JP2006348026A - Method for producing barium titanyl oxalate and method for producing barium titanate - Google Patents
Method for producing barium titanyl oxalate and method for producing barium titanate Download PDFInfo
- Publication number
- JP2006348026A JP2006348026A JP2006138313A JP2006138313A JP2006348026A JP 2006348026 A JP2006348026 A JP 2006348026A JP 2006138313 A JP2006138313 A JP 2006138313A JP 2006138313 A JP2006138313 A JP 2006138313A JP 2006348026 A JP2006348026 A JP 2006348026A
- Authority
- JP
- Japan
- Prior art keywords
- titanyl oxalate
- barium
- liquid
- barium titanyl
- molar ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052788 barium Inorganic materials 0.000 title claims abstract description 101
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 title claims abstract description 86
- QKKWJYSVXDGOOJ-UHFFFAOYSA-N oxalic acid;oxotitanium Chemical compound [Ti]=O.OC(=O)C(O)=O QKKWJYSVXDGOOJ-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 title claims description 42
- 229910002113 barium titanate Inorganic materials 0.000 title claims description 42
- 239000010936 titanium Substances 0.000 claims abstract description 84
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 29
- 238000001354 calcination Methods 0.000 claims abstract description 25
- 239000000243 solution Substances 0.000 claims abstract description 24
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 21
- 239000007864 aqueous solution Substances 0.000 claims abstract description 20
- 230000032683 aging Effects 0.000 claims abstract description 12
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 claims abstract description 11
- 229910001626 barium chloride Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 27
- 229910052719 titanium Inorganic materials 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 8
- 239000012295 chemical reaction liquid Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000001384 succinic acid Substances 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- PWHCIQQGOQTFAE-UHFFFAOYSA-L barium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ba+2] PWHCIQQGOQTFAE-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- -1 oxalate ions Chemical class 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000002468 ceramisation Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- XFVGXQSSXWIWIO-UHFFFAOYSA-N chloro hypochlorite;titanium Chemical compound [Ti].ClOCl XFVGXQSSXWIWIO-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、特に、圧電体、オプトエレクトロニクス材、誘電体、半導体、センサー等の機能性セラミックの原料として有用な蓚酸バリウムチタニルの製造方法及びこれを用いたチタン酸バリウムの製造方法に関するものである。 The present invention particularly relates to a method for producing barium titanyl oxalate useful as a raw material for functional ceramics such as piezoelectric materials, optoelectronic materials, dielectric materials, semiconductors, and sensors, and a method for producing barium titanate using the same. .
従来、チタン酸バリウムは固相法や水熱合成法、蓚酸塩法、アルコキシド法等の湿式方法で製造されている。このうち蓚酸塩法は、TiCl4とBaCl2との水溶液を、約80℃のH2C2O4水溶液に攪拌下に滴下して、BaとTiのモル比が1の蓚酸バリウムチタニルを得、該蓚酸バリウムチタニルを仮焼する方法が一般的である。この蓚酸塩法の特徴は、得られる蓚酸バリウムチタニルの組成が均一であり、また安定したモル比で目的物を収率良く得られることである。多くの場合そのモル比(Ba/Ti)は略1となっている。しかしながら、その反面、モル比(Ba/Ti)が1未満の蓚酸バリウムチタニルを収率良く、且つ安定した品質で得る事は困難である。またBaとTiのモル比が略1の場合は、仮焼温度に対するチタン酸バリウムの比表面積変化が大きく、微細なものを安定して得ることが難しいと言う問題もある。 Conventionally, barium titanate is produced by a wet method such as a solid phase method, a hydrothermal synthesis method, an oxalate method, or an alkoxide method. Among these, in the oxalate method, an aqueous solution of TiCl 4 and BaCl 2 is dropped into an aqueous solution of H 2 C 2 O 4 at about 80 ° C. with stirring to obtain barium titanyl oxalate having a Ba / Ti molar ratio of 1. A method of calcining the barium titanyl oxalate is general. The characteristics of this oxalate method are that the composition of the obtained barium titanyl oxalate is uniform and that the target product can be obtained in a stable molar ratio with a good yield. In many cases, the molar ratio (Ba / Ti) is about 1. However, on the other hand, it is difficult to obtain barium titanyl oxalate having a molar ratio (Ba / Ti) of less than 1 with good yield and stable quality. In addition, when the molar ratio of Ba and Ti is approximately 1, there is a problem that the specific surface area of barium titanate with respect to the calcining temperature is large and it is difficult to stably obtain a fine one.
例えば塩化バリウムの水溶液を、蓚酸とオキシ塩化チタンの混合物を含む水溶液に20〜60℃の範囲内の温度で激しくかきまぜながら滴下し、得られる沈澱物を仮焼する方法等が提案されている(特許文献1参照)。しかし、この方法で得られる蓚酸バリウムチタニルを、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として用いる場合、特に好適な範囲のTiに対するBaのモル比(Ba/Ti)である0.990〜0.999のものが安定して得られにくいという課題がある。 For example, a method of dropping an aqueous solution of barium chloride into an aqueous solution containing a mixture of oxalic acid and titanium oxychloride while stirring vigorously at a temperature in the range of 20 to 60 ° C., and calcining the resulting precipitate has been proposed ( Patent Document 1). However, when the barium titanyl oxalate obtained by this method is used as a raw material for producing a barium titanate-based ceramic as a dielectric ceramic material, a particularly preferable range of the molar ratio of Ba to Ti (Ba / Ti) is 0.990. There exists a subject that the thing of -0.999 is hard to be obtained stably.
また本出願人も先に、蓚酸塩法により微粒のチタン酸バリウムを製造する方法として、平均粒径50〜300μmの蓚酸バリウムチタニルを水で洗浄する第一工程、該洗浄後の蓚酸バリウムチタニルをスラリーとした後、湿式粉砕処理して、平均粒径0.05〜1μmの蓚酸バリウムチタニルを得る第二工程、及び該平均粒径0.05〜1μmの蓚酸バリウムチタニルを700〜1200℃で仮焼する第三工程を有する方法を提案した(特許文献2参照)。 In addition, the present applicant has also first prepared a first step of washing barium titanyl oxalate having an average particle size of 50 to 300 μm with water as a method for producing fine barium titanate by the oxalate method, and the barium titanyl oxalate after the washing. After forming the slurry, a wet pulverization process is performed to obtain a barium titanyl oxalate having an average particle diameter of 0.05 to 1 μm, and the barium titanyl oxalate having an average particle diameter of 0.05 to 1 μm is temporarily prepared at 700 to 1200 ° C. The method which has the 3rd process to bake was proposed (refer patent document 2).
