JP4398277B2 - 3D measuring device, 3D measuring method, and 3D measuring program - Google Patents

3D measuring device, 3D measuring method, and 3D measuring program Download PDF

Info

Publication number
JP4398277B2
JP4398277B2 JP2004049681A JP2004049681A JP4398277B2 JP 4398277 B2 JP4398277 B2 JP 4398277B2 JP 2004049681 A JP2004049681 A JP 2004049681A JP 2004049681 A JP2004049681 A JP 2004049681A JP 4398277 B2 JP4398277 B2 JP 4398277B2
Authority
JP
Japan
Prior art keywords
functions
frequency
function
pitch
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049681A
Other languages
Japanese (ja)
Other versions
JP2005227246A (en
Inventor
雅 古谷
久利 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004049681A priority Critical patent/JP4398277B2/en
Publication of JP2005227246A publication Critical patent/JP2005227246A/en
Application granted granted Critical
Publication of JP4398277B2 publication Critical patent/JP4398277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は3次元計測技術に関し、特に3次元計測物体の表面を計測する3次元計測装置、3次元計測方法及び3次元計測プログラムに関する。   The present invention relates to a three-dimensional measurement technique, and more particularly to a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program for measuring the surface of a three-dimensional measurement object.

物体の三次元形状を測定する手法に格子パターン投影法と格子投影型モアレ法がある。「格子パターン投影法」とは、格子状パターンを投影し、その位相から被測定物体表面の各点の高さを求める手法(例えば非特許文献1参照。)をいう。格子パターン投影法においては、格子パターンのピッチを小さくすることにより精度の向上が可能である。   There are a lattice pattern projection method and a lattice projection type moire method for measuring the three-dimensional shape of an object. The “lattice pattern projection method” refers to a method of projecting a lattice pattern and obtaining the height of each point on the surface of the object to be measured from the phase (see, for example, Non-Patent Document 1). In the grid pattern projection method, accuracy can be improved by reducing the pitch of the grid pattern.

一方、「格子投影型モアレ法」とは、まず被測定物体に投影した周期的な格子パターンを撮像し、得られた画像に対して計算機内の仮想的な格子モデルを乗算することにより、モアレを生成する手法(例えば非特許文献2参照。)をいう。このとき得られるモアレには、格子の空間周波数成分およびそれぞれの格子の和の空間周波数成分と差の空間周波数成分が含まれるので、空間的なローパスフィルターを用いてそれぞれの格子の差の空間周波数成分のみを取り出す。格子投影型モアレ法においては、計算機内の格子のピッチを調整することにより、それぞれの格子の差の空間周波数成分のレンジは狭くすることができるので、位相とびを少なくすることができる。
吉澤徹、「格子パターン投影方式三次元計測システム」、三次元光学、第1巻、光技術コミュニケーションズ、1993年、p.83−99 加藤純一、山口一郎、「位相シフト電子モアレを用いた縞画像の実時間処理」、センサ技術、第12巻、第7号、1992年、p.39−44
On the other hand, the “grid projection type moire method” is a method in which a periodic lattice pattern projected onto an object to be measured is first imaged, and the obtained image is multiplied by a virtual lattice model in a computer to obtain a moire pattern. Is a method (see, for example, Non-Patent Document 2). Since the moire obtained at this time includes the spatial frequency component of the lattice and the spatial frequency component of the difference between the sum of the respective lattices and the spatial frequency component of the difference, the spatial frequency of the difference of each lattice using a spatial low-pass filter Extract only the ingredients. In the lattice projection type moire method, by adjusting the pitch of the lattice in the computer, the range of the spatial frequency component of the difference between the respective lattices can be narrowed, so that the phase jump can be reduced.
Toru Yoshizawa, “Lattice pattern projection type 3D measurement system”, 3D optics, Volume 1, Optical Technology Communications, 1993, p. 83-99 Junichi Kato and Ichiro Yamaguchi, “Real-time processing of fringe images using phase shift electronic moire”, Sensor Technology, Vol. 12, No. 7, 1992, p. 39-44

しかし格子パターン投影法には、格子パターンのピッチを小さくすると、比例して高さ計算結果における位相とびが多数発生するという問題があった。また、位相とびが多数発生することから、位相接続に時間がかかるという問題も生じていた。一方、格子投影型モアレ法においては、空間周波数フィルターを用いるため、空間分解能が著しく損なわれ、微細な形状を測定することができないという問題があった。   However, the lattice pattern projection method has a problem that if the pitch of the lattice pattern is reduced, a large number of phase jumps occur in the height calculation results in proportion. Further, since many phase jumps occur, there is a problem that it takes time to connect the phases. On the other hand, in the lattice projection type moire method, since a spatial frequency filter is used, there is a problem that the spatial resolution is remarkably impaired and a fine shape cannot be measured.

本発明は上記問題を鑑み、分解能を損なうことなく、位相とびを大幅に少なくすることが可能な3次元計測装置、3次元計測方法及び3次元計測プログラムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program capable of significantly reducing phase jumps without impairing resolution.

上記目的を達成するために本発明の第1の特徴は、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、被測定物体の位相が異なる複数の撮像画像を取得する撮像装置と、(ロ) 複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する光強度抽出部と、(ハ)複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成し、この組合せにおいてそれぞれ減算を実行しバイアス成分の項を除去し、複数の基本関数を算出するバイアス消去演算部と、(ニ)複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出するモアレ生成演算部と、(ホ)複数のモアレ関数から互いに和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、この組合せにおいて和の周波数成分の項互いに相殺する演算により除去し、この演算によって残った差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する位相演算部とを備える3次元計測装置であることを要旨とする。 In order to achieve the above object, the first feature of the present invention is that (a) a sinusoidal periodic bright / dark pattern having a first pitch is projected onto the object to be measured, and the phases of the objects to be measured are different. And (b) the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at the first frequency determined by the first pitch. It is assumed that there are multiple light intensity functions with different phases, including those with a phase difference of 180 degrees, including multiple sinusoidal functions that are expressed as the sum of the bias component terms that determine the center value of the vibration. And (c) generating a plurality of combinations of two light intensity functions whose phases are different from each other by 180 degrees from a plurality of light intensity functions , subtracting each of the combinations to remove a bias component term , A bar that calculates multiple basic functions And Ass erasing operation section, to each of the (d) a plurality of basis functions, a function of the sinusoidal different phases 90 degrees from each other, a plurality of memory grating functions which oscillates each at a second frequency determined by the second pitch The product of each is converted into a form expressed by the sum of the frequency component term of the difference between the first frequency and the second frequency and the frequency component term of the sum of the first frequency and the second frequency. and, a moire generation calculator for calculating a plurality of moire function to generate a plurality of combinations of the two moire functions the same absolute value of the term of the frequency components of the sum from each other from (e) a plurality of moire functions, the sum in this combination and removal by an operation cancel each other out to the section of the frequency components, from terms of the frequency components of the remaining difference by this calculation, three-dimensional measurement and a phase calculator for calculating the initial phase to reduce the number of phase unwrapping Is a device The gist of the door.

本発明の第2の特徴は、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、被測定物体の位相が異なる複数の撮像画像を取得する撮像装置と、(ロ)複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する光強度抽出部と、(ハ)それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群を保存するメモリ格子記憶装置と、(ニ) 複数の光強度関数のそれぞれに対し、第1メモリ格子関数群及び第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項とバイアス成分を振幅とする第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出する正余弦関数算出部と、(ホ)複数の余弦関数の和をとり複数の余弦関数に含まれる和の周波数成分とバイアス成分を振幅とする第2の周波数成分の項を除去して実部関数を算出し、複数の正弦関数の和をとり複数の正弦関数に含まれる和の周波数成分とバイアス成分を振幅とする第2の周波数成分の項を除去して虚部関数を算出する実部算出部と、(ヘ)虚部関数を実部関数で割り、逆正接をとることで、差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する初期位相算出部とを備える3次元計測装置であることを要旨とする。 The second feature of the present invention is: (a) imaging that projects a sinusoidal periodic bright and dark pattern having a first pitch on a measured object and obtains a plurality of captured images having different phases of the measured object (B) The light intensity of the pixels included in each of the plurality of captured images has the same value as the vibration term that vibrates at the first frequency determined by the first pitch, and determines the center value of vibration. A light intensity extracting unit that assumes a plurality of sinusoidal functions each expressed by the sum of the bias component term and a plurality of light intensity functions that are different in phase, including those that are 180 degrees different from each other , (C) A memory grid memory that stores a first memory grid function group and a second memory grid function group that are sinusoidal functions that are 90 degrees out of phase with each other and that vibrate at a second frequency determined by the second pitch. Equipment and (d) multiple light intensity functions For each, the product obtained by multiplying each of the plurality of memory grating function included in each of the first memory grating function group and the second memory grating function group, the frequency component of the difference between the first frequency and the second frequency To a form represented by the sum of the term of the frequency component of the sum of the first frequency and the second frequency and the term of the second frequency component having the bias component as the amplitude, and a plurality of cosine functions and A positive cosine function calculation unit that calculates a plurality of sine functions, and (e) a second frequency component term that takes the sum of a plurality of cosine functions and uses the sum frequency component and bias component included in the plurality of cosine functions as amplitudes. The real part function is calculated by removing the sine function, the sum of multiple sine functions is added, and the frequency component of the sum included in the multiple sine functions and the second frequency component term whose amplitude is the bias component are removed. Real part calculation part that calculates function and (f) Imaginary part function with real part function The gist of the present invention is a three-dimensional measurement apparatus including an initial phase calculation unit that calculates an initial phase for reducing the number of phase unwrapping from the term of the frequency component of the difference by dividing and taking an arctangent.

本発明の第3の特徴は、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、撮像画像入力部が被測定物体の位相が異なる複数の撮像画像を取得し、データ記憶装置に格納するステップと、(ロ)光強度抽出部が複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定し、データ記憶装置に格納するステップと、(ハ)バイアス消去演算部が複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成しし、この組合せにおいてそれぞれ減算を実行しバイアス成分の項を除去し、複数の基本関数を算出し、データ記憶装置に格納するステップと、(ニ)モアレ生成演算部が複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出し、データ記憶装置に格納するステップと、(ホ)位相演算部が複数のモアレ関数から互いに和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、この組合せにおいて和の周波数成分の項互いに相殺する演算により除去し、この演算によって残った差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出するステップとを含む3次元計測方法であることを要旨とする。 The third feature of the present invention is that (a) a plurality of images in which a phase of the object to be measured is different is projected by projecting a sinusoidal periodic bright and dark pattern having a first pitch onto the object to be measured. (B) the light intensity extraction unit vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch. A plurality of sinusoidal functions each represented by the sum of a vibration term and a bias component term that has the same value and determines the center value of vibration, including phases that are 180 degrees different from each other. Assuming multiple light intensity functions that are different from each other, the step of storing in the data storage device, and (c) the bias elimination operation unit generates a plurality of combinations of two light intensity functions whose phases are different from each other by 180 degrees. in and then, this combination Removing the section running respectively subtraction bias component, calculates a plurality of basic functions, and storing in the data storage device, respectively (d) moire generation operation unit of the plurality of basic functions, each other phase Is a sinusoidal function that differs by 90 degrees, and the product of each of a plurality of memory lattice functions that vibrate at the second frequency determined by the second pitch is the difference between the first frequency and the second frequency. Converting to a form represented by the sum of the frequency component term and the sum of the frequency component term of the first frequency and the second frequency, calculating a plurality of moire functions, and storing the data in a data storage device; (E) The phase calculation unit generates a plurality of combinations of two moire functions having the same absolute value of the sum frequency component terms from the plurality of moire functions, and cancels the sum frequency component terms from each other in this combination. Remove this operation And a step of calculating an initial phase for reducing the number of times of phase unwrapping from the term of the frequency component of the difference remaining by the above.

本発明の第4の特徴は、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、撮像画像入力部が被測定物体の位相が異なる複数の撮像画像を取得し、データ記憶装置に格納するステップと、(ロ)光強度抽出部が複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定し、データ記憶装置に格納するステップと、(ハ)正余弦関数算出部が複数の光強度関数のそれぞれに対し、それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項とバイアス成分を振幅とする第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出し、データ記憶装置に格納するステップと、(ニ)実部算出部が複数の余弦関数の和及び複数の正弦関数の和をとることにより複数の余弦関数及び正弦関数に含まれる和の周波数成分とバイアス成分を振幅とする第2の周波数成分の項を除去して実部関数及び虚部関数のそれぞれを算出し、データ記憶装置に格納するステップと、(ホ)初期位相算出部が虚部関数を実部関数で割り、逆正接をとることで、差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出するステップとを含む3次元計測方法であることを要旨とする。 The fourth feature of the present invention is (a) a plurality of images in which a sine wave-like periodic bright and dark pattern having a first pitch is projected onto a measured object, and the captured image input unit has different phases of the measured object. (B) the light intensity extraction unit vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch. A plurality of sinusoidal functions each represented by the sum of a vibration term and a bias component term that has the same value and determines the center value of vibration, including phases that are 180 degrees different from each other. Assuming a plurality of different light intensity functions and storing them in the data storage device, and (c) a sine wave function whose phase is 90 degrees different from each other for each of the plurality of light intensity functions. And decided on the second pitch The product of each of the plurality of memory lattice functions included in each of the first memory lattice function group and the second memory lattice function group that respectively vibrate at the second frequency is the first frequency and the second frequency. Convert to a format expressed by the sum of the difference frequency component term, the frequency component term of the sum of the first frequency and the second frequency, and the second frequency component term whose amplitude is the bias component, Calculating a cosine function and a plurality of sine functions, and storing them in a data storage device; and (d) a real part calculation unit taking a sum of a plurality of cosine functions and a plurality of sine functions to obtain a plurality of cosine functions. And calculating the real part function and the imaginary part function by removing the term of the second frequency component having the amplitude of the sum frequency component and the bias component included in the sine function, and storing them in the data storage device; (E) The initial phase calculation unit calculates the imaginary part function Divided in parts function by taking the arctangent, the term frequency component of the difference, is summarized in that a three-dimensional measurement method including the step of calculating the initial phase to reduce the number of phase unwrapping.

本発明の第5の特徴は、被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、3次元計測装置に、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、被測定物体の位相が異なる複数の撮像画像を取得する命令と、(ロ)複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する命令と、(ハ)複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成し、この組合せにおいてそれぞれ減算を実行しバイアス成分の項を除去し、複数の基本関数を算出する命令と、(ニ)複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出する命令と、(ホ)複数のモアレ関数から互いに和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、この組合せにおいて和の周波数成分の項互いに相殺する演算により除去し、この演算によって残った差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する命令とを実行させる3次元計測プログラムであることを要旨とする。 A fifth feature of the present invention is a three-dimensional measurement program for driving and controlling a three-dimensional measurement apparatus that measures the surface shape of the object to be measured. The three-dimensional measurement apparatus includes: projecting a sinusoidal periodic light-dark pattern having a pitch, and instructions for the phase of the measured object to obtain a different plurality of captured images, the light intensity of the pixels included in each of (b) a plurality of captured images A plurality of sinusoidal functions each represented by the sum of a vibration term that vibrates at a first frequency determined by the first pitch and a bias component term that has the same value and determines the center value of the vibration. And a command that assumes a plurality of light intensity functions with different phases, including those that are 180 degrees out of phase , and (c) a combination of two light intensity functions that are 180 degrees out of phase from each other. It generates a plurality, its in this combination Each performs subtraction to remove the section of the bias component, and instructions for calculating a plurality of basic functions, each of (d) a plurality of basis functions, a function of the sinusoidal phase are different from each other by 90 degrees, the second The product obtained by multiplying each of the plurality of memory lattice functions that vibrate at the second frequency determined by the pitch of the first frequency and the second frequency difference term, the first frequency and the second frequency An instruction for calculating a plurality of moire functions by converting the sum to the frequency component terms of the sum of frequencies and (e) absolute values of the sum frequency component terms from the plurality of moire functions are equal to each other. In order to reduce the number of phase unwrapping from the difference frequency component terms remaining by this calculation, by generating multiple combinations of two moire functions and removing the sum frequency component terms from each other in this combination. calculating the initial phase The gist is that it is a three-dimensional measurement program that executes a command to be executed.

本発明の第6の特徴は、被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、3次元計測装置に、(イ)被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、被測定物体の位相が異なる複数の撮像画像を取得する命令と、(ロ)複数の撮像画像のそれぞれに含まれる画素の光強度を、第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する命令と、(ハ)複数の光強度関数のそれぞれに対し、それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗じた積を、第1の周波数と第2の周波数の差の周波数成分の項と第1の周波数と第2の周波数の和の周波数成分の項とバイアス成分を振幅とする第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出する命令と、(ニ)複数の余弦関数の和及び複数の正弦関数の和をとることにより複数の余弦関数及び正弦関数に含まれる和の周波数成分とバイアス成分を振幅とする第2の周波数成分の項を除去して実部関数及び虚部関数のそれぞれを算出する命令と、(ホ)虚部関数を実部関数で割り、逆正接をとることで、差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する命令とを実行させる3次元計測プログラムであることを要旨とする。 A sixth aspect of the present invention is a three-dimensional measurement program for controlling driving the three-dimensional measurement apparatus for measuring the surface shape of the object to be measured, the three-dimensional measuring device, a first object to be measured (a) A command for projecting a periodic sinusoidal bright and dark pattern having a pitch and acquiring a plurality of captured images with different phases of the object to be measured; and (b) the light intensity of the pixels included in each of the plurality of captured images. A plurality of sinusoidal functions each represented by the sum of a vibration term that vibrates at a first frequency determined by the first pitch and a bias component term that has the same value and determines the center value of the vibration. There, the command phase assumed different light intensity function respectively include those different phases by 180 degrees to each other, (c) for each of the plurality of light intensity function, the phase is 90 degrees different from sinusoidal each other Function, at the second pitch A product obtained by multiplying each of a plurality of memory lattice functions included in each of the first memory lattice function group and the second memory lattice function group that respectively vibrate at a determined second frequency is obtained by multiplying the product of the first frequency and the second frequency by Convert to a format expressed by the sum of the difference frequency component term, the frequency component term of the sum of the first frequency and the second frequency, and the second frequency component term whose amplitude is the bias component, A command to calculate a cosine function and a plurality of sine functions, and (d) a sum of a plurality of cosine functions and a sum of a plurality of sine functions to obtain frequency components and biases of the sums included in the cosine functions and the sine functions. instructions for calculating the respective real part function and an imaginary part function component by removing the second term of the frequency component amplitude, divided by the real part function (e) the imaginary part function, by taking the arctangent From the difference frequency component term, the phase unwrap time And summarized in that a three-dimensional measurement program for executing instructions and calculating the initial phase to reduce.

本発明によれば、分解能を損なうことなく、位相とびを大幅に少なくすることが可能な3次元計測装置、3次元計測方法及び3次元計測プログラムを提供可能である。   According to the present invention, it is possible to provide a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program capable of significantly reducing phase jumps without impairing resolution.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
本発明の第1の実施の形態に係るモアレ三次元形状計測システムは、図1に示すように中央処理装置(CPU)300、撮像装置350、メモリ格子記憶装置332、入力装置340、出力装置341、プログラム記憶装置330、データ記憶装置331を備える。さらにCPU300は、撮像装置制御部200、撮像画像入力部309、光強度抽出部310、バイアス消去演算部311、モアレ生成演算部312、位相演算部313、位相接続演算部314、傾き補正演算部315及び高さ変換演算部316を備える。
(First embodiment)
The moire three-dimensional shape measurement system according to the first embodiment of the present invention includes a central processing unit (CPU) 300, an imaging device 350, a memory grid storage device 332, an input device 340, and an output device 341 as shown in FIG. A program storage device 330 and a data storage device 331. Further, the CPU 300 includes an imaging device control unit 200, a captured image input unit 309, a light intensity extraction unit 310, a bias erasure calculation unit 311, a moire generation calculation unit 312, a phase calculation unit 313, a phase connection calculation unit 314, and an inclination correction calculation unit 315. And a height conversion operation unit 316.

撮像装置350は、図2に示すように、測定対象である被測定物体5に対して光を照射する光源10、光源10より照射された光を平行光にする第1のレンズ11、平行光が照射される格子3、格子3を透過した光が照射される被測定物体5を搭載するステージ80、被測定物体5からの反射光を集光する第2のレンズ21、集光された反射光の焦点近傍に配置されるスペイシャルフィルタ23、スペイシャルフィルタ23を通過した反射光を受けるイメージセンサ20、ステージ80の配置位置を移動させるステージ駆動部42及び格子3の配置位置を移動させる格子駆動部15を備える。   As shown in FIG. 2, the imaging device 350 includes a light source 10 that irradiates light to the measurement target object 5 to be measured, a first lens 11 that converts the light emitted from the light source 10 into parallel light, and parallel light. Is irradiated with the grating 3, the stage 80 on which the measured object 5 irradiated with the light transmitted through the grating 3 is mounted, the second lens 21 for collecting the reflected light from the measured object 5, and the reflected light A spatial filter 23 arranged near the focal point of light, an image sensor 20 that receives reflected light that has passed through the spatial filter 23, a stage drive unit 42 that moves the arrangement position of the stage 80, and a grating that moves the arrangement position of the grating 3 A drive unit 15 is provided.

ここで光源10は、蛍光放電管、低圧水銀灯、キセノンランプ等の線光源等が使用可能である。第1のレンズ11はシリンドリカルレンズ等が使用可能であり、第2のレンズ21はテレセントリックレンズ等が使用可能である。格子3の表面を模式的に示したのが図3(a)であり、格子3の表面は図3(b)に示すようには周期的な透過率分布を有する。光源10より格子3に光を照射することにより、被測定物体5の表面には、第1のピッチPdを有する周期的な明暗のパターンが投影される。イメージセンサ20は電荷結合素子(CCD)カメラ等が使用可能であり、CCDカメラの光電変換機能により、反射光の明暗を電圧の大小に変換し、縦(x)方向及び横(y)方向にマトリックス状に配置された複数の画素から構成されるデジタル画像を図1に示した撮像画像入力部309へ伝達する。 Here, a linear light source such as a fluorescent discharge tube, a low-pressure mercury lamp, or a xenon lamp can be used as the light source 10. A cylindrical lens or the like can be used as the first lens 11, and a telecentric lens or the like can be used as the second lens 21. FIG. 3 (a) schematically shows the surface of the grating 3, and the surface of the grating 3 has a periodic transmittance distribution as shown in FIG. 3 (b). By irradiating light to the grating 3 from the light source 10, on the surface of the object to be measured 5, periodic light and dark pattern with a first pitch P d is projected. The image sensor 20 can use a charge-coupled device (CCD) camera, etc., and the photoelectric conversion function of the CCD camera converts the brightness of the reflected light into the magnitude of the voltage, in the vertical (x) direction and the horizontal (y) direction. A digital image composed of a plurality of pixels arranged in a matrix is transmitted to the captured image input unit 309 shown in FIG.

撮像装置制御部200は、制御信号等を撮像装置350に供給することにより、図2に示したステージ駆動部42を制御し、ステージ80の配置位置を制御する。同様に格子駆動部15を制御し、格子3の配置位置を格子3の周期パターン方向に移動させる。さらに撮像装置制御部200は光源10の光強度の調整、イメージセンサ20のシャッタースピード等の制御を行う。   The imaging apparatus control unit 200 controls the stage driving unit 42 illustrated in FIG. 2 and the arrangement position of the stage 80 by supplying a control signal and the like to the imaging apparatus 350. Similarly, the grating driving unit 15 is controlled to move the arrangement position of the grating 3 in the periodic pattern direction of the grating 3. Further, the imaging device control unit 200 performs adjustment of the light intensity of the light source 10, control of the shutter speed of the image sensor 20, and the like.

図1に示す撮像画像入力部309は、所定の位置に配置された図2に示した格子3を光源10で照射し、イメージセンサ20で撮像された被測定物体5のデジタル画像を第1の撮像画像と定義する。また、第1の撮像画像に対し、格子駆動部15により格子3を移動させて、被測定物体5の表面の明暗のパターンを第1のピッチPdの四分の一の距離を移動させ撮像したデジタル画像を第2の撮像画像と定義する。以下同様に、被測定物体5の表面の明暗のパターンを、第1のピッチPdの四分の一の距離を順次移動させ撮像したデジタル画像を第3の撮像画像、第4の撮像画像とそれぞれ定義する。 A captured image input unit 309 illustrated in FIG. 1 irradiates the grating 3 illustrated in FIG. 2 arranged at a predetermined position with the light source 10, and the digital image of the measured object 5 captured by the image sensor 20 is a first image. It is defined as a captured image. Further, with respect to the first captured image and the grating 3 is moved by the grid driver 15 to move the quarter of the distance the light and dark pattern on the surface of the object to be measured 5 first pitch P d imaging The obtained digital image is defined as a second captured image. Similarly, the light-dark pattern on the surface of the object to be measured 5, and the digital image are sequentially captured by moving a quarter of the length of the first pitch P d third captured image, the fourth captured image Define each.

図1に示す光強度抽出部310は、x方向及びy方向に配置された複数の画素から構成される第1から第4の撮像画像のそれぞれから、x方向に1列に並ぶ複数の画素を抽出する。ここで、各画素は光強度のデータを有しており、第1の撮像画像から抽出された画素から再現された光強度分布の一例が図4である。図4に示した座標xにおける画素の光強度I1(x)は下記(1)式で表されると仮定される。以下同様に、第2の撮像画像から再現された光強度分布の一例が図5であり、図5に示した座標xにおける画素の光強度I2(x)は下記(2)式で表されると仮定される。第3の撮像画像から再現された光強度分布の一例が図6であり、図6に示した画素の光強度I3(x)は下記(3)式で表されると仮定される。第4の撮像画像から再現された光強度分布の一例が図7であり、図7に示した画素の光強度I3(x)は下記(4)式で表されると仮定される。:
I1(x) = A × cos(2 πx / Pd + φ(x)) + B …(1)
I2(x) = A × cos(2 πx / Pd + φ(x) + π/2) + B …(2)
I3(x) = A × cos(2 πx / Pd + φ(x) + π) + B …(3)
I4(x) = A × cos(2 πx / Pd + φ(x) + 3 × π/2) + B …(4)
ここで、A、Bは各画素における定数であり、Aは振幅を、Bはバイアス項を示す。Aの値はレンズ等の光学系や、被測定物体5の表面の反射率によって定まる。Bの値は、レンズ等の光学系や、被測定物体5の表面の反射率の他に、迷光等の要因によって定まる。φ(x)は位相を示す。
The light intensity extraction unit 310 illustrated in FIG. 1 includes a plurality of pixels arranged in a line in the x direction from each of the first to fourth captured images including a plurality of pixels arranged in the x direction and the y direction. Extract. Here, each pixel has light intensity data, and FIG. 4 shows an example of the light intensity distribution reproduced from the pixel extracted from the first captured image. It is assumed that the light intensity I 1 (x) of the pixel at the coordinate x shown in FIG. 4 is expressed by the following equation (1). Similarly, FIG. 5 shows an example of the light intensity distribution reproduced from the second captured image, and the light intensity I 2 (x) of the pixel at the coordinate x shown in FIG. 5 is expressed by the following equation (2). It is assumed. An example of the light intensity distribution reproduced from the third captured image is shown in FIG. 6, and the light intensity I 3 (x) of the pixel shown in FIG. 6 is assumed to be expressed by the following equation (3). An example of the light intensity distribution reproduced from the fourth captured image is shown in FIG. 7, and it is assumed that the light intensity I 3 (x) of the pixel shown in FIG. 7 is expressed by the following equation (4). :
I 1 (x) = A × cos (2 πx / P d + φ (x)) + B… (1)
I 2 (x) = A × cos (2 πx / P d + φ (x) + π / 2) + B… (2)
I 3 (x) = A × cos (2 πx / P d + φ (x) + π) + B… (3)
I 4 (x) = A × cos (2 πx / P d + φ (x) + 3 × π / 2) + B… (4)
Here, A and B are constants in each pixel, A is an amplitude, and B is a bias term. The value of A is determined by the reflectance of the optical system such as a lens and the surface of the object to be measured 5. The value of B is determined by factors such as stray light in addition to the reflectance of the optical system such as a lens and the surface of the object 5 to be measured. φ (x) indicates the phase.

図1に示すバイアス消去演算部311は光強度抽出部310で算出された互いに位相が180度異なる第1の光強度関数I1(x)から第3の光強度関数I3(x)を減じ、図8に示すバイアス項Bのない第1の基本関数E1(x)を算出する。また、互いに位相が180度異なる第4の光強度関数I4(x)から第2の光強度関数I2(x)を減じ、図9に示すバイアス項Bのない第2の基本関数E2(x)を算出する。第1の基本関数E1(x)及び第2の基本関数E2(x)のそれぞれは、下記(5)式及び(6)式で表される。:
E1(x) = I1(x) - I3(x)
= 2A × cos(2πx / Pd + φ(x)) …(5)
E2(x) = I4(x) - I2(x)
= 2A × sin(2πx / Pd + φ(x)) …(6)
図1に示すメモリ格子記憶装置332は、下記(7)式及び(8)式で表される互いに位相が90度異なる第1のメモリ格子関数G1(x)及び第2のメモリ格子関数G2(x)のそれぞれを保存する。:
G1(x) = cos(2πx / Pm) …(7)
G2(x) = sin(2πx / Pm) …(8)
なおPmは、第1のピッチPdに対して、メモリ格子記憶装置332に保存される仮想的な格子モデルに設定された第2のピッチである。Pmの値は図1に示した入力装置340から任意の値に入力可能である。なお、Pmの値はPdと同じ単位系を用いる。例えば、Pdの単位がμmであれば、Pmの単位もμmで設定される。
1 subtracts the third light intensity function I 3 (x) from the first light intensity function I 1 (x) calculated by the light intensity extraction section 310 and having phases different from each other by 180 degrees. The first basic function E 1 (x) without the bias term B shown in FIG. 8 is calculated. Further, the second light intensity function I 2 (x) is subtracted from the fourth light intensity function I 4 (x) that is 180 degrees out of phase with each other, and the second basic function E 2 without the bias term B shown in FIG. Calculate (x). Each of the first basic function E 1 (x) and the second basic function E 2 (x) is expressed by the following equations (5) and (6). :
E 1 (x) = I 1 (x)-I 3 (x)
= 2A × cos (2πx / P d + φ (x))… (5)
E 2 (x) = I 4 (x)-I 2 (x)
= 2A × sin (2πx / P d + φ (x))… (6)
The memory grid storage device 332 shown in FIG. 1 includes a first memory grid function G 1 (x) and a second memory grid function G that are expressed by the following formulas (7) and (8) that are 90 degrees out of phase with each other. 2 Save each of (x). :
G 1 (x) = cos (2πx / P m )… (7)
G 2 (x) = sin (2πx / P m )… (8)
Note that P m is the second pitch set in the virtual lattice model stored in the memory lattice storage device 332 with respect to the first pitch P d . The value of P m can be input to an arbitrary value from the input device 340 shown in FIG. Note that the value of P m uses the same system of units as P d. For example, if the [mu] m is a unit of P d, also units of P m are set at [mu] m.

モアレ生成演算部312は、バイアス消去演算部311で算出された第1の基本関数E1(x)に、メモリ格子記憶装置332に保存されている第1のメモリ格子関数G1(x)を乗ずる下記(9)式に示す計算と、第2のメモリ格子関数G2(x)を乗ずる下記(10)式に示す計算のそれぞれを行い、図10に示す第1のモアレ関数M1(x)及び図11に示す第2のモアレ関数M2(x)のそれぞれを算出する。さらにモアレ生成演算部312は、第2の基本関数E2(x)に第1のメモリ格子関数G1(x)を乗ずる下記(11)式に示す計算と、第2のメモリ格子関数G2(x)を乗ずる下記(12)式に示す計算のそれぞれを行い、図12に示す第3のモアレ関数M3(x)と図13に示す第4のモアレ関数M4(x)のそれぞれを算出する。また、第1乃至第4のモアレ関数M1(x)〜M4(x)のそれぞれの第2項を和の周波数成分と定義する。:
M1(x) = E1(x) × G1(x)
= 2A × cos(2πx / Pd + φ(x)) × cos(2πx / Pm)
= A × {cos(2πx(Pm - Pd) / (Pm × Pd) + φ(x)) + cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} …(9)
M2(x) = E1(x) × G2(x)
= 2A × cos(2πx / Pd + φ(x)) × sin(2πx / Pm)
= A × {-sin(2πx(Pm - Pd) / (Pm × Pd) + φ(x)) + sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} …(10)
M3(x) = E2(x) × G1(x)
= 2A × sin(2πx / Pd + φ(x)) × cos(2πx / Pm)
= A × {sin(2πx(Pm - Pd) / (Pm × Pd) + φ(x)) + sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} …(11)
M4(x) = E2(x) × G2(x)
= 2A × sin(2πx / Pd + φ(x)) × sin(2πx / Pm)
= A × {cos(2πx(Pm - Pd) / (Pm × Pd) + φ(x)) - cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} …(12)
図1に示す位相演算部313は、モアレ生成演算部312で算出された、互いに和の周波数成分の絶対値が等しい第1のモアレ関数M1(x)と第4のモアレ関数M4(x)の和を求め、図14に示す第1の差の周波数関数L1(x)を算出する。また、互いに和の周波数成分が等しい第3のモアレ関数M3(x)から第2のモアレ関数M2(x)を減じ、図15に示す第2の差の周波数関数L2(x)を算出する。第1の差の周波数関数L1(x)及び第2の差の周波数関数L2(x)のそれぞれは、下記(13)式及び(14)式で表される。:
L1(x) = M1(x) + M4(x)
= 2 × A × cos(2πx (Pm - Pd) / (Pm × Pd) + φ(x)) …(13)
L2(x) = M3(x) - M2(x)
= 2 × A × sin(2πx (Pm - Pd) / (Pm × Pd) + φ(x)) …(14)
さらに位相演算部313は、第2の差の周波数関数L2(x)を第1の差の周波数関数L1(x)で割り、その逆正接をとることにより、図16及び下記(15)式に示す初期位相δを算出する。:
δ = tan-1 (L2(x) / L1(x))
= 2 π × x / Pd - 2 π × x / Pm + φ(x) … (15)
図16に示すように初期位相δは2π単位で不連続であるので、図1に示す位相接続演算部314は、「位相アンラップ」により初期位相δを位相接続する。位相アンラップとは、周りの位相データから連続になるように2πn(nは0でない整数)を加算、又は減算して位相をつなぎ合わせることをいう。「位相アンラップの開始点」は、位相計算を最初に行う箇所である。そこで被測定物体5がないところを計測の開始点とすると、モアレ縞が存在しないので、位相アンラップを行うことができない。被測定物体5があるところを計測の開始点として指定することにより、破綻のない位相アンラップを行える。位相アンラップにより、図17に示すように連続関数である接続後位相関数C(x)が得られる。
The moiré generation calculation unit 312 adds the first memory lattice function G 1 (x) stored in the memory lattice storage device 332 to the first basic function E 1 (x) calculated by the bias elimination calculation unit 311. The calculation shown in the following equation (9) and the calculation shown in the following equation (10) multiplied by the second memory lattice function G 2 (x) are respectively performed, and the first moire function M 1 (x ) And the second moire function M 2 (x) shown in FIG. Further, the moire generation calculation unit 312 performs the calculation shown in the following equation (11) by multiplying the second basic function E 2 (x) by the first memory lattice function G 1 (x), and the second memory lattice function G 2. Each of the calculations shown in the following equation (12) multiplied by (x) is performed, and the third moire function M 3 (x) shown in FIG. 12 and the fourth moire function M 4 (x) shown in FIG. calculate. Further, the second term of each of the first to fourth moire functions M 1 (x) to M 4 (x) is defined as a sum frequency component. :
M 1 (x) = E 1 (x) × G 1 (x)
= 2A × cos (2πx / P d + φ (x)) × cos (2πx / P m )
= A × (cos (2πx (P m -P d ) / (P m × P d ) + φ (x)) + cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))}… (9)
M 2 (x) = E 1 (x) × G 2 (x)
= 2A × cos (2πx / P d + φ (x)) × sin (2πx / P m )
= A × (-sin (2πx (P m -P d ) / (P m × P d ) + φ (x)) + sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))}… (10)
M 3 (x) = E 2 (x) × G 1 (x)
= 2A × sin (2πx / P d + φ (x)) × cos (2πx / P m )
= A × (sin (2πx (P m -P d ) / (P m × P d ) + φ (x)) + sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))}… (11)
M 4 (x) = E 2 (x) × G 2 (x)
= 2A × sin (2πx / P d + φ (x)) × sin (2πx / P m )
= A × (cos (2πx (P m -P d ) / (P m × P d ) + φ (x))-cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))}… (12)
The phase calculation unit 313 illustrated in FIG. 1 calculates the first moire function M 1 (x) and the fourth moire function M 4 (x ) To obtain the first difference frequency function L 1 (x) shown in FIG. Further, the second moire function M 2 (x) is subtracted from the third moire function M 3 (x) having the same sum frequency component, and the second difference frequency function L 2 (x) shown in FIG. 15 is obtained. calculate. The frequency function L 1 (x) of the first difference and the frequency function L 2 (x) of the second difference are expressed by the following expressions (13) and (14), respectively. :
L 1 (x) = M 1 (x) + M 4 (x)
= 2 × A × cos (2πx (P m -P d ) / (P m × P d ) + φ (x)) (13)
L 2 (x) = M 3 (x)-M 2 (x)
= 2 × A × sin (2πx (P m -P d ) / (P m × P d ) + φ (x)) (14)
Further, the phase calculation unit 313 divides the frequency function L 2 (x) of the second difference by the frequency function L 1 (x) of the first difference and takes the arc tangent thereof, thereby obtaining FIG. 16 and the following (15) The initial phase δ shown in the equation is calculated. :
δ = tan -1 (L 2 (x) / L 1 (x))
= 2 π × x / P d -2 π × x / P m + φ (x)… (15)
Since the initial phase δ is discontinuous in units of 2π as shown in FIG. 16, the phase connection calculation unit 314 shown in FIG. 1 phase-connects the initial phase δ by “phase unwrapping”. Phase unwrapping refers to connecting phases by adding or subtracting 2πn (n is an integer other than 0) so as to be continuous from surrounding phase data. The “phase unwrap start point” is where the phase calculation is first performed. Therefore, assuming that the measurement object 5 does not exist as a measurement start point, moire fringes do not exist, and phase unwrapping cannot be performed. By designating where the measured object 5 is present as the measurement start point, phase unwrapping without failure can be performed. By phase unwrapping, a connected phase function C (x) that is a continuous function is obtained as shown in FIG.

図1に示す傾き補正演算部315は、接続後位相関数C(x)を最小二乗法により一次関数に近似し、これを補正式V(x)と定義する。さらに、接続後位相関数C(x)から補正式V(x)を減ずることによって傾き補正をし、図18に示す補正後位相関数F(x)を算出する。   The inclination correction calculation unit 315 shown in FIG. 1 approximates the post-connection phase function C (x) to a linear function by the least square method, and defines this as a correction expression V (x). Further, inclination correction is performed by subtracting the correction formula V (x) from the post-connection phase function C (x), and a post-correction phase function F (x) shown in FIG. 18 is calculated.

図1に示す高さ変換演算部316は、補正後位相関数F(x)の単位系を変換し、図19に示す被測定物体5のy切片における高さ関数H(x)を算出する。ここで、図2においてステージ80に対して垂直な方向と、格子3を透過した平行光の進行方向がなす角度をθとすると、撮像装置350の測定レンジはPd / tanθで与えられ、これが2πと等価になる。従って、傾き補正演算部315で算出された補正後位相関数F(x)を下記(16)式に代入することにより、単位系の変換を行い、座標xにおける被測定物体5の高さH(x)を算出する。:
H(x) = (F(x) / 2π) × Pd / tanθ … (16)
なお、データ記憶装置331は、CPU300による演算結果を逐次格納する。また、プログラム記憶装置330は、CPU300を制御するオペレーティングシステム等を保存する。データ記憶装置331及びプログラム記憶装置330としては、例えば半導体メモリ、磁気ディスク、光ディスク、光磁気ディスクや磁気テープなどのプログラムを記録する記録媒体等が使用可能である。入力装置340としては、例えばキーボード、マウスやボイスデバイス等が使用可能である。出力装置341としては、プリンタ、液晶ディスプレイ(LCD)やCRTディスプレイ等が使用可能である。
The height conversion calculation unit 316 shown in FIG. 1 converts the unit system of the corrected phase function F (x), and calculates the height function H (x) at the y-intercept of the measured object 5 shown in FIG. Here, if the angle between the direction perpendicular to the stage 80 in FIG. 2 and the traveling direction of the parallel light transmitted through the grating 3 is θ, the measurement range of the imaging device 350 is given by P d / tan θ, which is Equivalent to 2π. Therefore, the unit system is converted by substituting the corrected phase function F (x) calculated by the inclination correction calculation unit 315 into the following equation (16), and the height H of the measured object 5 at the coordinate x ( x) is calculated. :
H (x) = (F (x) / 2π) × P d / tanθ… (16)
Note that the data storage device 331 sequentially stores the calculation results by the CPU 300. The program storage device 330 stores an operating system that controls the CPU 300 and the like. As the data storage device 331 and the program storage device 330, for example, a recording medium for recording a program such as a semiconductor memory, a magnetic disk, an optical disk, a magneto-optical disk, and a magnetic tape can be used. As the input device 340, for example, a keyboard, a mouse, a voice device, or the like can be used. As the output device 341, a printer, a liquid crystal display (LCD), a CRT display, or the like can be used.

次に本発明の第1の実施の形態に係る3次元計測方法を、図20のフローチャートを参照して説明する。なお、図1に示したCPU300による演算結果は、データ記憶装置331に逐次格納される。   Next, a three-dimensional measurement method according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. Note that the calculation results by the CPU 300 shown in FIG. 1 are sequentially stored in the data storage device 331.

(a) まずステップS90で、図2に示した3次元計測に用いる格子3及び被測定物体5を用意する。被測定物体5はステージ80上に配置する。次にステップS91で図1に示した撮像装置制御部200から図2に示したステージ駆動部42に制御信号を送り、被測定物体5の3次元計測が好適に行われる場所までステージ80を移動させる。また撮像装置制御部200から光源10に制御信号を送り、光源10から照射される光の光強度を調整する。ステップS92に進み、3次元計測を行う計測条件の設定をする。計測条件の設定とは、位相アンラップ法の設定、位相アンラップ開始点の設定、被測定物体5が存在しない場所を自動的に検出してその場所のデータを削除する設定等をさす。  (a) First, in step S90, the lattice 3 and the object to be measured 5 used for the three-dimensional measurement shown in FIG. 2 are prepared. The object to be measured 5 is placed on the stage 80. Next, in step S91, a control signal is sent from the imaging device control unit 200 shown in FIG. 1 to the stage drive unit 42 shown in FIG. 2, and the stage 80 is moved to a place where 3D measurement of the object 5 to be measured is suitably performed. Let Further, a control signal is sent from the imaging device control unit 200 to the light source 10 to adjust the light intensity of the light emitted from the light source 10. Proceeding to step S92, measurement conditions for performing three-dimensional measurement are set. The setting of the measurement condition refers to setting of the phase unwrapping method, setting of the phase unwrapping start point, setting of automatically detecting a place where the measured object 5 does not exist, and deleting the data at that place.

(b) ステップS93で、光源10から第1のレンズ11に向けて光を出射する。第1のレンズ11に入射した光は、平行光となり格子3に入射する。格子3を透過した平行光は、被測定物体5表面に第1のピッチPdを有する正弦波状の周期的な明暗のパターンを形成する。ここで、撮像装置制御部200からイメージセンサ20に制御信号が送られ、イメージセンサ20はシャッターを開き、明暗のパターンが形成された被測定物体5の表面画像を撮像する。次に、撮像装置制御部200から格子駆動部15に制御信号が送られ、格子3を移動させることにより、被測定物体5の表面の第1のピッチPdを有する正弦波状の周期的な明暗のパターンを、第1のピッチPdの四分の一の距離を第1のピッチPdと同じ方向に移動させ、被測定物体5の表面画像を撮像する。さらに、格子3の移動、撮像を繰り返して、合計4枚の撮像画像を取得する。 (b) In step S93, light is emitted from the light source 10 toward the first lens 11. The light incident on the first lens 11 becomes parallel light and enters the grating 3. Collimated light transmitted through the grating 3 forms a sinusoidal periodic light-dark pattern having a first pitch P d to the object to be measured 5 surface. Here, a control signal is sent from the imaging device control unit 200 to the image sensor 20, and the image sensor 20 opens the shutter and captures a surface image of the measured object 5 on which a light and dark pattern is formed. Next, the control signals to the grid driver 15 is transmitted from the imaging apparatus control unit 200, by moving the grating 3, sinusoidal periodic brightness having a first pitch P d of the surface of the object to be measured 5 the pattern is moved a quarter of the length of the first pitch P d in the same direction as the first pitch P d, imaging the surface image of the object to be measured 5. Further, the movement and imaging of the lattice 3 are repeated to obtain a total of four captured images.

(c) 取得された4枚の撮像画像は、ステップS95で図1に示す撮像画像入力部309に順次取り込まれ、それぞれ第1の撮像画像、第2の撮像画像、第3の撮像画像、第4の撮像画像と定義される。次に、ステップS100で光強度抽出部310は、第1から第4の撮像画像それぞれから光強度を抽出し、抽出したそれぞれの光強度は、上記(1)式に示した第1の光強度関数I1(x)、上記(2)式に示した第2の光強度関数I2(x)、上記(3)式に示した第3の光強度関数I3(x)、上記(4)式に示した第4の光強度関数I4(x)のそれぞれで表されると仮定する。 (c) The acquired four captured images are sequentially captured in the captured image input unit 309 shown in FIG. 1 in step S95, and the first captured image, the second captured image, the third captured image, It is defined as 4 captured images. Next, in step S100, the light intensity extraction unit 310 extracts the light intensity from each of the first to fourth captured images, and each of the extracted light intensities is the first light intensity shown in the above equation (1). Function I 1 (x), second light intensity function I 2 (x) shown in equation (2) above, third light intensity function I 3 (x) shown in equation (3) above, (4 ) It is assumed that each of the fourth light intensity functions I 4 (x) shown in the equation is expressed.

(d) ステップS101で、バイアス消去演算部311は第1の光強度関数I1(x)から第3の光強度関数I3(x)を減算し、上記(5)式に示したバイアス項Bのない第1の基本関数E1(x)を得る。また、バイアス消去演算部311は第4の光強度関数I4(x)から第2の光強度関数I2(x)を減算し、上記(6)式に示したバイアス項Bのない第2の基本関数E2(x)を得る。 (d) In step S101, the bias erasure calculation unit 311 subtracts the third light intensity function I 3 (x) from the first light intensity function I 1 (x), and the bias term shown in the above equation (5) Get the first basic function E 1 (x) without B. In addition, the bias erasure calculation unit 311 subtracts the second light intensity function I 2 (x) from the fourth light intensity function I 4 (x), so that the second without the bias term B shown in the above equation (6) is obtained. To obtain the basic function E 2 (x).

(e) ステップS102で、入力装置340からメモリ格子記憶装置332に保存されている第2のピッチPmの値を、第1のピッチPdに対して、Pm > Pd / 2の関係を満たす値に設定する。PmとPdの関係をこのように設定した理由は後述する。次に、モアレ生成演算部312はメモリ格子記憶装置332に保存されている上記(7)式に示した第1のメモリ格子関数G1(x)及び上記(8)式に示した第2のメモリ格子関数G2(x)を読みとる。さらに、モアレ生成演算部312は第1の基本関数E1(x)に、第1のメモリ格子関数G1(x)を乗ずる計算と、第2のメモリ格子関数G2(x)を乗ずる計算のそれぞれを行い、上記(9)式に示した第1のモアレ関数M1(x)及び上記(10)式に示した第2のモアレ関数M2(x)のそれぞれを算出する。同様に、第2の基本関数E2(x)に第1のメモリ格子関数G1(x)を乗ずる計算と、第2のメモリ格子関数G2(x)を乗ずる計算のそれぞれも行い、上記(11)式に示した第3のモアレ関数M3(x)と上記(12)式に示した第4のモアレ関数M4(x)のそれぞれを算出する。 (e) In step S102, the value of the second pitch P m stored in the memory grid storage device 332 from the input device 340 is related to P m > P d / 2 with respect to the first pitch P d . Set to a value that satisfies. The reason why the relationship between P m and P d is set in this way will be described later. Next, the moire generation calculation unit 312 stores the first memory lattice function G 1 (x) shown in the above equation (7) stored in the memory lattice storage device 332 and the second memory shown in the above equation (8). Read the memory grid function G 2 (x). Further, the moire generation calculation unit 312 calculates the first basic function E 1 (x) by the first memory lattice function G 1 (x) and the second memory lattice function G 2 (x). Then, the first moire function M 1 (x) shown in the equation (9) and the second moire function M 2 (x) shown in the equation (10) are calculated. Similarly, the calculation of multiplying the second basic function E 2 (x) by the first memory lattice function G 1 (x) and the calculation of multiplying the second memory lattice function G 2 (x) are performed, respectively. Each of the third moire function M 3 (x) shown in equation (11) and the fourth moire function M 4 (x) shown in equation (12) is calculated.

(f) ステップS103で、位相演算部313は第1のモアレ関数M1(x)と第4のモアレ関数M4(x)の和をとり、上記(13)式で示した第1の差の周波数関数L1(x)を算出する。また、位相演算部313は第3のモアレ関数M3(x)から第2のモアレ関数M2(x)を減じ、上記(14)式に示した第2の差の周波数関数L2(x)を算出する。さらに位相演算部313は第2の差の周波数関数L2(x)を第1の差の周波数関数L1(x)で割り、逆正接をとることにより上記(15)式に示した初期位相δを算出する。 (f) In step S103, the phase calculation unit 313 calculates the sum of the first moire function M 1 (x) and the fourth moire function M 4 (x), and the first difference expressed by the above equation (13). The frequency function L 1 (x) of is calculated. Further, the phase calculating unit 313 subtracts the second moire function M 2 (x) from the third moire function M 3 (x), and the second difference frequency function L 2 (x ) Is calculated. Further, the phase calculation unit 313 divides the frequency function L 2 (x) of the second difference by the frequency function L 1 (x) of the first difference, and takes the arc tangent to obtain the initial phase shown in the above equation (15). δ is calculated.

(g) 次にステップS104で位相接続演算部314は初期位相δに対し、位相アンラップを行うことにより接続後位相関数C(x)を算出する。ステップS105で、傾き補正演算部315は接続後位相関数C(x)を最小二乗法でxの一次関数に近似し、これを補正式V(x)と定義する。さらに、傾き補正演算部315は接続後位相関数C(x)から補正式V(x)を減ずることによって傾き補正をし、補正後位相関数F(x)を算出する。ステップS106で高さ変換演算部316は上記(16)式により補正後位相関数F(x)から、図1に示した被測定物体5の座標xにおける高さH(x)を算出する。  (g) Next, in step S104, the phase connection calculation unit 314 calculates a post-connection phase function C (x) by performing phase unwrapping on the initial phase δ. In step S105, the inclination correction calculation unit 315 approximates the post-connection phase function C (x) to a linear function of x by the least square method, and defines this as a correction expression V (x). Further, the inclination correction calculation unit 315 corrects the inclination by subtracting the correction equation V (x) from the post-connection phase function C (x), and calculates the post-correction phase function F (x). In step S106, the height conversion calculation unit 316 calculates the height H (x) at the coordinate x of the measured object 5 shown in FIG. 1 from the corrected phase function F (x) by the above equation (16).

以上示した本発明の第1の実施の形態に係る3次元計測装置及び3次元計測方法によれば、図20のステップS103において、位相とびを大幅に少なくすることが可能となる。従来の格子パターン投影法においては、上記(1)式から(4)式に示された第1から第4の光強度関数I1(x)〜I4(x)を算出した後、下記(17)式により位相δEを算出し、位相アンラップしていた。:
δE = tan-1((I4(x) - I2(x)) / (I1(x) - I3(x)))
= 2 π × x / Pd + φ(x) …(17)
これに対し、第1の実施の形態による上記(15)式で示した初期位相δは、第2項(- 2 π × x / Pm )が存在することから、位相とびを効果的に抑制することが可能となる。ここで、図20のステップS102の説明で第1のピッチPdに対して、仮想的なメモリ格子の第2のピッチPmをPm > Pd / 2の関係を満たすよう設定した理由は、下記(18)式で示すように、(15)式の第1項( 2 π × x / Pd )及び第2項(- 2 π × x / Pm)の和の絶対値を(17)式の第1項(2 π × x / Pd)よりも小とすることにより、従来の格子パターン投影法と比較して位相とびを効果的に抑制することが可能となるからである。よって、下記(18)式よりPm > Pd / 2の関係が導かれる。:
|2 π × x / Pd - 2 π × x / Pm | < 2 π × x / Pd …(18)
また、特に仮想的な格子モデルの第2のピッチPmを 第1のピッチPdと等しい値に設定すれば、上記(15)式の第1項及び第2項の和が0となる。そのため、(15)式に示した初期位相はδ = φ(x)で示される。よって位相とびが生じなくなり、図20に示したステップS104における位相アンラップが不要となる。従来においては、位相アンラップに多大な計算時間を要したが、本発明の第1の実施の形態によれば、被測定物体5の撮像から高さ関数H(x)の算出までに必要な計算時間の大幅な短縮が可能となる。
According to the three-dimensional measurement apparatus and the three-dimensional measurement method according to the first embodiment of the present invention described above, it is possible to significantly reduce the phase jump in step S103 in FIG. In the conventional grid pattern projection method, after calculating the first to fourth light intensity functions I 1 (x) to I 4 (x) shown in the above equations (1) to (4), the following ( The phase δ E was calculated by the equation (17) and the phase was unwrapped. :
δ E = tan -1 ((I 4 (x)-I 2 (x)) / (I 1 (x)-I 3 (x)))
= 2 π × x / P d + φ (x)… (17)
On the other hand, the initial phase δ shown in the above equation (15) according to the first embodiment effectively suppresses the phase jump because the second term (−2π × x / P m ) exists. It becomes possible to do. Here, the reason for setting the second pitch P m of the virtual memory lattice to satisfy the relationship of P m > P d / 2 with respect to the first pitch P d in the description of step S102 in FIG. As shown in the following equation (18), the absolute value of the sum of the first term (2 π × x / P d ) and the second term (−2 π × x / P m ) in equation (15) is expressed as (17 This is because, by making it smaller than the first term (2π × x / P d ) of the formula (1), it is possible to effectively suppress the phase jump as compared with the conventional grating pattern projection method. Therefore, the relationship of P m > P d / 2 is derived from the following equation (18). :
| 2 π × x / P d -2 π × x / P m | <2 π × x / P d … (18)
In particular by setting the second pitch P m of the virtual grid model equal to the first pitch P d, the sum of the (15) first and second terms of zero. Therefore, the initial phase shown in the equation (15) is represented by δ = φ (x). Therefore, the phase skip does not occur, and the phase unwrapping in step S104 shown in FIG. 20 becomes unnecessary. Conventionally, a large amount of calculation time was required for phase unwrapping, but according to the first embodiment of the present invention, calculation required from imaging of the measured object 5 to calculation of the height function H (x) The time can be greatly reduced.

さらに、第1の実施の形態に係る3次元計測装置及び3次元計測方法は、従来の格子投影型モアレ法のように空間周波数フィルターを用いないことから、分解能の低下も生じない。以上示したように、第1の実施の形態に係る3次元計測装置及び3次元計測方法によれば、分解能の低下を招くことなく、高速な3次元形状計測が可能となる。   Furthermore, the three-dimensional measurement apparatus and the three-dimensional measurement method according to the first embodiment do not use a spatial frequency filter unlike the conventional grating projection type moire method, so that the resolution does not decrease. As described above, according to the three-dimensional measurement apparatus and the three-dimensional measurement method according to the first embodiment, high-speed three-dimensional shape measurement can be performed without causing a reduction in resolution.

また上述した3次元計測方法は、時系列的につながった一連の処理あるいは操作として表現可能である。したがって、3次元計測方法をコンピュータシステムで実行するために、コンピュータシステム内のプロセッサなどが果たす複数の機能を特定するコンピュータプログラム製品で図20に示した3次元計測方法を実現可能である。ここで、コンピュータプログラム製品は、図1に示したプログラム記憶装置330等のコンピュータシステムに入出力可能な記録装置あるいは記録媒体等をいう。記録媒体としては、メモリ装置、磁気ディスク装置、光ディスク装置、その他のプログラムを記録することができるような装置が含まれる。   Further, the above-described three-dimensional measurement method can be expressed as a series of processes or operations connected in time series. Therefore, in order to execute the three-dimensional measurement method in the computer system, the three-dimensional measurement method shown in FIG. 20 can be realized by a computer program product that specifies a plurality of functions performed by a processor or the like in the computer system. Here, the computer program product refers to a recording device or a recording medium that can be inputted to and outputted from a computer system such as the program storage device 330 shown in FIG. The recording medium includes a memory device, a magnetic disk device, an optical disk device, and other devices capable of recording other programs.

(第2の実施の形態)
図21に示す本発明の第2の実施の形態に係るモアレ三次元形状計測システムが図1と異なるのは、中央処理装置(CPU)400が正余弦関数算出部412、実部算出部411及び初期位相算出部413を備え、メモリ格子記憶装置432がCPU400に接続されている点である。
(Second embodiment)
The moire three-dimensional shape measurement system according to the second embodiment of the present invention shown in FIG. 21 is different from FIG. 1 in that the central processing unit (CPU) 400 has a positive cosine function calculation unit 412, a real part calculation unit 411, and The initial phase calculation unit 413 is provided, and the memory grid storage device 432 is connected to the CPU 400.

撮像装置350、撮像装置制御部200、撮像画像入力部309及び光強度抽出部310は図1に示したモアレ三次元形状計測システムと同じであるので説明は省略する。   The imaging device 350, the imaging device control unit 200, the captured image input unit 309, and the light intensity extraction unit 310 are the same as those in the moiré three-dimensional shape measurement system shown in FIG.

図21に示すメモリ格子記憶装置432は、下記(19)式乃至(23)式で表され、それぞれ位相が90度ずつ異なるメモリ格子関数S1(x), S2(x), S3(x), S4(x), S5(x)を保存する。:
S1(x) = cos(2πx / Pm) …(19)
S2(x) = cos(2πx / Pm + π/ 2) = -sin(2πx / Pm) …(20)
S3(x) = cos(2πx / Pm + π) = -cos(2πx / Pm) …(21)
S4(x) = cos(2πx / Pm + 3π/ 2) = sin(2πx / Pm) …(22)
S5(x) = cos(2πx / Pm + 2π) = cos(2πx / Pm) …(23)
ここで、メモリ格子関数S1(x), S2(x), S3(x), S4(x)のそれぞれからなる集合を第1メモリ格子関数群と定義し、第1メモリ格子関数群に含まれるメモリ格子関数S1(x), S2(x), S3(x), S4(x)のそれぞれに対して位相が90度異なるメモリ格子関数S2(x), S3(x), S4(x), S5(x)からなる集合を第2メモリ格子関数群と定義する。
The memory grid storage device 432 shown in FIG. 21 is expressed by the following formulas (19) to (23), and the memory grid functions S 1 (x), S 2 (x), S 3 ( Save x), S 4 (x), S 5 (x). :
S 1 (x) = cos (2πx / P m )… (19)
S 2 (x) = cos (2πx / P m + π / 2) = -sin (2πx / P m )… (20)
S 3 (x) = cos (2πx / P m + π) = -cos (2πx / P m )… (21)
S 4 (x) = cos (2πx / P m + 3π / 2) = sin (2πx / P m )… (22)
S 5 (x) = cos (2πx / P m + 2π) = cos (2πx / P m )… (23)
Here, the set of memory lattice functions S 1 (x), S 2 (x), S 3 (x), and S 4 (x) is defined as the first memory lattice function group, and the first memory lattice function memory grating function S 1 included in the group (x), S 2 (x ), S 3 (x), S 4 memory grating function phase is different by 90 degrees with respect to each of (x) S 2 (x) , S A set consisting of 3 (x), S 4 (x), and S 5 (x) is defined as a second memory lattice function group.

正余弦関数算出部412は、光強度抽出部310で算出された第1の光強度関数I1(x)に対し、第1メモリ格子関数群のメモリ格子関数S1(x)をメモリ格子記憶装置432から読み出し乗ずることにより、下記(24)式に示す計算を行い、第1の余弦関数N1(x)を算出する。また、第2の光強度関数I2(x)に対して第1メモリ格子関数群のメモリ格子関数S2(x)を乗ずる下記(25)式に示す計算を行い、第2の余弦関数N2(x)を算出する。同様に、第3の光強度関数I3(x)に対して第1メモリ格子関数群のメモリ格子関数S3(x)を乗ずる下記(26)式に示す計算と、第4の光強度関数I4(x)に対して第1メモリ格子関数群のメモリ格子関数S4(x)を乗ずる下記(27)式に示す計算を行い、第3の余弦関数N3(x)及び第4の余弦関数N4(x)のそれぞれを算出する。:
N1(x) = I1(x) × S1(x)
={A × cos(2πx / Pd + φ(x)) + B} × cos(2πx / Pm)
= A / 2 × {cos(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) + cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} + B ×cos(2πx / Pm) …(24)
N2(x) = I2(x) × S2(x)
= {A × cos(2πx / Pd + φ(x) + π / 2)+ B} × { - sin(2πx / Pm)}
= A × sin(2πx / Pd + φ(x)) × sin(2πx / Pm) - B×sin(2πx / Pm)
= A / 2 × {cos(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) - cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))}- B×sin(2πx / Pm) …(25)
N3(x) = I3(x) × S3(x)
= {A × cos(2 πx / Pd + φ(x) + π) + B} × {- cos(2πx / Pm)}
= {A × cos(2 πx / Pd + φ(x)) - B} × cos(2πx / Pm)
= A / 2 × {cos(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) + cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} - B ×cos(2πx / Pm) …(26)
N4(x) = I4(x) × S4(x)
= {A × cos(2 πx / Pd + φ(x) + 3 × π/2) + B}× sin(2πx / Pm)
= {A × sin(2 πx / Pd + φ(x)) + B}× sin(2πx / Pm)
= A / 2× {cos(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) - cos(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} + B× sin(2πx / Pm) …(27)
以上示したように、正余弦関数算出部412は第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれに対し、位相がφ(x)異なるメモリ格子関数S1(x)〜S4(x)のそれぞれを乗じることにより、第1乃至第4の余弦関数N1(x)〜N4(x)のそれぞれを算出する。
The cosine function calculation unit 412 stores the memory lattice function S 1 (x) of the first memory lattice function group in the memory lattice with respect to the first light intensity function I 1 (x) calculated by the light intensity extraction unit 310. By performing reading and multiplication from the device 432, the calculation shown in the following equation (24) is performed to calculate the first cosine function N 1 (x). Further, the second cosine function N 2 is calculated by multiplying the second light intensity function I 2 (x) by the memory lattice function S 2 (x) of the first memory lattice function group as shown in the following equation (25). 2 Calculate (x). Similarly, the third light intensity function I 3 (x) is multiplied by the memory lattice function S 3 (x) of the first memory lattice function group, the calculation shown in the following equation (26), and the fourth light intensity function Multiplying I 4 (x) by the memory lattice function S 4 (x) of the first memory lattice function group, the calculation shown in the following equation (27) is performed, and the third cosine function N 3 (x) and the fourth cosine function N 3 (x) Each cosine function N 4 (x) is calculated. :
N 1 (x) = I 1 (x) × S 1 (x)
= {A × cos (2πx / P d + φ (x)) + B} × cos (2πx / P m )
= A / 2 × (cos (2πx × (P m -P d ) / (P m × P d ) + φ (x)) + cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))} + B × cos (2πx / P m )… (24)
N 2 (x) = I 2 (x) × S 2 (x)
= {A × cos (2πx / P d + φ (x) + π / 2) + B} × {-sin (2πx / P m )}
= A × sin (2πx / P d + φ (x)) × sin (2πx / P m )-B × sin (2πx / P m )
= A / 2 × (cos (2πx × (P m -P d ) / (P m × P d ) + φ (x))-cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))}-B × sin (2πx / P m )… (25)
N 3 (x) = I 3 (x) × S 3 (x)
= {A × cos (2 πx / P d + φ (x) + π) + B} × {-cos (2πx / P m )}
= {A × cos (2 πx / P d + φ (x))-B} × cos (2πx / P m )
= A / 2 × (cos (2πx × (P m -P d ) / (P m × P d ) + φ (x)) + cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))}-B × cos (2πx / P m )… (26)
N 4 (x) = I 4 (x) × S 4 (x)
= {A × cos (2 πx / P d + φ (x) + 3 × π / 2) + B} × sin (2πx / P m )
= {A × sin (2 πx / P d + φ (x)) + B} × sin (2πx / P m )
= A / 2 × (cos (2πx × (P m -P d ) / (P m × P d ) + φ (x))-cos (2πx × (P m + P d ) / (P m × P d ) + φ (x))} + B × sin (2πx / P m )… (27)
As described above, the positive cosine function calculation unit 412 has a memory lattice function S 1 having a phase of φ (x) different from each of the first to fourth light intensity functions I 1 (x) to I 4 (x). Each of the first to fourth cosine functions N 1 (x) to N 4 (x) is calculated by multiplying each of (x) to S 4 (x).

また正余弦関数算出部412は、第1の光強度関数I1(x)に対して第2メモリ格子関数群のメモリ格子関数S2(x)をメモリ格子記憶装置432から読み出し乗ずることにより、下記(28)式に示す計算を行い、第1の正弦関数O1(x)を算出する。また、第2の光強度関数I2(x)に対して第2メモリ格子関数群のメモリ格子関数S3(x)を乗ずる下記(29)式に示す計算を行い、第2の正弦関数O2(x)を算出する。同様に、第3の光強度関数I3(x)に対して第2メモリ格子関数群のメモリ格子関数S4(x)を乗ずる下記(30)式に示す計算と、第4の光強度関数I4(x)に対して第2メモリ格子関数群のメモリ格子関数S5(x)を乗ずる下記(31)式に示す計算を行い、第3の正弦関数O3(x)及び第4の正弦関数O4(x)のそれぞれを算出する。:
O1(x) = I1(x) × S2(x)
={A × cos(2πx / Pd + φ(x)) + B} × { - sin(2πx / Pm)}
= A / 2 × {sin(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) - sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} - B × sin(2πx / Pm)…(28)
O2(x) = I2(x) × S3(x)
= {A × cos(2πx / Pd + φ(x) + π / 2) + B} × {- cos(2πx / Pm)}
= {A × sin(2πx / Pd + φ(x)) - B} × cos(2πx / Pm)
= A / 2 × {sin(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) + sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} - B ×cos(2πx / Pm) …(29)
O3(x) = I3(x) × S4(x)
= {A × cos(2 πx / Pd + φ(x) + π) + B} × sin(2πx / Pm)
= {- A × cos(2 πx / Pd + φ(x)) + B} × sin(2πx / Pm)
= A / 2 × {sin(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) - sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} + B × sin(2πx / Pm)…(30)
O4(x) = I4(x) × S5(x)
= {A × cos(2 πx / Pd + φ(x) + 3 × π/2) + B}× cos(2πx / Pm)
= {A × sin(2 πx / Pd + φ(x)) + B}× cos(2πx / Pm)
= A / 2 × {sin(2πx× (Pm - Pd) / (Pm × Pd) + φ(x)) + sin(2πx × (Pm + Pd) / (Pm × Pd) + φ(x))} + B ×cos(2πx / Pm) …(31)
以上示したように、正余弦関数算出部412は第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれに対し、位相が(π/2 - φ(x))異なるメモリ格子関数S2(x)〜S5(x)のそれぞれを乗じることにより、第1乃至第4の正弦関数O1(x)〜O4(x)のそれぞれを算出する。
Further, the positive cosine function calculation unit 412 reads and multiplies the memory lattice function S 2 (x) of the second memory lattice function group from the memory lattice storage device 432 with respect to the first light intensity function I 1 (x), The calculation shown in the following equation (28) is performed to calculate the first sine function O 1 (x). Further, the second light intensity function I 2 (x) is multiplied by the memory lattice function S 3 (x) of the second memory lattice function group to perform the calculation shown in the following equation (29), and the second sine function O 2 Calculate (x). Similarly, the third light intensity function I 3 (x) is multiplied by the memory lattice function S 4 (x) of the second memory lattice function group, the calculation shown in the following equation (30), and the fourth light intensity function Multiplying I 4 (x) by the memory lattice function S 5 (x) of the second memory lattice function group, the calculation shown in the following equation (31) is performed, and the third sine function O 3 (x) and the fourth Each of the sine functions O 4 (x) is calculated. :
O 1 (x) = I 1 (x) × S 2 (x)
= {A × cos (2πx / P d + φ (x)) + B} × {-sin (2πx / P m )}
= A / 2 × (sin (2πx × (P m -P d ) / (P m × P d ) + φ (x))-sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))}-B × sin (2πx / P m )… (28)
O 2 (x) = I 2 (x) × S 3 (x)
= {A × cos (2πx / P d + φ (x) + π / 2) + B} × {-cos (2πx / P m )}
= (A × sin (2πx / P d + φ (x))-B} × cos (2πx / P m )
= A / 2 × (sin (2πx × (P m -P d ) / (P m × P d ) + φ (x)) + sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))}-B × cos (2πx / P m )… (29)
O 3 (x) = I 3 (x) × S 4 (x)
= (A × cos (2 πx / P d + φ (x) + π) + B} × sin (2πx / P m )
= {-A × cos (2 πx / P d + φ (x)) + B} × sin (2πx / P m )
= A / 2 × (sin (2πx × (P m -P d ) / (P m × P d ) + φ (x))-sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))} + B × sin (2πx / P m )… (30)
O 4 (x) = I 4 (x) × S 5 (x)
= {A × cos (2 πx / P d + φ (x) + 3 × π / 2) + B} × cos (2πx / P m )
= {A × sin (2 πx / P d + φ (x)) + B} × cos (2πx / P m )
= A / 2 × (sin (2πx × (P m -P d ) / (P m × P d ) + φ (x)) + sin (2πx × (P m + P d ) / (P m × P d ) + φ (x))} + B × cos (2πx / P m )… (31)
As described above, the positive cosine function calculation unit 412 has a phase of (π / 2 − φ (x)) for each of the first to fourth light intensity functions I 1 (x) to I 4 (x). Each of the first to fourth sine functions O 1 (x) to O 4 (x) is calculated by multiplying the different memory lattice functions S 2 (x) to S 5 (x).

実部算出部411は、正余弦関数算出部412が算出した第1乃至第4の余弦関数N1(x)〜N4(x)の和をとる下記(32)式に示す計算を行い、実部関数R(x)を算出し、バイアス成分Bを除去する。:
R(x) = N1(x) + N2(x) + N3(x) + N4(x)
= 2 ×A × cos(2πx × (Pm - Pd) / (Pm × Pd) + φ(x)) …(32)
また実部算出部411は、正余弦関数算出部412が算出した第1乃至第4の正弦関数O1(x)〜O4(x)の和をとる下記(33)式に示す計算を行い、虚部関数J(x)を算出し、バイアス成分Bを除去する。:
J(x) = O1(x) + O2(x) + O3(x) + O4(x)
= 2 ×A × sin(2πx × (Pm - Pd) / (Pm × Pd) + φ(x)) …(33)
初期位相算出部413は、実部算出部411で算出された虚部関数J(x)を実部関数R(x)で割り、その逆正接をとることにより、下記(34)式に示す初期位相δを算出する。:
δ = tan-1 (J(x) / R(x))
= 2 π × x / Pd - 2 π × x / Pm + φ(x) … (34)
位相接続演算部314が、初期位相算出部413が算出した初期位相δを位相アンラップにより位相接続するのは図1と同様である。また、傾き補正演算部315、高さ変換演算部316、入力装置340、出力装置341、プログラム記憶装置330及びデータ記憶装置331についても図1と同様であるので説明は省略する。
The real part calculation unit 411 performs the calculation shown in the following equation (32) that takes the sum of the first to fourth cosine functions N 1 (x) to N 4 (x) calculated by the positive cosine function calculation unit 412. The real function R (x) is calculated, and the bias component B is removed. :
R (x) = N 1 (x) + N 2 (x) + N 3 (x) + N 4 (x)
= 2 × A × cos (2πx × (P m -P d ) / (P m × P d ) + φ (x))… (32)
Further, the real part calculation unit 411 performs the calculation shown in the following equation (33) that takes the sum of the first to fourth sine functions O 1 (x) to O 4 (x) calculated by the cosine function calculation unit 412. Then, the imaginary part function J (x) is calculated, and the bias component B is removed. :
J (x) = O 1 (x) + O 2 (x) + O 3 (x) + O 4 (x)
= 2 × A × sin (2πx × (P m -P d ) / (P m × P d ) + φ (x))… (33)
The initial phase calculation unit 413 divides the imaginary part function J (x) calculated by the real part calculation unit 411 by the real part function R (x), and takes its arc tangent to obtain the initial value shown in the following equation (34). The phase δ is calculated. :
δ = tan -1 (J (x) / R (x))
= 2 π × x / P d -2 π × x / P m + φ (x)… (34)
The phase connection calculation unit 314 performs phase connection of the initial phase δ calculated by the initial phase calculation unit 413 by phase unwrapping as in FIG. Further, since the inclination correction calculation unit 315, the height conversion calculation unit 316, the input device 340, the output device 341, the program storage device 330, and the data storage device 331 are the same as those in FIG.

次に本発明の第2の実施の形態に係る3次元計測方法を、図22のフローチャートを参照して説明する。なお、図21に示したCPU400による演算結果は、データ記憶装置331に逐次格納される。   Next, a three-dimensional measurement method according to the second embodiment of the present invention will be described with reference to the flowchart of FIG. Note that the calculation results by the CPU 400 shown in FIG. 21 are sequentially stored in the data storage device 331.

(a) ステップS90からステップS100までは図20に示した第1の実施の形態に係る3次元計測方法と同様であるので説明は省略する。ステップS201で正余弦関数算出部412は光強度抽出部310が抽出した上記(1)〜(4)式に示した第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれに対して、上記(19)〜(22)式に示した第1メモリ格子関数群のメモリ格子関数S1(x)〜S4(x)のそれぞれをメモリ格子記憶装置432から読み出す。さらに正余弦関数算出部412は第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれにメモリ格子関数S1(x)〜S4(x)のそれぞれを乗じ、上記(24)〜(27)式に示した第1乃至第4の余弦関数N1(x)〜N4(x)を算出する。 (a) Steps S90 to S100 are the same as those in the three-dimensional measurement method according to the first embodiment shown in FIG. In step S201, the positive cosine function calculation unit 412 extracts the first to fourth light intensity functions I 1 (x) to I 4 (x) shown in the above expressions (1) to (4) extracted by the light intensity extraction unit 310. Are read from the memory grid storage device 432, respectively, in the memory grid functions S 1 (x) to S 4 (x) of the first memory grid function group shown in the equations (19) to (22). Further, the cosine function calculation unit 412 multiplies each of the first to fourth light intensity functions I 1 (x) to I 4 (x) by each of the memory lattice functions S 1 (x) to S 4 (x), First to fourth cosine functions N 1 (x) to N 4 (x) shown in the above equations (24) to (27) are calculated.

(b) ステップS202で正余弦関数算出部412は第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれに対して、上記(20)〜(23)式に示した第2メモリ格子関数群のメモリ格子関数S2(x)〜S5(x)のそれぞれをメモリ格子記憶装置432から読み出す。さらに正余弦関数算出部412は第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれにメモリ格子関数S2(x)〜S5(x)のそれぞれを乗じ、上記(28)〜(31)式に示した第1乃至第4の正弦関数O1(x)〜O4(x)を算出する。 (b) In step S202, the cosine function calculation unit 412 shows the above-described equations (20) to (23) for each of the first to fourth light intensity functions I 1 (x) to I 4 (x). Then, each of the memory lattice functions S 2 (x) to S 5 (x) of the second memory lattice function group is read from the memory lattice storage device 432. Further, the cosine function calculation unit 412 multiplies each of the first to fourth light intensity functions I 1 (x) to I 4 (x) by each of the memory lattice functions S 2 (x) to S 5 (x), First to fourth sine functions O 1 (x) to O 4 (x) shown in the expressions (28) to (31) are calculated.

(c) ステップS203で実部算出部411はステップS201で正余弦関数算出部412が算出した第1乃至第4の余弦関数N1(x)〜N4(x)の和をとる上記(32)式に示した計算を行い、実部関数R(x)を算出し、バイアス成分Bを除去する。さらにステップS204で実部算出部411はステップS202で正余弦関数算出部412が算出した第1乃至第4の正弦関数O1(x)〜O4(x)の和をとる上記(33)式に示した計算を行い、虚部関数J(x)を算出し、バイアス成分Bを除去する。 (c) In step S203, the real part calculation unit 411 calculates the sum of the first to fourth cosine functions N 1 (x) to N 4 (x) calculated by the positive cosine function calculation unit 412 in step S201 (32 ), The real function R (x) is calculated, and the bias component B is removed. Further, in step S204, the real part calculation unit 411 takes the sum of the first to fourth sine functions O 1 (x) to O 4 (x) calculated by the cosine function calculation unit 412 in step S202. The imaginary part function J (x) is calculated and the bias component B is removed.

(d) ステップS205で初期位相算出部413は、ステップS204で算出された虚部関数J(x)をステップS203で算出された実部関数R(x)で割り、その逆正接をとることにより上記(34)式に示した初期位相δを算出する。以下、ステップS104〜ステップS106は図20と同様であるので説明は省略する。  (d) In step S205, the initial phase calculation unit 413 divides the imaginary part function J (x) calculated in step S204 by the real part function R (x) calculated in step S203, and takes its arc tangent. The initial phase δ shown in the above equation (34) is calculated. Hereinafter, steps S104 to S106 are the same as those in FIG.

以上示した本発明の第2の実施の形態に係る3次元計測装置及び3次元計測方法においても、図22のステップS205において算出される初期位相δは上記(34)式に示すように第2項(- 2 π × x / Pm )を有し、第1の実施の形態と同様に位相とびを効果的に抑制することが可能となる。また(18)式で説明したように、ステップS201及びステップS202において第1のピッチPdに対して、仮想的なメモリ格子の第2のピッチPmをPm > Pd / 2の関係を満たすよう設定することにより従来の格子パターン投影法と比較して位相とびを効果的に抑制することが可能である。さらに仮想的な格子モデルの第2のピッチPmを 第1のピッチPdと等しい値に設定すれば、上記(34)式に示した初期位相はδ = φ(x)で示され、位相とびが生じなくなり、図22に示したステップS104における位相アンラップが不要となる。 Also in the three-dimensional measurement apparatus and the three-dimensional measurement method according to the second embodiment of the present invention described above, the initial phase δ calculated in step S205 in FIG. 22 is the second value as shown in the above equation (34). The term (−2π × x / P m ) is provided, and the phase jump can be effectively suppressed as in the first embodiment. The (18) as described in equation with respect to the first pitch P d at step S201 and step S202, the virtual second pitch P m of the memory lattices of P m> P d / 2 related By setting so as to satisfy, it is possible to effectively suppress the phase jump compared to the conventional grating pattern projection method. Furthermore, if the second pitch P m of the virtual lattice model is set to a value equal to the first pitch P d , the initial phase shown in the above equation (34) is expressed by δ = φ (x), and the phase Skipping does not occur, and the phase unwrapping in step S104 shown in FIG. 22 becomes unnecessary.

具体例として、図22のステップS90で図2に示したステージ80に被測定物体5としてミラーを配置し、ステップS95で図23に示す第1の撮像画像及び順次位相が90度異なる第2乃至第4の撮像画像を取り込むことにより、第2の実施の形態に係る3次元計測システム及び方法によってステップS106で再現されるミラーの表面形状画像を図24に示す。図25に示す従来の位相シフト法で再現されたミラーの表面形状画像には格子の空間周波数成分により位相とびが発生している。これに対し、図24に示す第2の実施の形態に係る3次元計測システム及び方法で算出されたミラーの表面形状画像においては位相とびが発生していない。そのため、ミラーの表面形状を正確に評価することが可能となる。   As a specific example, a mirror is arranged as the object to be measured 5 on the stage 80 shown in FIG. 2 in step S90 in FIG. 22, and the first to second images shown in FIG. FIG. 24 shows a mirror surface shape image reproduced in step S106 by the fourth captured image, which is reproduced by the three-dimensional measurement system and method according to the second embodiment. In the mirror surface shape image reproduced by the conventional phase shift method shown in FIG. 25, a phase jump occurs due to the spatial frequency component of the grating. On the other hand, no phase jump occurs in the mirror surface shape image calculated by the three-dimensional measurement system and method according to the second embodiment shown in FIG. Therefore, it becomes possible to accurately evaluate the surface shape of the mirror.

また上述した第2の実施の形態に係る3次元計測方法においても、コンピュータシステム内のプロセッサなどが果たす複数の機能を特定するコンピュータプログラム製品で図22に示した3次元計測方法を実現可能であるのは第1の実施の形態と同様である。   Also in the 3D measurement method according to the second embodiment described above, the 3D measurement method shown in FIG. 22 can be realized by a computer program product that specifies a plurality of functions performed by a processor in the computer system. This is the same as in the first embodiment.

(第2の実施の形態の変形例)
第2の実施の形態においては、図21に示した正余弦関数算出部412は、第1乃至第4の光強度関数I1(x)〜I4(x)のそれぞれにメモリ格子関数S2(x)〜S5(x)のそれぞれを乗ずることにより、第1乃至第4の正弦関数O1(x)〜O4(x)のそれぞれを算出していた。これに対し、メモリ格子関数S1(x)に対し第2の光強度関数I2(x)を乗じ、以下同様にメモリ格子関数S2(x)に第3の光強度関数I3(x)を乗じ、メモリ格子関数S3(x)に第4の光強度関数I4(x)を乗じ、メモリ格子関数S4(x)に第1の光強度関数I1(x)を乗ずることによっても第1乃至第4の正弦関数O1(x)〜O4(x)のそれぞれと同様の正弦関数を算出することが可能である。
(Modification of the second embodiment)
In the second embodiment, the positive cosine function calculation unit 412 illustrated in FIG. 21 has a memory lattice function S 2 for each of the first to fourth light intensity functions I 1 (x) to I 4 (x). Each of the first to fourth sine functions O 1 (x) to O 4 (x) is calculated by multiplying each of (x) to S 5 (x). On the other hand, the memory lattice function S 1 (x) is multiplied by the second light intensity function I 2 (x), and the memory lattice function S 2 (x) is similarly applied to the third light intensity function I 3 (x ), The memory lattice function S 3 (x) is multiplied by the fourth light intensity function I 4 (x), and the memory lattice function S 4 (x) is multiplied by the first light intensity function I 1 (x). It is possible to calculate a sine function similar to each of the first to fourth sine functions O 1 (x) to O 4 (x).

また図21に示すメモリ格子記憶装置432の説明において、(19)乃至(23)式で示されるメモリ格子関数S1(x)〜S5(x)を保存すると説明したが、(21)式のメモリ格子関数S3(x)は(19)式のメモリ格子関数S1(x)と符号以外は同じである。また、(22)式のメモリ格子関数S4(x)も(20)式のメモリ格子関数S2(x)と符号以外は同じである。さらに、互いに位相が180度異なる(23)式のメモリ格子関数S5(x)と(19)式のメモリ格子関数S1(x)は実質同じである。よって、メモリ格子記憶装置432は(19)式のメモリ格子関数S1(x)及び(20)式のメモリ格子関数S2(x)のみを保存することとしてもよい。 Further, in the description of the memory grid storage device 432 shown in FIG. 21, it has been described that the memory grid functions S 1 (x) to S 5 (x) represented by the formulas (19) to (23) are stored, but the formula (21) The memory lattice function S 3 (x) is the same as the memory lattice function S 1 (x) in the equation (19) except for the sign. Further, the memory lattice function S 4 (x) in the equation (22) is the same as the memory lattice function S 2 (x) in the equation (20) except for the sign. Furthermore, the memory lattice function S 5 (x) in the equation (23) and the memory lattice function S 1 (x) in the equation (19) that are 180 degrees out of phase with each other are substantially the same. Therefore, the memory grid storage device 432 may store only the memory grid function S 1 (x) of the formula (19) and the memory grid function S 2 (x) of the formula (20).

この場合、正余弦関数算出部412は、下記(35)式及び(36)式により第3の余弦関数N3(x)及び第4の余弦関数N4(x)のそれぞれを算出し、下記(37)式及び(38)式により第2の正弦関数O2(x)及び第3の正弦関数O3(x)のそれぞれを算出することとすればよい。 In this case, the positive cosine function calculation unit 412 calculates the third cosine function N 3 (x) and the fourth cosine function N 4 (x) according to the following expressions (35) and (36), respectively, Each of the second sine function O 2 (x) and the third sine function O 3 (x) may be calculated from the expressions (37) and (38).

N3(x) = I3(x) × ( - S1(x)) …(35)
N4(x) = I4(x) × ( - S2(x)) …(36)
O2(x) = I2(x) × ( - S1(x)) …(37)
O3(x) = I3(x) × ( - S2(x)) …(38)
さらに、第2の実施の形態に係る3次元計測方法は図22に示した順序に限定されないのは勿論である。例えばステップS100の次にステップS202に進み第1乃至第4の正弦関数O1(x)〜O4(x)を算出し、ステップS204で虚部関数J(x)を算出した後に、ステップS201、ステップS203、ステップS205と進んでもよい。
N 3 (x) = I 3 (x) × (-S 1 (x))… (35)
N 4 (x) = I 4 (x) × (-S 2 (x))… (36)
O 2 (x) = I 2 (x) × (-S 1 (x))… (37)
O 3 (x) = I 3 (x) × (-S 2 (x))… (38)
Furthermore, it is needless to say that the three-dimensional measurement method according to the second embodiment is not limited to the order shown in FIG. For example, after step S100, the process proceeds to step S202 to calculate the first to fourth sine functions O 1 (x) to O 4 (x), and after calculating the imaginary part function J (x) in step S204, step S201 is performed. Step S203 and Step S205 may be proceeded to.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば第1の実施の形態においては、被測定物体5に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影する方法として、格子3を光源10で照射する方法を示したが、光源から照射された光を2光束に分け、再び被測定物体5表面で重ね合わせて干渉縞を被測定物体5上に形成する方法、あるいは光源からの光を2光束に分け、一方を被測定物体5に照射し、他方とCCDカメラ等のイメージセンサ上で重ね合わせて干渉縞を形成する方法等も、第1の実施の形態は適用可能である。また第1の実施の形態では、格子3を透過して被測定物体5に照射される光を第1のレンズ11で平行光にし、図2に示したように反射光の平行光成分を第2のレンズ21でイメージセンサ20に集光したが、被測定物体5に照射する光は平行光に限定されず、第1のレンズ11及び第2のレンズ21を省略したシステムにも本発明は適用可能である。さらに、第1のピッチPdの四分の一の距離を順次移動させ、第1から第4の撮像画像を取得し、図1に示した光強度抽出部310で上記(1)式〜(4)式を算出していた。しかし、上記(5)式及び(6)式を求めることが可能である限りにおいて、互いに位相が180度異なる撮像画像を撮像装置350で複数撮影し、バイアス項を除去する計算をバイアス消去演算部311で行えばよく、実施の形態に限定されるものではない。例えば、nを0又は自然数として、第1のピッチPdの(1/4 + n)の距離を順次移動させ、第1から第4の撮像画像を取得してもよい。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the first embodiment, a method of irradiating the grating 3 with the light source 10 is shown as a method of projecting a sinusoidal periodic bright and dark pattern having the first pitch on the measured object 5. Divide the light emitted from the light source into two luminous fluxes and overlap them on the surface of the object to be measured 5 again to form interference fringes on the object to be measured 5, or divide the light from the light source into two luminous fluxes and measure one of them. The first embodiment can also be applied to a method of irradiating the object 5 and overlapping the other with an image sensor such as a CCD camera to form interference fringes. In the first embodiment, the light that passes through the grating 3 and irradiates the object 5 to be measured is converted into parallel light by the first lens 11, and the parallel light component of the reflected light is converted into the first light as shown in FIG. Although the light is focused on the image sensor 20 by the lens 21 of 2, the light irradiating the object to be measured 5 is not limited to parallel light, and the present invention is applied to a system in which the first lens 11 and the second lens 21 are omitted. Applicable. Furthermore, by sequentially moving a quarter of the length of the first pitch P d, from the first to get the fourth captured image, the light intensity extraction unit 310 shown in FIG. 1 (1) to ( 4) The formula was calculated. However, as long as the above formulas (5) and (6) can be obtained, the bias erasure calculation unit performs a calculation to take a plurality of captured images that are 180 degrees out of phase with the imaging device 350 and remove the bias term. 311 may be performed, and the present invention is not limited to the embodiment. For example, n as 0 or a natural number, is sequentially moved a distance of the first pitch P d (1/4 + n), it may be the first to get the fourth captured image. Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係る3次元計測装置のブロック図である。1 is a block diagram of a three-dimensional measurement apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る撮像装置の模式図である。1 is a schematic diagram of an imaging apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る格子の模式図である。FIG. 3 is a schematic diagram of a lattice according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る光強度関数(その1)のグラフである。3 is a graph of a light intensity function (part 1) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る光強度関数(その2)のグラフである。3 is a graph of a light intensity function (part 2) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る光強度関数(その3)のグラフである。6 is a graph of a light intensity function (part 3) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る光強度関数(その4)のグラフである。6 is a graph of a light intensity function (part 4) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る基本関数(その1)のグラフである。3 is a graph of a basic function (part 1) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る基本関数(その2)のグラフである。4 is a graph of a basic function (part 2) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモアレ関数(その1)のグラフである。5 is a graph of a moire function (part 1) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモアレ関数(その2)のグラフである。3 is a graph of a moire function (part 2) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモアレ関数(その3)のグラフである。4 is a graph of a moire function (part 3) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモアレ関数(その4)のグラフである。6 is a graph of a moire function (part 4) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る差の周波数関数(その1)のグラフである。4 is a graph of a difference frequency function (part 1) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る差の周波数関数(その2)のグラフである。4 is a graph of a difference frequency function (part 2) according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る位相のグラフである。4 is a phase graph according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る接続後位相関数のグラフである。3 is a graph of a post-connection phase function according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る補正後位相関数のグラフである。5 is a graph of a corrected phase function according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る高さ関数のグラフである。3 is a graph of a height function according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る計測方法を示すフローチャートである。3 is a flowchart showing a measurement method according to the first embodiment of the present invention. 本発明の第2の実施の形態に係る3次元計測装置のブロック図である。FIG. 4 is a block diagram of a three-dimensional measuring apparatus according to a second embodiment of the present invention. 本発明の第2の実施の形態に係る計測方法を示すフローチャートである。6 is a flowchart showing a measurement method according to a second embodiment of the present invention. 本発明の第2の実施の形態に係る撮像画像である。4 is a captured image according to a second embodiment of the present invention. 本発明の第2の実施の形態に係る被測定物の表面形状画像である。6 is a surface shape image of an object to be measured according to a second embodiment of the present invention. 従来技術に係る被測定物の表面形状画像である。It is a surface shape image of the to-be-measured object based on a prior art.

符号の説明Explanation of symbols

3…格子
5…被測定物体
10…光源
11…第1のレンズ
15…格子駆動部
20…イメージセンサ
21…第2のレンズ
23…スペイシャルフィルタ
42…ステージ駆動部
80…ステージ
200…撮像装置制御部
300, 400…CPU
309…撮像画像入力部
310…光強度抽出部
311…バイアス消去演算部
312…モアレ生成演算部
313…位相演算部
314…位相接続演算部
315…補正演算部
316…変換演算部
330…プログラム記憶装置
331…データ記憶装置
332…メモリ格子記憶装置
340…入力装置
341…出力装置
350…撮像装置
411…実部算出部
412…正余弦関数算出部
413…初期位相算出部
432…メモリ格子記憶装置
3 ... Lattice
5 ... Object to be measured
10 ... Light source
11 ... 1st lens
15 ... Lattice drive unit
20… Image sensor
21 ... Second lens
23 ... Spatial filter
42… Stage drive unit
80 ... Stage
200 ... Imaging device controller
300, 400 ... CPU
309 ... Captured image input unit
310: Light intensity extraction unit
311… Bias erase operation section
312 ... Moire generation calculation unit
313: Phase calculation unit
314 ... Phase connection calculation unit
315 ... Correction calculation unit
316 ... Conversion operation unit
330 ... Program storage device
331 ... Data storage device
332 ... Memory grid storage device
340 ... Input device
341 ... Output device
350 ... Imaging device
411 ... Real part calculation part
412… Cosine function calculator
413 ... Initial phase calculation unit
432 ... Memory grid storage device

Claims (16)

被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、前記被測定物体の位相が異なる複数の撮像画像を取得する撮像装置と、
前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する光強度抽出部と、
前記複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成し、該組合せにおいてそれぞれ減算を実行し前記バイアス成分の項を除去し、複数の基本関数を算出するバイアス消去演算部と、
前記複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出するモアレ生成演算部と、
前記複数のモアレ関数から互いに前記和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、該組合せにおいて前記和の周波数成分の項互いに相殺する演算により除去し、該演算によって残った前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する位相演算部
とを備えることを特徴とする3次元計測装置。
An imaging device that projects a sinusoidal periodic bright and dark pattern having a first pitch on the object to be measured, and obtains a plurality of captured images having different phases of the object to be measured;
A bias component that has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch, and that determines the center value of the vibration. A plurality of sinusoidal functions each represented by the sum of the terms, and a light intensity extraction unit that assumes a plurality of light intensity functions with different phases including those that are 180 degrees different from each other ,
Bias for generating a plurality of combinations of two light intensity functions whose phases are different from each other by 180 degrees from the plurality of light intensity functions , subtracting each of the combinations to remove the bias component term , and calculating a plurality of basic functions An erasing operation section;
Each of the plurality of basic functions is a sinusoidal function whose phase is 90 degrees different from each other, and a product obtained by multiplying each of the plurality of memory lattice functions respectively oscillating at a second frequency determined by the second pitch, The frequency component term of the difference between the first frequency and the second frequency is converted into a format expressed by the sum of the frequency component term of the sum of the first frequency and the second frequency . A moire generation calculation unit for calculating a moire function;
Wherein the plurality of combinations of the two moire functions the same absolute value of the term of the frequency components of said sum together the moire function generates a plurality, is removed by calculation to offset the terms of the frequency components of said sum to each other in the combination, the A three-dimensional measuring apparatus comprising: a phase calculating unit that calculates an initial phase for reducing the number of phase unwrapping from the term of the frequency component of the difference remaining by the calculation.
被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、前記被測定物体の位相が異なる複数の撮像画像を取得する撮像装置と、
前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する光強度抽出部と、
それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群を保存するメモリ格子記憶装置と、
前記複数の光強度関数のそれぞれに対し、前記第1メモリ格子関数群及び前記第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗じた積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項と前記バイアス成分を振幅とする前記第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出する正余弦関数算出部と、
前記複数の余弦関数の和をとり前記複数の余弦関数に含まれる前記和の周波数成分とバイアス成分を振幅とする前記第2の周波数成分の項を除去して実部関数を算出し、前記複数の正弦関数の和をとり前記複数の正弦関数に含まれる前記和の周波数成分と前記バイアス成分を振幅とする前記第2の周波数成分の項を除去して虚部関数を算出する実部算出部と、
前記虚部関数を前記実部関数で割り、逆正接をとることで、前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する初期位相算出部
とを備えることを特徴とする3次元計測装置。
An imaging device that projects a sinusoidal periodic bright and dark pattern having a first pitch on the object to be measured, and obtains a plurality of captured images having different phases of the object to be measured;
A bias component that has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch, and that determines the center value of the vibration. A plurality of sinusoidal functions each represented by the sum of the terms, and a light intensity extraction unit that assumes a plurality of light intensity functions with different phases including those that are 180 degrees different from each other ,
A sine wave-like function each having a phase difference of 90 degrees, a memory grid storage device that stores a first memory grid function group and a second memory grid function group that respectively vibrate at a second frequency determined by the second pitch ;
A product obtained by multiplying each of the plurality of light intensity functions by each of a plurality of memory lattice functions included in each of the first memory lattice function group and the second memory lattice function group, and the first frequency, Sum of the frequency component term of the difference between the second frequencies, the frequency component term of the sum of the first frequency and the second frequency, and the second frequency component term having the bias component as an amplitude. A cosine function calculator that calculates a plurality of cosine functions and a plurality of sine functions,
Calculating a real part function by calculating a sum of the plurality of cosine functions and removing a term of the second frequency component having an amplitude of a frequency component and a bias component of the sum included in the plurality of cosine functions; The real part calculation unit that calculates the imaginary part function by removing the term of the second frequency component having the amplitude of the sum frequency component and the bias component included in the plurality of sine functions. When,
An initial phase calculating unit that calculates an initial phase for reducing the number of phase unwrapping from the frequency component term of the difference by dividing the imaginary part function by the real part function and taking an arc tangent. 3D measuring device.
前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチの半分よりも大であることを特徴とする請求項1又は2に記載の3次元計測装置。   3. The three-dimensional measurement apparatus according to claim 1, wherein a second pitch included in each of the plurality of memory lattice functions is larger than half of the first pitch. 前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチと等しい値であることを特徴とする請求項1又は2に記載の3次元計測装置。   3. The three-dimensional measurement apparatus according to claim 1, wherein the second pitch included in each of the plurality of memory lattice functions has a value equal to the first pitch. 4. 前記撮像装置は、前記明暗のパターンを順次前記第1のピッチと同じ方向に等間隔で移動させる格子駆動部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の3次元計測装置。   5. The three-dimensional image according to claim 1, wherein the imaging apparatus includes a lattice driving unit that sequentially moves the light and dark patterns in the same direction as the first pitch at equal intervals. 6. Measuring device. 前記撮像装置は、前記明暗のパターンを順次前記第1のピッチと同じ方向に前記第1のピッチの4分の1の距離を移動させる格子駆動部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の3次元計測装置。   5. The image pickup apparatus includes a grating driving unit that sequentially moves the light / dark pattern in the same direction as the first pitch by a distance of a quarter of the first pitch. 6. The three-dimensional measuring apparatus according to any one of the above. 被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、撮像画像入力部が前記被測定物体の位相が異なる複数の撮像画像を取得し、データ記憶装置に格納するステップと、
光強度抽出部が前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定し、前記データ記憶装置に格納するステップと、
バイアス消去演算部が前記複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成し、該組合せにおいてそれぞれ減算を実行しバイアス成分の項を除去し、複数の基本関数を算出し、前記データ記憶装置に格納するステップと、
モアレ生成演算部が前記複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出し、前記データ記憶装置に格納するステップと、
位相演算部が前記複数のモアレ関数から互いに前記和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、該組合せにおいて前記和の周波数成分の項互いに相殺する演算により除去し、該演算によって残った前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出するステップ
とを含むことを特徴とする3次元計測方法。
A periodic sinusoidal pattern having a first pitch is projected onto the measured object, and the captured image input unit acquires a plurality of captured images with different phases of the measured object, and stores them in the data storage device Steps,
The light intensity extraction unit has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at the first frequency determined by the first pitch, and the center value of the vibration A plurality of sinusoidal functions each represented by the sum of the bias component terms that determine a plurality of light intensity functions , each including a phase that is 180 degrees different from each other, and the data storage Storing in the device;
The bias erasure calculation unit generates a plurality of combinations of two light intensity functions whose phases are different from each other by 180 degrees from the plurality of light intensity functions , performs subtraction in each of the combinations to remove a bias component term , and a plurality of basic functions Calculating and storing in the data storage device;
The moiré generation calculation unit multiplies each of the plurality of basic functions by a plurality of memory lattice functions each oscillating at a second frequency determined by the second pitch, which is a sinusoidal function having a phase difference of 90 degrees from each other. The product is expressed by the sum of the frequency component term of the difference between the first frequency and the second frequency and the frequency component term of the sum of the first frequency and the second frequency. Converting, calculating a plurality of moire functions, and storing in the data storage device;
By calculating the phase calculation unit combining a plurality generation of two moire functions the same absolute value of the term of the frequency components of the sum from each other from the plurality of moire functions, cancel each other section of the frequency components of the sum in the combination And a step of calculating an initial phase for reducing the number of phase unwrapping from the term of the frequency component of the difference remaining after the calculation.
被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、撮像画像入力部が前記被測定物体の位相が異なる複数の撮像画像を取得し、データ記憶装置に格納するステップと、
光強度抽出部が前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定し、前記データ記憶装置に格納するステップと、
正余弦関数算出部が前記複数の光強度関数のそれぞれに対し、それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗じた積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項と前記バイアス成分を振幅とする前記第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出し、前記データ記憶装置に格納するステップと、
実部算出部が前記複数の余弦関数の和及び前記複数の正弦関数の和をとることにより前記複数の余弦関数及び正弦関数に含まれる前記和の周波数成分とバイアス成分を振幅とする前記第2の周波数成分の項を除去して実部関数及び虚部関数のそれぞれを算出し、前記データ記憶装置に格納するステップと、
初期位相算出部が前記虚部関数を前記実部関数で割り、逆正接をとることで、前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出するステップ
とを含むことを特徴とする3次元計測方法。
A periodic sinusoidal pattern having a first pitch is projected onto the measured object, and the captured image input unit acquires a plurality of captured images with different phases of the measured object, and stores them in the data storage device Steps,
The light intensity extraction unit has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at the first frequency determined by the first pitch, and the center value of the vibration A plurality of sinusoidal functions each represented by the sum of the bias component terms that determine a plurality of light intensity functions , each including a phase that is 180 degrees different from each other, and the data storage Storing in the device;
The first cosine function is a sinusoidal function whose phase is 90 degrees different from each other for each of the plurality of light intensity functions , and a first memory lattice function that vibrates at a second frequency determined by a second pitch. A product obtained by multiplying each of a plurality of memory lattice functions included in each of the group and the second memory lattice function group, a term of a frequency component of a difference between the first frequency and the second frequency, and the first frequency And a plurality of cosine functions and a plurality of sine functions , which are converted into a form represented by the sum of the frequency component term of the sum of the second frequency and the second frequency component term having the bias component as an amplitude. Calculating and storing in the data storage device;
The real part calculation unit takes the sum of the plurality of cosine functions and the sum of the plurality of sine functions, thereby causing the frequency component and the bias component of the sum included in the plurality of cosine functions and sine functions to be amplitudes. Calculating the real part function and the imaginary part function by removing the frequency component term , and storing in the data storage device;
An initial phase calculation unit calculates an initial phase for reducing the number of phase unwraps from the frequency component term of the difference by dividing the imaginary part function by the real part function and taking an arc tangent. 3D measurement method characterized by including.
前記複数のモアレ関数を算出し、前記データ記憶装置に格納するステップにおいて、前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチの半分よりも大であることを特徴とする請求項7記載の3次元計測方法。   In the step of calculating the plurality of moire functions and storing them in the data storage device, a second pitch included in each of the plurality of memory lattice functions is greater than half of the first pitch. 8. The three-dimensional measurement method according to claim 7, 前記複数のモアレ関数を算出し、前記データ記憶装置に格納するステップにおいて、前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチと等しいことを特徴とする請求項7記載の3次元計測方法。   The second pitch included in each of the plurality of memory lattice functions is equal to the first pitch in the step of calculating and storing the plurality of moire functions in the data storage device. 7. The three-dimensional measuring method according to 7. 前記複数の余弦関数及び複数の正弦関数を算出し、前記データ記憶装置に格納するステップにおいて、前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチの半分よりも大であることを特徴とする請求項8記載の3次元計測方法。   In the step of calculating the plurality of cosine functions and the plurality of sine functions and storing them in the data storage device, the second pitch included in each of the plurality of memory grid functions is more than half of the first pitch. The three-dimensional measurement method according to claim 8, wherein the three-dimensional measurement method is large. 前記複数の余弦関数及び複数の正弦関数を算出し、前記データ記憶装置に格納するステップにおいて、前記複数のメモリ格子関数のそれぞれに含まれる第2のピッチは、前記第1のピッチと等しいことを特徴とする請求項8記載の3次元計測方法。   In the step of calculating the plurality of cosine functions and the plurality of sine functions and storing them in the data storage device, a second pitch included in each of the plurality of memory lattice functions is equal to the first pitch. The three-dimensional measurement method according to claim 8, wherein 前記位相が異なる複数の撮像画像を取得し、前記データ記憶装置に格納するステップは、前記明暗のパターンを順次前記第1のピッチと同じ方向に等間隔で移動させる手順を含むことを特徴とする請求項7乃至12のいずれか1項に記載の3次元計測方法。   The step of acquiring a plurality of captured images having different phases and storing them in the data storage device includes a step of sequentially moving the light and dark pattern at equal intervals in the same direction as the first pitch. The three-dimensional measurement method according to any one of claims 7 to 12. 前記位相が異なる複数の撮像画像を取得し、前記データ記憶装置に格納するステップは、前記明暗のパターンを順次前記第1のピッチと同じ方向に前記第1のピッチの4分の1の距離を移動させる手順を含むことを特徴とする請求項7乃至12のいずれか1項に記載の3次元計測方法。   The step of acquiring a plurality of captured images having different phases and storing the captured images in the data storage device sequentially sets the bright and dark patterns to a distance of a quarter of the first pitch in the same direction as the first pitch. The three-dimensional measurement method according to claim 7, further comprising a moving procedure. 被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、前記3次元計測装置に、
被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、前記被測定物体の位相が異なる複数の撮像画像を取得する命令と、
前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する命令と、
前記複数の光強度関数から互いに位相が180度異なる2つの光強度関数の組合せを複数生成し、該組合せにおいてそれぞれ減算を実行しバイアス成分の項を除去し、複数の基本関数を算出する命令と、
前記複数の基本関数のそれぞれに、互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する複数のメモリ格子関数のそれぞれを乗じた積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項との和で表現される形式に変換し、複数のモアレ関数を算出する命令と、
前記複数のモアレ関数から互いに和の周波数成分の項の絶対値が等しい2つのモアレ関数の組合せを複数生成し、該組合せにおいて前記和の周波数成分の項互いに相殺する演算により除去し、該演算によって残った前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する命令
とを実行させることを特徴とする3次元計測プログラム。
A three-dimensional measurement program for driving and controlling a three-dimensional measurement apparatus for measuring the surface shape of an object to be measured.
A command for projecting a sinusoidal periodic bright and dark pattern having a first pitch on the object to be measured, and obtaining a plurality of captured images having different phases of the object to be measured;
A bias component that has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch, and that determines the center value of the vibration. A plurality of sinusoidal functions each represented by the sum of the terms, and a command that assumes a plurality of light intensity functions having different phases including those that are 180 degrees different from each other ;
Generating a plurality of combinations of two light intensity functions having phases different from each other by 180 degrees from the plurality of light intensity functions , executing a subtraction in each of the combinations to remove a bias component term , and calculating a plurality of basic functions; ,
Each of the plurality of basic functions is a sinusoidal function whose phase is 90 degrees different from each other, and a product obtained by multiplying each of the plurality of memory lattice functions respectively oscillating at a second frequency determined by the second pitch, The frequency component term of the difference between the first frequency and the second frequency is converted into a format expressed by the sum of the frequency component term of the sum of the first frequency and the second frequency . An instruction to calculate the moiré function;
Wherein the plurality of combinations of the two moire functions the same absolute value of the term of the frequency components of the sum to each other from the moire function generates a plurality, is removed by calculation to offset the terms of the frequency components of said sum to each other in the combination, the operation And a command for calculating an initial phase for reducing the number of phase unwrapping from the term of the frequency component of the difference remaining in step ( 3).
被測定物体の表面形状を測定する3次元計測装置を駆動制御する3次元計測プログラムであって、前記3次元計測装置に、
被測定物体に第1のピッチを有する正弦波状の周期的な明暗のパターンを投影し、前記被測定物体の位相が異なる複数の撮像画像を取得する命令と、
前記複数の撮像画像のそれぞれに含まれる画素の光強度を、前記第1のピッチで決まる第1の周波数で振動する振動項と、同一の値を有し前記振動の中心値を決めるバイアス成分の項と、の和でそれぞれ表現される複数の正弦波状の関数であり、互いに位相が180度異なるものを含んで位相がそれぞれ異なる複数の光強度関数と仮定する命令と、
前記複数の光強度関数のそれぞれに対し、それぞれ互いに位相が90度異なる正弦波状の関数であり、第2のピッチで決まる第2の周波数でそれぞれ振動する第1メモリ格子関数群及び第2メモリ格子関数群のそれぞれに含まれる複数のメモリ格子関数のそれぞれを乗た積を、前記第1の周波数と前記第2の周波数の差の周波数成分の項と前記第1の周波数と前記第2の周波数の和の周波数成分の項と前記バイアス成分を振幅とする前記第2の周波数成分の項との和で表現される形式に変換し、複数の余弦関数及び複数の正弦関数を算出する命令と、
前記複数の余弦関数の和及び前記複数の正弦関数の和をとることにより前記複数の余弦関数及び正弦関数に含まれる前記和の周波数成分とバイアス成分を振幅とする前記第2の周波数成分の項を除去して実部関数及び虚部関数のそれぞれを算出する命令と、
前記虚部関数を前記実部関数で割り、逆正接をとることで、前記差の周波数成分の項から、位相アンラップの回数を削減するための初期位相を算出する命令
とを実行させることを特徴とする3次元計測プログラム。
A three-dimensional measurement program for driving and controlling a three-dimensional measurement apparatus for measuring the surface shape of an object to be measured.
A command for projecting a sinusoidal periodic bright and dark pattern having a first pitch on the object to be measured, and obtaining a plurality of captured images having different phases of the object to be measured;
A bias component that has the same value as the vibration term that vibrates the light intensity of the pixels included in each of the plurality of captured images at a first frequency determined by the first pitch, and that determines the center value of the vibration. A plurality of sinusoidal functions each represented by the sum of the terms, and a command that assumes a plurality of light intensity functions having different phases including those that are 180 degrees different from each other ;
A first memory lattice function group and a second memory lattice , which are sinusoidal functions having phases different from each other by 90 degrees with respect to each of the plurality of light intensity functions, and respectively vibrate at a second frequency determined by the second pitch. A product obtained by multiplying each of the plurality of memory lattice functions included in each of the function groups is a term of a frequency component of a difference between the first frequency and the second frequency, the first frequency, and the second frequency. An instruction for calculating a plurality of cosine functions and a plurality of sine functions by converting to a form represented by a sum of the frequency component term of the sum of the two and the term of the second frequency component having the bias component as an amplitude ;
The term of the second frequency component having the amplitude of the frequency component and the bias component of the sum included in the plurality of cosine functions and the sine function by taking the sum of the plurality of cosine functions and the sum of the plurality of sine functions. To calculate each of the real part function and the imaginary part function by removing
Dividing the imaginary part function by the real part function and taking an arc tangent to execute an instruction for calculating an initial phase for reducing the number of phase unwrapping from the frequency component term of the difference A three-dimensional measurement program.
JP2004049681A 2004-01-15 2004-02-25 3D measuring device, 3D measuring method, and 3D measuring program Expired - Fee Related JP4398277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049681A JP4398277B2 (en) 2004-01-15 2004-02-25 3D measuring device, 3D measuring method, and 3D measuring program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004008348 2004-01-15
JP2004049681A JP4398277B2 (en) 2004-01-15 2004-02-25 3D measuring device, 3D measuring method, and 3D measuring program

Publications (2)

Publication Number Publication Date
JP2005227246A JP2005227246A (en) 2005-08-25
JP4398277B2 true JP4398277B2 (en) 2010-01-13

Family

ID=35002059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049681A Expired - Fee Related JP4398277B2 (en) 2004-01-15 2004-02-25 3D measuring device, 3D measuring method, and 3D measuring program

Country Status (1)

Country Link
JP (1) JP4398277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628676A (en) * 2012-01-19 2012-08-08 东南大学 Adaptive window Fourier phase extraction method in optical three-dimensional measurement

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674121B2 (en) * 2005-06-17 2011-04-20 株式会社山武 3D measuring device, 3D measuring method, and 3D measuring program
JP4688625B2 (en) * 2005-10-18 2011-05-25 株式会社山武 3D measuring apparatus, 3D measuring method, and 3D measuring program
KR100722245B1 (en) 2006-03-23 2007-05-29 주식회사 고영테크놀러지 Apparatus for inspecting for three dimension shape
JP5124424B2 (en) * 2008-11-17 2013-01-23 株式会社キーエンス Optical displacement meter
CN103344651B (en) * 2013-05-08 2015-04-29 中北大学 Method of detecting glass defects based on phase image processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628676A (en) * 2012-01-19 2012-08-08 东南大学 Adaptive window Fourier phase extraction method in optical three-dimensional measurement
CN102628676B (en) * 2012-01-19 2014-05-07 东南大学 Adaptive window Fourier phase extraction method in optical three-dimensional measurement

Also Published As

Publication number Publication date
JP2005227246A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
Zuo et al. Phase shifting algorithms for fringe projection profilometry: A review
US7587094B2 (en) Phase measurement system
JP4924042B2 (en) Three-dimensional shape measuring apparatus, calibration method thereof, program, and computer-readable recording medium
US20100195114A1 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
JPH0444923B2 (en)
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP2011226871A (en) Shape measurement method, shape measurement device, distortion measurement method, and distortion measurement device
DK2217878T3 (en) Registration method for the image of an object to be registered and registration device
JP2009036589A (en) Target for calibration and device, method and program for supporting calibration
JP4398277B2 (en) 3D measuring device, 3D measuring method, and 3D measuring program
JP2008145139A (en) Shape measuring device
JP3199041B2 (en) Three-dimensional shape measuring apparatus, method and recording medium
JP4797109B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP4674121B2 (en) 3D measuring device, 3D measuring method, and 3D measuring program
JP2013130457A (en) Shape measurement apparatus, shape measurement system and shape measurement method
JP2006084286A (en) Three-dimensional measuring method and its measuring device
JP2010175554A (en) Device and method for measuring three-dimensional shape
JP2017125707A (en) Measurement method and measurement device
KR101436403B1 (en) Shadow Moire Method using Sine Wave Grationg and Measuring Apparatus using the same
Schoenleber et al. Fast and flexible shape control with adaptive LCD fringe masks
JP6386954B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP4688625B2 (en) 3D measuring apparatus, 3D measuring method, and 3D measuring program
JP2010032448A (en) Three-dimensional shape measuring device
JP5953539B2 (en) Height position measuring device
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees