JP2006348465A - Composite precast floor slab and floor slab repairing method - Google Patents

Composite precast floor slab and floor slab repairing method Download PDF

Info

Publication number
JP2006348465A
JP2006348465A JP2005171851A JP2005171851A JP2006348465A JP 2006348465 A JP2006348465 A JP 2006348465A JP 2005171851 A JP2005171851 A JP 2005171851A JP 2005171851 A JP2005171851 A JP 2005171851A JP 2006348465 A JP2006348465 A JP 2006348465A
Authority
JP
Japan
Prior art keywords
floor slab
slab
cement
composite precast
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005171851A
Other languages
Japanese (ja)
Other versions
JP4441690B2 (en
Inventor
Kosuke Yokozeki
康祐 横関
Ichiro Ogura
一朗 小倉
Kenzo Watanabe
賢三 渡邉
Ryoichi Ashizawa
良一 芦澤
Noboru Sakata
昇 坂田
Katsu Toida
克 戸井田
Minoru Morioka
実 盛岡
Koji Okuyama
康二 奥山
Shigeyuki Date
重之 伊達
Takashi Kurosawa
隆 黒沢
Original Assignee
Kajima Corp
鹿島建設株式会社
Denki Kagaku Kogyo Kk
電気化学工業株式会社
Ishikawajima Constr Materials Co Ltd
石川島建材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, 鹿島建設株式会社, Denki Kagaku Kogyo Kk, 電気化学工業株式会社, Ishikawajima Constr Materials Co Ltd, 石川島建材工業株式会社 filed Critical Kajima Corp
Priority to JP2005171851A priority Critical patent/JP4441690B2/en
Publication of JP2006348465A publication Critical patent/JP2006348465A/en
Application granted granted Critical
Publication of JP4441690B2 publication Critical patent/JP4441690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precast floor slab which exerts durability over a long period of time, and an efficient floor slab repairing method using it. <P>SOLUTION: The composite precast floor slab is composed of a slab in which a carbonated cement-based member, obtained by carbonating a cement hardened body containing γC<SB>2</SB>S, and an uncarbonated concrete member are joined together. In the composite precast floor slab, at least one broad surface of the slab is composed of a surface of the carbonated cement-based member. In the floor slab repairing method, a part including a deteriorated place on the top surface of the floor slab of a concrete structure is chipped, and the composite precast floor slab is installed in place of a chipped part in such a manner that the carbonated cement-based member is positioned on an upper surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、桟橋、道路橋床版、鉄道橋床版をはじめとするコンクリート床版の構成部材に適したプレキャスト床版、およびそれを用いた床版の補修工法に関する。   The present invention relates to a precast slab suitable for a structural member of a concrete slab such as a pier, a road bridge slab, and a railway bridge slab, and a repair method of the slab using the slab.

従来、コンクリート床版の補修工法としては、表面被覆工法、断面修復工法などがある。また、特に劣化が著しい場合には既設床版を撤去して新たな床版を構築する場合もある。   Conventional methods for repairing concrete slabs include a surface coating method and a cross-sectional repair method. Also, when the deterioration is particularly significant, the existing floor slab may be removed to construct a new floor slab.

表面被覆工法では、表面被覆層が紫外線によって劣化したり水蒸気の上昇によって剥離、膨れなどを起こしたりする問題がある。また、一般に表面が滑りやすくなるという欠点もある。
断面修復工法では、養生日数を必要とするため当該コンクリート構造物を供用しながらの補修ができない。また、無収縮モルタルなどの補修材料のコストが高くつくという問題がある。
既設床版を撤去し新たな床版を構築する方法では、床版の撤去に多大なコストを要し、また、いわゆる「現場打ち」でコンクリートを打設する場合には養生日数を必要とするので当該コンクリート構造物を供用しながらの補修は困難である。さらに、海上大気中にある桟橋や高所にある橋脚などでは、足場の設置に大きなコストがかかることや、作業空間の制約されることなど、施工性の面で問題が多い。
In the surface coating method, there is a problem that the surface coating layer is deteriorated by ultraviolet rays or peeled off or swollen due to an increase in water vapor. In addition, there is a drawback that the surface is generally slippery.
In the cross-section repair method, since the curing time is required, it is impossible to repair the concrete structure in service. There is also a problem that the cost of repair materials such as non-shrink mortar is high.
In the method of removing the existing floor slab and constructing a new floor slab, it takes a lot of cost to remove the floor slab, and also when curing concrete by so-called “on-site casting”, it requires a curing period. Therefore, repairing while using the concrete structure is difficult. Furthermore, there are many problems in terms of workability, such as piers in the marine atmosphere and piers at high places, where the installation of scaffolding is costly and the working space is restricted.

そこで、プレキャストコンクリートからなる床版(以下「プレキャスト床版」という)を用いて新たな床版を構築する工法が採られることもある(特許文献1、2)。この場合、上記の各問題点に比較的対処しやすい。   Therefore, there is a case where a construction method for constructing a new floor slab using a floor slab made of precast concrete (hereinafter referred to as “precast floor slab”) is sometimes employed (Patent Documents 1 and 2). In this case, the above problems are relatively easy to deal with.

特開平6−146220号公報JP-A-6-146220 特開平7−268808号公報JP 7-268808 A

しかしながら、床版の劣化した箇所に新たな床版を単に構築しても、以前と同じ原因で経時劣化が進み、同様の補修を繰り返す必要に迫られる。このことはプレキャスト床版を用いる工法においても同じである。度重なる補修は交通遮断等による社会的損失を招き、好ましくない。したがって、補修後の床版には、当該床版が曝される環境に長期間耐えうる耐久性を付与することが望まれる。特に、塩分に曝される桟橋や凍結防止剤が散布される道路では塩害に対する耐久性を付与することが重要である。融雪剤を用いる寒冷地では凍結融解に対する耐久性も必要になる。また、風雨に曝される多くの床版では酸性雨による劣化も考慮する必要がある。   However, even if a new floor slab is simply constructed at a deteriorated portion of the floor slab, deterioration with time proceeds due to the same cause as before, and it is necessary to repeat the same repair. This is the same also in the construction method using a precast floor slab. Repeated repairs are undesirable because they cause social losses due to traffic interruptions. Therefore, it is desired to give durability to the floor slab after repair for a long period of time in an environment where the floor slab is exposed. In particular, it is important to provide durability against salt damage on a pier exposed to salt or on a road where anti-freezing agents are sprayed. In cold regions where snow melting agents are used, durability against freezing and thawing is also required. Many floor slabs exposed to wind and rain also need to be considered for deterioration due to acid rain.

本発明は、特に塩分や酸に対して優れた耐久性を発揮しうるプレキャスト床版を提供するとともに、それを用いた効率的な補修工法を提供しようというものである。   The present invention is intended to provide a precast floor slab that can exhibit particularly excellent durability against salt and acid, and to provide an efficient repair method using the same.

発明者らは詳細な研究の結果、前記目的は、強制的に炭酸化処理した高耐久部材を一部にもつ複合プレキャスト床版によって効果的に達成できることを見出した。   As a result of detailed studies, the inventors have found that the above object can be effectively achieved by a composite precast slab partially including a high durability member that is forcibly carbonized.

すなわち本発明では、γC2Sを含有するセメント硬化体を炭酸化処理してなる炭酸化セメント系部材と、炭酸化処理されていないコンクリート部材とを接合したスラブからなり、当該スラブの少なくとも一方の広面が前記炭酸化セメント系部材の表面で構成される複合プレキャスト床版が提供される。ここで、セメント系部材にはモルタルおよびコンクリートが含まれる。広面とは、スラブの厚さ方向に垂直な表面である。 That is, in the present invention, it is composed of a slab obtained by joining a carbonated cementitious member obtained by carbonizing a hardened cement body containing γC 2 S and a concrete member that has not been carbonized, and at least one of the slabs. There is provided a composite precast slab whose wide surface is constituted by the surface of the carbonated cementitious member. Here, the cement-based member includes mortar and concrete. The wide surface is a surface perpendicular to the thickness direction of the slab.

特に、セメント100質量部に対しγC2Sを8〜70質量部含む混練物のセメント硬化体を炭酸化処理してなる炭酸化セメント系部材を上層にもち、炭酸化処理されていない鉄筋コンクリートまたは繊維補強コンクリートの部材を下層にもつ2層構造のスラブからなり、前記上層の部材と下層の部材は凹凸面で接するとともにせん断キーを介して継手で接合されている複合プレキャスト床版が好適な対象となる。 In particular, a reinforced concrete or fiber that has a carbonated cementitious member obtained by carbonizing a cemented hardened material of kneaded material containing 8 to 70 parts by mass of γC 2 S with respect to 100 parts by mass of cement and is not carbonized. A composite precast slab comprising a slab having a two-layer structure having a reinforced concrete member as a lower layer, wherein the upper layer member and the lower layer member are in contact with each other at an uneven surface and joined by a joint via a shear key, Become.

また、床版の補修工法として、既設コンクリート構造物床版の上面劣化箇所を含む部分をはつり、前記はつり取った部分に替えて上記の複合プレキャスト床版を設置する工法が提供される。ただし、複合プレキャスト床版を設置するに際して、その炭酸化セメント系部材の表面が上面側になるように設置することが肝要である。   Further, as a method for repairing the floor slab, there is provided a method for suspending a portion including an upper surface deterioration portion of an existing concrete structure floor slab, and installing the composite precast slab in place of the removed portion. However, when installing the composite precast slab, it is important to install so that the surface of the carbonated cementitious member is on the upper surface side.

本発明に係るプレキャスト床版は、γC2Sと二酸化炭素との反応を利用して緻密化させた炭酸化セメント系部材を有するので、その炭酸化セメント系部材の表面においてはCa分の溶出が顕著に抑制され、塩分や酸、さらにはスケーリング、凍結融解に対して優れた耐久性を発揮する。他方、一般的な鉄筋コンクリートや繊維補強コンクリートからなる部材を有するので、プレキャスト床版に必要な強度特性が確保される。しかも、その鉄筋コンクリート等からなる部材は炭酸化処理されていないので、炭酸化処理によるコンクリートの中性化によって内部の鉄筋が腐食される心配がない。したがって本発明の複合プレキャスト床版は、炭酸化セメント系部材を上面に配置することで長期にわたって塩分や酸などに対する優れた耐久性とプレキャスト床版に必要な強度特性とが維持され、床版材料として極めて好適である。 Since the precast slab according to the present invention has a carbonated cement-based member that is densified using the reaction between γC 2 S and carbon dioxide, the elution of Ca on the surface of the carbonated cement-based member does not occur. Remarkably suppressed and exhibits excellent durability against salt and acid, as well as scaling and freeze-thawing. On the other hand, since it has a member made of general reinforced concrete or fiber reinforced concrete, strength characteristics required for the precast slab are ensured. In addition, since the member made of the reinforced concrete or the like is not carbonized, there is no fear that the internal reinforcing bars are corroded by the neutralization of the concrete by the carbonation. Therefore, the composite precast slab of the present invention maintains the excellent durability against salt and acid and the strength characteristics necessary for the precast slab over a long period of time by arranging the carbonated cement-based member on the upper surface, and the slab material Is very suitable.

このプレキャスト床版を新たな床版に用いる本発明の補修工法によれば、現場打ちの工法に比べ、作業性が向上し、足場を作るためのコストも軽減される。
また、このプレキャスト床版を新たに敷設した後は、早期にその床版上での作業が可能になるため、当該コンクリート構造物を供用しながらの補修が容易であり、交通遮断等のデメリットを最小限にとどめることができる。
According to the repairing method of the present invention in which this precast slab is used as a new floor slab, workability is improved and the cost for making a scaffold is reduced as compared with the on-site method.
Also, since this precast floor slab is newly laid, it becomes possible to work on the floor slab at an early stage, so it is easy to repair while using the concrete structure, and there are disadvantages such as traffic interruption. Can be kept to a minimum.

さらに、現場打ちの工法においては床版のコンクリートに炭酸化処理を施すことは多大なコストを要し、現実的には採用し難い。したがって、予め必要部位を炭酸化したプレキャスト床版を用いる本発明の補修工法は、現場打ちの工法では得られない優れた耐久性を実現するものである。   Furthermore, in the on-site construction method, it is very difficult to practically apply carbonation treatment to the concrete of the floor slab. Therefore, the repair method of the present invention using a precast floor slab in which a necessary portion has been carbonated in advance realizes excellent durability that cannot be obtained by the on-site method.

通常のセメントには、エーライト:3CaO・SiO2(組成式C3S)、ビーライト:2CaO・SiO2(組成式C2S)、アルミネート:3CaO・Al23(組成式C3A)、フェライト:4CaO・Al23・Fe23(組成式C4AF)等のセメント鉱物が含まれている。このうちビーライトは、ポルトランドセメントの主要鉱物成分の1つであり、水和熱や乾燥収縮を減少させ、また化学抵抗性を増大させる機能を有すると考えられている。 A typical cement, alite: 3CaO · SiO 2 (composition formula C 3 S), belite: 2CaO · SiO 2 (composition formula C 2 S), aluminate: 3CaO · Al 2 O 3 (composition formula C 3 A), ferrite: cement mineral such as 4CaO.Al 2 O 3 .Fe 2 O 3 (composition formula C 4 AF) is included. Among these, belite is one of the main mineral components of Portland cement, and is considered to have functions of reducing heat of hydration and drying shrinkage and increasing chemical resistance.

ビーライトはCaOとSiO2を主成分とするダイカルシウムシリケートの1種であり、α型、α'型、β型およびγ型が存在し、それぞれ結晶構造や密度が異なる。このうちα型、α'型、β型は水と反応して水硬性を示す。ところがγ型は、水硬性を示さず、且つ二酸化炭素と反応するという特性を有する。本出願ではこのγ型のビーライトを「γC2S」と表記している。 Belite is a kind of dicalcium silicate containing CaO and SiO 2 as main components, and there are α-type, α′-type, β-type, and γ-type, each having different crystal structure and density. Of these, α-type, α′-type and β-type react with water and exhibit hydraulic properties. However, the γ type does not exhibit hydraulic properties and has the property of reacting with carbon dioxide. In the present application, this γ-type belite is expressed as “γC 2 S”.

ポルトランドセメントをはじめとする通常のセメントには、γC2Sは基本的に含まれていない。なお、γC2Sには2CaO・SiO2の他、Al23、Fe23、MgO、Na2O、K2O、TiO2、MnO、ZnO、CuO等の酸化物が不純物として固溶している場合があるが、このような鉱物を固溶したγC2Sも本発明でいうγC2Sに含まれる。 Ordinary cements such as Portland cement basically do not contain γC 2 S. In addition to 2CaO · SiO 2 , γC 2 S includes oxides such as Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, K 2 O, TiO 2 , MnO, ZnO, and CuO as impurities. In some cases, γC 2 S in which such a mineral is dissolved is also included in γC 2 S in the present invention.

発明者らは種々検討の結果、γC2Sの含有量を増大させたセメント混練物を作ってこれを硬化させたとき、その硬化体は、炭酸ガス等による強制炭酸化処理によって表層部を顕著に緻密化できることを知見した。そして、その緻密化した表層部はCaの溶出抵抗が非常に高く、塩化物や酸の遮蔽効果にも優れることがわかってきた。 As a result of various studies, the inventors have made a cement kneaded material with an increased content of γC 2 S and cured it, and the cured product has a remarkable surface layer portion by forced carbonation treatment with carbon dioxide gas or the like. It was found that it can be densified. And it has been found that the densified surface layer portion has a very high Ca elution resistance and is excellent in the shielding effect of chloride and acid.

γC2Sを富化したセメント硬化体が炭酸ガス等で緻密化するメカニズムについては未解明な部分も多いが、以下のように考えられる。すなわち、通常のセメント硬化体が炭酸化(中性化)する場合には、セメントの水和反応によって生じたCa(OH)2が炭酸ガス等と反応してCaCO3になるのであるが、セメント硬化体中にγC2Sが多量に存在すると、γC2Sが水和反応せずに直接炭酸ガス等と反応して多量のCaCO3とSiO2を生成する。さらにセメントの水和反応で生じたCa(OH)2も炭酸ガス等と反応してCaCO3になる。このため、通常のセメント硬化体に比べ早期に多量の反応生成物が生じ、これがセメント硬化体内の空隙を埋めて緻密化すると推察される。 There are many unclear parts about the mechanism by which the hardened cement enriched with γC 2 S is densified with carbon dioxide or the like, but it is considered as follows. That is, when a normal hardened cement body is carbonated (neutralized), Ca (OH) 2 generated by the cement hydration reaction reacts with carbon dioxide gas to become CaCO 3. When rC 2 S in the cured body large amount exists, rC 2 S reacts directly with carbon dioxide gas without hydration reaction generates a large amount of CaCO 3 and SiO 2. Furthermore, Ca (OH) 2 generated by the cement hydration reaction also reacts with carbon dioxide or the like to become CaCO 3 . For this reason, it is presumed that a large amount of reaction products are generated earlier than normal hardened cement bodies, which fills voids in the hardened cement bodies and densifies them.

このような緻密化の効果を十分に得るには、セメント100質量部に対して8〜70質量部好ましくは20〜50質量部のγC2Sを含むセメント混練物を硬化させ、その後、強制炭酸化養生を行うことが望ましい。これにより炭酸化領域の空隙率が減少し、Caの溶出が抑えられるとともに塩害、スケーリング、凍結融解に対する抵抗力が顕著に向上する。このことは、本出願人らによる特願2004−375549に開示されている。 In order to sufficiently obtain such an effect of densification, a cement kneaded material containing 8 to 70 parts by mass, preferably 20 to 50 parts by mass of γC 2 S with respect to 100 parts by mass of cement is cured, and then forced carbonation is performed. It is desirable to perform chemical curing. This reduces the porosity of the carbonation region, suppresses Ca elution, and significantly improves resistance to salt damage, scaling, and freeze-thaw. This is disclosed in Japanese Patent Application No. 2004-375549 by the present applicants.

〔複合プレキャスト床版〕
図1に本発明の複合プレキャスト床版の断面構造を模式的に例示する。図1において、複合プレキャスト床版1は、予め強制炭酸化処理が施された炭酸化セメント系部材2と、強制炭酸化処理が施されていない鉄筋コンクリート部材4から構成されている。炭酸化セメント系部材2と鉄筋コンクリート部材4は界面5を挟んで接しており、接合部にはせん断キー6を設けてある。界面5は両部材の付着性を高め、水等の侵入を避けるために凹凸形状になっている。一般的な桟橋、道路橋、鉄道橋の床版に使用する場合、この複合プレキャスト床版1の形状は厚さが100〜250mm程度のスラブとすることができ、例えば長さ4000×幅2000×厚さ200(mm)のスラブとする。床版として敷設した際に床版背面への水等の侵入を防ぐため、このスラブにはアンカー設置等のための貫通した孔は設けていない。
[Composite precast slab]
FIG. 1 schematically illustrates a cross-sectional structure of the composite precast slab of the present invention. In FIG. 1, a composite precast floor slab 1 includes a carbonated cement-based member 2 that has been subjected to a forced carbonation treatment in advance, and a reinforced concrete member 4 that has not been subjected to a forced carbonation treatment. The carbonated cement-based member 2 and the reinforced concrete member 4 are in contact with each other with an interface 5 interposed therebetween, and a shear key 6 is provided at the joint. The interface 5 has a concavo-convex shape in order to improve the adhesion between both members and avoid the intrusion of water or the like. When used for floor slabs of general piers, road bridges, and railway bridges, the shape of the composite precast slab 1 can be a slab having a thickness of about 100 to 250 mm. For example, length 4000 × width 2000 × The slab has a thickness of 200 (mm). In order to prevent water and the like from entering the back of the floor slab when laid as a floor slab, this slab is not provided with a through hole for anchor installation or the like.

炭酸化セメント系部材2は、複合プレキャスト床版1の上面側を構成しており、塩分や酸に対する床版の耐久性向上を担っている。炭酸化セメント系部材2の厚さは、せん断キー6を設ける箇所の近傍でせん断キーの形状に合わせた厚さを確保する必要があるが、それ以外の場所では、平均厚さ10mm以上を確保することが望ましく、一般的には平均厚さ20〜50mm程度とすればよい。例えば板厚200mmのスラブにおいて、せん断キー6の周囲で厚さ83mmとし、それ以外の部分で平均厚さ30mmとする。   The carbonated cement-based member 2 constitutes the upper surface side of the composite precast floor slab 1 and is responsible for improving the durability of the floor slab against salt and acid. As for the thickness of the carbonated cement-based member 2, it is necessary to secure a thickness in accordance with the shape of the shear key in the vicinity of the location where the shear key 6 is provided, but in other locations, an average thickness of 10 mm or more is ensured. In general, the average thickness may be about 20 to 50 mm. For example, in a slab having a plate thickness of 200 mm, the thickness is 83 mm around the shear key 6, and the average thickness is 30 mm in other portions.

この炭酸化セメント系部材2は、予め以下のような方法で製造する。まず、前述のようにセメント100質量部に対しγC2Sを8〜70質量%好ましくは20〜50質量%の範囲で含むセメント混練物を作る。γC2S以外の混和材としてフライアッシュやシリカフューム等が使用できる。具体的には例えば、低熱ポルトランドセメント、γC2S、フライアッシュおよびシリカフュームをそれぞれ45:35:20:5の質量割合で混合し、水粉体比30%、s/aが46%となるような混練物を得る。次いで、この混練物を用いて所定形状のコンクリート硬化体を作る。そして、1日水中養生を行った後、硬化体を例えば10体積%CO2、30℃、60%R.H.の雰囲気に7日間曝す炭酸化養生を行うことで強制炭酸化処理が施される。 The carbonated cement-based member 2 is manufactured in advance by the following method. First, as described above, a cement kneaded material containing γC 2 S in an amount of 8 to 70% by mass, preferably 20 to 50% by mass with respect to 100 parts by mass of cement is prepared. As an admixture other than γC 2 S, fly ash, silica fume and the like can be used. Specifically, for example, low heat Portland cement, γC 2 S, fly ash and silica fume are mixed at a mass ratio of 45: 35: 20: 5, respectively, so that the water powder ratio is 30% and the s / a is 46%. A kneaded product is obtained. Next, a concrete hardened body having a predetermined shape is made using this kneaded product. And after carrying out water curing for one day, forced carbonation treatment is performed by performing carbonation curing by exposing the cured body to an atmosphere of, for example, 10% by volume CO 2 , 30 ° C., 60% RH for 7 days. The

炭酸化セメント系部材2を製造した後、一般的な鉄筋コンクリートを炭酸化セメント系部材2の界面5となるほうの面上に打設し、鉄筋コンクリート部材4を構築する。鉄筋コンクリートに代えて繊維補強コンクリートを打設してもよい。炭酸化セメント系部材2と鉄筋コンクリート部材4の接合には、非腐食性を考慮して高強度なセラミックス継手を用いる。ただし用途によっては鋼製継手を使用しても構わない。接合部にはせん断キー6を設けることが望ましい。また、複合プレキャスト床版1には現場での設置作業を考慮して吊り具を設けておく。
このようにして、塩分等に対する優れた耐久性と床版に必要な強度特性とを兼ね備えた2層構造の複合プレキャスト床版が得られる。
After the carbonated cement-based member 2 is manufactured, a general reinforced concrete is placed on the surface to be the interface 5 of the carbonated cement-based member 2 to construct the reinforced concrete member 4. Fiber reinforced concrete may be placed instead of reinforced concrete. For joining the carbonated cement-based member 2 and the reinforced concrete member 4, a high-strength ceramic joint is used in consideration of non-corrosiveness. However, a steel joint may be used depending on the application. It is desirable to provide a shear key 6 at the joint. Moreover, the composite precast slab 1 is provided with a lifting device in consideration of the installation work at the site.
In this way, a composite precast floor slab having a two-layer structure having excellent durability against salt and the like and strength characteristics required for the floor slab is obtained.

〔床版補修工法〕
上記の複合プレキャスト床版を用いた床版補修工法を例示する。
図2に本発明の床版補修工法を適用している道路橋を模式的に示す。この道路橋は、橋脚11、梁12、既設床版13を主体としたコンクリート構造物であり、図2に示される既設床版13は既に上面の劣化箇所を含む部分をはつり取ってある。そのはつり作業は、ツインヘッダー、ウオータージェット等により行うことができ、手ばつりを行ってもよい。はつり厚さは、既設床版の厚さ、上面の劣化状況、構造耐力などに応じて決定されるが、一般的には100〜200mm程度が最適となる。
[Slab repair method]
A floor slab repair method using the above composite precast slab is illustrated.
FIG. 2 schematically shows a road bridge to which the floor slab repair method of the present invention is applied. This road bridge is a concrete structure mainly composed of piers 11, beams 12 and an existing floor slab 13, and the existing floor slab 13 shown in FIG. The suspending operation can be performed by a twin header, a water jet or the like, and may be performed by hand. The thickness of the hanger is determined according to the thickness of the existing floor slab, the state of deterioration of the upper surface, the structural strength, etc., but generally about 100 to 200 mm is optimal.

上面をはつり取った既設床版13上に不陸調整治具14を設置する。不陸調整治具14の設置位置は、橋脚11の上部位置と、必要に応じて梁12の上部位置とする。前記複合プレキャスト床版1をフォークリフトまたはクレーンなどを用いて不陸調整治具14上に並べて設置する。その際、炭酸化セメント系部材2が上面になるようにする。隣り合う複合プレキャスト床版1同士は鋼材等による連結は行わず、不陸調整治具14により水準を合わせて独立させたまま設置することが可能である。複合プレキャスト床版1同士を連結する場合は耐腐食性のセラミックス継手等を用いる。   The unevenness adjusting jig 14 is installed on the existing floor slab 13 with the upper surface removed. The installation position of the unevenness adjusting jig 14 is set to an upper position of the pier 11 and, if necessary, an upper position of the beam 12. The composite precast slab 1 is installed side by side on the unevenness adjusting jig 14 using a forklift or a crane. At that time, the carbonated cement-based member 2 is placed on the upper surface. Adjacent composite precast slabs 1 are not connected with each other by a steel material or the like, and can be installed while being kept independent by adjusting the level by the unevenness adjusting jig 14. When connecting the composite precast slabs 1 to each other, a corrosion-resistant ceramic joint or the like is used.

設置した複合プレキャスト床版1と既設床版13との隙間は、充填材で埋める。具体的には例えば複合プレキャスト床版1と既設床版13との間隔を30mmとし、この隙間を蒸気噴霧により湿潤させたのち、複合プレキャスト床版1同士の目地から水頭圧のみによって充填材を自己充填させる。充填材としては、収縮して空隙が生じることを防止するために、無機系無収縮モルタル、または高流動モルタルと膨張材を併用したものを使用する。複合プレキャスト床版1同士の目地は、目地材にて充填する。
充填材の硬化後には、敷設した複合プレキャスト床版1の上で次のプレキャスト床版の設置作業を実施することが可能である。
このようにして効率的に床版の補修が実施でき、その後長期にわたって優れた耐久性が発揮される。
The gap between the installed composite precast floor slab 1 and the existing floor slab 13 is filled with a filler. Specifically, for example, the interval between the composite precast floor slab 1 and the existing floor slab 13 is set to 30 mm, and the gap is wetted by steam spraying, and then the filler is self-applied from the joint between the composite precast floor slabs 1 only by water head pressure. Fill. As the filler, an inorganic non-shrink mortar or a combination of a high-fluidity mortar and an expansion material is used to prevent shrinkage and voids. The joints between the composite precast slabs 1 are filled with joint materials.
After the filler is cured, it is possible to carry out the next precast floor slab installation work on the laid composite precast floor slab 1.
In this way, the floor slab can be repaired efficiently, and excellent durability is exhibited over a long period.

本発明の複合プレキャスト床版の構造を模式的に示した断面図。Sectional drawing which showed the structure of the composite precast slab of this invention typically. 本発明の複合プレキャスト床版を用いた床版補修工法を適用している道路橋を模式的に示した側面図。The side view which showed typically the road bridge which has applied the floor slab repair method using the composite precast floor slab of this invention.

符号の説明Explanation of symbols

1 複合プレキャスト床版
2 炭酸化セメント系部材
3 鉄筋
4 鉄筋コンクリート部材
5 界面
6 せん断キー
11 橋脚
12 梁
13 既設床版
14 不陸調整治具
DESCRIPTION OF SYMBOLS 1 Composite precast floor slab 2 Carbonation cement-type member 3 Reinforcement 4 Reinforced concrete member 5 Interface 6 Shear key 11 Bridge pier 12 Beam 13 Existing floor slab 14 Unevenness adjustment jig

Claims (3)

γC2Sを含有するセメント硬化体を炭酸化処理してなる炭酸化セメント系部材と、炭酸化処理されていないコンクリート部材とを接合したスラブからなり、当該スラブの少なくとも一方の広面が前記炭酸化セメント系部材の表面で構成される複合プレキャスト床版。 It comprises a slab obtained by joining a carbonated cementitious member obtained by carbonizing a hardened cement containing γC 2 S and a non-carbonized concrete member, and at least one wide surface of the slab has the carbonation A composite precast slab composed of the surface of a cement-based member. セメント100質量部に対しγC2Sを8〜70質量部含む混練物のセメント硬化体を炭酸化処理してなる炭酸化セメント系部材を上層にもち、炭酸化処理されていない鉄筋コンクリートまたは繊維補強コンクリートの部材を下層にもつ2層構造のスラブからなり、前記上層と下層は凹凸面で接するとともにせん断キーを介して継手で接合されている複合プレキャスト床版。 Reinforced concrete or fiber reinforced concrete having a carbonated cement-based member obtained by carbonizing a cemented hardened body of kneaded material containing 8 to 70 parts by mass of γC 2 S with respect to 100 parts by mass of cement and having not been carbonized. A composite precast slab comprising a slab having a two-layer structure having the above member as a lower layer, wherein the upper layer and the lower layer are in contact with an uneven surface and are joined by a joint through a shear key. コンクリート構造物床版の上面劣化箇所を含む部分をはつり、前記はつり取った部分に替えて請求項1または2に記載の複合プレキャスト床版をその炭酸化セメント系部材が上表面になるように設置する床版の補修工法。   The part including the upper surface deterioration portion of the concrete structure floor slab is suspended, and the composite precast slab according to claim 1 or 2 is installed so that the carbonated cementitious member is the upper surface in place of the removed part. Repair method for floor slabs.
JP2005171851A 2005-06-13 2005-06-13 Floor slab repair method using composite precast slab Active JP4441690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171851A JP4441690B2 (en) 2005-06-13 2005-06-13 Floor slab repair method using composite precast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171851A JP4441690B2 (en) 2005-06-13 2005-06-13 Floor slab repair method using composite precast slab

Publications (2)

Publication Number Publication Date
JP2006348465A true JP2006348465A (en) 2006-12-28
JP4441690B2 JP4441690B2 (en) 2010-03-31

Family

ID=37644595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171851A Active JP4441690B2 (en) 2005-06-13 2005-06-13 Floor slab repair method using composite precast slab

Country Status (1)

Country Link
JP (1) JP4441690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063888A (en) * 2005-09-01 2007-03-15 Kajima Corp Hollow floor slab member and floor slab repair method
JP2007120072A (en) * 2005-10-26 2007-05-17 Kajima Corp Compound concrete structure
JP2011256566A (en) * 2010-06-08 2011-12-22 Kajima Corp Concrete-filled steel pipe and manufacturing method of the same
WO2012081486A1 (en) 2010-12-17 2012-06-21 中国電力株式会社 Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide
JP2019173473A (en) * 2018-03-29 2019-10-10 鹿島建設株式会社 Manufacturing method for precast member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063888A (en) * 2005-09-01 2007-03-15 Kajima Corp Hollow floor slab member and floor slab repair method
JP2007120072A (en) * 2005-10-26 2007-05-17 Kajima Corp Compound concrete structure
JP4636995B2 (en) * 2005-10-26 2011-02-23 鹿島建設株式会社 Composite concrete structure
JP2011256566A (en) * 2010-06-08 2011-12-22 Kajima Corp Concrete-filled steel pipe and manufacturing method of the same
WO2012081486A1 (en) 2010-12-17 2012-06-21 中国電力株式会社 Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide
KR20130137190A (en) 2010-12-17 2013-12-16 쥬코쿠 덴료쿠 가부시키 가이샤 Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide
JP2019173473A (en) * 2018-03-29 2019-10-10 鹿島建設株式会社 Manufacturing method for precast member

Also Published As

Publication number Publication date
JP4441690B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
KR101300514B1 (en) High-performance rapid hardening cement concrete composite and repairing method of concrete structure using the composite
US9458637B2 (en) Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same
JP4441690B2 (en) Floor slab repair method using composite precast slab
KR100942267B1 (en) Prestressed concrete panel for duct slab in tunnel, manufacturing method therefor and construction method of the duct slab
CN107555919B (en) Bridge grouting material and method for rapidly repairing bridge expansion joint by adopting same
KR101851207B1 (en) Maintenance reinforcing composition for improving freeze-thawing, salt tolerance and adhesion of concrete structure and repair reinforcing method using the same
KR100950717B1 (en) Maintenance Method of Concrete Layer of Expansion Joint and Bridge Shoe
CN110863597A (en) Prefabricated floor slab crack prevention and repair method for assembly type steel frame laminated slab factory building
JP4636995B2 (en) Composite concrete structure
JP4545667B2 (en) Floor slab repair method using buried formwork
JP2008024576A (en) Tunnel waterproofing material containing nano-sized inorganic reaction promotor
JP2009007925A (en) Floor slab for steel bridge
KR102158508B1 (en) Polymer Cement Mortar Composition for repair and reinforcement of concrete structure section using graphene and repair and reinforcement method of concrete structure using same
JP2007063888A (en) Hollow floor slab member and floor slab repair method
KR100685222B1 (en) Double concrete structures
KR101193022B1 (en) A High Functional Rehabilitation Mortar
JP3721005B2 (en) Bridge with high-strength lightweight concrete slab
KR20010100040A (en) Renewal and reform method for detrioration area at exposured reinforced steel concrete
JP2005336723A (en) Continuous composite girder for bridge
JP6313542B2 (en) Repair / reinforcement structure and repair / reinforcement method for existing steel girder longitudinal-cross girder joints
JP6992544B2 (en) Ultra-high strength fiber reinforced concrete composite precast PC floor slab
JP6752120B2 (en) Connection structure and connection method
JPH07119119A (en) Repair steel girder bridge structure and repair and reinforcing method
CN112252586B (en) Prefabricated simply-supported beam with replaceable protective layer and manufacturing method thereof
KR102279023B1 (en) Graphene mortar for concrete maintenance, paint of preventing neutralization and maintenance method of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091217

R150 Certificate of patent or registration of utility model

Ref document number: 4441690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250