更に、本発明者らは、蓚酸塩法によりチタン酸バリウムを製造する方法について鋭意研究を進める中で、TiとBaのモル比において、Tiを過剰に含むTiリッチな蓚酸バリウムチタニルを仮焼すると、チタン酸バリウムを得る過程での仮焼温度に対する比表面積変化を小さく抑えられることを知見した。従来、蓚酸塩法を用いてTiを過剰に含む蓚酸バリウムチタニルを安定した品質のものを高純度で、且つ高収率で得ることは困難であった。 Furthermore, the inventors of the present invention are diligently researching a method for producing barium titanate by the oxalate method, and calcining Ti-rich barium titanyl oxalate containing Ti in excess in the molar ratio of Ti to Ba. It was found that the change in specific surface area with respect to the calcining temperature in the process of obtaining barium titanate can be kept small. Conventionally, it has been difficult to obtain a barium titanyl oxalate containing an excessive amount of Ti with a high quality and a high yield by using the oxalate method.
従って本発明の目的は、仮焼温度に対する比表面積変化を低く抑えられる高純度な蓚酸バリウムチタニルを、蓚酸塩法よって工業的に有利に製造する方法を提供することにある。また本発明の目的は、安定した品質のチタン酸バリウムの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for industrially advantageously producing high-purity barium titanyl oxalate capable of suppressing the change in specific surface area with respect to the calcining temperature to a low level by the oxalate method. Another object of the present invention is to provide a method for producing stable quality barium titanate.
本発明が提供しようとする第1の発明は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、蓚酸及び四塩化チタンを含む水溶液(B液)に添加し50℃以上で熟成反応を行うことを特徴とする蓚酸バリウムチタニルの製造方法である。 The first invention to be provided by the present invention is the addition of an aqueous solution (solution A) containing titanium tetrachloride and barium chloride to an aqueous solution (solution B) containing oxalic acid and titanium tetrachloride, and the aging reaction is carried out at 50 ° C. or higher. It is a manufacturing method of barium titanyl oxalate characterized by performing.
また、本発明が提供しようとする第2の発明は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、蓚酸及び四塩化チタンを含む水溶液(B液)に添加し50℃以上で熟成反応を行い蓚酸バリウムチタニルを生成させ、生成した蓚酸バリウムチタニルを仮焼することを特徴とするチタン酸バリウムの製造方法である。 In addition, the second invention to be provided by the present invention is that an aqueous solution (solution A) containing titanium tetrachloride and barium chloride is added to an aqueous solution (solution B) containing oxalic acid and titanium tetrachloride and aged at 50 ° C. or higher. It is a method for producing barium titanate, characterized by reacting to produce barium titanyl oxalate and calcining the produced barium titanyl oxalate.
本発明によれば、仮焼温度に対する比表面積変化が低く抑えられる蓚酸バリウムチタニルを安定した品質のものを高純度で且つ高収率で得ることができる。また、このようにして得られた蓚酸バリウムチタニルを仮焼することにより、チタン酸バリウムを工業的に有利に製造することができる。 According to the present invention, it is possible to obtain barium titanyl oxalate having a stable quality with a low change in specific surface area with respect to the calcining temperature with high purity and high yield. Moreover, barium titanate can be industrially advantageously produced by calcining the barium titanyl oxalate thus obtained.
以下、本発明をその好ましい実施形態に基づき説明する。本発明の製造方法は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、蓚酸及び四塩化チタンを含む水溶液(B液)に添加し反応を行うことを特徴とするものである。本発明の製造方法に従い製造される蓚酸バリウムチタニルは、好適にはTiに対するBaのモル比(以下「Ba/Tiモル比」という。)が1未満のものとなる。 Hereinafter, the present invention will be described based on preferred embodiments thereof. The production method of the present invention is characterized in that an aqueous solution (solution A) containing titanium tetrachloride and barium chloride is added to an aqueous solution (solution B) containing oxalic acid and titanium tetrachloride, and the reaction is carried out. The barium titanyl oxalate produced according to the production method of the present invention preferably has a molar ratio of Ba to Ti (hereinafter referred to as “Ba / Ti molar ratio”) of less than 1.
本発明においては、B液に含有される四塩化チタンの含有量が高くなるに従って、Ba/Tiモル比が低い蓚酸バリウムチタニルが得られる傾向がある。基本的には、A液をB液に添加した後の反応液中のBa/Tiモル比が、0.85〜1.20の範囲、好ましくは後述する「(1)及び(2)の製法」に従ってBa/Tiモル比がBa過剰の状態かあるいはTi過剰の状態となるようにA液及びB液の組成を決定し、当該範囲を満たすようにA液をB液に添加することが、特に誘電体材料として有用な蓚酸バリウムチタニルが得られる点で好ましい。A液をB液に添加した後の反応液中のBa/Tiモル比は、A液中のTiのモル数(T1)及びB液中のTiのモル数(T2)の総和と、A液中のBaのモル数(b)との関係式であるb/(T1+T2)から算出される。 In the present invention, barium titanyl oxalate having a low Ba / Ti molar ratio tends to be obtained as the content of titanium tetrachloride contained in the liquid B increases. Basically, the Ba / Ti molar ratio in the reaction liquid after adding the A liquid to the B liquid is in the range of 0.85 to 1.20, preferably “the processes of (1) and (2) described later” The composition of liquid A and liquid B is determined so that the Ba / Ti molar ratio is in an excessive Ba state or an excessive Ti state, and liquid A is added to liquid B so as to satisfy the range. In particular, barium titanyl oxalate useful as a dielectric material is preferable in that it is obtained. The Ba / Ti molar ratio in the reaction liquid after the liquid A was added to the liquid B is the sum of the number of moles of Ti in the liquid A (T1) and the number of moles of Ti in the liquid B (T2). It is calculated from b / (T1 + T2) which is a relational expression with the number of moles of Ba in the middle (b).
本発明において後述するような誘電体セラミック材料の原料として好適なBa/Tiのモル比が0.990〜0.999の蓚酸バリウムチタニルを得る特に好ましい実施態様の一例を示せば以下の(1)及び(2)の通りである。
(1)誘電体セラミック材料の原料として有用なBa/Tiのモル比が0.990〜0.999の蓚酸バリウムチタニルを得る上で、B液中の組成を特定範囲に設定し、A液の組成を適宜調製して目的とする蓚酸バリウムチタニルを得る方法である。この場合、A液として、塩化バリウム及び四塩化チタンを含み、塩化バリウムの含有量がBaとして「b」モル、四塩化チタンの含有量がTiとして「T1」モルである水溶液を調製する。B液として、蓚酸及び四塩化チタンを含み、蓚酸の含有量が「s」モル、四塩化チタンの含有量がTiとして「T2」モルである水溶液を調製する。A液のB液への添加を、添加後の反応液のBa/Tiモル比、即ち{b/(T1+T2)}がBa過剰の状態、好ましくは1.02以上1.20以下で、更にBaと蓚酸のモル比(b/s)が0.34〜0.54となるように行い反応させる(以下、「(1)の製法」と略記する。)。
An example of a particularly preferred embodiment for obtaining barium titanyl oxalate having a Ba / Ti molar ratio of 0.990 to 0.999 suitable as a raw material for a dielectric ceramic material as described later in the present invention is as follows. And (2).
(1) In obtaining barium titanyl oxalate having a Ba / Ti molar ratio of 0.990 to 0.999, which is useful as a raw material for the dielectric ceramic material, the composition in the B liquid is set to a specific range, This is a method for obtaining the target barium titanyl oxalate by appropriately adjusting the composition. In this case, as the solution A, an aqueous solution containing barium chloride and titanium tetrachloride, having a barium chloride content of “b” as Ba and a titanium tetrachloride content of “T1” as Ti is prepared. As B liquid, an aqueous solution containing succinic acid and titanium tetrachloride, the content of succinic acid being “s” mol, and the content of titanium tetrachloride being “T2” mol as Ti is prepared. The addition of the A liquid to the B liquid is such that the Ba / Ti molar ratio of the reaction liquid after the addition, that is, {b / (T1 + T2)} is in an excess of Ba, preferably 1.02 to 1.20, and further Ba And oxalic acid in a molar ratio (b / s) of 0.34 to 0.54 (hereinafter, abbreviated as “Production method (1)”).
(2)誘電体セラミック材料の原料として有用なBa/Tiのモル比が0.990〜0.999の蓚酸バリウムチタニルを得る上で、A液中の組成を特定範囲に設定し、B液の組成を適宜調整して目的とする蓚酸バリウムチタニルを得る方法である。この場合、A液のB液への添加を、添加後の反応液のBa/Tiモル比、即ち{b/(T1+T2)}がTi過剰の状態、好ましくは0.85以上0.98以下で、更にBaと蓚酸のモル比(b/s)が0.34〜0.54となるように行い反応させる(以下、「(2)の製法」と略記する。)。 (2) In obtaining barium titanyl oxalate having a Ba / Ti molar ratio of 0.990 to 0.999, which is useful as a raw material for the dielectric ceramic material, the composition in the liquid A is set to a specific range, This is a method of adjusting the composition appropriately to obtain the target barium titanyl oxalate. In this case, the addition of the liquid A to the liquid B is performed in a state where the Ba / Ti molar ratio of the reaction liquid after the addition, that is, {b / (T1 + T2)} is excessive in Ti, preferably 0.85 or more and 0.98 or less. Further, the reaction is performed such that the molar ratio (b / s) of Ba to succinic acid is 0.34 to 0.54 (hereinafter abbreviated as “production method (2)”).
「(1)の製法」及び「(2)の製法」について更に詳しく説明する。「(1)の製法」において、A液中に含有させる四塩化チタンの量と、B液中に含有させる四塩化チタンの量の配合割合は、特に制限されるものではない。基本的に、B液に含有させる四塩化チタンの配合割合が高くなるに従ってBa/Tiモル比の低い蓚酸バリウムチタニルが得られる傾向がある。得られる蓚酸バリウムチタニルにおけるBa/Tiモル比が0.990〜0.999であると、該蓚酸バリウムチタニルを原料として得られるチタン酸バリウムに、誘電体セラミック材料として優れた誘電特性を付与することができる。この観点から、本発明においては、Ba/Tiモル比が前記範囲内である蓚酸バリウムチタニルを生成させることが好ましい。前記範囲内のBa/Tiモル比を有する蓚酸バリウムチタニルは、B液中にBaとの反応当量のTiを1〜50%含有させ、その反応当量の残さ分を、A液で調製して反応を行えばよい。なお、本発明において前記「Baとの反応当量のTi」とは、Ba/Tiのモル比で1.02以上1.20以下をいう。 The “(1) production method” and “(2) production method” will be described in more detail. In the “production method (1)”, the blending ratio of the amount of titanium tetrachloride contained in the liquid A and the amount of titanium tetrachloride contained in the liquid B is not particularly limited. Basically, barium titanyl oxalate having a low Ba / Ti molar ratio tends to be obtained as the proportion of titanium tetrachloride contained in liquid B increases. When the Ba / Ti molar ratio in the obtained barium titanyl oxalate is from 0.990 to 0.999, the barium titanate obtained using the barium titanyl oxalate as a raw material is imparted with excellent dielectric properties as a dielectric ceramic material. Can do. From this point of view, in the present invention, it is preferable to produce barium titanyl oxalate having a Ba / Ti molar ratio within the above range. Barium titanyl oxalate having a Ba / Ti molar ratio within the above range contains 1 to 50% of reaction equivalent Ti with Ba in the B liquid, and the reaction equivalent is prepared by reacting the remainder of the reaction equivalent with the A liquid. Can be done. In the present invention, the “reaction equivalent Ti with Ba” refers to a Ba / Ti molar ratio of 1.02 to 1.20.
Ba/Tiモル比が0.990〜0.999である蓚酸バリウムチタニルを生成させるために好ましいA液の具体的な組成は、塩化バリウムがBaとして0.55〜0.65モル/L、四塩化チタンがTiとして0.25〜0.60モル/Lで、BaとTiのモル比(Ba/Ti)が好ましくは1.02〜2.30である。一方、B液の具体的な組成は、蓚酸が1.40〜1.75モル/L、四塩化チタンがTiとして0.02〜0.40モル/Lで、Tiと蓚酸のモル比(Ti/蓚酸)が0.01〜0.25である。 In order to produce barium titanyl oxalate having a Ba / Ti molar ratio of 0.990 to 0.999, the specific composition of the A liquid is preferably 0.55 to 0.65 mol / L as the Ba as barium chloride. Titanium chloride is 0.25 to 0.60 mol / L as Ti, and the molar ratio of Ba to Ti (Ba / Ti) is preferably 1.02 to 2.30. On the other hand, the specific composition of the liquid B is 1.40 to 1.75 mol / L for oxalic acid, 0.02 to 0.40 mol / L for titanium tetrachloride as Ti, and the molar ratio of Ti to oxalic acid (Ti / Oxalic acid) is 0.01 to 0.25.
「(1)の製法」では、A液をB液に添加後の反応液中のバリウムとチタンのモル比{b/(T1+T2)}が好ましくは1.02以上1.20以下で、バリウムと蓚酸のモル比(b/s)が0.34〜0.54となるようにA液をB液へ添加し、後述する反応条件にて反応を行えばよい。なお、以下、特に断らない限り、「b」、「T1」、「T2」、「s」の各記号は前記と同義である。 In the “production method (1)”, the molar ratio {b / (T1 + T2)} of barium to titanium in the reaction solution after adding the solution A to the solution B is preferably 1.02 or more and 1.20 or less. What is necessary is just to add A liquid to B liquid so that the molar ratio (b / s) of oxalic acid may be 0.34-0.54, and to react on reaction conditions mentioned later. Unless otherwise specified, the symbols “b”, “T1”, “T2”, and “s” have the same meanings as described above.
一方、「(2)の製法」において、A液中に含有させる四塩化チタンの量とB液中に含有させる四塩化チタンの量は、A液をB液に添加後の反応液中のバリウムとチタンのモル比{b/(T1+T2)}が好ましくは0.85以上0.98以下の範囲であれば特に制限されるものではない。基本的に、B液に含有させる四塩化チタンの配合割合が高くなるに従って、Ba/Tiモル比が低い蓚酸バリウムチタニルが得られる傾向がある。上述した通り、得られる蓚酸バリウムチタニルにおけるBa/Tiモル比が0.990〜0.999であると、該蓚酸バリウムチタニルを原料として得られるチタン酸バリウムに、誘電体セラミック材料として優れた誘電特性を付与することができる。この観点から、Ba/Tiモル比が前記範囲の蓚酸バリウムチタニルを生成させることが好ましい。このようなBaとTiのモル比を有する蓚酸バリウムチタニルを得るには、「(2)の製法」においてもA液及びB液の各組成は任意に設定することができるが、原料調製液の組成調製の簡易性及び操作性を考えれば、B液として、四塩化チタンがTiとして0.01〜0.20モル/L、蓚酸が1.50〜1.75モル/Lで、Tiと蓚酸のモル比(Ti/蓚酸)が0.01〜0.15であるものを使用し、A液に組成調製に必要なTiを含有させることが好ましい。通常、A液の具体的な組成は、塩化バリウムがBaとして0.55〜0.65モル/L、四塩化チタンがTiとして0.45〜0.65モル/Lで、BaとTiのモル比(Ba/Ti)が好ましくは1.02〜1.20の範囲に調製したものを使用する。 On the other hand, in “Production method (2)”, the amount of titanium tetrachloride contained in the liquid A and the amount of titanium tetrachloride contained in the liquid B are the same as barium in the reaction liquid after adding the liquid A to the liquid B. The molar ratio {b / (T1 + T2)} of titanium and titanium is not particularly limited as long as it is preferably in the range of 0.85 to 0.98. Basically, barium titanyl oxalate having a low Ba / Ti molar ratio tends to be obtained as the proportion of titanium tetrachloride contained in liquid B increases. As described above, when the Ba / Ti molar ratio in the obtained barium titanyl oxalate is 0.990 to 0.999, the barium titanate obtained using the barium titanyl oxalate as a raw material has excellent dielectric properties as a dielectric ceramic material. Can be granted. From this viewpoint, it is preferable to generate barium titanyl oxalate having a Ba / Ti molar ratio in the above range. In order to obtain barium titanyl oxalate having such a molar ratio of Ba and Ti, the composition of the liquid A and the liquid B can be arbitrarily set in the “production method (2)”. Considering the simplicity and operability of the composition preparation, as liquid B, titanium tetrachloride is 0.01 to 0.20 mol / L as Ti, oxalic acid is 1.50 to 1.75 mol / L, Ti and oxalic acid It is preferable to use that having a molar ratio (Ti / oxalic acid) of 0.01 to 0.15 and to contain the Ti necessary for preparing the composition in the liquid A. Usually, the specific composition of the liquid A is 0.55-0.65 mol / L as barium chloride as Ba, and 0.45-0.65 mol / L as titanium tetrachloride as Ti, and the moles of Ba and Ti. The ratio (Ba / Ti) is preferably adjusted to 1.02 to 1.20.
次いで、「(2)の製法」ではA液をB液に添加後の反応液中のバリウムとチタンのモル比{b/(T1+T2)}が好ましくは0.85以上0.98以下で、バリウムと蓚酸のモル比(b/s)が0.34〜0.54となるようにA液をB液へ添加し、後述する反応条件にて反応を行えばよい。「(1)及び(2)の製法」のうち、本発明では特に「(1)の製法」がTiの反応率が特に高くなり工業的に有利に用いられる。 Next, in the “production method (2)”, the molar ratio {b / (T1 + T2)} of barium to titanium in the reaction solution after adding the solution A to the solution B is preferably 0.85 or more and 0.98 or less. Solution A may be added to Solution B so that the molar ratio of oxalic acid to oxalic acid (b / s) is 0.34 to 0.54, and the reaction may be performed under the reaction conditions described below. Among the “production methods (1) and (2)”, in the present invention, the “production method (1)” is particularly advantageously used industrially because the Ti reaction rate is particularly high.
「(1)及び(2)の製法」において、A液のB液への添加は攪拌下に行うことが好ましい。攪拌速度は、添加開始から反応終了までの間に生成する蓚酸バリウムチタニルを含むスラリーが常に流動性を示す状態であればよく、特に限定されるものではない。 In the “production methods (1) and (2)”, it is preferable to add the A liquid to the B liquid with stirring. The stirring speed is not particularly limited as long as the slurry containing barium titanyl oxalate generated between the start of addition and the end of the reaction always exhibits fluidity.
「(1)及び(2)の製法」において、反応は、生成される蓚酸バリウムチタニル粒子の平均粒径が100〜300μmの範囲、好ましくは100〜200μm、さらに好ましくは100〜150μmの範囲となるように条件を設定することが好ましい。当該範囲の平均粒径を有する蓚酸バリウムチタニルは、結晶粒が大きいことに起因して、水で洗浄したときにBa及びTiの溶出が少ないという利点がある。その上、塩素等の不純物を効率的に除去できるという利点もある。平均粒径が100μm未満の蓚酸バリウムチタニルは、水で洗浄しても粒子中に取り込まれた塩素等の不純物を150ppm以下まで低減させ難い。また、Ba及びTiの溶出に起因して組成のバラツキが生じやすい。平均粒径が300μmを超える蓚酸バリウムチタニルは、以後の仮焼、粉砕工程において一次径への解砕が困難となり、粒径のバラツキが大きくなる傾向にある。なお、本発明において蓚酸バリウムチタニルの平均粒径とは、レーザー回折・散乱法粒度分布測定装置で測定した値をいう。 In the “production method of (1) and (2)”, the reaction is such that the average particle diameter of the barium titanyl oxalate particles produced is in the range of 100 to 300 μm, preferably 100 to 200 μm, more preferably 100 to 150 μm. It is preferable to set the conditions as described above. Barium titanyl oxalate having an average particle size in the above range has an advantage that there is little elution of Ba and Ti when washed with water due to the large crystal grains. In addition, there is an advantage that impurities such as chlorine can be efficiently removed. Barium titanyl oxalate having an average particle size of less than 100 μm is difficult to reduce impurities such as chlorine incorporated in the particles to 150 ppm or less even when washed with water. In addition, the composition tends to vary due to the elution of Ba and Ti. Barium titanyl oxalate having an average particle diameter exceeding 300 μm tends to be difficult to disintegrate to the primary diameter in the subsequent calcination and pulverization steps, and the variation in particle diameter tends to increase. In the present invention, the average particle diameter of barium titanyl oxalate refers to a value measured with a laser diffraction / scattering particle size distribution analyzer.
本発明では 「(1)及び(2)の製法」において、前記範囲内の平均粒径の蓚酸バリウムチタニルが生成されるように、各反応条件を設定することが好ましい。具体的には「(1)及び(2)の製法」では、反応系に連続的又は断続的に供給するA液の添加時間を長くとったり、添加温度を高くしたりすることにより、生成する蓚酸バリウムチタニルの粒径を大きくすることができる。この観点から、B液は、予め通常50〜90℃、好ましくは55〜70℃となるまで加温しておくことが好ましい。また、A液のB液への添加時間を好ましくは0.5〜5時間、更に好ましくは1〜4時間とし、且つ一定速度で連続的に行うと、得られる蓚酸バリウムチタニルにおけるTiとBaのモル比のバラツキが小さくなり、安定した品質のものとなる。更に、後述する熟成反応を行うことにより、前記範囲の平均粒径で、高純度な蓚酸バリウムチタニルを短時間で得ることができる。なお、A液の温度は特に限定されないが、B液の加熱温度と同様の範囲内にあると、反応操作が容易となるので好ましい。 In the present invention, in the “production methods (1) and (2)”, it is preferable to set each reaction condition so that barium titanyl oxalate having an average particle diameter within the above range is generated. Specifically, in “the production method of (1) and (2)”, oxalic acid produced by increasing the addition time of the liquid A continuously or intermittently supplied to the reaction system or by increasing the addition temperature. The particle size of barium titanyl can be increased. From this point of view, it is preferable that the liquid B is heated in advance until it is usually 50 to 90 ° C., preferably 55 to 70 ° C. Moreover, when the addition time of the A liquid to the B liquid is preferably 0.5 to 5 hours, more preferably 1 to 4 hours, and continuously performed at a constant rate, Ti and Ba in the barium titanyl oxalate obtained are obtained. The variation in the molar ratio is reduced, and the product has a stable quality. Furthermore, highly purified barium titanyl oxalate having an average particle diameter in the above range can be obtained in a short time by performing an aging reaction described later. The temperature of the liquid A is not particularly limited, but it is preferable that the temperature is within the same range as the heating temperature of the liquid B because the reaction operation becomes easy.
A液の添加終了後、引き続き反応を行う(以下、「熟成反応」と呼ぶ。)。本発明では、この熟成反応を50℃以上で行うことも重要な要件の1つとなる。即ち50℃以上で熟成反応を行うと、生成する蓚酸バリウムチタニルの粒成長が抑制されると共に反応が完結するので、前記範囲内の平均粒径を有し、塩素含有量が150ppm以下で、TiとBaのモル比のバラツキが少ない所望の蓚酸バリウムチタニルを得ることができる。 The reaction is continued after the addition of the liquid A (hereinafter referred to as “ripening reaction”). In the present invention, it is also an important requirement to perform this aging reaction at 50 ° C. or higher. That is, when the aging reaction is performed at 50 ° C. or more, the grain growth of the barium titanyl oxalate produced is suppressed and the reaction is completed, so that the average particle size is within the above range, the chlorine content is 150 ppm or less, Ti Desired barium titanyl oxalate with little variation in the molar ratio of Ba to Ba can be obtained.
熟成条件は、熟成温度が通常は50℃以上、好ましくは50〜90℃、さらに好ましくは55〜70℃である。熟成温度とは、A液添加後における反応液全体の温度をいう。熟成時間は好ましくは0.5〜10時間、更に好ましくは1〜5時間である。 The aging conditions are such that the aging temperature is usually 50 ° C. or higher, preferably 50 to 90 ° C., more preferably 55 to 70 ° C. The aging temperature refers to the temperature of the entire reaction solution after addition of solution A. The aging time is preferably 0.5 to 10 hours, more preferably 1 to 5 hours.
熟成終了後は、常法により固液分離し、次いで水で洗浄する。洗浄方法は特に制限されるものではない。リパルプ等で洗浄を行うと洗浄効率がよいので好ましい。次いで、乾燥、必要により粉砕して蓚酸バリウムチタニルを得る。 After completion of aging, the solid and liquid are separated by a conventional method and then washed with water. The cleaning method is not particularly limited. Washing with repulp or the like is preferable because the washing efficiency is good. It is then dried and ground if necessary to obtain barium titanyl oxalate.
かくして得られる蓚酸バリウムチタニルの好ましい物性としては、平均粒径が100〜300μm、好ましくは100〜200μm、さらに好ましくは100〜150μmである。該蓚酸バリウムチタニルの組成は、BaとTiのモル比(Ba/Ti)が1未満、好ましくは0.990〜0.999である。 As a preferable physical property of the barium titanyl oxalate thus obtained, the average particle size is 100 to 300 μm, preferably 100 to 200 μm, more preferably 100 to 150 μm. The composition of the barium titanyl oxalate is such that the molar ratio of Ba to Ti (Ba / Ti) is less than 1, preferably 0.990 to 0.999.
本発明の製造方法で得られる蓚酸バリウムチタニルは、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として好適に用いることが出来る。本発明のチタン酸バリウムの製造方法は以下の通りである。 Barium titanyl oxalate obtained by the production method of the present invention can be suitably used as a production raw material for a barium titanate-based ceramic of a dielectric ceramic material. The manufacturing method of the barium titanate of this invention is as follows.
本発明のチタン酸バリウムの製造方法は、前述の方法で得られた蓚酸バリウムチタニルを仮焼することを特徴とするものである。本発明では、必要により、更に微粒なチタン酸バリウムを得ることを目的として、仮焼を行う前に、蓚酸バリウムチタニルをボールミル、ビーズミル等の湿式で粉砕処理し、平均粒径が好ましくは0.01〜1μm、更に好ましくは0.05〜0.8μmとなるまで粉砕処理を行ってもよい。湿式粉砕処理で用いる溶媒としては、蓚酸バリウムチタニルに対して不活性であるものが用いられる。例えば、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等が挙げられる。このうち、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド、ジエチルエーテル等の有機溶媒で、且つBa及びTiの溶出が少ないものを用いると、結晶性の高いペロブスカイト型チタン酸バリウムを得ることができるので好ましい。特にエタノールを用いると、結晶性の優れたチタン酸バリウムを、800〜950℃程度の低温域で安価に製造することができるので好ましい。 The method for producing barium titanate according to the present invention is characterized in that barium titanyl oxalate obtained by the above-described method is calcined. In the present invention, if necessary, the barium titanyl oxalate is pulverized by a wet method such as a ball mill or a bead mill before the calcination for the purpose of obtaining finer barium titanate, and the average particle size is preferably set to 0. You may grind | pulverize until it becomes 01-1 micrometer, More preferably, it is 0.05-0.8 micrometer. As the solvent used in the wet pulverization treatment, a solvent inert to barium titanyl oxalate is used. For example, water, methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, diethyl ether and the like can be mentioned. Of these, organic solvents such as methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, diethyl ether, etc., and those with low elution of Ba and Ti, A high perovskite type barium titanate can be obtained, which is preferable. It is particularly preferable to use ethanol because barium titanate having excellent crystallinity can be produced at a low temperature of about 800 to 950 ° C. at low cost.
最終製品に含まれる蓚酸由来の有機物は、材料の誘電体特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるので好ましくない。従って、本発明では仮焼により蓚酸バリウムチタニルを熱分解して目的とするチタン酸バリウムを得ると共に、蓚酸由来の有機物を十分除去する必要がある。仮焼条件は、仮焼温度が好ましくは600〜1200℃、更に好ましくは800〜1100℃である。仮焼温度が600℃未満では、単一相のチタン酸バリウムが得られにくい。一方、仮焼温度が1200℃を超えると、粒径のバラツキが大きくなる。仮焼時間は好ましくは2〜30時間、更に好ましくは5〜20時間である。仮焼の雰囲気は特に制限されず、大気中又は不活性ガス雰囲気中の何れであってもよい。 Organic substances derived from oxalic acid contained in the final product are not preferable because they impair the dielectric properties of the material and cause unstable behavior in the thermal process for ceramization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by calcination to obtain the target barium titanate, and to sufficiently remove organic substances derived from oxalic acid. The calcination conditions are such that the calcination temperature is preferably 600 to 1200 ° C, more preferably 800 to 1100 ° C. When the calcining temperature is less than 600 ° C., it is difficult to obtain single-phase barium titanate. On the other hand, when the calcining temperature exceeds 1200 ° C., the variation in the particle size increases. The calcination time is preferably 2 to 30 hours, more preferably 5 to 20 hours. The atmosphere of calcination is not particularly limited, and may be either in the air or in an inert gas atmosphere.
仮焼は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度仮焼したものを粉砕し、次いで再仮焼を行ってもよい。 Calcination may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the temporarily calcined material may be pulverized and then re-calcined.
仮焼後、適宜冷却し、必要に応じ粉砕してチタン酸バリウムの粉末を得る。必要に応じて行われる粉砕は、仮焼して得られるチタン酸バリウムがもろくブロック状のものである場合等に適宜行うが、チタン酸バリウムの粒子自体は下記特定の平均粒径、BET比表面積を有するものである。即ち、前記で得られるチタン酸バリウムの粉末は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が好ましくは0.05〜5μm、更に好ましくは0.1〜2μmである。BET比表面積は、好ましくは1〜20m2/g、更に好ましくは2〜15m2/gである。更に、本発明の製造方法で得られるチタン酸バリウムの組成は、BaとTiのモル比(Ba/Ti)が1未満、特に0.990〜0.999であることが好ましい。 After calcination, the product is appropriately cooled and pulverized as necessary to obtain barium titanate powder. The pulverization performed as necessary is appropriately performed when the barium titanate obtained by calcination is in a brittle block shape, and the barium titanate particles themselves have the following specific average particle diameter and BET specific surface area. It is what has. That is, the barium titanate powder obtained above preferably has an average particle size determined from a scanning electron micrograph (SEM) of 0.05 to 5 μm, more preferably 0.1 to 2 μm. The BET specific surface area is preferably 1 to 20 m 2 / g, more preferably 2 to 15 m 2 / g. Furthermore, the composition of barium titanate obtained by the production method of the present invention is preferably such that the molar ratio of Ba to Ti (Ba / Ti) is less than 1, particularly 0.990 to 0.999.
本発明の製造方法で得られるチタン酸バリウムには、必要により誘電特性や温度特性を調製する目的で、副成分元素含有化合物を該チタン酸バリウムに添加し副成分元素を含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素の化合物が挙げられる。 The barium titanate obtained by the production method of the present invention can contain a subcomponent element by adding a subcomponent element-containing compound to the barium titanate for the purpose of adjusting dielectric characteristics and temperature characteristics as necessary. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Elemental compounds may be mentioned.
副成分元素含有化合物は無機物又は有機物のいずれであってもよい。例えば、前記の元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩及びアルコキシド等が挙げられる。副成分元素含有化合物がSi元素を含有する化合物である場合は、前記酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができる。その添加量や添加化合物の組み合わせは、常法に従って行えばよい。 The subcomponent element-containing compound may be either inorganic or organic. Examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. When the subcomponent element-containing compound is a compound containing Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide. The subcomponent element-containing compounds can be used alone or in combination of two or more. What is necessary is just to perform the combination of the addition amount and an addition compound according to a conventional method.
チタン酸バリウムに前記副成分元素を含有させるには、例えば、該チタン酸バリウムと該副成分元素含有化合物を均一混合後、焼成を行えばよい。或いは、蓚酸バリウムチタニルと前記副成分元素含有化合物を均一混合後、仮焼を行ってもよい。 In order to contain the subcomponent element in the barium titanate, for example, the barium titanate and the subcomponent element-containing compound may be uniformly mixed and then fired. Alternatively, barium titanyl oxalate and the subcomponent element-containing compound may be uniformly mixed and then calcined.
本発明に従い得られたチタン酸バリウムを用いて例えば積層セラミックコンデンサを製造する場合には、先ず、チタン酸バリウムの粉末を、前記した副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行う。これにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得る。該セラミックシートから積層セラミックコンデンサを作製するには、先ず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷する。乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該焼成体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布し焼き付けて、積層コンデンサが得られる。 For example, when manufacturing a multilayer ceramic capacitor using the barium titanate obtained in accordance with the present invention, first, the barium titanate powder is mixed with a conventionally known additive, organic binder, plastic, A sheet is formed by mixing and dispersing in a suitable solvent together with a compounding agent such as an agent and a dispersant to form a slurry. Thereby, the ceramic sheet used for manufacture of a multilayer ceramic capacitor is obtained. In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, an internal electrode forming conductive paste is printed on one surface of the ceramic sheet. After drying, a plurality of the ceramic sheets are laminated and pressed in the thickness direction to obtain a laminated body. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Further, a Ni capacitor, an Ag paste, a nickel alloy paste, a copper paste, a copper alloy paste or the like is applied to the fired body and baked to obtain a multilayer capacitor.
また、本発明に従い得られたチタン酸バリウムの粉末を、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用の誘電体材料として用いることができる。 In addition, when the barium titanate powder obtained according to the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin to form a resin sheet, a resin film, an adhesive, or the like, a printed wiring board or a multilayer print It can be used as a material such as a wiring board, a co-material for suppressing the shrinkage difference between the internal electrode and the dielectric layer, an electrode ceramic circuit board, a glass ceramic circuit board, a circuit peripheral material, and a dielectric material for inorganic EL. .
また、本発明に従い得られたチタン酸バリウムは、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いることができる。 In addition, the barium titanate obtained according to the present invention can be suitably used as a catalyst used in reactions such as exhaust gas removal and chemical synthesis, and as a surface modifier for printing toner that imparts antistatic and cleaning effects. .
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
〔実施例1〜5及び比較例1〜3:蓚酸バリウムチタニルの製造〕
塩化バリウム2水塩、四塩化チタン水溶液、蓚酸2水塩及び純水を用いて、表1に示す組成のA液及びB液を調製した。次いで、B液を60℃に加温保持し、A液を室温(25℃)で120分かけて攪拌下にB液に添加した。添加量は表1に示す通りである。添加完了後の反応液におけるTi、Ba、蓚酸イオンのモル比は表2に示す通りである。添加完了後、更に60℃で1時間攪拌下に熟成した。冷却後、濾過して蓚酸バリウムチタニルを回収した。
[Examples 1-5 and Comparative Examples 1-3: Production of barium titanyl oxalate]
Liquid A and liquid B having the compositions shown in Table 1 were prepared using barium chloride dihydrate, titanium tetrachloride aqueous solution, oxalic acid dihydrate and pure water. Next, the liquid B was kept warm at 60 ° C., and the liquid A was added to the liquid B with stirring at room temperature (25 ° C.) over 120 minutes. The addition amount is as shown in Table 1. The molar ratio of Ti, Ba, and oxalate ions in the reaction solution after completion of addition is as shown in Table 2. After completion of the addition, the mixture was further aged with stirring at 60 ° C. for 1 hour. After cooling, it was filtered to recover barium titanyl oxalate.
〔比較例4:蓚酸バリウムチタニルの製造〕
塩化バリウム2水塩、四塩化チタン水溶液、蓚酸2水塩及び純水を用いて、表1に示す組成のA液及びB液を調製した。次いで、B液を30℃に加温保持し、A液を室温(25℃)で120分かけて攪拌下にB液に添加した。添加量は表1に示す通りである。添加完了後の反応液におけるTi、Ba、蓚酸イオンのモル比は表2に示す通りである。添加完了後、更に30℃で1時間攪拌下に熟成した。冷却後、濾過して蓚酸バリウムチタニルを回収した。
[Comparative Example 4: Production of barium titanyl oxalate]
Liquid A and liquid B having the compositions shown in Table 1 were prepared using barium chloride dihydrate, titanium tetrachloride aqueous solution, oxalic acid dihydrate and pure water. Next, the liquid B was kept warm at 30 ° C., and the liquid A was added to the liquid B with stirring at room temperature (25 ° C.) over 120 minutes. The addition amount is as shown in Table 1. The molar ratio of Ti, Ba, and oxalate ions in the reaction solution after completion of addition is as shown in Table 2. After completion of the addition, the mixture was further aged with stirring at 30 ° C. for 1 hour. After cooling, it was filtered to recover barium titanyl oxalate.
次いで、回収した蓚酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥して蓚酸バリウムチタニルの粉末を得た。得られた蓚酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。塩素含有量はイオンクロマトグラフィー法で測定した。また、BaとTiの反応率を求め、その結果を表3に併記した。反応率とは、反応終了時に溶出しているBaとTiをICPで測定し、その溶出分を未反応分とし、仕込量からその未反応分を差し引いたものを反応分とし、仕込みの百分率として表わしたものである。この反応率が高い方が未反応で残存するBa及びTiの成分が少なく反応効率及び収率が高いことを示す。 The recovered barium titanyl oxalate was then repulped with pure water and washed carefully. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows the physical properties of the obtained barium titanyl oxalate. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The chlorine content was measured by ion chromatography. Moreover, the reaction rate of Ba and Ti was calculated | required, and the result was written together in Table 3. The reaction rate is measured by ICP for Ba and Ti eluting at the end of the reaction, and the elution amount is defined as the unreacted content. The reaction amount is obtained by subtracting the unreacted content from the charged amount. It is a representation. The higher the reaction rate, the less the unreacted Ba and Ti components, and the higher the reaction efficiency and yield.
表3の結果より、本発明の製造方法を用いて得られる蓚酸バリウムチタニルは、Ba/Tiモル比が0.990〜0.999のものであることが判る。Ba/Tiモル比が0.990〜0.999の蓚酸バリウムチタニルが、誘電体材料として有用なチタン酸バリウムの原料として好ましいものであることは、先に述べた通りである。これに対して、必要量のTiを全量B液に予め仕込んで反応を行った比較例2の蓚酸バリウムチタニルや、A液に必要量のTiを全量仕込んで反応を行った比較例1の蓚酸バリウムチタニルは、Ba/Tiモル比が0.990〜0.999となっていないことが分かる。更に、比較例3ではTiの反応率が低下していることが分かる。また、熟成温度を30℃とした比較例4では塩素含有量が多くなっていることが分かる。 From the results in Table 3, it can be seen that the barium titanyl oxalate obtained using the production method of the present invention has a Ba / Ti molar ratio of 0.990 to 0.999. As described above, barium titanyl oxalate having a Ba / Ti molar ratio of 0.990 to 0.999 is preferable as a raw material for barium titanate useful as a dielectric material. On the other hand, barium titanyl oxalate of Comparative Example 2 in which the required amount of Ti was previously charged into the B solution and reacted, or oxalic acid of Comparative Example 1 in which the required amount of Ti was charged in the A solution and reacted. It can be seen that barium titanyl does not have a Ba / Ti molar ratio of 0.990 to 0.999. Furthermore, it can be seen that in Comparative Example 3, the reaction rate of Ti is lowered. Moreover, it turns out that chlorine content is increasing in the comparative example 4 which made the aging temperature 30 degreeC.
〔実施例6〜10及び比較例5〜6:チタン酸バリウムの製造〕
実施例1〜6、比較例1、4で得られた蓚酸バリウムチタニル試料の5gを、大気中、800℃で5時間又は1000℃で5時間仮焼した。冷却後、解砕してそれぞれチタン酸バリウムの粉末を得た。得られたチタン酸バリウムの諸物性を表4に示した。BaとTiのモル比、平均粒径は前記と同様な方法で求めた。比表面積はBET法で求めた。
[Examples 6 to 10 and Comparative Examples 5 to 6: Production of barium titanate]
5 g of the barium titanyl oxalate sample obtained in Examples 1 to 6 and Comparative Examples 1 and 4 was calcined in the air at 800 ° C. for 5 hours or 1000 ° C. for 5 hours. After cooling, it was crushed to obtain barium titanate powder. Various physical properties of the obtained barium titanate are shown in Table 4. The molar ratio of Ba and Ti and the average particle diameter were determined by the same method as described above. The specific surface area was determined by the BET method.
表4の結果より、本発明にかかる製法を用いない蓚酸バリウムチタニル(比較例1、4)を原料とするチタン酸バリウム(比較例5〜6)は、仮焼温度に対する比表面積変化が大きくなっていることが分かる。これに対して本発明にかかる製法を用いた蓚酸バリウムチタニル(実施例1〜5)を原料とするチタン酸バリウム(実施例6〜10)は、仮焼温度に対する比表面積変化が低く抑えられており、比表面積の安定したチタン酸バリウムを製造できることが分かる。
From the results of Table 4, barium titanate (Comparative Examples 5 to 6) using barium titanyl oxalate (Comparative Examples 1 and 4) without using the production method according to the present invention has a large change in specific surface area with respect to the calcining temperature. I understand that In contrast, barium titanate (Examples 6 to 10) using barium titanyl oxalate (Examples 1 to 5) using the production method according to the present invention has a low specific surface area change with respect to the calcining temperature. It can be seen that barium titanate having a stable specific surface area can be produced.
Claims (6)
An aqueous solution containing Titanium Tetrachloride and Barium Chloride (Liquid A) is added to an aqueous solution containing Oxalic Acid and Titanium Tetrachloride (Liquid B) and aged at 50 ° C. to produce barium titanyl oxalate. A method for producing barium titanate, characterized by calcining the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006138313A JP4937637B2 (en) | 2005-05-17 | 2006-05-17 | Method for producing barium titanyl oxalate and method for producing barium titanate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005143804 | 2005-05-17 | ||
JP2005143804 | 2005-05-17 | ||
JP2006138313A JP4937637B2 (en) | 2005-05-17 | 2006-05-17 | Method for producing barium titanyl oxalate and method for producing barium titanate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006348026A true JP2006348026A (en) | 2006-12-28 |
JP4937637B2 JP4937637B2 (en) | 2012-05-23 |
Family
ID=37644220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006138313A Active JP4937637B2 (en) | 2005-05-17 | 2006-05-17 | Method for producing barium titanyl oxalate and method for producing barium titanate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4937637B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010202610A (en) * | 2009-03-05 | 2010-09-16 | Nippon Chem Ind Co Ltd | Method for producing barium titanyl oxalate and method for producing barium titanate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03103323A (en) * | 1989-09-14 | 1991-04-30 | Tdk Corp | Production of titanyl barium oxalate particle |
JP2004123431A (en) * | 2002-10-01 | 2004-04-22 | Nippon Chem Ind Co Ltd | Method for manufacturing perovskite-type barium titanate powder |
-
2006
- 2006-05-17 JP JP2006138313A patent/JP4937637B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03103323A (en) * | 1989-09-14 | 1991-04-30 | Tdk Corp | Production of titanyl barium oxalate particle |
JP2004123431A (en) * | 2002-10-01 | 2004-04-22 | Nippon Chem Ind Co Ltd | Method for manufacturing perovskite-type barium titanate powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010202610A (en) * | 2009-03-05 | 2010-09-16 | Nippon Chem Ind Co Ltd | Method for producing barium titanyl oxalate and method for producing barium titanate |
Also Published As
Publication number | Publication date |
---|---|
JP4937637B2 (en) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4759211B2 (en) | Method for producing perovskite-type barium titanate powder | |
JP5270528B2 (en) | Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same | |
KR101904579B1 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP4638766B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP5658295B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP4684657B2 (en) | Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder | |
JP4638767B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP5323537B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP5119008B2 (en) | Method for producing perovskite-type barium titanate powder | |
JP4937637B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP7110305B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP6573653B2 (en) | Method for producing perovskite-type barium titanate powder | |
JP2022081059A (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
WO2021010368A1 (en) | Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER | |
JP2010047428A (en) | Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same | |
JP7438867B2 (en) | Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder | |
JP7102462B2 (en) | Barium titanyl oxalate, its production method and barium titanate production method | |
JP2012077068A (en) | Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate | |
TWI851547B (en) | Method for manufacturing perovskite-type barium titanate powder | |
CN117645538A (en) | Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4937637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |