JP2010202610A - Method for producing barium titanyl oxalate and method for producing barium titanate - Google Patents

Method for producing barium titanyl oxalate and method for producing barium titanate Download PDF

Info

Publication number
JP2010202610A
JP2010202610A JP2009051878A JP2009051878A JP2010202610A JP 2010202610 A JP2010202610 A JP 2010202610A JP 2009051878 A JP2009051878 A JP 2009051878A JP 2009051878 A JP2009051878 A JP 2009051878A JP 2010202610 A JP2010202610 A JP 2010202610A
Authority
JP
Japan
Prior art keywords
solution
barium
titanyl oxalate
reaction
barium titanyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009051878A
Other languages
Japanese (ja)
Other versions
JP5323537B2 (en
Inventor
Hideki Inoue
秀樹 井上
Toyohiko Hieda
豊彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2009051878A priority Critical patent/JP5323537B2/en
Priority to KR1020100019271A priority patent/KR20100100654A/en
Publication of JP2010202610A publication Critical patent/JP2010202610A/en
Application granted granted Critical
Publication of JP5323537B2 publication Critical patent/JP5323537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide barium titanyl oxalate small in variation of Ba/Ti molar ratio overall particle sizes, and to provide a highly crystalline barium titanate. <P>SOLUTION: This method for producing barium titanyl oxalate includes the following process: a reaction vessel is fed with an aqueous solution (A1-liquid) obtained by mixing oxalic acid and titanium tetrachloride into water, and an aqueous barium chloride solution (B1-liquid); concurrently, while the resultant reaction liquid is discharged from the reaction vessel, and the reaction of forming the objective barium titanyl oxalate is conducted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に、圧電体、オプトエレクトロニクス材、誘電体、半導体、センサー等の機能性セラミックの原料として有用なシュウ酸バリウムチタニルの製造方法、及びそれを用いるチタン酸バリウムの製造方法に関するものである。   The present invention particularly relates to a method for producing barium titanyl oxalate useful as a raw material for functional ceramics such as piezoelectric materials, optoelectronic materials, dielectric materials, semiconductors, and sensors, and a method for producing barium titanate using the same. is there.

従来、チタン酸バリウムは、固相法、水熱合成法、アルコキシド法、シュウ酸塩法等により製造されている。   Conventionally, barium titanate is produced by a solid phase method, a hydrothermal synthesis method, an alkoxide method, an oxalate method, or the like.

固相法では、構成原料粉末等を混合し、該混合物を高温で加熱する乾式方法により製造するため、得られた粉末は不規則な形状を呈する凝集体を成し、また、所望の特性を達成するために高温焼成が必要である。また、水熱合成法は、粉体の特性が良好との長所にもかかわらず合成工程が複雑で、オートクレーブを用いるため生産性が劣り、製造粉末の値段が高く工業的に有利でない。また、アルコキシド法も同様、出発物質の取り扱いが難しく、値段が高く工業的に有利でない。   In the solid phase method, constituent raw material powders and the like are mixed, and the mixture is manufactured by a dry method in which the mixture is heated at a high temperature. Therefore, the obtained powder forms an agglomerate having an irregular shape and has desired characteristics. High temperature firing is necessary to achieve. In addition, the hydrothermal synthesis method has a complicated synthesis process in spite of the advantages of good powder characteristics, and is inferior in productivity because of the use of an autoclave, and the production powder is expensive and not industrially advantageous. Similarly, the alkoxide method is difficult to handle starting materials, is expensive, and is not industrially advantageous.

シュウ酸塩法で得られるチタン酸バリウムは、水熱合成法やアルコキシド法に比べ、組成が均一なものを安価に製造することができ、また、固相法で製造したチタン酸バリウムに比べ、組成が均一であるという特徴を有する。従来のシュウ酸塩法としては、TiClとBaClとの水溶液を、H水溶液に攪拌下に滴下して、シュウ酸バリウムチタニルを得、該シュウ酸バリウムチタニルを焼成する方法が一般的である(例えば、非特許文献1及び特許文献1参照)。 Barium titanate obtained by the oxalate method can be manufactured at a low cost compared with hydrothermal synthesis method or alkoxide method, and compared with barium titanate manufactured by solid phase method, It has the feature that the composition is uniform. As a conventional oxalate method, an aqueous solution of TiCl 4 and BaCl 2 is dropped into an H 2 C 2 O 4 aqueous solution while stirring to obtain barium titanyl oxalate, and the barium titanyl oxalate is baked. Is common (see, for example, Non-Patent Document 1 and Patent Document 1).

特開2005−500239号公報JP 2005-500239 A

W.S.Clabaugh et al.,J.Res.Nat.Bur.Stand.,56(5),289−291(1956)W. S. Clavaugh et al. , J .; Res. Nat. Bur. Stand. , 56 (5), 289-291 (1956)

シュウ酸塩法により得られるチタン酸バリウムは、誘電体セラミックの材料として、優れた性能を発揮するものの、近年の要求性能の高まりから、更なる性能向上が求められている。チタン酸バリウムの誘電体セラミックとしての特性は、一般的には結晶性が高いものが誘電特性もよいことが知られている(例えば、特開2006−117446号公報参照)。また、シュウ酸塩法では、粒径が小さいものが得られ難く、得られたとしても結晶性が高いものが得られ難いという問題もある。   Although barium titanate obtained by the oxalate method exhibits excellent performance as a dielectric ceramic material, further improvement in performance is required due to the recent increase in required performance. It is known that the characteristic of barium titanate as a dielectric ceramic is generally high in crystallinity and has good dielectric characteristics (see, for example, JP-A-2006-117446). In addition, the oxalate method has a problem that it is difficult to obtain a small particle size, and even if it is obtained, it is difficult to obtain a high crystallinity.

そこで、本発明者らは、従来の方法で得られるシュウ酸バリウムチタニルについて検討したところ、これらのシュウ酸バリウムチタニルは、バルクのBa/Tiモル比は0.998〜1.002の略1であるものの、粒径毎のBa/Tiモル比にはバラツキがあり、粒径が小さいもの程(言い換えると、「比表面積が大きいもの程」)Ba/Tiモル比が小さく、一方、粒径が大きいもの程(言い換えると、「比表面積が小さいもの程」)Ba/Tiモル比が大きくなっていることを見出した。   Therefore, the present inventors examined barium titanyl oxalate obtained by a conventional method, and these barium titanyl oxalates had a bulk Ba / Ti molar ratio of about 0.998 to 1.002. Although there is variation in the Ba / Ti molar ratio for each particle size, the smaller the particle size (in other words, the larger the specific surface area), the smaller the Ba / Ti molar ratio, while the particle size is It was found that the larger the ratio (in other words, the smaller the specific surface area), the larger the Ba / Ti molar ratio.

そして、本発明者らは、全粒径に亘ってBa/Tiモル比のバラツキが小さいシュウ酸バリウムチタニルを用いれば、より結晶性が高い優れた性能を有するチタン酸バリウムを製造することができると推測した。   And if the present inventors use barium titanyl oxalate with small variations in the Ba / Ti molar ratio over the entire particle size, it is possible to produce barium titanate having higher performance and higher crystallinity. I guessed.

従って、本発明の目的は、全粒径に亘ってBa/Tiモル比のバラツキが小さいシュウ酸バリウムチタニルを提供することにある。更に、本発明は結晶性に優れたチタン酸バリウムを提供することにある。   Accordingly, an object of the present invention is to provide barium titanyl oxalate having a small variation in the Ba / Ti molar ratio over the entire particle size. Furthermore, this invention is providing the barium titanate excellent in crystallinity.

本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、(1)シュウ酸バリウムチタニルの反応原料水溶液を、反応容器に供給しつつ、反応液を反応容器から排出しながら、反応を行うことにより、全粒径に亘ってBa/Tiモル比のバラツキが少ないシュウ酸バリウムチタニルが得られること、(2)このようにして得られたシュウ酸バリウムチタニルを用いることにより、粒径が小さいにもかかわらず結晶性が高いチタン酸バリウムが得られるので、優れた性能を有する誘電体セラミック材料を提供できること等を見出した。更には、従来のシュウ酸バリウムチタニルを焼成して得られるチタン酸バリウムは、焼成後、各粒子が焼結等により接合し全体的にタラコ状のバルクとして得られ易いが、本発明の方法によれば、各粒子が分散した形状で得られ易いため、従来のものに比べ、各粒子が焼結により結合された粗大粒子が少ない分散性に優れたものになることを見出し、本発明を完成させるに到った。   As a result of intensive studies in view of the above circumstances, the present inventors have conducted (1) a reaction while supplying a reaction raw material aqueous solution of barium titanyl oxalate to the reaction vessel and discharging the reaction solution from the reaction vessel. This makes it possible to obtain barium titanyl oxalate with little variation in the Ba / Ti molar ratio over the entire particle size, and (2) the particle size is small by using the barium titanyl oxalate thus obtained. Nevertheless, since barium titanate having high crystallinity can be obtained, it has been found that a dielectric ceramic material having excellent performance can be provided. Furthermore, the conventional barium titanate obtained by calcining barium titanyl oxalate is easily obtained as a tarako-shaped bulk as a result of the particles being joined together by sintering or the like after firing. According to the present invention, since each particle is easily obtained in a dispersed shape, it has been found that the particles are excellent in dispersibility with fewer coarse particles bonded by sintering than the conventional particles, and the present invention is completed. It came to let you.

即ち、本発明(1)はシュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)と、塩化バリウム水溶液(B1液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法を提供するものである。   That is, in the present invention (1), while supplying an aqueous solution (A1 solution) obtained by mixing oxalic acid and titanium tetrachloride with water and an aqueous barium chloride solution (B1 solution) to the reaction vessel, the reaction solution is added to the reaction vessel. The present invention provides a method for producing barium titanyl oxalate, wherein the production reaction of barium titanyl oxalate is performed while discharging from the reaction vessel.

また、本発明(2)は、シュウ酸水溶液(A2液)と、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液(B2液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法を提供するものである。   In the present invention (2), an oxalic acid aqueous solution (A2 solution) and an aqueous solution (B2 solution) obtained by mixing titanium tetrachloride and barium chloride with water are supplied to the reaction vessel while the reaction solution is supplied. The present invention provides a method for producing barium titanyl oxalate, characterized by carrying out a reaction for producing barium titanyl oxalate while discharging from the reaction vessel.

また、本発明(3)は、シュウ酸水溶液(A3液)と、塩化バリウム水溶液(B3液)と、四塩化チタンを水に混合して得られる水溶液(C3液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法を提供するものである。   Moreover, this invention (3) supplies the reaction container with the oxalic acid aqueous solution (A3 liquid), the barium chloride aqueous solution (B3 liquid), and the aqueous solution (C3 liquid) obtained by mixing titanium tetrachloride with water. However, the present invention provides a method for producing barium titanyl oxalate characterized in that a reaction for producing barium titanyl oxalate is carried out while discharging the reaction solution from the reaction vessel.

また、本発明(4)は、前記本発明(1)〜(3)いずれかのシュウ酸バリウムチタニルの製造方法を行い得られたシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法を提供するものである。   In addition, the present invention (4) is characterized by calcining barium titanyl oxalate obtained by performing the method for producing barium titanyl oxalate according to any one of the present inventions (1) to (3). A manufacturing method is provided.

本発明によれば、全粒径に亘ってBa/Tiモル比のバラツキが小さいシュウ酸バリウムチタニルを提供することができる。そして、このようなシュウ酸バリウムチタニルを用いることにより、結晶性が高く、優れた性能を有する誘電体セラミック材料を提供できる。   According to the present invention, it is possible to provide barium titanyl oxalate having a small variation in the Ba / Ti molar ratio over the entire particle diameter. By using such barium titanyl oxalate, a dielectric ceramic material having high crystallinity and excellent performance can be provided.

オーバーフロー方式の反応容器の模式的な断面図である。It is typical sectional drawing of the reaction container of an overflow system. シュウ酸バリウムチタニルの粒径と、Ba/Tiモル比の関係を示す模式的なグラフである。It is a typical graph which shows the particle size of barium titanyl oxalate, and the relationship of Ba / Ti molar ratio. 実施例1で得られたチタン酸バリウムのSEM写真である。2 is a SEM photograph of barium titanate obtained in Example 1. 実施例2で得られたチタン酸バリウムのSEM写真である。2 is a SEM photograph of barium titanate obtained in Example 2. 実施例3で得られたチタン酸バリウムのSEM写真である。4 is a SEM photograph of barium titanate obtained in Example 3. 比較例1で得られたチタン酸バリウムのSEM写真である。2 is a SEM photograph of barium titanate obtained in Comparative Example 1.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明のシュウ酸バリウムチタニルの製造方法は、シュウ酸バリウムチタニルの生成反応の反応原料であるシュウ酸(H)、塩化バリウム(BaCl)及び四塩化チタン(TiCl)の水溶液を、反応容器に供給しつつ、反応液を反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うシュウ酸バリウムチタニルの製造方法である。そして、本発明のシュウ酸バリウムチタニルの製造方法には、反応原料水溶液の種類により、以下の形態がある。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
Method for producing a barium titanyl oxalate of the present invention include oxalic acid (H 2 C 2 O 4) and the reaction raw material of the production reaction of barium titanyl oxalate, barium chloride (BaCl 2) and titanium tetrachloride (TiCl 4) This is a method for producing barium titanyl oxalate, in which an aqueous solution is supplied to a reaction vessel and a reaction solution is discharged from the reaction vessel while a barium titanyl oxalate production reaction is performed. And the manufacturing method of the barium titanyl oxalate of this invention has the following forms according to the kind of reaction raw material aqueous solution.

なお、本発明において、反応液とは、反応原料水溶液が供給された反応容器内の液であり、シュウ酸バリウムチタニルの生成反応が起こっている液であり、生成したシュウ酸バリウムチタニルの沈澱物を含有する液である。   In the present invention, the reaction liquid is a liquid in a reaction vessel to which an aqueous reaction raw material solution is supplied, and is a liquid in which a barium titanyl oxalate production reaction occurs, and a precipitate of the generated barium titanyl oxalate. It is a liquid containing.

本発明の第一の形態のシュウ酸バリウムチタニルの製造方法は、シュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)と、塩化バリウム水溶液(B1液)と、を反応容器に供給しつつ、反応液を反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うシュウ酸バリウムチタニルの製造方法である。   The method for producing barium titanyl oxalate according to the first aspect of the present invention comprises a reaction vessel comprising an aqueous solution (A1 solution) obtained by mixing oxalic acid and titanium tetrachloride with water and an aqueous barium chloride solution (B1 solution). The barium titanyl oxalate production method in which barium titanyl oxalate is generated while the reaction solution is discharged from the reaction vessel while being supplied to the reactor.

本発明の第二の形態のシュウ酸バリウムチタニルの製造方法は、シュウ酸水溶液(A2液)と、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液(B2液)と、を反応容器に供給しつつ、反応液を反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うシュウ酸バリウムチタニルの製造方法である。   The method for producing barium titanyl oxalate according to the second aspect of the present invention comprises an aqueous oxalic acid solution (A2 solution) and an aqueous solution (B2 solution) obtained by mixing titanium tetrachloride and barium chloride with water. The barium titanyl oxalate production method in which barium titanyl oxalate is generated while the reaction solution is discharged from the reaction vessel while being supplied to the reactor.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法は、シュウ酸水溶液(A3液)と、塩化バリウム水溶液(B3液)と、四塩化チタンを水に混合して得られる水溶液(C3液)と、を反応容器に供給しつつ、反応液を反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うシュウ酸バリウムチタニルの製造方法である。   The method for producing barium titanyl oxalate according to the third aspect of the present invention is an aqueous solution (C3 solution) obtained by mixing an aqueous oxalic acid solution (A3 solution), an aqueous barium chloride solution (B3 solution), and titanium tetrachloride with water. And barium titanyl oxalate for producing barium titanyl oxalate while discharging the reaction solution from the reaction vessel.

つまり、本発明の第一の形態のシュウ酸バリウムチタニルの製造方法は、反応原料水溶液として、シュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)と、塩化バリウム水溶液(B1液)と、を用いる形態である。   That is, in the method for producing barium titanyl oxalate according to the first aspect of the present invention, an aqueous solution (A1 solution) obtained by mixing oxalic acid and titanium tetrachloride with water as an aqueous reaction raw material solution, and an aqueous barium chloride solution (B1). Liquid).

本発明の第一の形態のシュウ酸バリウムチタニルの製造方法に係るA1液は、シュウ酸及び四塩化チタンを水に混合して得られる水溶液であるが、例えば、先ず四塩化チタンを水に混合し、次いで得られた水溶液にシュウ酸を混合することや、シュウ酸水溶液に四塩化チタンを混合することにより調製される。A1液中のTi元素に対するシュウ酸イオンのモル比(シュウ酸イオンのモル数/Ti元素のモル数)は、2.0〜3.8、好ましくは2.8〜3.8、更に好ましくは3.0〜3.3である。A1液中のTi元素に対するシュウ酸イオンのモル比が上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得易くなる。また、A1液中のTi元素の濃度は、特に制限されないが、好ましくは0.04〜3.0mol/L、特に好ましくは0.2〜0.6mol/Lである。A1液中のシュウ酸イオンの濃度は、特に制限されないが、好ましくは0.1〜7.0mol/L、特に好ましくは0.6〜1.4mol/Lである。   The A1 liquid according to the method for producing barium titanyl oxalate according to the first aspect of the present invention is an aqueous solution obtained by mixing oxalic acid and titanium tetrachloride with water. For example, first, titanium tetrachloride is mixed with water. Then, oxalic acid is mixed with the obtained aqueous solution, or titanium tetrachloride is mixed with the oxalic acid aqueous solution. The molar ratio of oxalate ions to Ti elements in the A1 solution (number of moles of oxalate ions / number of moles of Ti elements) is 2.0 to 3.8, preferably 2.8 to 3.8, more preferably It is 3.0-3.3. When the molar ratio of the oxalate ion to the Ti element in the A1 solution is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 can be easily obtained. The concentration of Ti element in the A1 solution is not particularly limited, but is preferably 0.04 to 3.0 mol / L, particularly preferably 0.2 to 0.6 mol / L. The concentration of oxalate ions in the A1 solution is not particularly limited, but is preferably 0.1 to 7.0 mol / L, particularly preferably 0.6 to 1.4 mol / L.

本発明の第一の形態のシュウ酸バリウムチタニルの製造方法に係るB1液は、塩化バリウム水溶液である。B1液中のBa元素の濃度は、特に制限されないが、好ましくは0.1〜6.5mol/L、特に好ましくは0.5〜1.3mol/Lである。   B1 liquid which concerns on the manufacturing method of the barium titanyl oxalate of the 1st form of this invention is barium chloride aqueous solution. The concentration of the Ba element in the B1 solution is not particularly limited, but is preferably 0.1 to 6.5 mol / L, and particularly preferably 0.5 to 1.3 mol / L.

本発明の第一の形態のシュウ酸バリウムチタニルの製造方法では、A1液及びB1液を反応容器に供給することにより、反応容器内で、シュウ酸バリウムチタニルの生成反応を行う。   In the method for producing barium titanyl oxalate according to the first aspect of the present invention, the production reaction of barium titanyl oxalate is performed in the reaction vessel by supplying the A1 solution and the B1 solution to the reaction vessel.

このとき、反応容器へのTi元素の供給速度に対するBa元素の供給速度の比(Ba元素の供給速度/Ti元素の供給速度)は、0.5〜3.0、好ましくは1.0〜1.5である。反応容器へのTi元素の供給速度に対するBa元素の供給速度の比が、上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得ることができる。   At this time, the ratio of the Ba element supply rate to the Ti element supply rate to the reaction vessel (Ba element supply rate / Ti element supply rate) is 0.5 to 3.0, preferably 1.0 to 1. .5. When the ratio of the supply rate of Ba element to the supply rate of Ti element to the reaction vessel is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 can be obtained. it can.

本発明の第一の形態のシュウ酸バリウムチタニルの製造方法では、A1液中のTi元素の濃度、B1液中のBa元素の濃度、A1液の供給速度(L/時間)及びB1液の供給速度(L/時間)を適宜選択することにより、反応容器へのTi元素の供給速度に対するBa元素の供給速度の比を調節することができる。   In the method for producing barium titanyl oxalate according to the first aspect of the present invention, the concentration of Ti element in the A1 solution, the concentration of Ba element in the B1 solution, the supply rate of the A1 solution (L / hour), and the supply of the B1 solution By appropriately selecting the rate (L / hour), the ratio of the supply rate of Ba element to the supply rate of Ti element to the reaction vessel can be adjusted.

なお、本発明において、反応容器への、Ti元素の供給速度とは、単位時間当たりのTi元素の供給モル数(モル/時間)を指し、また、Ba元素の供給速度とは、単位時間当たりのBa元素の供給モル数(モル/時間)を指し、シュウ酸イオンの供給速度とは、単位時間当たりのシュウ酸イオンの供給モル数(モル/時間)を指す。   In the present invention, the supply rate of Ti element to the reaction vessel refers to the number of moles of Ti element supplied per unit time (mol / hour), and the supply rate of Ba element refers to the supply rate per unit time. The Ba element supply mole number (mole / hour) is referred to, and the oxalate ion supply rate refers to the oxalate ion supply mole number per unit time (mole / hour).

そして、本発明の第一の形態のシュウ酸バリウムチタニルの製造方法では、A1液及びB1液を反応容器に供給しつつ、反応容器内で生成したシュウ酸バリウムチタニルの沈澱物を含有する反応液を、反応容器から排出する。このとき、反応容器に供給するA1液及びB1液の合計量と、反応容器から排出する反応液の量を、同量にすることが、安定した反応が行える点で好ましい。例えば、反応容器に、A1液をa1(L/時間)、B1液をb1(L/時間)の供給速度で供給しつつ、且つ反応容器から、反応液をa1+b1(L/時間)の排出速度で排出することが好ましい。   And in the manufacturing method of the barium titanyl oxalate of the 1st form of this invention, reaction liquid containing the deposit of barium titanyl oxalate produced | generated within reaction container, supplying A1 liquid and B1 liquid to reaction container Is discharged from the reaction vessel. At this time, it is preferable that the total amount of the A1 liquid and the B1 liquid supplied to the reaction container and the amount of the reaction liquid discharged from the reaction container are the same in that stable reaction can be performed. For example, while supplying A1 liquid to the reaction container at a supply rate of a1 (L / hour) and B1 liquid at a supply speed of b1 (L / hour), the reaction liquid is discharged from the reaction container at a1 + b1 (L / hour). Is preferably discharged.

また、本発明の第二の形態のシュウ酸バリウムチタニルの製造方法は、反応原料水溶液として、シュウ酸水溶液(A2液)と、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液(B2液)と、を用いる形態である。   Moreover, the manufacturing method of the barium titanyl oxalate of the 2nd form of this invention is aqueous solution (B2) obtained by mixing oxalic acid aqueous solution (A2 liquid), titanium tetrachloride, and barium chloride with water as reaction raw material aqueous solution. Liquid).

本発明の第二の形態のシュウ酸バリウムチタニルの製造方法に係るA2液は、シュウ酸水溶液である。A2液中のシュウ酸イオンの濃度は、特に制限されないが、好ましくは0.1〜7.0mol/L、特に好ましくは0.6〜1.4mol/Lである。   The A2 liquid which concerns on the manufacturing method of the barium titanyl oxalate of the 2nd form of this invention is oxalic acid aqueous solution. The concentration of oxalate ions in the A2 solution is not particularly limited, but is preferably 0.1 to 7.0 mol / L, particularly preferably 0.6 to 1.4 mol / L.

本発明の第二の形態のシュウ酸バリウムチタニルの製造方法に係るB2液は、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液であるが、例えば、先ず四塩化チタンを水に混合し、次いで得られた水溶液に塩化バリウムを混合することや、塩化バリウム水溶液に四塩化チタンを混合することにより調製される。B2液中のTi元素に対するBa元素のモル比(Ba元素のモル数/Ti元素のモル数)は、0.5〜3.0、好ましくは1.0〜1.5である。B2液中のTi元素に対するBa元素のモル比が上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得ることができる。また、B2液中のTi元素の濃度は、特に制限されないが、好ましくは0.04〜4.0mol/L、特に好ましくは0.2〜0.8mol/Lである。B2液中のBa元素の濃度は、特に制限されないが、好ましくは0.08〜6.5mol/L、特に好ましくは0.4〜1.3mol/Lである。   The B2 liquid according to the method for producing barium titanyl oxalate according to the second aspect of the present invention is an aqueous solution obtained by mixing titanium tetrachloride and barium chloride with water. For example, first, titanium tetrachloride is mixed with water. Then, it is prepared by mixing barium chloride with the obtained aqueous solution or mixing titanium tetrachloride with the barium chloride aqueous solution. The molar ratio of Ba element to Ti element in the B2 liquid (number of moles of Ba element / number of moles of Ti element) is 0.5 to 3.0, preferably 1.0 to 1.5. When the molar ratio of the Ba element to the Ti element in the B2 liquid is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 can be obtained. Further, the concentration of Ti element in the B2 liquid is not particularly limited, but is preferably 0.04 to 4.0 mol / L, particularly preferably 0.2 to 0.8 mol / L. The concentration of the Ba element in the B2 solution is not particularly limited, but is preferably 0.08 to 6.5 mol / L, particularly preferably 0.4 to 1.3 mol / L.

本発明の第二の形態のシュウ酸バリウムチタニルの製造方法では、A2液及びB2液を反応容器に供給することにより、反応容器内で、シュウ酸バリウムチタニルの生成反応を行う。   In the method for producing barium titanyl oxalate according to the second aspect of the present invention, the production reaction of barium titanyl oxalate is performed in the reaction vessel by supplying the A2 solution and the B2 solution to the reaction vessel.

このとき、反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比(シュウ酸イオンの供給速度/Ti元素の供給速度)は、2.0〜3.8、好ましくは2.8〜3.8、特に好ましくは3.0〜3.3である。反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比が、上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得ることができる。   At this time, the ratio of the oxalate ion supply rate to the Ti element supply rate to the reaction vessel (oxalate ion supply rate / Ti element supply rate) is 2.0 to 3.8, preferably 2.8. ˜3.8, particularly preferably 3.0 to 3.3. When the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 is obtained. Can do.

本発明の第二の形態のシュウ酸バリウムチタニルの製造方法では、A2液中のシュウ酸イオンの濃度、B2液中のTi元素の濃度、A2液の供給速度(L/時間)及びB2液の供給速度(L/時間)を適宜選択することにより、反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比を調節することができる。   In the method for producing barium titanyl oxalate according to the second aspect of the present invention, the concentration of oxalate ions in the A2 solution, the concentration of Ti element in the B2 solution, the supply rate (L / hour) of the A2 solution, and the B2 solution By appropriately selecting the supply rate (L / hour), the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel can be adjusted.

そして、本発明の第二の形態のシュウ酸バリウムチタニルの製造方法では、A2液及びB2液を反応容器に供給しつつ、反応容器内で生成したシュウ酸バリウムチタニルの沈澱物を含有する反応液を、反応容器から排出する。このとき、反応容器に供給するA2液及びB2液の合計量と、反応容器から排出する反応液の量を、同量にすることが、安定な反応が行える点で好ましい。例えば、反応容器に、A2液をa2(L/時間)、B2液をb2(L/時間)の供給速度で供給しつつ、且つ反応容器から、反応液をa2+b2(L/時間)の排出速度で排出することが好ましい。   And in the manufacturing method of the barium titanyl oxalate of the 2nd form of this invention, reaction liquid containing the precipitate of barium titanyl oxalate produced | generated within reaction container, supplying A2 liquid and B2 liquid to reaction container Is discharged from the reaction vessel. At this time, it is preferable that the total amount of the liquid A2 and the liquid B2 supplied to the reaction vessel and the amount of the reaction solution discharged from the reaction vessel are the same in that a stable reaction can be performed. For example, while supplying A2 liquid to the reaction container at a supply rate of a2 (L / hour) and B2 liquid at a supply speed of b2 (L / hour), the reaction liquid is discharged from the reaction container at a2 + b2 (L / hour). Is preferably discharged.

また、本発明の第三の形態のシュウ酸バリウムチタニルの製造方法は、反応原料水溶液として、シュウ酸水溶液(A3液)と、塩化バリウム水溶液(B3液)と、四塩化チタンを水に混合して得られる水溶液(C3液)と、を用いる形態である。   Moreover, the manufacturing method of the barium titanyl oxalate of the 3rd form of this invention mixes oxalic acid aqueous solution (A3 liquid), barium chloride aqueous solution (B3 liquid), and titanium tetrachloride as water as reaction raw material aqueous solution. An aqueous solution (C3 solution) obtained in this way is used.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法に係るA3液は、シュウ酸水溶液である。A3液中のシュウ酸イオンの濃度は、特に制限されないが、好ましくは0.1〜7.0mol/L、特に好ましくは0.6〜1.4mol/Lである。   A3 liquid which concerns on the manufacturing method of the barium titanyl oxalate of the 3rd form of this invention is oxalic acid aqueous solution. The concentration of the oxalate ion in the A3 solution is not particularly limited, but is preferably 0.1 to 7.0 mol / L, particularly preferably 0.6 to 1.4 mol / L.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法に係るB3液は、塩化バリウム水溶液である。B3液中のBa元素の濃度は、特に制限されないが、好ましくは0.1〜6.5mol/L、特に好ましくは0.5〜1.3mol/Lである。   B3 liquid which concerns on the manufacturing method of the barium titanyl oxalate of the 3rd form of this invention is barium chloride aqueous solution. The concentration of the Ba element in the B3 solution is not particularly limited, but is preferably 0.1 to 6.5 mol / L, and particularly preferably 0.5 to 1.3 mol / L.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法に係るC3液は、四塩化チタンを水に混合して得られる水溶液である。C3液中のTi元素の濃度は、特に制限されないが、好ましくは0.04〜6.0mol/L、特に好ましくは0.2〜3.0mol/Lである。   C3 liquid which concerns on the manufacturing method of the barium titanyl oxalate of the 3rd form of this invention is aqueous solution obtained by mixing titanium tetrachloride with water. The concentration of the Ti element in the C3 solution is not particularly limited, but is preferably 0.04 to 6.0 mol / L, particularly preferably 0.2 to 3.0 mol / L.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法では、A3液、B3液及びC3液を反応容器に供給することにより、反応容器内で、シュウ酸バリウムチタニルの生成反応を行う。   In the method for producing barium titanyl oxalate according to the third aspect of the present invention, the production reaction of barium titanyl oxalate is performed in the reaction vessel by supplying the A3 solution, the B3 solution and the C3 solution to the reaction vessel.

このとき、反応容器へのTi元素の供給速度に対するBa元素の供給速度の比(Ba元素の供給速度/Ti元素の供給速度)は、0.5〜3.0、好ましくは1.0〜1.5である。反応容器へのTi元素の供給速度に対するBa元素の供給速度の比が、上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得ることができる。また、反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比(シュウ酸イオンの供給速度/Ti元素の供給速度)は、2.0〜3.8、好ましくは2.8〜3.8である。反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比が、上記範囲にあることにより、Ba/Tiモル比が0.998〜1.002の略1のチタン酸バリウムを得ることができる。   At this time, the ratio of the Ba element supply rate to the Ti element supply rate to the reaction vessel (Ba element supply rate / Ti element supply rate) is 0.5 to 3.0, preferably 1.0 to 1. .5. When the ratio of the supply rate of Ba element to the supply rate of Ti element to the reaction vessel is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 can be obtained. it can. The ratio of the oxalate ion supply rate to the Ti element supply rate to the reaction vessel (oxalate ion supply rate / Ti element supply rate) is 2.0 to 3.8, preferably 2.8 to 2.8 to 3.8. 3.8. When the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel is in the above range, approximately 1 barium titanate having a Ba / Ti molar ratio of 0.998 to 1.002 is obtained. Can do.

本発明の第三の形態のシュウ酸バリウムチタニルの製造方法では、A3液中のシュウ酸イオンの濃度、B3液中のBa元素の濃度、C3液中のTi元素の濃度、A3液の供給速度(L/時間)、B3液の供給速度(L/時間)及びC3液の供給速度(L/時間)を適宜選択することにより、反応容器へのTi元素の供給速度に対するBa元素の供給速度の比及び反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比を調節することができる。   In the method for producing barium titanyl oxalate according to the third aspect of the present invention, the concentration of oxalate ions in the A3 solution, the concentration of the Ba element in the B3 solution, the concentration of the Ti element in the C3 solution, and the supply rate of the A3 solution (L / hour), B3 liquid supply speed (L / hour) and C3 liquid supply speed (L / hour) are appropriately selected, so that the supply speed of the Ba element with respect to the Ti element supply speed to the reaction vessel The ratio and the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel can be adjusted.

そして、本発明の第三の形態のシュウ酸バリウムチタニルの製造方法では、A3液、B3液及びC3液を反応容器に供給しつつ、反応液を反応容器から排出する。このとき、反応容器に供給するA3液、B3液及びC3液の合計量と、反応容器から排出する反応液の量を、同量にすることが好ましい。例えば、反応容器に、A3液をa3(L/時間)、B3液をb3(L/時間)、C3液をc3(L/時間)の供給速度で供給しつつ、且つ反応容器から、反応液をa3+b3+c3(L/時間)の排出速度で排出することが好ましい。   And in the manufacturing method of the barium titanyl oxalate of the 3rd form of this invention, a reaction liquid is discharged | emitted from a reaction container, supplying A3 liquid, B3 liquid, and C3 liquid to a reaction container. At this time, it is preferable that the total amount of the A3 liquid, the B3 liquid, and the C3 liquid supplied to the reaction container is the same as the amount of the reaction liquid discharged from the reaction container. For example, while supplying A3 liquid at a supply speed of a3 (L / hour), B3 liquid at b3 (L / hour), and C3 liquid at c3 (L / hour), the reaction liquid is supplied from the reaction container to the reaction container. Is preferably discharged at a discharge rate of a3 + b3 + c3 (L / hour).

本発明のシュウ酸バリウムチタニルの製造方法を、例えば、図1で示すオーバーフロー方式の反応容器を用いて行うことができる。図1は、オーバーフロー方式の反応容器の模式的な断面図である。図1中、オーバーフロー方式の反応容器1は、反応容器の側壁上部に取り付けられているオーバーフロー管2を有する。そして、オーバーフロー方式の反応容器1では、オーバーフロー管2が反応液の排出口となるため、反応液3の液面4の高さは、常に、オーバーフロー管2の取り付け位置の高さとなり、反応原料水溶液を供給した分だけ、反応液3がオーバーフロー管2からオーバーフローして、オーバーフロー方式の反応容器1から排出される。つまり、オーバーフロー方式の反応容器1では、反応容器への反応原料水溶液の供給量と、反応容器からの反応液の排出量を、常に同量にすることができる。よって、オーバーフロー方式の反応容器を用いれば、反応原料水溶液を反応容器に供給しつつ、反応液を反応容器から排出することができる。なお、図1では、オーバーフロー方式の反応容器1は、実際には、他に、例えば、撹拌装置、加熱装置、反応原料の供給管等を有するが、説明の都合上、反応容器の輪郭のみ記載し、他の記載を省略した。   The method for producing barium titanyl oxalate of the present invention can be carried out, for example, using an overflow type reaction vessel shown in FIG. FIG. 1 is a schematic cross-sectional view of an overflow type reaction vessel. In FIG. 1, an overflow type reaction vessel 1 has an overflow pipe 2 attached to the upper part of the side wall of the reaction vessel. In the overflow type reaction vessel 1, since the overflow pipe 2 serves as a discharge port for the reaction liquid, the height of the liquid surface 4 of the reaction liquid 3 is always the height of the position where the overflow pipe 2 is attached, The reaction solution 3 overflows from the overflow pipe 2 and is discharged from the overflow type reaction vessel 1 by the amount of the aqueous solution supplied. That is, in the overflow type reaction vessel 1, the supply amount of the reaction raw material aqueous solution to the reaction vessel and the discharge amount of the reaction solution from the reaction vessel can always be the same amount. Therefore, if an overflow type reaction vessel is used, the reaction solution can be discharged from the reaction vessel while supplying the reaction raw material aqueous solution to the reaction vessel. In FIG. 1, the overflow type reaction vessel 1 actually has, for example, a stirring device, a heating device, a reaction raw material supply pipe, etc., but only the outline of the reaction vessel is shown for convenience of explanation. Other descriptions are omitted.

本発明のシュウ酸バリウムチタニルの製造方法を行うための反応容器は、オーバーフロー方式の反応容器に限定されず、他には、例えば、撹拌装置が内部に設置され、反応原料水溶液の供給量が調節できるポンプ等が付設されている供給管及び反応液の排出量が調節できる弁等が付設されている排出管が取り付けられている密閉式反応容器或いは撹拌装置が内部に設置され、反応原料水溶液の供給量が調節できるポンプ等が付設されている供給管及び反応液からポンプ等で一定速度で排出させる排出管が取り付けられている密閉式反応容器等が挙げられる。   The reaction vessel for carrying out the method for producing barium titanyl oxalate according to the present invention is not limited to the overflow type reaction vessel, but, for example, a stirring device is installed inside, and the supply amount of the reaction raw material aqueous solution is adjusted. A sealed reaction vessel or a stirring device equipped with a supply pipe equipped with a pump and the like and a discharge pipe fitted with a valve capable of adjusting the discharge amount of the reaction solution is installed inside, and the reaction raw material aqueous solution Examples thereof include a sealed reaction vessel equipped with a supply pipe provided with a pump capable of adjusting the supply amount and a discharge pipe for discharging the reaction liquid at a constant speed with a pump.

本発明のシュウ酸バリウムチタニルの製造方法において、反応液の温度、つまり、反応温度は、50〜90℃、好ましくは50〜70℃である。   In the method for producing barium titanyl oxalate of the present invention, the temperature of the reaction solution, that is, the reaction temperature is 50 to 90 ° C, preferably 50 to 70 ° C.

本発明のシュウ酸バリウムチタニルの製造方法において、生成したシュウ酸バリウムチタニルの滞留時間は、好ましくは1〜60分間、特に好ましくは10〜30分間である。生成したシュウ酸バリウムチタニルの滞留時間が上記範囲にあることにより、全粒径に亘ってBa/Tiモル比のバラツキが小さいという効果を工業的に有利に高めることができる。一方、滞留時間が上記範囲未満だと、得られるシュウ酸バリウムチタニルのBa/Tiのモル比の制御が困難になりBa/Tiのモル比が0.998〜1.002の略1のものが得られ難くなる傾向があり、滞留時間が上記範囲を超えると、シュウ酸バリウムチタニルの生成速度が遅くなり、工業的に有利でない。
なお、本発明において、生成したシュウ酸バリウムチタニルの滞留時間とは、反応容器内の反応液の体積(L)を、反応容器からの反応液の排出速度(L/時間)で除した値(反応液の体積/反応液の排出速度)である。
In the method for producing barium titanyl oxalate of the present invention, the residence time of the generated barium titanyl oxalate is preferably 1 to 60 minutes, particularly preferably 10 to 30 minutes. When the residence time of the generated barium titanyl oxalate is within the above range, the effect that the variation in the Ba / Ti molar ratio is small over the entire particle diameter can be advantageously increased industrially. On the other hand, if the residence time is less than the above range, it becomes difficult to control the molar ratio of Ba / Ti in the obtained barium titanyl oxalate, and the molar ratio of Ba / Ti is about 0.998 to 1.002. If the residence time exceeds the above range, the production rate of barium titanyl oxalate becomes slow, which is not industrially advantageous.
In the present invention, the residence time of the generated barium titanyl oxalate is a value obtained by dividing the volume (L) of the reaction solution in the reaction vessel by the discharge rate (L / hour) of the reaction solution from the reaction vessel ( Reaction liquid volume / reaction liquid discharge speed).

本発明のシュウ酸バリウムチタニルの製造方法では、反応容器から排出させた反応液を固液分離して、沈澱物を得、次いで、必要に応じて、洗浄及び乾燥して、シュウ酸バリウムチタニルを得ることができる。また、得られたシュウ酸バリウムチタニルを、必要に応じて粉砕してもよい。   In the method for producing barium titanyl oxalate of the present invention, the reaction solution discharged from the reaction vessel is subjected to solid-liquid separation to obtain a precipitate, and then washed and dried as necessary to obtain barium titanyl oxalate. Obtainable. Moreover, you may grind | pulverize the obtained barium titanyl oxalate as needed.

このようにして、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、全粒径に亘ってBa/Tiモル比のバラツキが小さい。そして、全粒径に亘ってBa/Tiモル比のバラツキが小さいシュウ酸バリウムチタニルを焼成することにより、粒径が小さいにもかかわらず結晶性が高いチタン酸バリウムが得られるので、優れた性能を有する誘電体セラミック材料が得られる。   Thus, the barium titanyl oxalate obtained by carrying out the method for producing barium titanyl oxalate of the present invention has a small variation in the Ba / Ti molar ratio over the entire particle size. And, by firing barium titanyl oxalate with a small variation in the Ba / Ti molar ratio over the entire particle size, barium titanate with high crystallinity can be obtained despite its small particle size, so it has excellent performance A dielectric ceramic material is obtained.

生成するシュウ酸バリウムチタニルの粒径と、Ba/Tiモル比のバラツキの関係について説明する。反応原料の反応により生成したシュウ酸バリウムチタニルを、篩を用いて、例えば、10μm以上50μm未満(第一グループ)、50μm以上90μm未満(第二グループ)、90μm以上130μm未満(第三グループ)、130μm以上170μm未満(第四グループ)、170μm以上210μm未満(第五グループ)の粒径範囲のグループに分ける。次いで、各グループのBa/Tiモル比を求める。次いで、各グループの粒径の中間値をそのグループの粒径として(例えば、第一グループの粒径の中間値は30μm、第二グループの粒径の中間値は70μm、第三グループの粒径の中間値は110μm、第四グループの粒径の中間値は150μm、第五グループの粒径の中間値は190μm)、横軸にプロットし、各グループのBa/Tiモル比を縦軸にプロットして、生成したシュウ酸バリウムチタニルの粒径と、Ba/Tiモル比の関係を示すグラフを作成する。   The relationship between the particle diameter of the generated barium titanyl oxalate and the variation in the Ba / Ti molar ratio will be described. Using a sieve, barium titanyl oxalate produced by reaction of reaction raw materials is, for example, 10 μm or more and less than 50 μm (first group), 50 μm or more and less than 90 μm (second group), 90 μm or more and less than 130 μm (third group), The particle size ranges from 130 μm to less than 170 μm (fourth group) and from 170 μm to less than 210 μm (fifth group). Next, the Ba / Ti molar ratio of each group is determined. Then, the median value of the particle size of each group is used as the particle size of the group (for example, the median value of the particle size of the first group is 30 μm, the median value of the particle size of the second group is 70 μm, the particle size of the third group The median value of the fourth group is 110 μm, the median value of the particle size of the fourth group is 150 μm, the median value of the particle size of the fifth group is 190 μm), the horizontal axis is plotted, and the Ba / Ti molar ratio of each group is plotted on the vertical axis Then, a graph showing the relationship between the particle diameter of the generated barium titanyl oxalate and the Ba / Ti molar ratio is prepared.

図2には、上記のようにして作成されたシュウ酸バリウムチタニルの粒径と、Ba/Tiモル比の関係を示す模式的なグラフを示す。図2中、符号11は、本発明のシュウ酸バリウムチタニルの製造方法により製造されたシュウ酸バリウムチタニルのグラフであり、符号12は、従来のバッチ式のシュウ酸バリウムチタニルの製造方法により製造されたシュウ酸バリウムチタニルのグラフである。図2に示すように、従来の製造方法により製造されたシュウ酸バリウムチタニルは、粒径が小さい程Ba/Tiモル比が小さく、一方、粒径が大きい程Ba/Tiモル比が大きくなっている。それに対して、本発明のシュウ酸バリウムチタニルの製造方法により製造されたシュウ酸バリウムチタニルは、全粒径範囲に亘ってBa/Tiモル比が一定、つまり、全粒径範囲に亘ってBa/Tiモル比のバラツキが小さくなっている。   FIG. 2 is a schematic graph showing the relationship between the particle diameter of barium titanyl oxalate prepared as described above and the Ba / Ti molar ratio. In FIG. 2, symbol 11 is a graph of barium titanyl oxalate produced by the method for producing barium titanyl oxalate according to the present invention, and symbol 12 is produced by a conventional batch-type method for producing barium titanyl oxalate. 1 is a graph of barium titanyl oxalate. As shown in FIG. 2, the barium titanyl oxalate produced by the conventional production method has a smaller Ba / Ti molar ratio as the particle size is smaller, while a larger Ba / Ti molar ratio as the particle size is larger. Yes. In contrast, the barium titanyl oxalate produced by the method for producing barium titanyl oxalate of the present invention has a constant Ba / Ti molar ratio over the entire particle size range, that is, Ba / Ti over the entire particle size range. The variation in Ti molar ratio is small.

また、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルのバルクのBa/Tiモル比は、0.998〜1.002であり、より1に近似するものがより好ましい。シュウ酸バリウムチタニルのバルクのBa/Tiモル比とは、シュウ酸バリウムチタニル全体のBa/Tiモル比の平均値を指す。つまり、生成したシュウ酸バリウムチタニルの篩分けをせずに、そのまま分析して得られるBa/Tiモル比である。   The bulk Ba / Ti molar ratio of barium titanyl oxalate obtained by carrying out the method for producing barium titanyl oxalate of the present invention is 0.998 to 1.002, more preferably closer to 1. The bulk Ba / Ti molar ratio of barium titanyl oxalate refers to the average value of the Ba / Ti molar ratio of the entire barium titanyl oxalate. That is, it is the Ba / Ti molar ratio obtained by directly analyzing the generated barium titanyl oxalate without sieving.

本発明のチタン酸バリウムの製造方法は、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルを焼成することにより、チタン酸バリウムを得るチタン酸バリウムの製造方法である。なお、本発明のシュウ酸バリウムチタニルの製造方法を行い、シュウ酸バリウムチタニルを得る方法については、前述のとおりである。   The method for producing barium titanate of the present invention is a method for producing barium titanate to obtain barium titanate by firing barium titanyl oxalate obtained by performing the method for producing barium titanyl oxalate of the present invention. The method for producing barium titanyl oxalate of the present invention to obtain barium titanyl oxalate is as described above.

すなわち、本発明のチタン酸バリウムの製造方法は、シュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)と、塩化バリウム水溶液(B1液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行い得られるシュウ酸バリウムチタニルを、焼成することにより、チタン酸バリウムを得るチタン酸バリウムの製造方法である。
また、本発明のチタン酸バリウムの製造方法は、シュウ酸水溶液(A2液)と、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液(B2液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行い得られるシュウ酸バリウムチタニルを、焼成することにより、チタン酸バリウムを得るチタン酸バリウムの製造方法である。
また、本発明のチタン酸バリウムの製造方法は、シュウ酸水溶液(A3液)と、塩化バリウム水溶液(B3液)と、四塩化チタンを水に混合して得られる水溶液(C3液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行い得られるシュウ酸バリウムチタニルを、焼成することにより、チタン酸バリウムを得るチタン酸バリウムの製造方法である。
That is, in the method for producing barium titanate of the present invention, an aqueous solution (A1 solution) obtained by mixing oxalic acid and titanium tetrachloride with water and an aqueous barium chloride solution (B1 solution) are supplied to the reaction vessel. This is a method for producing barium titanate to obtain barium titanate by firing barium titanyl oxalate obtained by performing a reaction for producing barium titanyl oxalate while discharging the reaction liquid from the reaction vessel.
Moreover, the manufacturing method of the barium titanate of this invention is supplying the reaction container with the oxalic acid aqueous solution (A2 liquid) and the aqueous solution (B2 liquid) obtained by mixing titanium tetrachloride and barium chloride with water. This is a method for producing barium titanate to obtain barium titanate by firing barium titanyl oxalate obtained by performing a reaction for producing barium titanyl oxalate while discharging the reaction liquid from the reaction vessel.
The method for producing barium titanate of the present invention comprises an oxalic acid aqueous solution (A3 solution), a barium chloride aqueous solution (B3 solution), and an aqueous solution (C3 solution) obtained by mixing titanium tetrachloride with water. Production of barium titanate to obtain barium titanate by firing barium titanyl oxalate obtained by performing a reaction for producing barium titanyl oxalate while supplying the reaction liquid to the reaction container and discharging the reaction liquid from the reaction container. Is the method.

最終製品に含まれるシュウ酸由来の有機物は、材料の誘電特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるので好ましくい。従って、本発明では焼成によりシュウ酸バリウムチタニルを熱分解して目的とするチタン酸バリウムを得ると共に、シュウ酸由来の有機物を十分除去する必要がある。   Organic substances derived from oxalic acid contained in the final product are preferable because they deteriorate the dielectric properties of the material and cause unstable behavior in the thermal process for ceramization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by firing to obtain the target barium titanate and to sufficiently remove organic substances derived from oxalic acid.

本発明のチタン酸バリウムの製造方法において、シュウ酸バリウムチタニルを焼成する際の焼成温度は、600〜1300℃、好ましくは700〜1200℃である。シュウ酸バリウムチタニルを焼成する際の焼成温度が上記範囲にあることにより、粒径のバラツキが小さく、高い結晶性を有したX線回折分析において単一相のチタン酸バリウムとなる。一方、焼成温度が上記範囲未満だと、X線回折分析において単一相のチタン酸バリウムが得られ難く、また、上記範囲を超えると、得られるチタン酸バリウムの粒径のバラツキが大きくなる傾向があり好ましくない。
また、焼成時間は、好ましくは2〜30時間、特に好ましくは5〜27時間である。また、焼成雰囲気は、特に制限されず、不活性ガス雰囲気下、真空雰囲気下、酸化性ガス雰囲気下、大気中のいずれであってもよく、或いは水蒸気を導入しながら前記雰囲気中で焼成を行ってもよい。
In the method for producing barium titanate of the present invention, the firing temperature when firing barium titanyl oxalate is 600 to 1300 ° C, preferably 700 to 1200 ° C. When the firing temperature at the time of firing barium titanyl oxalate is in the above range, the variation in particle size is small, and single-phase barium titanate is obtained in X-ray diffraction analysis having high crystallinity. On the other hand, if the firing temperature is less than the above range, it is difficult to obtain single-phase barium titanate in X-ray diffraction analysis, and if it exceeds the above range, the particle size variation of the obtained barium titanate tends to increase. Is not preferable.
The firing time is preferably 2 to 30 hours, particularly preferably 5 to 27 hours. The firing atmosphere is not particularly limited, and may be any of an inert gas atmosphere, a vacuum atmosphere, an oxidizing gas atmosphere, and the air, or firing is performed in the atmosphere while introducing water vapor. May be.

また、本発明のチタン酸バリウムの製造方法では、シュウ酸バリウムチタニルの焼成を、焼成温度を変えた多段階の焼成で行ってもよい。また、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成や再粉砕を行ってもよい。   In the method for producing barium titanate of the present invention, the barium titanyl oxalate may be fired by multi-stage firing with different firing temperatures. Further, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired or reground.

本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムを、必要に応じて、粉砕又は分級することができる。   The barium titanate obtained by carrying out the method for producing barium titanate of the present invention can be pulverized or classified as necessary.

このようにして、本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムの物性は、Ba/Tiのモル比が0.998〜1.002の略1であり、上述のとおり粒径が小さいものでも、結晶性が高いものである。   Thus, the physical property of barium titanate obtained by carrying out the method for producing barium titanate of the present invention is approximately 1 with a Ba / Ti molar ratio of 0.998 to 1.002. Even if it is small, the crystallinity is high.

更には、従来のシュウ酸バリウムチタニルを焼成して得られるチタン酸バリウムは、焼成後、各粒子が焼結等により接合した粗粒子として得られ易い(図6参照)が、本発明のチタン酸バリウムの製造方法によれば、各粒子が分散した形状で得られ易いため、従来のものに比べ、各粒子が焼結により結合された粗大粒子が少ない分散性にも優れたものになる(図3〜図5参照)。   Furthermore, the barium titanate obtained by firing conventional barium titanyl oxalate is easily obtained as coarse particles in which each particle is joined by sintering or the like after firing (see FIG. 6). According to the method for producing barium, each particle is easily obtained in a dispersed shape. Therefore, compared to the conventional method, the coarse particles in which the particles are bonded by sintering are less dispersible (see FIG. 3 to FIG. 5).

従って、本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムは誘電体セラミックスとして、優れた性能を有する。   Therefore, barium titanate obtained by performing the method for producing barium titanate of the present invention has excellent performance as a dielectric ceramic.

また、本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムには、必要により誘電特性や温度特性を調製する目的で、副成分元素含有化合物を本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムに添加して、副成分元素を含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素を含有する化合物が挙げられる。   In addition, the barium titanate obtained by carrying out the method for producing barium titanate of the present invention is prepared by adding the subcomponent element-containing compound to the method for producing barium titanate of the present invention for the purpose of adjusting dielectric characteristics and temperature characteristics as necessary. In addition to the barium titanate obtained, subcomponent elements can be contained. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Examples include compounds containing elements.

副成分元素含有化合物は、無機物又は有機物のいずれであってもよい。例えば、前記の元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩及びアルコキシド等が挙げられる。副成分元素含有化合物がSi元素を含有する化合物である場合は、酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができる。その添加量や添加化合物の組み合わせは、常法に従って行えばよい。   The subcomponent element-containing compound may be either inorganic or organic. Examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. In the case where the subcomponent element-containing compound is a compound containing Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide or the like. The subcomponent element-containing compounds can be used alone or in combination of two or more. What is necessary is just to perform the combination of the addition amount and an addition compound according to a conventional method.

チタン酸バリウムに副成分元素を含有させるには、例えば、チタン酸バリウムと副成分元素含有化合物を均一混合後、焼成を行えばよい。或いは、シュウ酸バリウムチタニルと副成分元素含有化合物を均一混合後、焼成を行ってもよい。   In order to contain the subcomponent element in the barium titanate, for example, barium titanate and the subcomponent element-containing compound may be uniformly mixed and then fired. Alternatively, baking may be performed after uniformly mixing barium titanyl oxalate and the subcomponent element-containing compound.

本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムを用いて、例えば積層セラミックコンデンサを製造する場合には、先ず、チタン酸バリウムの粉末を、副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行う。これにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得る。該セラミックシートから積層セラミックコンデンサを作製するには、先ず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷する。乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該焼成体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布し焼き付けて、積層セラミックコンデンサが得られる。   For example, when producing a multilayer ceramic capacitor using the barium titanate obtained by the method for producing barium titanate according to the present invention, first, a known addition of barium titanate powder including subcomponent elements is added. A sheet is formed by mixing and dispersing in an appropriate solvent together with a compounding agent such as an agent, an organic binder, a plasticizer, and a dispersing agent. Thereby, the ceramic sheet used for manufacture of a multilayer ceramic capacitor is obtained. In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, an internal electrode forming conductive paste is printed on one surface of the ceramic sheet. After drying, a plurality of the ceramic sheets are laminated and pressed in the thickness direction to obtain a laminated body. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Further, a Ni paste, an Ag paste, a nickel alloy paste, a copper paste, a copper alloy paste or the like is applied to the fired body and baked to obtain a multilayer ceramic capacitor.

また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムの粉末を、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用の誘電体材料として用いることができる。   In addition, the barium titanate powder obtained by the method for producing barium titanate of the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin, and a resin sheet, a resin film, an adhesive, and the like. Then, materials for printed wiring boards and multilayer printed wiring boards, co-materials for suppressing shrinkage differences between internal electrodes and dielectric layers, electrode ceramic circuit boards, glass ceramic circuit boards, circuit peripheral materials, and inorganic EL It can be used as a dielectric material.

また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムは、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いられる。   Further, the barium titanate obtained by the method for producing barium titanate of the present invention is a catalyst used in reactions such as exhaust gas removal and chemical synthesis, and surface modification of printing toner that imparts antistatic and cleaning effects. It is suitably used as a material.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

(実施例1)
水2154gにシュウ酸2水和物250gを加えた水溶液にTiが2.56mol/Lの濃度である四塩化チタン水溶液332gを混合し、シュウ酸が0.79mol/L、Tiが0.26mol/Lであるシュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)を作製した。すなわち、A1液におけるTi元素に対するシュウ酸イオンのモル比は3.1である。また、塩化バリウム195gを水963gに溶解させ、Baが0.80mol/Lである塩化バリウム水溶液(B1液)を作製した。次いで、反応容器に純水を入れ55℃に保持し、攪拌下にA1液及びB1液をそれぞれ0.9L/時間、0.4L/時間の速度で反応容器に供給した。すなわち反応容器へのTi元素の供給速度に対するBa元素の供給速度の比は1.3であり、生成するシュウ酸バリウムチタニルの滞留時間は14分として反応を行った。
反応容器から排出させた反応液から、固液分離して、沈澱物を得、洗浄後、乾燥して、シュウ酸バリウムチタニルを得た。
得られたシュウ酸バリウムチタニルのBa/Tiモル比を測定するために、シュウ酸バリウムチタニルを焼成後、蛍光X線分析を行ったところ、バルクのBa/Tiモル比は1.001であった。
さらに、得られたシュウ酸バリウムチタニルを、篩を用いて、45μm以上75μm未満(第一グループ)、75μm以上100μm未満(第二グループ)、100μm以上150μm未満(第三グループ)、150μm以上(第四グループ)の粒径範囲のグループに分け、バルクのBa/Tiモル比の測定方法と同様の方法で第一グループ、第三グループのBa/Tiモル比を求めた。第一グループ、第三グループのBa/Tiモル比はそれぞれ1.001、1.001であった。
得られたシュウ酸バリウムチタニルのうち、篩分けする前のものを1000℃で21時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムについて、結晶性の指標であるc軸とa軸の長さの比(c軸/a軸比)をXRDによって測定したところ1.011であり、BET法による比表面積を測定したところ1.2m/gであった。また、得られたチタン酸バリウムのSEM写真を図3に示す。
Example 1
An aqueous solution obtained by adding 250 g of oxalic acid dihydrate to 2154 g of water was mixed with 332 g of a titanium tetrachloride aqueous solution having a concentration of Ti of 2.56 mol / L, so that oxalic acid was 0.79 mol / L and Ti was 0.26 mol / L. An aqueous solution (A1 solution) obtained by mixing oxalic acid which is L and titanium tetrachloride with water was prepared. That is, the molar ratio of oxalate ion to Ti element in the A1 solution is 3.1. Further, 195 g of barium chloride was dissolved in 963 g of water to prepare an aqueous barium chloride solution (B1 solution) having Ba of 0.80 mol / L. Next, pure water was added to the reaction vessel and maintained at 55 ° C., and the A1 solution and B1 solution were supplied to the reaction vessel at a rate of 0.9 L / hour and 0.4 L / hour, respectively, with stirring. That is, the ratio of the supply rate of the Ba element to the supply rate of the Ti element to the reaction vessel was 1.3, and the reaction was performed with the residence time of the generated barium titanyl oxalate being 14 minutes.
Solid-liquid separation was performed from the reaction solution discharged from the reaction vessel to obtain a precipitate, which was washed and dried to obtain barium titanyl oxalate.
In order to measure the Ba / Ti molar ratio of the obtained barium titanyl oxalate, the barium titanyl oxalate was calcined and then subjected to fluorescent X-ray analysis. The bulk Ba / Ti molar ratio was 1.001. .
Furthermore, the obtained barium titanyl oxalate was sieved to 45 μm to less than 75 μm (first group), 75 μm to less than 100 μm (second group), 100 μm to less than 150 μm (third group), 150 μm or more (first 4 groups), and the Ba / Ti molar ratios of the first group and the third group were determined in the same manner as the bulk Ba / Ti molar ratio measurement method. The Ba / Ti molar ratios of the first group and the third group were 1.001 and 1.001, respectively.
Of the obtained barium titanyl oxalate, the one before sieving was baked at 1000 ° C. for 21 hours to obtain barium titanate. About the obtained barium titanate, the ratio of the c-axis to a-axis length (c-axis / a-axis ratio), which is an index of crystallinity, was measured by XRD to be 1.011, and the specific surface area by the BET method was It was 1.2 m 2 / g when measured. Moreover, the SEM photograph of the obtained barium titanate is shown in FIG.

(実施例2)
シュウ酸2水和物250gを水2628gに溶解させ、シュウ酸が0.89mol/Lであるシュウ酸水溶液(A2液)を作製した。水963gに塩化バリウム195gを加えた水溶液にTiが2.56mol/Lの濃度である四塩化チタン水溶液を332g混合し、塩化バリウムが0.63mol/L、Tiが0.53mol/Lである塩化バリウム及び四塩化チタンを水に混合して得られる水溶液(B2液)を作製した。すなわち、B2液におけるTi元素に対するBa元素のモル比は1.3である。次いで、反応容器に純水を入れ55℃に保持し、攪拌下にA2液及びB2液をそれぞれ1.0L/時間、0.5L/時間の速度で反応容器に供給した。すなわち反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比は3.1であり、生成するシュウ酸バリウムチタニルの滞留時間は12分として反応を行った。
反応容器から排出させた反応液から、固液分離して、沈澱物を得、洗浄後、乾燥して、シュウ酸バリウムチタニルを得た。
得られたシュウ酸バリウムチタニルを焼成後、蛍光X線分析を行ったところ、バルクのBa/Tiモル比は0.998であった。
更に、得られたシュウ酸バリウムチタニルを、篩を用いて、45μm以上75μm未満(第一グループ)、75μm以上100μm未満(第二グループ)、100μm以上150μm未満(第三グループ)、150μm以上(第四グループ)の粒径範囲のグループに分け、バルクのBa/Tiモル比の測定方法と同様の方法で第一グループ、第三グループのBa/Tiモル比を求めた。第一グループ、第三グループのBa/Tiモル比はそれぞれ0.997、0.998であった。
得られたシュウ酸バリウムチタニルのうち篩分けする前のものを1000℃で21時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムのXRDによるc軸/a軸比が1.010であり、BET法による比表面積が1.5m/gであった。また、得られたチタン酸バリウムのSEM写真を図4に示す。
(Example 2)
250 g of oxalic acid dihydrate was dissolved in 2628 g of water to prepare an aqueous oxalic acid solution (A2 solution) in which oxalic acid was 0.89 mol / L. An aqueous solution obtained by adding 195 g of barium chloride to 963 g of water is mixed with 332 g of a titanium tetrachloride aqueous solution having a concentration of Ti of 2.56 mol / L, and the chloride containing 0.63 mol / L of barium chloride and 0.53 mol / L of Ti. An aqueous solution (B2 solution) obtained by mixing barium and titanium tetrachloride with water was prepared. That is, the molar ratio of Ba element to Ti element in B2 solution is 1.3. Next, pure water was added to the reaction vessel and maintained at 55 ° C., and the A2 solution and B2 solution were supplied to the reaction vessel at a rate of 1.0 L / hour and 0.5 L / hour, respectively, with stirring. That is, the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel was 3.1, and the reaction was performed with the residence time of the generated barium titanyl oxalate being 12 minutes.
Solid-liquid separation was performed from the reaction solution discharged from the reaction vessel to obtain a precipitate, which was washed and dried to obtain barium titanyl oxalate.
When the obtained barium titanyl oxalate was calcined and then subjected to fluorescent X-ray analysis, the bulk Ba / Ti molar ratio was 0.998.
Furthermore, the obtained barium titanyl oxalate was sieved to 45 μm to less than 75 μm (first group), 75 μm to less than 100 μm (second group), 100 μm to less than 150 μm (third group), 150 μm or more (first 4 groups), and the Ba / Ti molar ratios of the first group and the third group were determined in the same manner as the bulk Ba / Ti molar ratio measurement method. The Ba / Ti molar ratios of the first group and the third group were 0.997 and 0.998, respectively.
Of the obtained barium titanyl oxalate, the one before sieving was baked at 1000 ° C. for 21 hours to obtain barium titanate. The c-axis / a-axis ratio by XRD of the obtained barium titanate was 1.010, and the specific surface area by the BET method was 1.5 m 2 / g. Moreover, the SEM photograph of the obtained barium titanate is shown in FIG.

(実施例3)
シュウ酸2水和物250gを水2628gに溶解させ、シュウ酸が0.89mol/Lであるシュウ酸水溶液(A3液)を作製した。塩化バリウム195gを水963gに溶解させ、Baが0.80mol/Lである塩化バリウム水溶液(B3液)を作製した。Tiが2.56mol/Lの濃度である四塩化チタン水溶液(C3液)を332g用意した。次いで、反応容器に純水を入れ55℃に保持し、攪拌下にA3液、B3液及びC3液をそれぞれ1.0L/時間、0.4L/時間、0.1L/時間の速度で反応容器に供給した。すなわち反応容器へのTi元素の供給速度に対するシュウ酸イオンの供給速度の比は3.1であり、Ti元素の供給速度に対するBa元素の供給速度の比は1.3であり、生成するシュウ酸バリウムチタニルの滞留時間は12分として反応を行った。
反応容器から排出させた反応液から固液分離して、沈澱物を得、洗浄後、乾燥して、シュウ酸バリウムチタニルを得た。
得られたシュウ酸バリウムチタニルを焼成後、蛍光X線分析を行ったところ、バルクのBa/Tiモル比は0.999であった。
更に、得られたシュウ酸バリウムチタニルを、篩を用いて、45μm以上75μm未満(第一グループ)、75μm以上100μm未満(第二グループ)、100μm以上150μm未満(第三グループ)、150μm以上(第四グループ)の粒径範囲のグループに分け、バルクのBa/Tiモル比の測定方法と同様の方法で第一グループ、第三グループのBa/Tiモル比を求めた。第一グループ、第三グループのBa/Tiモル比はそれぞれ0.998、0.999であった。
得られたシュウ酸バリウムチタニルのうち篩分けする前のものを1000℃で21時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムのXRDによるc軸/a軸比が1.010であり、BET法による比表面積が1.4m/gであった。また、得られたチタン酸バリウムのSEM写真を図5に示す。
(Example 3)
250 g of oxalic acid dihydrate was dissolved in 2628 g of water to prepare an oxalic acid aqueous solution (A3 solution) having an oxalic acid content of 0.89 mol / L. 195 g of barium chloride was dissolved in 963 g of water to prepare an aqueous barium chloride solution (B3 solution) having Ba of 0.80 mol / L. 332 g of titanium tetrachloride aqueous solution (C3 solution) having a concentration of Ti of 2.56 mol / L was prepared. Next, pure water is added to the reaction vessel and maintained at 55 ° C., and the reaction vessel is stirred at a rate of 1.0 L / hour, 0.4 L / hour, and 0.1 L / hour for the A3 solution, B3 solution, and C3 solution, respectively. Supplied to. That is, the ratio of the supply rate of oxalate ions to the supply rate of Ti element to the reaction vessel is 3.1, the ratio of the supply rate of Ba element to the supply rate of Ti element is 1.3, and the oxalic acid produced The reaction was carried out with a barium titanyl residence time of 12 minutes.
Solid-liquid separation was performed from the reaction solution discharged from the reaction vessel to obtain a precipitate, which was washed and dried to obtain barium titanyl oxalate.
When the obtained barium titanyl oxalate was baked and then subjected to fluorescent X-ray analysis, the bulk Ba / Ti molar ratio was 0.999.
Furthermore, the obtained barium titanyl oxalate was sieved to 45 μm to less than 75 μm (first group), 75 μm to less than 100 μm (second group), 100 μm to less than 150 μm (third group), 150 μm or more (first 4 groups), and the Ba / Ti molar ratios of the first group and the third group were determined in the same manner as the bulk Ba / Ti molar ratio measurement method. The Ba / Ti molar ratios of the first group and the third group were 0.998 and 0.999, respectively.
Of the obtained barium titanyl oxalate, the one before sieving was baked at 1000 ° C. for 21 hours to obtain barium titanate. The c-axis / a-axis ratio by XRD of the obtained barium titanate was 1.010, and the specific surface area by the BET method was 1.4 m 2 / g. Moreover, the SEM photograph of the obtained barium titanate is shown in FIG.

(比較例1)
バッチ式反応容器を用意し、55℃にした水1400gにシュウ酸2水和物325gを溶解させ、シュウ酸が1.73mol/Lであるシュウ酸水溶液(A11液)を作製した。水1830gに塩化バリウム325gを加えた水溶液にTiが2.6mol/Lの濃度である四塩化チタン水溶液を630g混合し、塩化バリウムが0.55mol/L、Tiが0.52mol/Lである塩化バリウム及び四塩化チタンを水に混合して得られる水溶液(B11液)を作製した。すなわち、B11液におけるTi元素に対するBa元素のモル比は1.1である。次いで、55℃にしたA11液に撹拌下にB11液を0.7L/時間の速度で滴下して反応容器に供給した。すなわちB11液滴下完了時の反応容器内のTi元素に対するシュウ酸イオンの比は2.1である。
0.5時間熟成した後、反応液を、固液分離して、沈澱物を得、洗浄後、乾燥して、シュウ酸バリウムチタニルを得た。
得られたシュウ酸バリウムチタニルを焼成後、蛍光X線分析を行ったところ、バルクのBa/Tiモル比は0.999であった。
更に、得られたシュウ酸バリウムチタニルを、篩を用いて、45μm以上75μm未満(第一グループ)、75μm以上100μm未満(第二グループ)、100μm以上150μm未満(第三グループ)、150μm以上(第四グループ)の粒径範囲のグループに分け、バルクのBa/Tiモル比の測定方法と同様の方法で第一グループ、第三グループのBa/Tiモル比を求めた。第一グループ、第三グループのBa/Tiモル比はそれぞれ0.997、1.000であった。
得られたシュウ酸バリウムチタニルのうち篩分けする前のものを1000℃で21時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムのXRDによるc軸/a軸比が1.009であり、BET法による比表面積が1.1m/gであった。また、得られたチタン酸バリウムのSEM写真を図6に示す。
(Comparative Example 1)
A batch-type reaction vessel was prepared, and 325 g of oxalic acid dihydrate was dissolved in 1400 g of water brought to 55 ° C. to prepare an aqueous oxalic acid solution (A11 solution) in which oxalic acid was 1.73 mol / L. 630 g of titanium tetrachloride aqueous solution having a concentration of 2.6 mol / L Ti is mixed with an aqueous solution obtained by adding 325 g of barium chloride to 1830 g of water, and chloride containing 0.55 mol / L of barium chloride and 0.52 mol / L of Ti. An aqueous solution (B11 solution) obtained by mixing barium and titanium tetrachloride with water was prepared. That is, the molar ratio of Ba element to Ti element in B11 solution is 1.1. Next, the B11 solution was added dropwise to the A11 solution at 55 ° C. with stirring at a rate of 0.7 L / hour and supplied to the reaction vessel. That is, the ratio of oxalate ions to Ti element in the reaction vessel at the time of completion under the B11 droplet is 2.1.
After aging for 0.5 hour, the reaction solution was subjected to solid-liquid separation to obtain a precipitate, washed and dried to obtain barium titanyl oxalate.
When the obtained barium titanyl oxalate was baked and then subjected to fluorescent X-ray analysis, the bulk Ba / Ti molar ratio was 0.999.
Furthermore, the obtained barium titanyl oxalate was sieved to 45 μm to less than 75 μm (first group), 75 μm to less than 100 μm (second group), 100 μm to less than 150 μm (third group), 150 μm or more (first 4 groups), and the Ba / Ti molar ratios of the first group and the third group were determined in the same manner as the bulk Ba / Ti molar ratio measurement method. The Ba / Ti molar ratios of the first group and the third group were 0.997 and 1.000, respectively.
Of the obtained barium titanyl oxalate, the one before sieving was baked at 1000 ° C. for 21 hours to obtain barium titanate. The c-axis / a-axis ratio by XRD of the obtained barium titanate was 1.009, and the specific surface area by the BET method was 1.1 m 2 / g. Moreover, the SEM photograph of the obtained barium titanate is shown in FIG.

表1から、比較例1より、従来の製造方法により製造されたシュウ酸バリウムチタニルは、粒径が小さい程Ba/Tiモル比が小さく、一方、粒径が大きい程Ba/Tiモル比が大きくなっている。それに対して、実施例1、実施例2、実施例3より、本発明のシュウ酸バリウムチタニルの製造方法により製造されたシュウ酸バリウムチタニルは、全粒径範囲に亘ってBa/Tiモル比が一定、つまり、全粒径範囲に亘ってBa/Tiモル比のバラツキが小さくなっている。   From Table 1, it can be seen from Comparative Example 1 that barium titanyl oxalate produced by a conventional production method has a smaller Ba / Ti molar ratio as the particle size is smaller, while a larger Ba / Ti molar ratio as the particle size is larger. It has become. On the other hand, the barium titanyl oxalate produced by the method for producing barium titanyl oxalate of the present invention from Example 1, Example 2 and Example 3 has a Ba / Ti molar ratio over the entire particle size range. The variation in the Ba / Ti molar ratio is small over a certain range, that is, over the entire particle size range.

1)表中の分散性の評価は、10000倍のSEM写真において、粒子が焼結により結合された5μmの粒子径の存在個数が3個未満である場合には「○」、3個以上である場合には「×」として評価した。 1) Evaluation of dispersibility in the table is “◯” when the number of particles having a particle diameter of 5 μm in which the particles are bonded by sintering is less than 3 in a 10,000 times SEM photograph. In some cases, it was evaluated as “×”.

表2から、得られたチタン酸バリウムに関して、実施例1、実施例2、実施例3では、比較例1よりも比表面積が大きい、すなわち粒径が小さいものが得られている。また、実施例1、実施例2、実施例3では、比較例1よりもc軸/a軸比が大きい、すなわち結晶性が高いものが得られている。すなわち、表2より、実施例1、実施例2、実施例3で得られたチタン酸バリウムは、従来の製造方法により製造されたチタン酸バリウムよりも、粒径が小さく、結晶性が高いものが得られているといえる。また、本発明の製造方法で得られるチタン酸バリウムは、粒子が焼結により結合された粗大粒子が少ない分散性等の粉体特性に優れているものであることが分かる。   From Table 2, with respect to the obtained barium titanate, in Example 1, Example 2, and Example 3, those having a specific surface area larger than that of Comparative Example 1, that is, having a smaller particle diameter, are obtained. Moreover, in Example 1, Example 2, and Example 3, those having a c-axis / a-axis ratio larger than that of Comparative Example 1, that is, high crystallinity are obtained. That is, from Table 2, the barium titanate obtained in Example 1, Example 2, and Example 3 has a smaller particle size and higher crystallinity than barium titanate produced by a conventional production method. It can be said that Moreover, it turns out that the barium titanate obtained with the manufacturing method of this invention is excellent in powder characteristics, such as a dispersibility with few coarse particles with which the particle | grains were couple | bonded by sintering.

1 オーバーフロー方式の反応容器
2 オーバーフロー管
3 反応液
4 液面
1 Overflow type reaction vessel 2 Overflow tube 3 Reaction solution 4 Liquid surface

Claims (6)

シュウ酸及び四塩化チタンを水に混合して得られる水溶液(A1液)と、塩化バリウム水溶液(B1液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法。   While supplying an aqueous solution (A1 solution) obtained by mixing oxalic acid and titanium tetrachloride with water and an aqueous barium chloride solution (B1 solution) to the reaction vessel, discharging the reaction solution from the reaction vessel, A method for producing barium titanyl oxalate, characterized by carrying out a reaction for producing barium titanyl acid. シュウ酸水溶液(A2液)と、四塩化チタン及び塩化バリウムを水に混合して得られる水溶液(B2液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法。   While supplying an aqueous solution of oxalic acid (A2 solution) and an aqueous solution (B2 solution) obtained by mixing titanium tetrachloride and barium chloride with water, while discharging the reaction solution from the reaction vessel, A method for producing barium titanyl oxalate, characterized by carrying out a reaction for producing barium titanyl acid. シュウ酸水溶液(A3液)と、塩化バリウム水溶液(B3液)と、四塩化チタンを水に混合して得られる水溶液(C3液)と、を反応容器に供給しつつ、反応液を該反応容器から排出しながら、シュウ酸バリウムチタニルの生成反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法。   While supplying an oxalic acid aqueous solution (A3 solution), a barium chloride aqueous solution (B3 solution), and an aqueous solution (C3 solution) obtained by mixing titanium tetrachloride with water, the reaction solution is supplied to the reaction vessel. A method for producing barium titanyl oxalate, wherein the production reaction of barium titanyl oxalate is performed while discharging from the waste water. 生成するシュウ酸バリウムチタニルの前記反応容器内の滞留時間が、1〜60分間であることを特徴とする請求項1〜3いずれか1項記載のシュウ酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to any one of claims 1 to 3, wherein the residence time of the generated barium titanyl oxalate in the reaction vessel is 1 to 60 minutes. 請求項1〜4いずれか1項記載のシュウ酸バリウムチタニルの製造方法を行い得られたシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法。   The manufacturing method of barium titanate characterized by baking the barium titanyl oxalate obtained by performing the manufacturing method of the barium titanyl oxalate of any one of Claims 1-4. 焼成温度が600〜1300℃であることを特徴とする請求項5記載のチタン酸バリウムの製造方法。   The method for producing barium titanate according to claim 5, wherein the firing temperature is 600 to 1300 ° C.
JP2009051878A 2009-03-05 2009-03-05 Method for producing barium titanyl oxalate and method for producing barium titanate Active JP5323537B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009051878A JP5323537B2 (en) 2009-03-05 2009-03-05 Method for producing barium titanyl oxalate and method for producing barium titanate
KR1020100019271A KR20100100654A (en) 2009-03-05 2010-03-04 Process for preparation of barium titanyl oxalate and process for preparation of barium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051878A JP5323537B2 (en) 2009-03-05 2009-03-05 Method for producing barium titanyl oxalate and method for producing barium titanate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013042891A Division JP5658295B2 (en) 2013-03-05 2013-03-05 Method for producing barium titanyl oxalate and method for producing barium titanate

Publications (2)

Publication Number Publication Date
JP2010202610A true JP2010202610A (en) 2010-09-16
JP5323537B2 JP5323537B2 (en) 2013-10-23

Family

ID=42964464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051878A Active JP5323537B2 (en) 2009-03-05 2009-03-05 Method for producing barium titanyl oxalate and method for producing barium titanate

Country Status (2)

Country Link
JP (1) JP5323537B2 (en)
KR (1) KR20100100654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077068A (en) * 2010-09-07 2012-04-19 Nippon Chem Ind Co Ltd Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
JP7157897B1 (en) * 2022-06-14 2022-10-21 生態環境部華南環境科学研究所(生態環境部生態環境応急研究所) Material production apparatus and method for manufacturing ceramics by recycling barium resources
KR20230024274A (en) 2020-06-12 2023-02-20 니폰 가가쿠 고교 가부시키가이샤 Barium titanyl oxalate, method for producing the same, and method for producing barium titanate
KR20230109634A (en) 2020-11-19 2023-07-20 니폰 가가쿠 고교 가부시키가이샤 Method for producing barium titanyl oxalate and method for producing barium titanate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103323A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle
JP2004123431A (en) * 2002-10-01 2004-04-22 Nippon Chem Ind Co Ltd Method for manufacturing perovskite-type barium titanate powder
JP2006321723A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006321722A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006348026A (en) * 2005-05-17 2006-12-28 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103323A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle
JP2004123431A (en) * 2002-10-01 2004-04-22 Nippon Chem Ind Co Ltd Method for manufacturing perovskite-type barium titanate powder
JP2006321723A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006321722A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006348026A (en) * 2005-05-17 2006-12-28 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077068A (en) * 2010-09-07 2012-04-19 Nippon Chem Ind Co Ltd Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
KR20230024274A (en) 2020-06-12 2023-02-20 니폰 가가쿠 고교 가부시키가이샤 Barium titanyl oxalate, method for producing the same, and method for producing barium titanate
KR20230109634A (en) 2020-11-19 2023-07-20 니폰 가가쿠 고교 가부시키가이샤 Method for producing barium titanyl oxalate and method for producing barium titanate
JP7157897B1 (en) * 2022-06-14 2022-10-21 生態環境部華南環境科学研究所(生態環境部生態環境応急研究所) Material production apparatus and method for manufacturing ceramics by recycling barium resources

Also Published As

Publication number Publication date
KR20100100654A (en) 2010-09-15
JP5323537B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5658295B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
WO2008102785A9 (en) Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
JP5323537B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR20120025431A (en) Barium titanyl oxalate particle, method for preparing the same and method for preparing barium titanate
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110305B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110306B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2012077068A (en) Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
JP5119007B2 (en) Method for producing perovskite-type barium titanate powder
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP2010047428A (en) Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
KR20230109634A (en) Method for producing barium titanyl oxalate and method for producing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250