JP2006348470A - Building foundation and construction method therefor - Google Patents

Building foundation and construction method therefor Download PDF

Info

Publication number
JP2006348470A
JP2006348470A JP2005172082A JP2005172082A JP2006348470A JP 2006348470 A JP2006348470 A JP 2006348470A JP 2005172082 A JP2005172082 A JP 2005172082A JP 2005172082 A JP2005172082 A JP 2005172082A JP 2006348470 A JP2006348470 A JP 2006348470A
Authority
JP
Japan
Prior art keywords
foundation
concrete
building
base
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005172082A
Other languages
Japanese (ja)
Other versions
JP3750135B1 (en
Inventor
Toyonobu Hata
豊信 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIEI PROBIS KK
Original Assignee
DAIEI PROBIS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIEI PROBIS KK filed Critical DAIEI PROBIS KK
Priority to JP2005172082A priority Critical patent/JP3750135B1/en
Application granted granted Critical
Publication of JP3750135B1 publication Critical patent/JP3750135B1/en
Publication of JP2006348470A publication Critical patent/JP2006348470A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building foundation and a construction method therefor, which enable the effective utilization of heat accumulated in ground, which shorten a construction period, and which reduce construction costs. <P>SOLUTION: In the construction method for the building foundation, a vertical reinforcing member 11 is erected on foundation concrete 7; a sill 13 is height-adjustably mounted on the upper part of the member 11; forms 17 and 18 are separately erected on the foundation concrete 7 in both the side parts of the member 11; after that, stone 21 is spread all over a building-floor constructing section 16 which is surrounded by the forms 17 and 18; and subsequently, the concrete is placed between the forms 17 and 18 and in the section 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地中の蓄熱を利用することができる建物基礎および建物基礎工法に関する。   The present invention relates to a building foundation and a building foundation method capable of utilizing underground heat storage.

一般に、地中は外気に比べると温度変化が少ないことから、相対的に冬季は暖かく、夏季は涼しくなる。この現象は以前から広く知られており、すでに多方面において利用されている。地下水を利用した消雪設備や冷房施設はよく知られているところである。また、建築分野においても、地中に蓄えられた熱を有効利用すべく種々の試みがなされている。一例を挙げると、コンクリート製の布基礎で囲まれた床構築位置に石材を敷き詰め、前記布基礎上に土台を構築し、次に前記床構築位置で、対向する土台間に、上縁が所定高さとなるように形成した均し治具を架設し、続いて前記床構築位置に該均し治具の上縁に沿って下地コンクリートを打設し、該下地コンクリートの固化後に、前記下地コンクリートの上面に、必要ならば下地板を介して、床仕上げ部材を敷設することを特徴とする地中の蓄熱を利用した床の構築方法がある(例えば、特許文献1参照)。かかる構築方法による床では、地下と熱的に連続しているので、地域差もあるが石材層は、概ね最高24℃(夏)〜最低12℃(冬)の温度を維持し、その温度が直接に床仕上げ板に伝わり、夏期で25℃以下、冬期で10℃以上に保たれる。
特開平10−273948号公報
In general, since the underground has less temperature change than the outside air, it is relatively warm in winter and cool in summer. This phenomenon has been widely known for a long time and has already been used in many fields. Snow extinguishing and cooling facilities using groundwater are well known. In the field of architecture, various attempts have been made to effectively use the heat stored in the ground. For example, stones are laid in a floor construction position surrounded by a concrete cloth foundation, a foundation is constructed on the cloth foundation, and then an upper edge is defined between the opposing foundations at the floor construction position. A leveling jig formed so as to have a height is installed, and then the base concrete is placed along the upper edge of the leveling jig at the floor construction position, and after the base concrete is solidified, the base concrete There is a method for constructing a floor using underground heat storage, characterized in that a floor finishing member is laid on the upper surface of the material through a base plate if necessary (see, for example, Patent Document 1). The floor by this construction method is thermally continuous with the underground, so there are regional differences, but the stone layer generally maintains a maximum temperature of 24 ° C (summer) to a minimum of 12 ° C (winter). It is transmitted directly to the floor finish and is kept at 25 ° C or lower in summer and 10 ° C or higher in winter.
Japanese Patent Laid-Open No. 10-273948

しかし、上記特許文献に係る建物の床構築方法においては、床構築工程が多くなり、工期とコストに問題を抱えていた。たとえば、コンクリートの打設だけをとってみても、ベースコンクリートの打設、立ち上がりコンクリートの打設、土間スラブコンクリートの打設と合計3回のコンクリート打設が必要になる。コンクリート打設の回数が増えると単にコストが増加するのみならず、養生期間も長くなり、トータルとしての工事期間が長くなってしまうという問題がある。   However, in the building floor construction method according to the above-mentioned patent document, there are many floor construction processes, which have problems in terms of construction period and cost. For example, even if only concrete placement is taken, a total of three times of placement of base concrete, rising concrete, and soil slab concrete are required. When the number of times of placing concrete increases, not only the cost increases, but also the curing period becomes longer, and the total construction period becomes longer.

本発明は上記の事情に鑑みてなされたものであり、地中に蓄積された熱を有効に利用できる建物基礎および建物基礎工法であって、しかも工事期間が短く、構築コストも低廉な建物基礎および建物基礎工法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a building foundation and a building foundation method capable of effectively using heat accumulated in the ground, and has a short construction period and a low construction cost. The purpose is to provide the building foundation method.

請求項1記載の発明は、基礎コンクリートに立設された縦補強部材を有し、前記縦補強部材の両側部に離間して立設された型枠間に打設される立ち上がり基礎と、前記立ち上がり基礎の内側となる建物床構築部に蓄熱層としての砕石を敷き詰めその上に打設される土間スラブとからなる建物基礎において、前記蓄熱層と接する内側型枠を取り外し不要とし、土台と外側型枠を固定して立ち上がり基礎と土間スラブのコンクリートを1回で打設可能とし、前記縦補強部材の上部で高さ調整可能にして土台を設け、前記土間スラブの上面を前記土台上面に合わせて水平均一に仕上げることを特徴とするものである。 The invention according to claim 1 has a vertical reinforcing member erected on the foundation concrete, the rising foundation placed between molds erected apart from both sides of the vertical reinforcing member, and In the building foundation consisting of crushed stone as a heat storage layer on the building floor construction part inside the rising foundation, the inner formwork in contact with the heat storage layer is not required to be removed, and the base and the outside The formwork is fixed and the foundation of the rising foundation and the slab concrete can be placed once, the height can be adjusted at the upper part of the vertical reinforcing member, the foundation is provided, and the upper surface of the soil slab is aligned with the upper surface of the foundation It is characterized by finishing horizontally and uniformly .

請求項2記載の発明は、請求項1記載の建物基礎において、前記縦補強部材がラチスユニットからなることを特徴とするものである。   According to a second aspect of the present invention, in the building foundation according to the first aspect, the vertical reinforcing member comprises a lattice unit.

請求項3記載の発明は、請求項1記載の建物基礎において、前記土台が木材または型鋼からなることを特徴とするものである。   According to a third aspect of the present invention, in the building foundation according to the first aspect, the base is made of wood or steel.

請求項4記載の発明は、請求項1記載の建物基礎において、前記型枠が断熱材料からなることを特徴とするものである。   According to a fourth aspect of the present invention, in the building foundation according to the first aspect, the mold is made of a heat insulating material.

請求項5記載の発明は、基礎コンクリート上に縦補強部材を立設し、前記縦補強部材の上部において土台を高さ調整可能にして取り付け、前記縦補強部材の両側部の前記基礎コンクリート上に型枠を離間して立設した後、前記型枠間と建物床構築部にコンクリートを打設したことを特徴とする建物基礎工法である。   According to the fifth aspect of the present invention, a vertical reinforcing member is erected on the foundation concrete, and a base is attached to the upper portion of the vertical reinforcing member so that the height thereof can be adjusted, and the foundation concrete is formed on both sides of the vertical reinforcing member. It is a building foundation construction method characterized in that concrete is placed between the molds and on the building floor construction part after the molds are spaced apart.

請求項6記載の発明は、基礎コンクリート上に縦補強部材を立設し、前記縦補強部材の上部において土台を高さ調整可能にして取り付け、前記縦補強部材の両側部の前記基礎コンクリート上に型枠を離間して立設した後、前記型枠に囲まれた建物床構築部に石材を敷き詰め、その後、前記型枠間と前記建物床構築部にコンクリートを打設したことを特徴とする建物基礎工法である。   According to the sixth aspect of the present invention, a vertical reinforcing member is erected on the foundation concrete, and a base is attached to the upper portion of the vertical reinforcing member so that the height thereof can be adjusted. After standing apart from the formwork, the building floor construction part surrounded by the formwork is spread with stones, and then concrete is placed between the formwork and the building floor construction part. It is a building foundation method.

請求項1記載の建物基礎によれば、縦補強部材の上部において土台の高さを調整することが可能であることから、土台のレベル調整が容易になる。   According to the building foundation described in claim 1, since the height of the foundation can be adjusted at the upper part of the vertical reinforcing member, the level of the foundation can be easily adjusted.

