関数J(x)を実部関数R(x)で割り、その逆正接をとることによりモアレ位相φ(x)を抽出すると説明した。これに対し、予め虚部関数J(x)、実部関数R(x)、及びモアレ位相φ(x)の関係を記録したデータベースを作成し、虚部関数J(x)及び実部関数R(x)が算出された時点でデータベースを参照してモアレ位相φ(x)を導いてもよい。また上述した3次元計測方法は、時系列的につながった一連の処理あるいは操作として表現可能である。したがって、3次元計測方法をコンピュータシステムで実行するために、コンピュータシステム内のプロセッサなどが果たす複数の機能を特定するコンピュータプログラム製品で図4に示した3次元計測方法を実現可能である。ここで、コンピュータプログラム製品は、図1に示したプログラム記憶装置330等のコンピュータシステムに入出力可能な記録装置あるいは記録媒体等をいう。記録媒体としては、メモリ装置、磁気ディスク装置、光ディスク装置、その他のプログラムを記録することができるような装置が含まれる。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the phase extraction unit 413 shown in FIG. 1 divides the imaginary part function J (x) by the real part function R (x) and takes the arctangent thereof to obtain the moiré phase φ ( It was explained that x) was extracted. In contrast, a database in which the relationship between the imaginary part function J (x), the real part function R (x), and the moire phase φ (x) is created in advance, and the imaginary part function J (x) and the real part function R is created. The moire phase φ (x) may be derived by referring to the database when (x) is calculated. Further, the above-described three-dimensional measurement method can be expressed as a series of processes or operations connected in time series. Therefore, in order to execute the three-dimensional measurement method in the computer system, the three-dimensional measurement method shown in FIG. 4 can be realized by a computer program product that specifies a plurality of functions performed by a processor or the like in the computer system. Here, the computer program product refers to a recording device or a recording medium that can be inputted to and outputted from a computer system such as the program storage device 330 shown in FIG. The recording medium includes a memory device, a magnetic disk device, an optical disk device, and other devices capable of recording other programs. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の実施の形態に係る3次元計測装置のブロック図である。It is a block diagram of the three-dimensional measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る撮像装置の模式図である。1 is a schematic diagram of an imaging apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る格子の模式図である。It is a mimetic diagram of a lattice concerning an embodiment of the invention. 本発明の実施の形態に係る3次元計測方法を示すフローチャートである。It is a flowchart which shows the three-dimensional measuring method which concerns on embodiment of this invention. 本発明の実施の形態に係る3次元計測方法を説明するための表(その1)である。It is a table | surface (the 1) for demonstrating the three-dimensional measuring method which concerns on embodiment of this invention. 本発明の実施の形態に係る3次元計測方法を説明するための表(その2)である。It is a table | surface (the 2) for demonstrating the three-dimensional measuring method which concerns on embodiment of this invention. 本発明の実施の形態に係る変形格子像である。It is a deformation | transformation lattice image which concerns on embodiment of this invention. 本発明の実施の形態に係るメモリ格子関数を画像化したものである。It is an image of the memory lattice function according to the embodiment of the present invention. 本発明の実施の形態に係る被測定物体の表面形状画像である。It is a surface shape image of the to-be-measured object which concerns on embodiment of this invention. 本発明の実施の形態に係る被測定物体の表面形状画像の断面プロファイルである。It is a cross-sectional profile of the surface shape image of the to-be-measured object which concerns on embodiment of this invention. 従来技術に係る被測定物体の表面形状画像(その1)である。It is the surface shape image (the 1) of the to-be-measured object which concerns on a prior art. 従来技術に係る被測定物体の表面形状画像の断面プロファイル(その1)である。It is a cross-sectional profile (the 1) of the surface shape image of the to-be-measured object which concerns on a prior art. 従来技術に係る被測定物体の表面形状画像(その2)である。It is the surface shape image (the 2) of the to-be-measured object which concerns on a prior art. 従来技術に係る被測定物体の表面形状画像の断面プロファイル(その2)である。It is a cross-sectional profile (the 2) of the surface shape image of the to-be-measured object which concerns on a prior art.

符号の説明Explanation of symbols

3…格子
5…被測定物体
10…光源
11…第1のレンズ
15…格子駆動部
20…イメージセンサ
21…第2のレンズ
23…スペイシャルフィルタ
42…ステージ駆動部
80…ステージ
200…撮像装置制御部
309…変形格子像入力部
310…光強度取得部
316…高さ算出部
330…プログラム記憶装置
331…データ記憶装置
340…入力装置
341…出力装置
350…撮像装置
400…CPU
411…高調波除去部
412…余弦関数算出部
413…位相抽出部
421…正弦関数算出部
432…メモリ格子記憶装置
3 ... Lattice
5 ... Object to be measured
10 ... Light source
11 ... 1st lens
15 ... Lattice drive unit
20… Image sensor
21 ... Second lens
23 ... Spatial filter
42… Stage drive unit
80 ... Stage
200 ... Imaging device controller
309 ... Deformed grid image input unit
310 ... Light intensity acquisition unit
316… Height calculator
330 ... Program storage device
331 ... Data storage device
340 ... Input device
341 ... Output device
350 ... Imaging device
400 ... CPU
411 ... Harmonic wave removal unit
412: Cosine function calculator
413 ... Phase extraction unit
421 ... Sine function calculator
432 ... Memory grid storage device

Claims (9)

被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像する撮像装置と、
前記複数の変形格子像から複数の光強度関数を各々取得する光強度取得部と、
前記被測定物体が前記複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、前記複数の光強度関数のそれぞれに対し前記第1の値の位相差がある第1の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出する余弦関数算出部と、
90度から前記第1の値を差し引いた値を第2の値とし、前記複数の光強度関数のそれぞれに対し前記第2の値の位相差がある第2の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出する正弦関数算出部と、
前記複数の余弦関数の和である実部関数及び前記複数の正弦関数の和である虚部関数を算出することにより、前記複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去する高調波除去部と、
前記虚部関数及び前記実部関数から抽出される前記モアレ位相に基づいて前記被測定物体の高さを算出する高さ算出部
とを備えることを特徴とする3次元計測装置。
An imaging device that captures a plurality of deformed lattice images formed by projecting a binary pattern onto an object to be measured;
A light intensity acquisition unit that respectively acquires a plurality of light intensity functions from the plurality of deformed lattice images;
A first moire phase value given to each of the plurality of deformed lattice images by the measured object is a first value, and a first triangle having a phase difference of the first value with respect to each of the plurality of light intensity functions. A cosine function calculating unit that multiplies each of the plurality of light intensity functions by a function to calculate a plurality of cosine functions;
A value obtained by subtracting the first value from 90 degrees is defined as a second value, and a second trigonometric function having a phase difference of the second value for each of the plurality of light intensity functions is defined as the plurality of light intensity. A sine function calculator that calculates each of the functions and calculates a plurality of sine functions;
By calculating a real part function that is the sum of the plurality of cosine functions and an imaginary part function that is the sum of the plurality of sine functions, harmonics included in each of the plurality of cosine functions and sine functions are removed. A wave removal unit;
A three-dimensional measurement apparatus comprising: a height calculation unit that calculates a height of the object to be measured based on the moire phase extracted from the imaginary part function and the real part function.
前記複数の変形格子像のそれぞれは、45度ずつ異なる位相差があることを特徴とする請求項1に記載の3次元計測装置。   The three-dimensional measurement apparatus according to claim 1, wherein each of the plurality of deformed lattice images has a phase difference different by 45 degrees. 前記複数の変形格子像の数は、前記高調波の数を指数とした2の累乗に等しいことを特徴とする請求項1又は2に記載の3次元計測装置。   3. The three-dimensional measurement apparatus according to claim 1, wherein the number of the plurality of deformed lattice images is equal to a power of 2 with the number of harmonics as an index. 被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像するステップと、
前記複数の変形格子像から複数の光強度関数を各々取得するステップと、
前記被測定物体が前記複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、前記複数の光強度関数のそれぞれに対し前記第1の値の位相差がある第1の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出するステップと、
90度から前記第1の値を差し引いた値を第2の値とし、前記複数の光強度関数のそれぞれに対し前記第2の値の位相差がある第2の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出するステップと、
前記複数の余弦関数の和である実部関数及び前記複数の正弦関数の和である虚部関数を算出することにより、前記複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去するステップと、
前記虚部関数及び前記実部関数から抽出される前記モアレ位相に基づいて前記被測定物体の高さを算出するステップ
とを含むことを特徴とする3次元計測方法。
Capturing a plurality of deformed lattice images formed by projecting a binary pattern onto the object to be measured;
Obtaining each of a plurality of light intensity functions from the plurality of modified lattice images;
A first moire phase value given to each of the plurality of deformed lattice images by the measured object is a first value, and a first triangle having a phase difference of the first value with respect to each of the plurality of light intensity functions. Multiplying each of the plurality of light intensity functions by a function to calculate a plurality of cosine functions;
A value obtained by subtracting the first value from 90 degrees is defined as a second value, and a second trigonometric function having a phase difference of the second value for each of the plurality of light intensity functions is defined as the plurality of light intensity. Multiplying each of the functions to calculate a plurality of sine functions;
Calculating a real part function that is a sum of the plurality of cosine functions and an imaginary part function that is a sum of the plurality of sine functions, thereby removing harmonics included in each of the plurality of cosine functions and the sine function. When,
Calculating the height of the object to be measured based on the moiré phase extracted from the imaginary part function and the real part function.
前記複数の変形格子像のそれぞれは、45度ずつ異なる位相差があることを特徴とする請求項4に記載の3次元計測方法。   5. The three-dimensional measurement method according to claim 4, wherein each of the plurality of modified lattice images has a phase difference different by 45 degrees. 前記複数の変形格子像の数は、前記高調波の次数を指数とした2の累乗に等しいことを特徴とする請求項4又は5に記載の3次元計測方法。   6. The three-dimensional measurement method according to claim 4, wherein the number of the plurality of modified lattice images is equal to a power of 2 with the order of the harmonics as an index. 前記複数の変形格子像を取得するステップは、前記バイナリパターンを等間隔で移動させる手順を含むことを特徴とする請求項4乃至6のいずれか1項に記載の3次元計測方法。   7. The three-dimensional measurement method according to claim 4, wherein the step of acquiring the plurality of modified lattice images includes a procedure of moving the binary pattern at equal intervals. 前記被測定物体の高さを算出するステップは、前記虚部関数を前記実部関数で割り、逆正接をとる手順を含むことを特徴とする請求項4乃至7のいずれか1項に記載の3次元計測方法。   8. The step of calculating the height of the object to be measured includes a procedure of dividing the imaginary part function by the real part function and taking an arc tangent. 3D measurement method. 被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、前記3次元計測装置に、
被測定物体にバイナリパターンを投影して形成される複数の変形格子像を撮像する手順と、
前記複数の変形格子像から複数の光強度関数を各々取得する手順と、
前記被測定物体が前記複数の変形格子像のそれぞれに与えるモアレ位相の値を第1の値とし、前記複数の光強度関数のそれぞれに対し前記第1の値の位相差がある第1の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の余弦関数を算出する手順と、
90度から前記第1の値を差し引いた値を第2の値とし、前記複数の光強度関数のそれぞれに対し前記第2の値の位相差がある第2の三角関数を前記複数の光強度関数のそれぞれに乗じ、複数の正弦関数を算出する手順と、
前記複数の余弦関数の和である実部関数及び前記複数の正弦関数の和である虚部関数を算出することにより、前記複数の余弦関数及び正弦関数のそれぞれに含まれる高調波を除去する手順と、
前記虚部関数及び前記実部関数から抽出される前記モアレ位相に基づいて前記被測定物体の高さを算出する手順
とを実行させることを特徴とする3次元計測プログラム。
A three-dimensional measurement program for driving and controlling a three-dimensional measurement apparatus for measuring the surface shape of an object to be measured.
A procedure for imaging a plurality of deformed lattice images formed by projecting a binary pattern onto the object to be measured;
Obtaining each of a plurality of light intensity functions from the plurality of deformed lattice images;
A first moire phase value given to each of the plurality of deformed lattice images by the measured object is a first value, and a first triangle having a phase difference of the first value with respect to each of the plurality of light intensity functions. Multiplying each of the plurality of light intensity functions by a function to calculate a plurality of cosine functions;
A value obtained by subtracting the first value from 90 degrees is defined as a second value, and a second trigonometric function having a phase difference of the second value for each of the plurality of light intensity functions is defined as the plurality of light intensity. Multiply each of the functions to calculate multiple sine functions;
A procedure for removing harmonics included in each of the plurality of cosine functions and the sine function by calculating a real part function that is the sum of the plurality of cosine functions and an imaginary part function that is the sum of the plurality of sine functions. When,
A program for calculating a height of the object to be measured based on the moire phase extracted from the imaginary part function and the real part function.
JP2005178601A 2005-06-17 2005-06-17 3D measuring device, 3D measuring method, and 3D measuring program Expired - Fee Related JP4674121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178601A JP4674121B2 (en) 2005-06-17 2005-06-17 3D measuring device, 3D measuring method, and 3D measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178601A JP4674121B2 (en) 2005-06-17 2005-06-17 3D measuring device, 3D measuring method, and 3D measuring program

Publications (2)

Publication Number Publication Date
JP2006349590A true JP2006349590A (en) 2006-12-28
JP4674121B2 JP4674121B2 (en) 2011-04-20

Family

ID=37645598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178601A Expired - Fee Related JP4674121B2 (en) 2005-06-17 2005-06-17 3D measuring device, 3D measuring method, and 3D measuring program

Country Status (1)

Country Link
JP (1) JP4674121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996417A (en) * 2009-08-18 2011-03-30 来宝株式会社 Apparatus and method for processing 3d image
JP2012112856A (en) * 2010-11-26 2012-06-14 Nikon Corp Undulation observation device
CN114741131A (en) * 2022-04-02 2022-07-12 深圳软牛科技有限公司 Hiding method, device and equipment of dynamic library derived symbols and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306916A (en) * 1991-03-27 1993-11-19 Rikagaku Kenkyusho Method and device for analyzing distribution of fringe phase
JP2004125652A (en) * 2002-10-03 2004-04-22 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method
JP2005062063A (en) * 2003-08-18 2005-03-10 Ricoh Co Ltd Object shape measuring device
JP2005227246A (en) * 2004-01-15 2005-08-25 Yamatake Corp Three-dimensional measuring device, three-dimensional measuring method, and three-dimensional measuring program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306916A (en) * 1991-03-27 1993-11-19 Rikagaku Kenkyusho Method and device for analyzing distribution of fringe phase
JP2004125652A (en) * 2002-10-03 2004-04-22 Yamatake Corp Three-dimensional measuring instrument and three-dimensional measuring method
JP2005062063A (en) * 2003-08-18 2005-03-10 Ricoh Co Ltd Object shape measuring device
JP2005227246A (en) * 2004-01-15 2005-08-25 Yamatake Corp Three-dimensional measuring device, three-dimensional measuring method, and three-dimensional measuring program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996417A (en) * 2009-08-18 2011-03-30 来宝株式会社 Apparatus and method for processing 3d image
JP2012112856A (en) * 2010-11-26 2012-06-14 Nikon Corp Undulation observation device
CN114741131A (en) * 2022-04-02 2022-07-12 深圳软牛科技有限公司 Hiding method, device and equipment of dynamic library derived symbols and storage medium
CN114741131B (en) * 2022-04-02 2023-08-15 深圳软牛科技有限公司 Hiding method, device, equipment and storage medium for dynamic library derived symbol

Also Published As

Publication number Publication date
JP4674121B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US7587094B2 (en) Phase measurement system
NL2013244B1 (en) Phase-controlled model-based overlay measurement systems and methods.
US8976367B2 (en) Structured light 3-D measurement module and system for illuminating a subject-under-test in relative linear motion with a fixed-pattern optic
Jia et al. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement
TW201710799A (en) New approaches in first order scatterometry overlay based on introduction of auxiliary electromagnetic fields
KR100839167B1 (en) Apparatus and method for measuring three dimensional shape of phase shifting grating projection using moire equipment
JP5743419B2 (en) Shape measuring method and apparatus and strain measuring method and apparatus
US10105906B2 (en) Structured light generating device and measuring system and method
JP2011153969A (en) X-ray imaging apparatus and wavefront measuring apparatus
CN105579809A (en) Measurement method, measurement device, measurement program, and computer-readable recording medium recording measurement program
JP4674121B2 (en) 3D measuring device, 3D measuring method, and 3D measuring program
JP5956296B2 (en) Shape measuring apparatus and shape measuring method
Han et al. Error analysis of the phase-shifting technique when applied to shadow moiré
JP4398277B2 (en) 3D measuring device, 3D measuring method, and 3D measuring program
CN116559179B (en) Reflective surface morphology and defect detection method and system thereof
JP2010181247A (en) Shape measurement apparatus and shape measurement method
JP2013130457A (en) Shape measurement apparatus, shape measurement system and shape measurement method
KR101436403B1 (en) Shadow Moire Method using Sine Wave Grationg and Measuring Apparatus using the same
JPH1096606A (en) Shape measuring method and device
Chen et al. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection
JP2006084286A (en) Three-dimensional measuring method and its measuring device
Steckenrider et al. High-resolution moiré interferometry for quantitative low-cost, real-time surface profilometry
JP4688625B2 (en) 3D measuring apparatus, 3D measuring method, and 3D measuring program
KR101549310B1 (en) Apparatus and method phase shifting stripe patterns projection for detecting defect of transparent object
Leong-Hoï et al. High speed implementation of a three-dimensional shape profiler with submillimeter precision using a digital light processing device and a new efficient algorithm for absolute phase retrieval

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Ref document number: 4674121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees