JP2006347791A - Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same - Google Patents

Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same Download PDF

Info

Publication number
JP2006347791A
JP2006347791A JP2005173348A JP2005173348A JP2006347791A JP 2006347791 A JP2006347791 A JP 2006347791A JP 2005173348 A JP2005173348 A JP 2005173348A JP 2005173348 A JP2005173348 A JP 2005173348A JP 2006347791 A JP2006347791 A JP 2006347791A
Authority
JP
Japan
Prior art keywords
glass
crystallized layer
magnetic disk
stacked
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005173348A
Other languages
Japanese (ja)
Inventor
Seiji Inaba
誠二 稲葉
Yoshio Uchiyama
義夫 内山
Tsugio Kawamura
次男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005173348A priority Critical patent/JP2006347791A/en
Publication of JP2006347791A publication Critical patent/JP2006347791A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide crystallized layer-stacked glass in which a crystallized layer is stacked at least on a part of the surface in a glass base material, to provide crystallized layer-stacked glass in which the thickness of at least a part of a crystallized layer-stacked on the surface of a glass base material is different from that of the other part, to provide a glass substrate for a magnetic disk using crystallized layer-stacked glass, and to provide a glass substrate for a magnetic disk in which at least a part of the region in the edge face is provided with a crystallized layer. <P>SOLUTION: A starting raw material to be the preform of glass and, as necessary, a prescribed amount of additive are weighed with an electronic balance so as to be mixed. The mixture is melted by a crucible, and is cooled to be formed into glass. The glass is reheated so as to stack a crystallized layer on the surface of the glass, and the main surface is partially polished, thus the crystallized layer-stacked glass is produced. Using the same, e.g., a glass substrate for a magnetic disk is produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラス基材の表面の少なくとも一部分に結晶化層を積層している結晶化層積層ガラス、およびガラス基材の表面に積層された結晶化層の少なくとも一部分の厚みが他の部分とは異なっている結晶化層積層ガラス、および結晶化層積層ガラスを用いた磁気ディスク用ガラス基板、および端面部位の少なくとも一部に結晶化層を持つ磁気ディスク用ガラス基板に関する。   The present invention provides a crystallized layer laminated glass in which a crystallized layer is laminated on at least a part of the surface of a glass substrate, and a thickness of at least a part of the crystallized layer laminated on the surface of the glass substrate is different from that of the other part. Relates to a different crystallized layer laminated glass, a glass substrate for a magnetic disk using the crystallized layer laminated glass, and a glass substrate for a magnetic disk having a crystallized layer in at least a part of the end face portion.

近年、ガラス基材に強化処理などを施すことにより電子装置や電子部品に適用することが検討されてきており、磁気ディスク基板用途などに用いることが提案されてきている。特許文献1には、化学強化法によりガラス基材上に化学強化層を形成する方法が開示されている。   In recent years, it has been studied to apply a glass substrate to an electronic device or an electronic component by applying a tempering treatment or the like, and it has been proposed to be used for a magnetic disk substrate. Patent Document 1 discloses a method of forming a chemically strengthened layer on a glass substrate by a chemical strengthening method.

特開2000−207730号公報JP 2000-207730 A

本発明は、ガラス基材の表面の少なくとも一部分に結晶化層を積層している結晶化層積層ガラス、およびガラス基材の表面に積層された結晶化層の少なくとも一部分の厚みが他の部分とは異なっている結晶化層積層ガラス、および結晶化層積層ガラスを用いた磁気ディスク用ガラス基板、および端面部位の少なくとも一部に結晶化層を持つ磁気ディスク用ガラス基板を提供することを課題とする。   The present invention provides a crystallized layer laminated glass in which a crystallized layer is laminated on at least a part of the surface of a glass substrate, and a thickness of at least a part of the crystallized layer laminated on the surface of the glass substrate is different from that of the other part. And a glass substrate for a magnetic disk using the crystallized layer laminated glass, and a glass substrate for a magnetic disk having a crystallized layer in at least a part of the end surface portion. To do.

前記課題に対する第1の解決手段として本発明の結晶化層積層ガラスは、ガラス基材の表面の少なくとも一部分に結晶化層を積層している構成とした。またはガラス基材の表面に積層された結晶化層の少なくとも一部分の厚みが他の部分とは異なっている構成とした。   As a first means for solving the above problems, the crystallized layer laminated glass of the present invention has a structure in which a crystallized layer is laminated on at least a part of the surface of a glass substrate. Or the thickness of at least one part of the crystallization layer laminated | stacked on the surface of the glass base material was set as the structure different from another part.

前記課題に対する第2の解決手段として本発明の磁気ディスク用ガラス基板は、結晶化層積層ガラスを用いた構成とした。 または結晶化層積層ガラスを用いた磁気ディスク用ガラス基板の端面部位の少なくとも一部に結晶化層を持つ構成とした。   As a second means for solving the above problems, the glass substrate for a magnetic disk of the present invention has a configuration using a crystallized layer laminated glass. Or it was set as the structure which has a crystallization layer in at least one part of the end surface part of the glass substrate for magnetic discs using crystallization layer laminated glass.

本発明の結晶化層積層ガラスは、以下に説明するように、ガラス基材の表面の少なくとも一部分に結晶化層を積層させたり、他の部分とは異なる厚みの結晶化層を積層することができ、凹凸や貫通孔など、非平面形状を有する有形断面形状の部分に対しても効率よく結晶化層を積層することが可能である。また本発明の結晶化層積層ガラスは、磁気ディスク用ガラス基板として好適であり、ディスク端面部位に結晶化層を積層することにより機械強度などに優れた磁気ディスク用基板として有用である。   As described below, the crystallized layer-laminated glass of the present invention can be obtained by laminating a crystallized layer on at least a part of the surface of a glass substrate or laminating a crystallized layer having a thickness different from that of other parts. In addition, it is possible to efficiently stack the crystallized layer on a tangential cross-sectional portion having a non-planar shape such as unevenness or a through hole. The crystallized layer laminated glass of the present invention is suitable as a glass substrate for a magnetic disk, and is useful as a magnetic disk substrate having excellent mechanical strength and the like by laminating a crystallized layer on a disk end surface portion.

以下に、本発明の実施形態を説明する。ガラスには多くの種類が存在し、用途により適切な母材を選択すればよく、必ずしも下記の説明例に限定はされることはない。またガラス表面に形成したい結晶化層も多くの種類が存在し、用途により適切に選択すればよく、必ずしも下記の説明例に限定はされることはない。ここでは、ガラス母材として酸化物ガラスの一形態であるリチウムアルミノシリケートガラス(LiO−Al−SiO)の場合を例にとって説明する。 Hereinafter, embodiments of the present invention will be described. There are many types of glass, and an appropriate base material may be selected depending on the application, and the glass is not necessarily limited to the following explanation examples. There are many types of crystallized layers to be formed on the glass surface, which may be selected appropriately depending on the application, and are not necessarily limited to the following explanation examples. Here, a case where lithium aluminosilicate glass (Li 2 O—Al 2 O 3 —SiO 2 ) which is one form of oxide glass is used as the glass base material will be described as an example.

まずガラスの母材となる出発原料として、炭酸リチウム(LiCO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)の各粉末の所定量(例えば、酸化物重量ベースでそれぞれ15重量%、20重量%、65重量%)を電子天秤で計測して、アルミナ製の乳鉢に入れた。ここで炭酸リチウムは、ガラス成分のLiOを与えることになる。さらに添加剤として、例えば、酸化第一銅(CuO)の粉末を所定量(例えば、前記ガラス母材の1重量%)となるように電子天秤で計測して前述の乳鉢に入れ、乳棒で充分にかき混ぜて混合した。添加剤は必要により所望のものを適宜選択して加えることができる。その後、白金るつぼに移して加熱装置に入れ、大気雰囲気で加熱(1450℃で1時間)して溶融し、その後室温まで冷却した。この際のガラスは、内部まで青色の透明ガラスとなっていた。 First, as a starting material to be a glass base material, a predetermined amount of each powder of lithium carbonate (Li 2 CO 3 ), aluminum oxide (Al 2 O 3 ), and silicon dioxide (SiO 2 ) (for example, on an oxide weight basis, respectively) 15 wt%, 20 wt%, 65 wt%) were measured with an electronic balance and placed in an alumina mortar. Here, lithium carbonate gives glass component Li 2 O. Further, as an additive, for example, cuprous oxide (Cu 2 O) powder is measured with an electronic balance so as to be a predetermined amount (for example, 1% by weight of the glass base material), and is put in the mortar described above. Stir well and mix. Additives can be appropriately selected and added as necessary. Then, it moved to the platinum crucible, put into the heating apparatus, heated in air atmosphere (1450 ° C. for 1 hour) to melt, and then cooled to room temperature. The glass at this time was a blue transparent glass up to the inside.

ガラス中で銅イオンはCuでは無色透明になり、Cu2+では青色透明になるため、ガラス内部には少なくともCu2+の銅イオンが含まれていることになる。しかしながら添加した第一酸化銅の全てがCu2+に変化したとは言いえず、Cuも含まれていると考えられる。上記の例では簡単化のため、大気雰囲気での加熱処理を行ったが、これは酸化性雰囲気での熱処理となっている。この他にも還元性雰囲気や非酸化性雰囲気や不活性雰囲気(例えば、H、N、アンモニア分解ガス、真空など)で行うことも可能であり、用途などにより適切に選択すればよい。酸化性雰囲気以外での熱処理の場合には、より多くのCuがガラス中に残存することになる。特に還元性雰囲気で行った場合には、添加した酸化第一銅のほとんどがガラス中でCuとして残ると考えられる。 Copper ions in the glass becomes Cu + in colorless and transparent, to become blue in Cu 2+ transparent, so that it contains copper ions of at least Cu 2+ in the glass. However, it cannot be said that all of the added cuprous oxide has changed to Cu 2+ , and it is considered that Cu + is also contained. In the above example, for simplification, the heat treatment is performed in an air atmosphere, but this is a heat treatment in an oxidizing atmosphere. In addition, it can be performed in a reducing atmosphere, a non-oxidizing atmosphere, or an inert atmosphere (for example, H 2 , N 2 , ammonia decomposition gas, vacuum, etc.), and may be appropriately selected depending on the application. In the case of heat treatment other than in an oxidizing atmosphere, more Cu + remains in the glass. In particular, when performed in a reducing atmosphere, most of the added cuprous oxide is considered to remain as Cu + in the glass.

次に上記のガラスを結晶化開始温度以上でかつ大気雰囲気で再加熱して、ガラス表面に黒色の薄膜を形成させた。再加熱温度としては500〜1000℃の範囲が望ましい。より望ましくは、560〜600℃の範囲である。500℃未満では、結晶化は起きず、逆に1000℃を超えると、結晶化層が厚みがガラスの部位によって不均一となり望ましくない。このような条件で再加熱したガラス表面を薄膜XRD(Thin Film X-ray Diffraction、薄膜X線回折法)で解析すると、CuOのピークの出現とβ−ユークリプタイト(LiAlSiO)のピークの出現を確認することができた。さらにこの黒色薄膜を除去して薄膜XRDで解析すると、β−ユークリプタイト(LiAlSiO)主体のピークの出現を確認することができた。黒色薄膜の除去は、研磨などの機械的除去でもよいし、塩酸(1mol/l)に常温で10分程度浸漬することなどにより脱膜処理してもよい。 Next, the above glass was reheated at a temperature higher than the crystallization start temperature and in an air atmosphere to form a black thin film on the glass surface. The reheating temperature is preferably in the range of 500 to 1000 ° C. More desirably, it is the range of 560-600 degreeC. When the temperature is lower than 500 ° C., crystallization does not occur. Conversely, when the temperature exceeds 1000 ° C., the thickness of the crystallized layer is not uniform depending on the portion of the glass. When the glass surface reheated under such conditions is analyzed by thin film XRD (Thin Film X-ray Diffraction), the appearance of CuO peak and the appearance of β-eucryptite (LiAlSiO 4 ) peak I was able to confirm. Furthermore, when this black thin film was removed and analyzed by thin film XRD, the appearance of a peak mainly composed of β-eucryptite (LiAlSiO 4 ) could be confirmed. The removal of the black thin film may be mechanical removal such as polishing, or may be performed by immersing in hydrochloric acid (1 mol / l) at room temperature for about 10 minutes.

このようにしてガラス表面に結晶化層を設けることができる。結晶化層の厚みとしては、50〜150μmが望ましい。より望ましくは80〜100μmである。厚みが50μm未満では、耐衝撃性に対して効果がなく、150μmを超えると耐衝撃性に対する効果が飽和し、経済的でない。なおガラスの断面を薄膜XRDで解析すると、上述のβ−ユークリプタイト(LiAlSiO)のピークの出現を確認することができず、結晶化が起こっていないことが解る。即ち表層にのみ結晶化層を積層することができたことになる。この結晶化層積層ガラスを機械研磨や弗酸などを用いた化学研磨を施すことにより、所望の部位に結晶化層をもつものや、他の部位に比べて異なる厚みの結晶化層をもつ結晶化層積層ガラスを製造することができる。 In this way, a crystallization layer can be provided on the glass surface. The thickness of the crystallized layer is preferably 50 to 150 μm. More desirably, the thickness is 80 to 100 μm. If the thickness is less than 50 μm, there is no effect on impact resistance, and if it exceeds 150 μm, the effect on impact resistance is saturated, which is not economical. In addition, when the cross section of glass is analyzed by thin film XRD, the appearance of the above-mentioned β-eucryptite (LiAlSiO 4 ) peak cannot be confirmed, and it is understood that crystallization has not occurred. That is, the crystallized layer can be laminated only on the surface layer. By crystallizing this crystallized layer laminated glass with mechanical polishing or chemical polishing using hydrofluoric acid, the crystallized layer has a crystallized layer at a desired site or a crystallized layer with a different thickness compared to other sites. A laminated glass can be produced.

ガラスには、酸化物系ガラスと非酸化物系ガラスがある。酸化物系ガラスは、酸化物ガラスやそれらに窒化物などの酸化物以外のものを少量入れたものである。酸化物ガラスは、酸化物で構成され、SiO、B、P、GeO、TeOなどやこれらまたはこれらの組合せを主成分としたものである。例えばSiOを主成分とするガラスには、シリカガラス、ソーダライムガラス、カリウムガラス、鉛クリスタルガラス、ホウケイ酸ガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラスなどがある。なお光ファイバーも酸化物ガラスの一形態である。また上記以外の酸化物としては、LiO、NaO、MgO、KO、CaO、BaO、Al、ZnO、PbOなどがある。 Glass includes oxide glass and non-oxide glass. The oxide glass is a glass in which a small amount of an oxide glass or a substance other than an oxide such as a nitride is added. The oxide glass is composed of an oxide and contains SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2, etc., or a combination thereof as a main component. For example, the glass mainly composed of SiO 2 includes silica glass, soda lime glass, potassium glass, lead crystal glass, borosilicate glass, aluminosilicate glass, and lithium aluminosilicate glass. Note that the optical fiber is also a form of oxide glass. Examples of oxides other than the above include Li 2 O, Na 2 O, MgO, K 2 O, CaO, BaO, Al 2 O 3 , ZnO, and PbO.

非酸化物系ガラスは、非酸化物ガラスや必要によりこれに酸化物、窒化物などの添加剤を少量入れたものである。非酸化物ガラスには、カルコゲン化物(硫黄、セレン、テルルの化合物)で作るカルコゲン化物ガラスや、ハロゲン化物(フッ素、塩素、臭素の化合物)で作るハロゲン化物ガラスなどがある。カルコゲン化物ガラスは、As、GeS、AsSeなどを主成分としており、ハロゲン化物ガラスは、ZrF、BaF、AlFなどの複数成分を主体としている。 The non-oxide glass is a non-oxide glass or, if necessary, a small amount of additives such as oxides and nitrides. Non-oxide glasses include chalcogenide glasses made from chalcogenides (sulfur, selenium, and tellurium compounds) and halide glasses made from halides (fluorine, chlorine, bromine compounds). The chalcogenide glass is mainly composed of As 2 S 3 , GeS 2 , AsSe 3 and the like, and the halide glass is mainly composed of a plurality of components such as ZrF 4 , BaF 2 and AlF 3 .

添加剤としては、各種の酸化物、例えば、B、NaO、KO、CaO、MgO、ZnO、TiO、ZrO、V、Nb、La、Cr、CoO、Co、NiO、CuO、CeO、Nd、Erなどやこれらの混合物などを利用することができる。さらに酸化物の他にも窒化物なども利用が考えられる。 Examples of additives include various oxides such as B 2 O 3 , Na 2 O, K 2 O, CaO, MgO, ZnO, TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , La 2 O. 3 , Cr 2 O 3 , CoO, Co 3 O 4 , NiO, CuO, CeO 2 , Nd 2 O 3 , Er 2 O 3 , and a mixture thereof can be used. In addition to oxides, nitrides may be used.

以上のようにして、結晶化層積層ガラスを製造することができた。この結晶化層積層ガラスは基板材料などの部品として利用することができる。例えば、ハードディスク用途などの磁気ディスク用ガラス基板である。ハードディスク用途では磁気ディスク用ガラス基板の外部と内部の端面部位にクラックが入りやすいため、この部分の保護に役に立つ。また凹凸や貫通孔など、非平面形状を有する有形断面形状のものに対しても効率よく結晶化層を積層することができる。   As described above, the crystallized layer laminated glass could be produced. This crystallized layer laminated glass can be used as a component such as a substrate material. For example, a glass substrate for a magnetic disk for use in a hard disk. In hard disk applications, cracks are likely to form on the outer and inner end surfaces of the magnetic disk glass substrate, which is useful for protecting this part. In addition, the crystallized layer can be efficiently stacked even on a tangible cross-sectional shape having a non-planar shape such as an unevenness or a through hole.

ガラスの母材となる出発原料として炭酸リチウム(LiCO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)を酸化物重量ベースでそれぞれ15重量%、20重量%、65重量%、電子天秤で計測してアルミナ製の乳鉢に入れ、添加剤として、酸化第一銅(CuO)を前記ガラス母材の1重量%となるように電子天秤で計測して前述の乳鉢に入れ、乳棒で充分にかき混ぜて混合した。その後、白金るつぼに移して加熱装置に入れ、大気雰囲気で加熱(1450℃で1時間)して溶融して型に入れ、その後室温まで冷却してディスク用途のガラスを製造した。次にガラスを大気雰囲気で再加熱(560℃で3時間)して、ガラス表面に結晶化層を100μm形成させた。その後端面以外の主表面を研磨して結晶化層を部分的に除去し、磁気ディスク用ガラス基板を製造した。 Lithium carbonate (Li 2 CO 3 ), aluminum oxide (Al 2 O 3 ), and silicon dioxide (SiO 2 ) as starting materials to be used as glass base materials are 15% by weight, 20% by weight, and 65% by weight, respectively, based on oxide weight. %, Measured with an electronic balance and put in an alumina mortar. As an additive, cuprous oxide (Cu 2 O) was measured with an electronic balance so as to be 1% by weight of the glass base material. The mixture was stirred well with a pestle and mixed. Thereafter, the glass was transferred to a platinum crucible, placed in a heating device, heated in air (1450 ° C. for 1 hour), melted and placed in a mold, and then cooled to room temperature to produce a glass for disk use. Next, the glass was reheated in the air atmosphere (at 560 ° C. for 3 hours) to form a crystallized layer of 100 μm on the glass surface. Thereafter, the main surface other than the end face was polished to partially remove the crystallized layer, thereby producing a glass substrate for magnetic disk.

酸化第1銅などを添加することにより、ガラス表面に結晶化層を設けて、耐衝撃性を向上した磁気ディスク用ガラス基板を提供できる。
By adding cuprous oxide or the like, it is possible to provide a glass substrate for a magnetic disk having an improved impact resistance by providing a crystallized layer on the glass surface.

Claims (4)

ガラス基材の表面の少なくとも一部分に結晶化層を積層していることを特徴とする結晶化層積層ガラス。 A crystallized layer-laminated glass, characterized in that a crystallized layer is laminated on at least a part of the surface of a glass substrate. ガラス基材の表面に積層された結晶化層の少なくとも一部分の厚みが他の部分とは異なっていることを特徴とする請求項1に記載の結晶化層積層ガラス。 The crystallized layer laminated glass according to claim 1, wherein the thickness of at least a part of the crystallized layer laminated on the surface of the glass substrate is different from that of the other part. 請求項1または2に記載の結晶化層積層ガラスを用いたことを特徴とする磁気ディスク用ガラス基板。 A glass substrate for a magnetic disk, wherein the crystallized layer laminated glass according to claim 1 or 2 is used. 内周部位または外周部位の少なくとも一部に結晶化層を持つことを特徴とする請求項3に記載の磁気ディスク用ガラス基板。
4. The glass substrate for a magnetic disk according to claim 3, wherein a crystallized layer is provided on at least a part of the inner peripheral part or the outer peripheral part.
JP2005173348A 2005-06-14 2005-06-14 Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same Withdrawn JP2006347791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173348A JP2006347791A (en) 2005-06-14 2005-06-14 Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173348A JP2006347791A (en) 2005-06-14 2005-06-14 Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same

Publications (1)

Publication Number Publication Date
JP2006347791A true JP2006347791A (en) 2006-12-28

Family

ID=37644023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173348A Withdrawn JP2006347791A (en) 2005-06-14 2005-06-14 Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same

Country Status (1)

Country Link
JP (1) JP2006347791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047609A1 (en) * 2006-10-16 2008-04-24 Konica Minolta Opto, Inc. Glass substrate for information recording medium, magnetic recording medium, and method for manufacturing glass substrate for information recording medium
CN111393028A (en) * 2020-03-29 2020-07-10 重庆两江新区夏美西科技合伙企业(有限合伙) Glass with local reinforcing structure and processing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047609A1 (en) * 2006-10-16 2008-04-24 Konica Minolta Opto, Inc. Glass substrate for information recording medium, magnetic recording medium, and method for manufacturing glass substrate for information recording medium
CN111393028A (en) * 2020-03-29 2020-07-10 重庆两江新区夏美西科技合伙企业(有限合伙) Glass with local reinforcing structure and processing method thereof

Similar Documents

Publication Publication Date Title
TWI796316B (en) crystallized glass
CN110128010B (en) Transparent glass-ceramic articles, glass-ceramic precursor glasses and methods of forming the same
JP6417531B2 (en) Glass with intermediate thermal expansion coefficient
JP2017001937A (en) Crystallized glass and crystallized glass substrate
US4849002A (en) Ion-exchangeable germanate method for strengthened germanate glass articles
JP2023112151A (en) Crystallized glass, chemically strengthened glass, and semiconductor substrate
US11292741B2 (en) Ion-exchangeable lithium-containing aluminosilicate glasses
JP6417526B2 (en) Photoformable glass-ceramics containing a meteorite crystalline phase
WO2019003565A1 (en) Crystallized glass substrate
TW202216626A (en) Crystallized glass and reinforced crystallized glass
JP4977474B2 (en) Aluminum silicate glass
JP5751744B2 (en) Glass
JPWO2018025727A1 (en) Alkali-free glass substrate, laminated substrate, and method of manufacturing glass substrate
PL168761B1 (en) Method obtaining molten glass for substrate of electronic components in particular of chips
JP2006347791A (en) Crystallized layer-stacked glass, and glass substrate for magnetic disk using the same
TW202237550A (en) Chemically strengthened transparent glass ceramics
WO2022045062A1 (en) Inorganic composition having high thermal expansion coefficient, crystallized glass for optical filter, and optical filter
WO2022030174A1 (en) Glass and crystallized glass
JP2021042116A (en) Crystallized glass and reinforced crystallized glass
JP5181861B2 (en) Infrared transmission glass
JP2007197258A (en) Manufacturing method for optical element
GB2310314A (en) Glass or glass ceramic substrates
WO2024190443A1 (en) Crystallized glass
WO2021044841A1 (en) Crystallized glass and reinforced crystallized glass
JP2010070411A (en) Method for producing crystallized glass plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902