請求項2記載の建物基礎によれば、標準化されたラチスユニットを用いることができるので、建物基礎の工事期間を短縮できるとともに構築コストも低減できる。   According to the building foundation described in claim 2, since the standard lattice unit can be used, the construction period of the building foundation can be shortened and the construction cost can be reduced.

請求項3記載の建物基礎によれば、土台が木材または型鋼からなり、土間スラブと同一平面とすることができるので、床を含む建物の工事が簡単になる。   According to the building foundation of the third aspect, the foundation is made of wood or steel, and can be flush with the soil slab, so that the construction of the building including the floor is simplified.

請求項4記載の建物基礎によれば、型枠が断熱材料から構成されるので、地中に蓄えられた熱を有効利用することができる。   According to the building foundation of Claim 4, since a formwork is comprised from a heat insulating material, the heat stored in the ground can be used effectively.

請求項5記載の建物基礎工法によれば、建物基礎の土台上面を均一のレベルに調整することができるとともに、コンクリート打設回数を少なくすることができるので、工事期間を短縮することが可能で、構築コストも低減することができる。   According to the building foundation method of claim 5, the top surface of the foundation of the building foundation can be adjusted to a uniform level and the number of times of placing concrete can be reduced, so that the construction period can be shortened. The construction cost can also be reduced.

請求項6記載の建物基礎工法によれば、前記請求項5記載の建物基礎工法による効果に加えて、地中の蓄熱をより一層有効利用することができる建物基礎を実現できる。   According to the building foundation method of claim 6, in addition to the effect of the building foundation method of claim 5, it is possible to realize a building foundation that can make more effective use of underground heat storage.

以下、本発明を実施するための形態について図面を参照しながら説明する。図1は本発明に係る建物基礎1の実施例を示す平面図である。この実施例は戸建住宅の建物基礎1を表している。戸建住宅の建物基礎1は間取りによって異なるが、建物の外縁となる外周部基礎2と間仕切りに相当する部位に配置される内部基礎3に大別される。また、建物基礎1のうち外周部基礎2および長い寸法となる内部基礎3には鉄筋4が配筋され、強度向上が図られている。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing an embodiment of a building foundation 1 according to the present invention. This example represents a building foundation 1 of a detached house. Although the building foundation 1 of a detached house differs depending on the floor plan, it is roughly divided into an outer peripheral foundation 2 that is an outer edge of the building and an inner foundation 3 that is disposed at a portion corresponding to a partition. In addition, reinforcing bars 4 are arranged on the outer periphery base 2 and the long internal base 3 in the building foundation 1 to improve the strength.

先ず、建物の外縁となる外周部基礎2について説明する。図2は本発明の実施例を示す外周部基礎2の縦断面図であり、具体的には図1におけるA−A矢視を示す。図において建物敷地の基礎となる部位を数十センチメートル掘削して砂利等5を配する整地および地盤改良作業行なう。そして、鉄筋6を配置した後で基礎コンクリート7を打設する。この基礎コンクリート7の構造と構築方法は従来から行なわれている工法と同様にして行なうことができる。ただし、基礎コンクリート7の上面は単に平坦に形成されるのみならず、立ち上がり基礎8となる部位には所定間隔ごとに鉄筋9が上面から突出して配置される。   First, the outer peripheral part foundation | substrate 2 used as the outer edge of a building is demonstrated. FIG. 2 is a longitudinal sectional view of the outer periphery base 2 showing an embodiment of the present invention, and specifically shows an AA arrow view in FIG. In the figure, the site which is the foundation of the building site is excavated by several tens of centimeters, and the leveling and ground improvement work for arranging gravel 5 is performed. And after arrange | positioning the reinforcing bar 6, the foundation concrete 7 is laid. The structure and construction method of the foundation concrete 7 can be performed in the same manner as a conventional construction method. However, the upper surface of the foundation concrete 7 is not only formed flat, but the reinforcing bars 9 are arranged to protrude from the upper surface at predetermined intervals in a portion that becomes the rising foundation 8.

打設された基礎コンクリート7が固化した後、基礎コンクリート7の上面から突出した鉄筋9に縦補強部材であるラチスユニット11を固定する。この固定方法は溶接によって行なうことでもよいし、結束線により結束することでもよい。なお、この固定作業を容易にするため基礎コンクリート7上にコンクリート製のスペーサブロック12を置き、その上にラチスユニット11が載置される。ラチスユニット11の枠体は等辺山形鋼により構成されており、その上辺11aには所定間隔ごとに複数のねじ孔11bが設けられている。各ねじ孔11bには、全ねじ棒を有する土台載置具14が取り付けられる。土台載置具14は全ねじ棒の一端に平板を固定したものであり、平板上には断面形状が矩形の木材または型鋼からなる土台13が載置される。土台載置具14の全ねじ棒はラチスユニット11のねじ孔11bに螺合され、必要に応じて土台載置具14を回転させることにより高さ調整をすることができる。そして高さ調整後、土台載置具14はナット15により固定される。なお、土台13の高さ調整は最終的には市販されているレベル計を用いることにより行なう。   After the cast foundation concrete 7 is solidified, a lattice unit 11 that is a longitudinal reinforcing member is fixed to a reinforcing bar 9 protruding from the upper surface of the foundation concrete 7. This fixing method may be performed by welding or may be bound by a binding wire. In order to facilitate this fixing operation, a concrete spacer block 12 is placed on the foundation concrete 7, and the lattice unit 11 is placed thereon. The frame of the lattice unit 11 is made of equilateral angle steel, and the upper side 11a is provided with a plurality of screw holes 11b at predetermined intervals. A base mounting tool 14 having all screw rods is attached to each screw hole 11b. The base mounting tool 14 has a flat plate fixed to one end of all screw rods, and a base 13 made of wood or steel having a rectangular cross section is placed on the flat plate. All screw rods of the base mounting tool 14 are screwed into the screw holes 11b of the lattice unit 11, and the height can be adjusted by rotating the base mounting tool 14 as necessary. After the height adjustment, the base mounting tool 14 is fixed by the nut 15. The height of the base 13 is finally adjusted by using a commercially available level meter.

縦補強部材11の両側部の基礎コンクリート7上には、立ち上がり基礎8の厚さとなる間隔をあけて型枠17,18が立設される。型枠17,18の立設方法は従来どおりの方法で行なうことができる。すなわち、型枠用セパレータ19を用いて行なうことができる。   On the foundation concrete 7 on both sides of the longitudinal reinforcing member 11, the molds 17 and 18 are erected with a gap corresponding to the thickness of the rising foundation 8. The standing method of the molds 17 and 18 can be performed by a conventional method. That is, it can be performed using the mold separator 19.

型枠17,18には断熱性に優れた材料が用いられる。具体的には硬質ウレタンフォームが用いられる。ただし、外周部基礎2を構築するための内外2枚の型枠17,18のうち、立ち上がり基礎8の内側となる型枠17は取外すことなく、そのまま土砂中に埋め込まれることから、必ずしも断熱性に優れた材料を用いる必要はなく、通常のコンクリート板からなる型枠を用いることもできる。   A material having excellent heat insulation is used for the molds 17 and 18. Specifically, rigid urethane foam is used. However, of the two inner and outer molds 17 and 18 for constructing the outer peripheral foundation 2, the mold 17 that is inside the rising foundation 8 is embedded in the earth and sand without being removed. It is not necessary to use an excellent material, and a formwork made of a normal concrete plate can also be used.

また、土台13の側面と立ち上がり基礎8の外側となる型枠18の側面には土台固定具20が取付けられ、土台13は型枠18に固定される。このことにより、コンクリート打設の際にもコンクリートによって付加される圧力に耐えて土台13の位置を保持することができる。なお、土台固定具20はコンクリートが固化した後、取外すことができるようにされている。   A base fixture 20 is attached to the side surface of the base 13 and the side surface of the mold 18 that is outside the rising foundation 8, and the base 13 is fixed to the mold 18. As a result, the position of the base 13 can be maintained by withstanding the pressure applied by the concrete even when placing the concrete. The base fixture 20 can be removed after the concrete has solidified.

立ち上がり基礎8の内側となる建物床構築部16は所定高さまで土砂が埋め戻され、その上部に厚さにして200mm 程度の砕石21が敷き詰められる。この砕石21は蓄熱層を構成するものであり、床下となる部分の全面にわたって均一厚さに敷き詰められる。なお、砕石21には再生砕石を用いることができることから、建材資源の有効活用を図ることが可能となる。   The building floor construction part 16 which is the inside of the rising foundation 8 is backfilled with earth and sand up to a predetermined height, and a crushed stone 21 of about 200 mm in thickness is spread on the upper part. The crushed stone 21 constitutes a heat storage layer, and is spread over the entire surface under the floor with a uniform thickness. In addition, since recycled crushed stone can be used for the crushed stone 21, it becomes possible to aim at effective utilization of building material resources.

そして、土間スラブ22には、必要とされる床強度に応じた土間鉄筋23が配設される。また、床暖房仕様の場合には、適宜床暖房用の配管24が配設される。なお、外周部基礎2を構築するための内外2枚の型枠17,18のうち、立ち上がり基礎8の内側となる型枠17の高さは、外側となる型枠18の高さより低くされており、立ち上がり基礎8のコンクリートと土間スラブ22のコンクリートとは接続隅部で連続するようにされている。このことにより、土台13の高さ調整が容易になるとともに、立ち上がり基礎8部と土間スラブ22部のコンクリートを一回で打設することができるようになる。   The intersoil slab 22 is provided with interstitial reinforcing bars 23 corresponding to the required floor strength. In the case of floor heating specifications, a floor heating pipe 24 is provided as appropriate. Of the two inner and outer molds 17 and 18 for constructing the outer periphery base 2, the height of the mold 17 that is inside the rising foundation 8 is lower than the height of the mold 18 that is outside. The concrete of the rising foundation 8 and the concrete of the soil slab 22 are made to be continuous at the connecting corner. As a result, the height of the base 13 can be easily adjusted, and the concrete of the rising base 8 parts and the soil slab 22 parts can be placed once.

コンクリートの打設は、市販されているレベル計を用いて土台13各部の高さが均一であることを確認した後、立ち上がり基礎8部となる型枠17,18間および土間スラブ22となる建物床構築部16を一回で打設する。なお、土間スラブ22のコンクリート打設に先立って蓄熱層となる砕石21の上面には、ポリエチレンフィルム25が敷設される。このことにより、砕石21と土間スラブ22のコンクリートとを物理的に隔離しつつ、熱伝達性能において連続性を持たせることができる。   For concrete placement, after confirming that the height of each part of the foundation 13 is uniform using a commercially available level meter, the building that will be between the formwork 17 and 18 and the soil slab 22 that will be 8 parts of the rising foundation The floor construction section 16 is set up once. Prior to the concrete placement of the soil slab 22, a polyethylene film 25 is laid on the upper surface of the crushed stone 21 serving as a heat storage layer. As a result, it is possible to provide continuity in heat transfer performance while physically separating the crushed stone 21 and the concrete of the soil slab 22.

また、コンクリート打設の際には、土台13,13間に均し板(図示せず)を架け渡し、土間スラブ22上面となるコンクリート面を水平に均す。コンクリート打設に先立って土台13上面の水平レベルが均一に調整されているので、対向する土台13,13間に均し板を掛け渡して均し作業を行なうだけで土間スラブ22上面を水平均一に仕上げることができる。   Further, when placing concrete, a leveling plate (not shown) is bridged between the bases 13 and 13, and the concrete surface which is the upper surface of the soil slab 22 is leveled horizontally. Prior to placing concrete, the horizontal level of the top surface of the foundation 13 is adjusted to be uniform, so the leveling surface of the soil slab 22 can be leveled evenly by carrying out a leveling work by placing a leveling plate between the opposing foundations 13 and 13. Can be finished.

次に、建物の間仕切りに相当する部位に配置される内部基礎3について説明する。図3は本発明の実施例を示す内部基礎3の縦断面図であり、具体的には図1におけるB−B矢視を示す。この内部基礎3についても先に説明した図2に示す外周部基礎2と基本構成は同じである。異なる点は立ち上がり基礎8の両側部に配設される型枠17,18の高さが等しいことと、土台13の断面形状が小さいことである。その他の点においては外周部基礎2と構成も工法も同一である。したがって、外周部基礎2と共通する部分についての説明は省略し、異なる部分についてのみ説明する。   Next, the internal foundation 3 arrange | positioned in the site | part corresponded to the partition of a building is demonstrated. FIG. 3 is a longitudinal sectional view of the internal foundation 3 showing an embodiment of the present invention, and specifically shows a view taken along arrow BB in FIG. The basic structure of the internal base 3 is the same as that of the outer peripheral base 2 shown in FIG. The difference is that the heights of the molds 17 and 18 arranged on both sides of the rising base 8 are equal, and the cross-sectional shape of the base 13 is small. In other respects, the configuration and construction method are the same as those of the outer peripheral base 2. Therefore, the description about the part which is common with the outer peripheral part base 2 is abbreviate | omitted, and only a different part is demonstrated.

内部基礎3の両側部は土砂と砕石21により埋め戻されるため、両側の型枠17,18の高さ寸法は等しくされている。このようにした場合、立ち上がり基礎8の上部に固定される土台13の断面寸法が大きいと、土間スラブ22の配筋作業および床暖房用の配管作業の障害となり、立ち上がり基礎8部へのコンクリートの打設が困難となることから、土台13の断面寸法は図2に示す外周部基礎8上に設けられる土台13に比較すると小さくされている。このことにより、土間スラブ22の鉄筋23および床暖房用の配管24を曲げることなく、土台13の下部に通すことができるようになる。その一方、土台13の断面寸法が小さくなると土台13強度に問題が生じることもあるため、土台13には鋼製角パイプを用いることが多い。   Since both sides of the internal foundation 3 are backfilled with earth and sand and crushed stone 21, the height dimensions of the molds 17 and 18 on both sides are made equal. In such a case, if the cross-sectional dimension of the base 13 fixed to the upper part of the rising foundation 8 is large, it becomes an obstacle to the reinforcement work of the soil slab 22 and the piping work for floor heating, and the concrete to the rising foundation 8 part Since placement becomes difficult, the cross-sectional dimension of the base 13 is made smaller than that of the base 13 provided on the outer peripheral base 8 shown in FIG. As a result, the rebar 23 of the soil slab 22 and the floor heating pipe 24 can be passed through the lower portion of the base 13 without bending. On the other hand, if the cross-sectional dimension of the base 13 is reduced, there may be a problem in the strength of the base 13.

なお、内部基礎3についても外周部基礎2と同様にして立ち上がり基礎8と土間スラブ22との接続隅部を斜めに形成して大きなコンクリートパスを設けることとして、立ち上がり基礎8と土間スラブ22との接続部の強度を高めるとともに、コンクリートの流れを良くしてコンクリート打設時の作業の容易化を図っている。   As for the inner foundation 3, as in the same manner as the outer peripheral foundation 2, the connecting corner between the rising foundation 8 and the soil slab 22 is formed obliquely to provide a large concrete path. The strength of the connecting part is increased and the flow of the concrete is improved to facilitate the work when placing the concrete.

図4は本発明の実施例に係るラチスユニット11の正面図である。このラチスユニット11は、製作コストの低減と施工コストの低減を目的として開発されたものである。ラチスユニット11は、1本のラチス鉄筋11cと左右2本の端板11dと3本の等辺山形鋼からなる部材11a,11e,11fで構成されている。各部材同士の結合は溶接接合とされている。左右の端板11dには隣接する部材と連結するためのボルト挿通用穴11gが複数箇所に設けられている。上辺11aおよび下辺11eの等辺山形鋼の間に配置された等辺山形鋼11fは、型枠セパレータ19の位置固定のために供される。このような構成からなるラチスユニット11は、たとえば、縦横の寸法が0.5m×4.0 m のものであっても重量として40kg程度しかないので、作業員が一人であっても容易に運搬して設置することができる。したがって、施工工事の作業能率が向上し、短時間で施工をすることができることから、施工時間の短縮と施工コストの低減を図ることができる。また、ラチスユニット11はユニット化されており、同一品を量産することができるので、ラチスユニット11自体の製作コストも低減することができる。   FIG. 4 is a front view of the lattice unit 11 according to the embodiment of the present invention. The lattice unit 11 is developed for the purpose of reducing the manufacturing cost and the construction cost. The lattice unit 11 is composed of members 11a, 11e, and 11f made of one lattice reinforcing bar 11c, two left and right end plates 11d, and three equilateral angle irons. The members are joined together by welding. The left and right end plates 11d are provided with a plurality of bolt insertion holes 11g for connecting to adjacent members. The equilateral angle steel 11f disposed between the equilateral angle irons of the upper side 11a and the lower side 11e is used for fixing the position of the formwork separator 19. The lattice unit 11 having such a configuration, for example, is only about 40 kg in weight even if the vertical and horizontal dimensions are 0.5 m × 4.0 m. Can be installed. Therefore, the work efficiency of the construction work is improved and the construction can be performed in a short time, so that the construction time can be shortened and the construction cost can be reduced. Further, the lattice unit 11 is unitized, and the same product can be mass-produced, so that the manufacturing cost of the lattice unit 11 itself can be reduced.

以上、本発明を実施例に基づいて説明したが、本発明は種々の変形実施をすることができる。たとえば、上記実施例においては、土台13の高さ調整手段として、ラチスユニット11の上部部材である等辺山形鋼11aの平板部に設けたねじ孔11bに土台載置具14の全ねじボルトを螺合し、ナット15を用いて固定しているが、前記等辺山形鋼11aの平板部に孔を設け、平板部の両面から土台載置具14の全ねじボルトを孔に挿通し、2つのナット15でボルトを締め上げて固定することもできる。また、ラチスユニット11の構成部材として等辺山形鋼を用いた実施例について説明したが、構成部材は等辺山形鋼に代えて不等辺山形鋼を用いることとしてもよい。   As mentioned above, although this invention was demonstrated based on the Example, this invention can carry out various deformation | transformation implementation. For example, in the above embodiment, as the height adjusting means of the base 13, the entire screw bolt of the base mounting tool 14 is screwed into the screw hole 11b provided in the flat plate portion of the equilateral angle steel 11a which is the upper member of the lattice unit 11. The nut 15 is fixed, but a hole is provided in the flat plate portion of the equilateral angle steel 11a, and the two screw nuts of the base mounting tool 14 are inserted into the hole from both sides of the flat plate portion. The bolt can be tightened with 15 and fixed. In addition, although the embodiment using the equilateral mountain shape steel as the constituent member of the lattice unit 11 has been described, the constituent member may use an unequal side angle steel instead of the equilateral angle steel.

本発明の実施例を示す建物基礎の平面図である。It is a top view of the building foundation which shows the Example of this invention. 本発明の実施例を示す外周部基礎の縦断面図であり、図1のA−A矢視を示す。It is a longitudinal cross-sectional view of the outer periphery base which shows the Example of this invention, and shows the AA arrow of FIG. 本発明の実施例を示す内部基礎の縦断面図であり、図1のB−B矢視を示す。It is a longitudinal cross-sectional view of the internal foundation which shows the Example of this invention, and shows the BB arrow of FIG. 本発明の実施例に係るラチスユニットの正面図である。It is a front view of the lattice unit which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 建物基礎
7 基礎コンクリート
8 立ち上がり基礎
11 縦補強部材(ラチスユニット)
13 土台
16 建物床構築部
17,18 型枠
21 蓄熱層(石材、砕石、再生石材)
22 土間スラブ
1 Building foundation 7 Foundation concrete
8 Start-up basics
11 Vertical reinforcement member (lattice unit)
13 foundation
16 Building floor construction department
17,18 formwork
21 Heat storage layer (stone, crushed stone, recycled stone)
22 Doma slab

Claims (6)

基礎コンクリートに立設された縦補強部材と、前記縦補強部材の上部において高さ調整可能に固定された土台と、前記縦補強部材の両側部の前記基礎コンクリート上に離間して立設された型枠とを有し、前記型枠間と建物床構築部に打設されたコンクリートからなることを特徴とする建物基礎。 A vertical reinforcing member erected on the foundation concrete, a base fixed to be adjustable in height at the upper part of the vertical reinforcing member, and erected on the basic concrete on both sides of the vertical reinforcing member. A building foundation comprising a formwork and made of concrete placed between the formwork and a building floor construction part. 前記縦補強部材がラチスユニットからなることを特徴とする請求項1記載の建物基礎。 The building foundation according to claim 1, wherein the vertical reinforcing member is a lattice unit. 前記土台が木材または型鋼からなることを特徴とする請求項1記載の建物基礎。 The building foundation according to claim 1, wherein the base is made of wood or steel. 前記型枠が断熱材料からなることを特徴とする請求項1記載の建物基礎。 The building foundation according to claim 1, wherein the formwork is made of a heat insulating material. 基礎コンクリート上に縦補強部材を立設し、前記縦補強部材の上部において土台を高さ調整可能にして取り付け、前記縦補強部材の両側部の前記基礎コンクリート上に型枠を離間して立設した後、前記型枠間と建物床構築部にコンクリートを打設したことを特徴とする建物基礎工法。 A vertical reinforcing member is erected on the foundation concrete, and the base is attached to the upper part of the vertical reinforcing member so that the height can be adjusted, and the mold frame is erected on the foundation concrete on both sides of the vertical reinforcing member. After that, a building foundation construction method characterized by placing concrete between the molds and the building floor construction part. 基礎コンクリート上に縦補強部材を立設し、前記縦補強部材の上部において土台を高さ調整可能にして取り付け、前記縦補強部材の両側部の前記基礎コンクリート上に型枠を離間して立設した後、前記型枠に囲まれた建物床構築部に石材を敷き詰め、その後、前記型枠間と前記建物床構築部にコンクリートを打設したことを特徴とする建物基礎工法。





A vertical reinforcing member is erected on the foundation concrete, and the base is attached to the upper part of the vertical reinforcing member so that the height can be adjusted, and the mold frame is erected on the foundation concrete on both sides of the vertical reinforcing member. After that, a building foundation construction method is characterized in that stones are spread over the building floor construction part surrounded by the formwork, and then concrete is placed between the formwork and the building floor construction part.





JP2005172082A 2005-06-13 2005-06-13 Building foundation and building foundation method Expired - Fee Related JP3750135B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172082A JP3750135B1 (en) 2005-06-13 2005-06-13 Building foundation and building foundation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172082A JP3750135B1 (en) 2005-06-13 2005-06-13 Building foundation and building foundation method

Publications (2)

Publication Number Publication Date
JP3750135B1 JP3750135B1 (en) 2006-03-01
JP2006348470A true JP2006348470A (en) 2006-12-28

Family

ID=36113760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172082A Expired - Fee Related JP3750135B1 (en) 2005-06-13 2005-06-13 Building foundation and building foundation method

Country Status (1)

Country Link
JP (1) JP3750135B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056510A (en) * 2014-09-05 2016-04-21 大和ハウス工業株式会社 Foundation structure of building, and construction method for foundation of building
JP2016069895A (en) * 2014-09-30 2016-05-09 ジェイ建築システム株式会社 Substructure using insulation formwork and method for forming pressure-resistant slab type earthen floor foundation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116536U (en) * 1989-03-06 1990-09-18
JPH03140568A (en) * 1989-10-27 1991-06-14 Taisei Corp Construction for reinforced combination mold for beam
JPH07310329A (en) * 1994-05-18 1995-11-28 Sumitomo Forestry Co Ltd Foundation structure of building and construction method thereof
JPH0892970A (en) * 1994-09-28 1996-04-09 Natl House Ind Co Ltd Foundation structure
JP2003119909A (en) * 2001-10-05 2003-04-23 Sumitomo Forestry Co Ltd Packing material and method for constructing underfloor ventilation structure
JP2004003333A (en) * 2002-04-20 2004-01-08 Takuya Tamao Heat insulation form, structure using it, and construction method for foundation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116536U (en) * 1989-03-06 1990-09-18
JPH03140568A (en) * 1989-10-27 1991-06-14 Taisei Corp Construction for reinforced combination mold for beam
JPH07310329A (en) * 1994-05-18 1995-11-28 Sumitomo Forestry Co Ltd Foundation structure of building and construction method thereof
JPH0892970A (en) * 1994-09-28 1996-04-09 Natl House Ind Co Ltd Foundation structure
JP2003119909A (en) * 2001-10-05 2003-04-23 Sumitomo Forestry Co Ltd Packing material and method for constructing underfloor ventilation structure
JP2004003333A (en) * 2002-04-20 2004-01-08 Takuya Tamao Heat insulation form, structure using it, and construction method for foundation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056510A (en) * 2014-09-05 2016-04-21 大和ハウス工業株式会社 Foundation structure of building, and construction method for foundation of building
JP2016069895A (en) * 2014-09-30 2016-05-09 ジェイ建築システム株式会社 Substructure using insulation formwork and method for forming pressure-resistant slab type earthen floor foundation

Also Published As

Publication number Publication date
JP3750135B1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US11225792B2 (en) Insulating construction panels, systems and methods
US20050262786A1 (en) Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
RU2335604C2 (en) Process of sandwich wall formation
JP3750135B1 (en) Building foundation and building foundation method
JP6137394B1 (en) Anchor holder for low-rise buildings and foundation work
US8800218B2 (en) Insulating construction panels, systems and methods
KR101826094B1 (en) Construction method for transfer mat and transfer mat using the same
KR101463217B1 (en) A connecting structrue of box type and construction method using the same
JP4726366B2 (en) Foundation method
JP5903688B2 (en) Insulation formwork support for construction of insulation foundation
JP2016104965A (en) Construction method for heat insulation foundation and heat insulation form support used for constructing the same
JP7174587B2 (en) Construction method of insulation foundation
JP2000120077A (en) Housing foundation, construction method thereof, and housing structure
KR101895803B1 (en) Housing construction method
JP5624533B2 (en) Installation method of underground heat exchange pipes in structures
JP2010189972A5 (en)
JP3331466B2 (en) Floor construction method and floor structure using underground heat storage
JPH07310329A (en) Foundation structure of building and construction method thereof
JP2002235369A (en) Underground tank embedding method and concrete pit for embedding underground tank
RU2572579C2 (en) Slab structure with inbuilt pipe for floor heating
JP2894482B2 (en) Building Floor Enforcement Law
JP2546773B2 (en) Residential cloth foundation construction method
JP3729890B2 (en) Single-sided precast concrete underground beam and its components
JP2001131988A (en) Foundation structure of building, and construction method thereof
JPH0227000Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees