JP2021042116A - Crystallized glass and reinforced crystallized glass - Google Patents

Crystallized glass and reinforced crystallized glass Download PDF

Info

Publication number
JP2021042116A
JP2021042116A JP2019188957A JP2019188957A JP2021042116A JP 2021042116 A JP2021042116 A JP 2021042116A JP 2019188957 A JP2019188957 A JP 2019188957A JP 2019188957 A JP2019188957 A JP 2019188957A JP 2021042116 A JP2021042116 A JP 2021042116A
Authority
JP
Japan
Prior art keywords
component
crystallized glass
glass
less
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019188957A
Other languages
Japanese (ja)
Inventor
圭介 嶋村
Keisuke Shimamura
圭介 嶋村
俊剛 八木
Toshitake Yagi
俊剛 八木
康平 小笠原
Kohei OGASAWARA
康平 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to CN202410318426.5A priority Critical patent/CN118184131A/en
Priority to US17/640,341 priority patent/US20220324749A1/en
Priority to PCT/JP2020/031201 priority patent/WO2021044841A1/en
Priority to CN202080061796.5A priority patent/CN114341068A/en
Priority to TW109129967A priority patent/TW202114955A/en
Publication of JP2021042116A publication Critical patent/JP2021042116A/en
Priority to JP2024015869A priority patent/JP2024036512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

To obtain a crystallized glass and a reinforced crystallized glass, comprising a novel composition and having a high refractive index and a high hardness.SOLUTION: The crystallized glass contains, in percentages by mass in terms of oxides, 20.0% or more but less than 40.0% of an SiO2 component, over 0% and at most 20.0% of an Rn2O component (provided that Rn is one or more selected from Li, Na, and K), 7.0% to 25.0% of an Al2O3 component, 0% to 25.0% of an MgO component, 0% to 45.0% of a ZnO component, and 0% to 20.0% of a Ta2O5 component, the total amount of the MgO component, the ZnO component, and the Ta2O5 component being 10.0% or greater.SELECTED DRAWING: None

Description

本発明は、結晶化ガラスおよび圧縮応力層を有する強化結晶化ガラスに関する。 The present invention relates to crystallized glass and toughened crystallized glass having a compressive stress layer.

スマートフォン、タブレット型PCなどの携帯電子機器には、ディスプレイを保護するためのカバーガラスが使用されている。また、車載用の光学機器にも、レンズを保護するためのプロテクターが使用されている。さらに、近年、電子機器の外装となる筐体などへの利用も求められている。そして、これらの機器が過酷な使用に耐えうるよう、高い硬度を有する材料の要求が強まっている。 A cover glass for protecting a display is used in a portable electronic device such as a smartphone or a tablet PC. In addition, protectors for protecting lenses are also used in in-vehicle optical devices. Further, in recent years, it has been required to be used for a housing or the like which is an exterior of an electronic device. And there is an increasing demand for materials with high hardness so that these devices can withstand harsh use.

ガラスの強度を高めたものとして、結晶化ガラスがある。結晶化ガラスはガラス内部に結晶を析出させたものであり、アモルファスガラスよりも機械的強度が優れていることで知られている。 Crystallized glass is an example of increasing the strength of glass. Crystallized glass is a glass in which crystals are precipitated, and is known to have superior mechanical strength to amorphous glass.

さらに、ガラスの強度を高める方法として、化学強化が知られている。ガラスの表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成することで、クラックの進展を抑え機械的強度を高めることができる。 Further, chemical strengthening is known as a method for increasing the strength of glass. By exchanging the alkaline component existing in the surface layer of glass with the alkaline component having a larger ionic radius to form a compressive stress layer in the surface layer, it is possible to suppress the growth of cracks and increase the mechanical strength. ..

特許文献1,2には、強度の高い結晶化ガラスおよびこれらを化学強化した結晶化ガラスが開示されている。しかしながら、さらに、光学部材としての用途を広げるため、硬度に加えて屈折率の高い結晶化ガラスが求められていた。 Patent Documents 1 and 2 disclose high-strength crystallized glass and crystallized glass obtained by chemically strengthening them. However, in order to further expand the application as an optical member, crystallized glass having a high refractive index in addition to hardness has been required.

特開2011−207626JP 2011-207626 特開2017−001937JP 2017-001937

本発明の目的は、新規な組成を有する高屈折率で高硬度な結晶化ガラスと強化結晶化ガラスを提供することにある。 An object of the present invention is to provide a crystallized glass having a novel composition and a high refractive index and high hardness, and a strengthened crystallized glass.

本発明は以下を提供する。
(構成1)
酸化物換算の質量%で、
SiO成分を20.0%以上40.0%未満、
RnO成分を0%超20.0%以下(ただしRnはLi、Na、Kから選択される1種類以上)、
Al成分を7.0%〜25.0%、
MgO成分を0%〜25.0%、
ZnO成分を0%〜45.0%、
Ta成分を0%〜20.0%、
含有し、
MgO成分とZnO成分とTa成分の合計量が10.0%以上である結晶化ガラス。
(構成2)
酸化物換算の質量%で、
TiO成分を0%〜15.0%、
CaO成分を0%〜15.0%、
BaO成分を0%〜15.0%、
SrO成分を0%〜10.0%を含有する構成1に記載の結晶化ガラス。
(構成3)
酸化物換算の質量%で、
ZrO成分を0%〜10.0%、
WO成分を0%〜10.0%、
La成分を0〜10.0%、
Gd成分を0〜15.0%、
Bi成分を0〜15.0%、
成分を0〜10.0%、
Nb成分を0〜10.0%、
Sb成分を0〜5.0%を含有する構成1または2に記載の結晶化ガラス。
(構成4)
前記MgO成分とZnO成分とTa成分の合計量が18.0%以上である構成1から3のいずれかに記載の結晶化ガラス。
(構成5)
屈折率(n)が1.55以上である構成1から4のいずれかに記載の結晶化ガラス。
(構成6)
比重が3.0以上である構成1から5のいずれかに記載の結晶化ガラス。
(構成7)
構成1から6のいずれかに記載の結晶化ガラスを母材とし、表面に圧縮応力層を有する強化結晶化ガラス。
The present invention provides:
(Structure 1)
By mass% in terms of oxide,
SiO 2 component is 20.0% or more and less than 40.0%,
Rn 2 O component is more than 0% and 20.0% or less (however, Rn is one or more selected from Li, Na, and K).
Al 2 O 3 component 7.0% to 25.0%,
MgO component 0% to 25.0%,
ZnO component is 0% -45.0%,
Ta 2 O 5 component 0% to 20.0%,
Contains,
A crystallized glass in which the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component is 10.0% or more.
(Structure 2)
By mass% in terms of oxide,
TiO 2 component from 0% to 15.0%,
CaO component 0% -15.0%,
BaO component 0% -15.0%,
The crystallized glass according to configuration 1, which contains 0% to 10.0% of the SrO component.
(Structure 3)
By mass% in terms of oxide,
ZrO 2 component from 0% to 10.0%,
WO 3 component from 0% to 10.0%,
La 2 O 3 component 0 to 10.0%,
Gd 2 O 3 component 0 to 15.0%,
Bi 2 O 3 component 0 to 15.0%,
P 2 O 5 component 0 to 10.0%,
Nb 2 O 5 component 0 to 10.0%,
The crystallized glass according to the configuration 1 or 2, which contains 0 to 5.0% of the Sb 2 O 3 component.
(Structure 4)
The crystallized glass according to any one of configurations 1 to 3, wherein the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component is 18.0% or more.
(Structure 5)
Refractive index (n d) of crystallized glass according to any one of configurations 1 is 1.55 or more 4.
(Structure 6)
The crystallized glass according to any one of configurations 1 to 5, which has a specific gravity of 3.0 or more.
(Structure 7)
A reinforced crystallized glass using the crystallized glass according to any one of configurations 1 to 6 as a base material and having a compressive stress layer on the surface.

本発明によれば、新規な組成を有する高屈折率で高硬度な結晶化ガラスと強化結晶化ガラスを提供できる。 According to the present invention, it is possible to provide a crystallized glass having a novel composition and a high refractive index and a high hardness, and a strengthened crystallized glass.

本発明の結晶化ガラスまたは強化結晶化ガラスは、スマートフォン、タブレット、PCのカバーガラスや筐体、フィルタ、カメラなどの光学用途部材(レンズ、基板など)として利用可能である。具体的には、車載用レンズ、短焦点プロジェクター用レンズ、ウェアラブルデバイス、装飾品(車載、建築物、スマートキーなど)、タッチパネル、誘電フィルタが挙げられる。高屈折率であることによりコンパクト化、高強度であることにより薄膜、軽量化が容易となる。 The crystallized glass or reinforced crystallized glass of the present invention can be used as a cover glass or housing of a smartphone, tablet, or PC, and as an optical application member (lens, substrate, etc.) such as a filter and a camera. Specific examples include in-vehicle lenses, short-focus projector lenses, wearable devices, ornaments (vehicles, buildings, smart keys, etc.), touch panels, and dielectric filters. The high refractive index facilitates compactness, and the high strength facilitates thin film and weight reduction.

以下、本発明の実施形態および実施例について詳細に説明するが、本発明は、以下の実施形態および実施例に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments and examples of the present invention will be described in detail, but the present invention is not limited to the following embodiments and examples, and changes are appropriately made within the scope of the object of the present invention. Can be carried out.

本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算の質量%で表示する。ここで、「酸化物換算」とは、結晶化ガラス構成成分が全て分解され酸化物へ変化すると仮定した場合に、当該酸化物の総質量を100質量%としたときの、結晶化ガラス中に含有される各成分の酸化物の量を、質量%で表記したものである。本明細書において、A〜B%はA%以上B%以下を表す。また、0%〜C%の0%は、含有量が0%であることを意味する。 In the present specification, the content of each component is indicated by mass% in terms of oxide unless otherwise specified. Here, "oxide conversion" is used in the crystallized glass when it is assumed that all the constituents of the crystallized glass are decomposed and changed into an oxide, and the total mass of the oxide is 100% by mass. The amount of oxide of each component contained is expressed in mass%. In the present specification, A to B% represent A% or more and B% or less. Further, 0% of 0% to C% means that the content is 0%.

本発明の結晶化ガラスは、
SiO成分を20.0%以上40.0%未満、
RnO成分を0%超20.0%以下(ただしRnはLi、Na、Kから選択される1種類以上)、
Al成分を7.0%〜25.0%、
MgO成分を0%〜25.0%、
ZnO成分を0%〜45.0%、
Ta成分を0%〜20.0%、
含有し、
MgO成分とZnO成分とTa成分の合計量が10.0%以上である。
The crystallized glass of the present invention
SiO 2 component is 20.0% or more and less than 40.0%,
Rn 2 O component is more than 0% and 20.0% or less (however, Rn is one or more selected from Li, Na, and K).
Al 2 O 3 component 7.0% to 25.0%,
MgO component 0% to 25.0%,
ZnO component is 0% -45.0%,
Ta 2 O 5 component 0% to 20.0%,
Contains,
The total amount of the MgO component, the ZnO component and the Ta 2 O 5 component is 10.0% or more.

一般に、ガラス形成成分であるSiO成分が少なく、ZnO成分などの結晶構成成分が増えるとガラス化し難くなる傾向があるが、本発明によれば、上記組成で結晶化ガラスを得ることができる。
さらに、本発明の結晶化ガラスは、ZnO成分、MgO成分、Ta成分などの屈折率を高める成分を所定量含むため、屈折率が高くなる。
即ち、上記組成により、屈折率が高く硬い結晶化ガラスが得られる。
さらに、化学強化してより硬度を高めることができる。
Generally, when the amount of SiO 2 component which is a glass forming component is small and the amount of crystal constituent components such as ZnO component increases, it tends to be difficult to vitrify. However, according to the present invention, crystallized glass can be obtained with the above composition.
Further, since the crystallized glass of the present invention contains a predetermined amount of a component for increasing the refractive index such as a ZnO component, an MgO component, and a Ta 2 O 5 component, the refractive index becomes high.
That is, with the above composition, a hard crystallized glass having a high refractive index can be obtained.
Furthermore, it can be chemically strengthened to further increase its hardness.

結晶化ガラスとは、ガラスセラミックスとも呼ばれ、ガラスを熱処理することでガラス内部に結晶を析出させている材料である。結晶化ガラスは、結晶相とガラス相を有する材料であり、非晶質固体とは区別される。一般的に、結晶化ガラスの結晶相は、X線回折分析のX線回折図形において現れるピークの角度を用いて判別される。 Crystallized glass is also called glass-ceramic, and is a material in which crystals are precipitated inside the glass by heat-treating the glass. Crystallized glass is a material having a crystalline phase and a glass phase, and is distinguished from an amorphous solid. Generally, the crystal phase of crystallized glass is determined by using the angle of the peak appearing in the X-ray diffraction pattern of the X-ray diffraction analysis.

本発明の結晶化ガラスは、例えば、主結晶相として、ZnAl、ZnTi、ZnSiO、ZnTiO、MgSiO、MgAlSi18、NaAlSiO、NaZnSiO、NaAlSi、LaTiOおよびこれらの固溶体から選ばれる1以上を含有する。
本明細書における「主結晶相」は、X線解析図形のピークから判定される、結晶化ガラス中に最も多く含有される結晶相に相当する。
The crystallized glass of the present invention has, for example, ZnAl 2 O 4 , Zn 2 Ti 3 O 8 , Zn 2 SiO 4 , ZnTIO 3 , Mg 2 SiO 4 , Mg 2 Al 4 Si 5 O 18 , NaAlSiO as the main crystal phase. 4. Contains 1 or more selected from Na 2 Zn 3 SiO 4 , Na 4 Al 2 Si 2 O 9 , LaTIO 3, and solid solutions thereof.
The "main crystal phase" in the present specification corresponds to the crystal phase most contained in the crystallized glass, which is determined from the peak of the X-ray analysis figure.

SiO成分は、ガラスの網目構造を形成するガラス形成成分であり、必須成分である。一方で、SiO成分が不足すると、得られたガラスの化学的耐久性が乏しく、かつ耐失透性が悪くなる。
従って、SiO成分の含有量の上限は40.0%未満、39.0%以下、37.0%以下、または35.0%以下とできる。また、SiO成分の含有量の下限は20.0%以上、23.0%以上、25.0%以上、または30.0%以上とできる。
The SiO 2 component is a glass-forming component that forms a network structure of glass, and is an essential component. On the other hand, if the SiO 2 component is insufficient, the chemical durability of the obtained glass is poor and the devitrification resistance is deteriorated.
Therefore, the upper limit of the content of the SiO 2 component can be less than 40.0%, 39.0% or less, 37.0% or less, or 35.0% or less. Further, the lower limit of the content of the SiO 2 component can be 20.0% or more, 23.0% or more, 25.0% or more, or 30.0% or more.

RnO成分(RnはLi、Na、Kから選択される1種類以上)は、化学強化の際イオン交換に関与する成分である一方で、過剰に含有すると化学的耐久性の悪化や耐失透性が悪くなる成分である。
従って、RnO成分の含有量の上限は20.0%以下、18.0%以下、15.0%以下、または14.0%以下とできる。また、RnO成分の含有量の下限は0%超、2.0%以上、4.0%以上、または6.0%以上とできる。
The Rn 2 O component (Rn is one or more selected from Li, Na, and K) is a component involved in ion exchange during chemical strengthening, but if it is excessively contained, the chemical durability deteriorates and the chemical durability is lost. It is a component that deteriorates transparency.
Therefore, the upper limit of the content of the Rn 2 O component can be 20.0% or less, 18.0% or less, 15.0% or less, or 14.0% or less. Further, the lower limit of the content of the Rn 2 O component can be more than 0%, 2.0% or more, 4.0% or more, or 6.0% or more.

特にNaO成分は、例えば溶融塩中のイオン半径の大きいカリウム成分(Kイオン)と基板中のイオン半径の小さいナトリウム成分(Naイオン)との交換反応が進行することにより、結果として基板表面に圧縮応力が形成されるため、必須成分とすることが好ましい。
従って、NaO成分の含有量の上限は20.0%以下、18.0%以下、15.0%以下、または14.0%以下とできる。また、NaO成分の下限は0%超、2.0%以上、4.0%以上、または6.0%以上とできる。
In particular, the Na 2 O component is, for example, as a result of the progress of the exchange reaction between the potassium component (K + ion) having a large ionic radius in the molten salt and the sodium component (Na + ion) having a small ionic radius in the substrate. Since compressive stress is formed on the surface of the substrate, it is preferable to use it as an essential component.
Therefore, the upper limit of the content of the Na 2 O component can be 20.0% or less, 18.0% or less, 15.0% or less, or 14.0% or less. Further, the lower limit of the Na 2 O component can be more than 0%, 2.0% or more, 4.0% or more, or 6.0% or more.

Al成分は、機械的強度を向上させるのに好適な成分である一方で、過剰に含有すると熔融性や耐失透性が悪くなる成分である。
従って、Al成分の含有量の上限は25.0%以下、23.0%以下、22.0%以下、または20.0%以下とできる。また、Al成分の含有量の下限は7.0%以上、9.0%以上、10.0%以上、または11.0%以上とできる。
The Al 2 O 3 component is a component suitable for improving the mechanical strength, but when it is contained in an excessive amount, the meltability and devitrification resistance are deteriorated.
Therefore, the upper limit of the content of the Al 2 O 3 component can be 25.0% or less, 23.0% or less, 22.0% or less, or 20.0% or less. Further, the lower limit of the content of the Al 2 O 3 component can be 7.0% or more, 9.0% or more, 10.0% or more, or 11.0% or more.

MgO成分は、屈折率を高くすると共に機械的強度に寄与する成分である一方で、過剰に含有すると耐失透性が悪くなる成分である。
従って、MgO成分の含有量の上限は25.0%以下、22.0%以下、20.0%以下、18.0%以下、または15.0%以下とできる。また、MgO成分の含有量の下限は0%以上、1.0%以上、1.5%以上、または2.0%以上とできる。
The MgO component is a component that increases the refractive index and contributes to mechanical strength, but if it is contained in an excessive amount, the devitrification resistance deteriorates.
Therefore, the upper limit of the content of the MgO component can be 25.0% or less, 22.0% or less, 20.0% or less, 18.0% or less, or 15.0% or less. Further, the lower limit of the content of the MgO component can be 0% or more, 1.0% or more, 1.5% or more, or 2.0% or more.

ZnO成分は、屈折率を高くすると共に機械的強度に寄与するだけでなく、ガラスの低粘性化にも有効な成分である一方で、過剰に含有すると耐失透性が悪くなる成分である。
従って、ZnO成分の含有量の上限は45.0%以下、40.0%以下、38.0%以下、または25.0%以下とできる。また、ZnO成分の含有量の下限は0%以上、2.0%以上、5.0%以上、または8.0%以上、10.0%以上とできる。
The ZnO component not only increases the refractive index and contributes to mechanical strength, but is also an effective component for reducing the viscosity of glass, but when it is excessively contained, the devitrification resistance deteriorates.
Therefore, the upper limit of the content of the ZnO component can be 45.0% or less, 40.0% or less, 38.0% or less, or 25.0% or less. Further, the lower limit of the content of the ZnO component can be 0% or more, 2.0% or more, 5.0% or more, or 8.0% or more, 10.0% or more.

Ta成分は、屈折率を高くする成分である一方で、過剰に含有すると耐失透性が悪くなる成分である。
従って、Ta成分の含有量の上限は20.0%以下、19.0%以下、17.0%以下、または15.0%以下とできる。
また、Ta成分の含有量の下限は0%以上、1.0%以上、3.0%以上、または5.0%以上とできる。さらに、Ta成分の含有量の下限を5.0モル%超、または5.5モル%以上とできる。
The Ta 2 O 5 component is a component that increases the refractive index, but on the other hand, if it is contained in an excessive amount, the devitrification resistance deteriorates.
Therefore, the upper limit of the content of the Ta 2 O 5 component can be 20.0% or less, 19.0% or less, 17.0% or less, or 15.0% or less.
Further, the lower limit of the content of the Ta 2 O 5 component can be 0% or more, 1.0% or more, 3.0% or more, or 5.0% or more. Further, the lower limit of the content of the Ta 2 O 5 component can be more than 5.0 mol% or 5.5 mol% or more.

MgO成分とZnO成分とTa成分の合計量は、調整することで高い屈折率を得ることができる一方で、過剰に含有するとガラスの耐失透性が悪くなる。
従って、MgO成分とZnO成分とTa成分の合計量の下限は好ましくは10.0%以上、15.0%以上、18.0%以上、または20.0%以上とできる。好ましくはMgO成分とZnO成分とTa成分の合計量の上限は45.0%以下、40.0%以下、または38.0%以下とできる。
A high refractive index can be obtained by adjusting the total amount of the MgO component, the ZnO component, and the Ta 2 O 5 component, but if it is excessively contained, the devitrification resistance of the glass deteriorates.
Therefore, the lower limit of the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component can be preferably 10.0% or more, 15.0% or more, 18.0% or more, or 20.0% or more. Preferably, the upper limit of the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component can be 45.0% or less, 40.0% or less, or 38.0% or less.

ZnO成分とTa成分の合計量は、調整することで高い屈折率を得ることができる。一方で、過剰に含有するとガラスの耐失透性が悪くなる。
従って、ZnO成分とTa成分の合計量の下限は好ましくは5.0%以上、8.0%以上、または10.0%以上とでき、ZnO成分とTa成分の合計量の上限は好ましくは35.0%以下、30.0%以下、または28.0%以下とできる。
A high refractive index can be obtained by adjusting the total amount of the ZnO component and the Ta 2 O 5 component. On the other hand, if it is contained in an excessive amount, the devitrification resistance of the glass deteriorates.
Therefore, the lower limit of the total amount of the ZnO component and the Ta 2 O 5 component can be preferably 5.0% or more, 8.0% or more, or 10.0% or more, and the total amount of the Zn O component and the Ta 2 O 5 component. The upper limit of is preferably 35.0% or less, 30.0% or less, or 28.0% or less.

TiO成分は、結晶化の核剤と高屈折率化に寄与する成分である。
従って、TiO成分の含有量は好ましくは0%〜15.0%、より好ましくは1.0%〜13.0%、さらに好ましくは2.0%〜10.0%とできる。
The TiO 2 component is a crystallization nucleating agent and a component that contributes to high refractive index.
Therefore, the content of the TiO 2 component can be preferably 0% to 15.0%, more preferably 1.0% to 13.0%, and even more preferably 2.0% to 10.0%.

CaO成分、BaO成分、SrO成分は、屈折率向上およびガラスの安定化に寄与する成分である。
従って、CaO成分の含有量は好ましくは0%〜15.0%、より好ましくは0.1%〜13.0%、さらに好ましくは0.5%〜10.0%とできる。
BaO成分の含有量は、好ましくは0%〜15.0%、より好ましくは0%〜13.0%、さらに好ましくは0%〜12.0%とできる。
SrO成分の含有量は、好ましくは0%〜10.0%、より好ましくは0%〜8.0%、さらに好ましくは0%〜7.0%とできる。
The CaO component, the BaO component, and the SrO component are components that contribute to the improvement of the refractive index and the stabilization of the glass.
Therefore, the content of the CaO component can be preferably 0% to 15.0%, more preferably 0.1% to 13.0%, and even more preferably 0.5% to 10.0%.
The content of the BaO component can be preferably 0% to 15.0%, more preferably 0% to 13.0%, still more preferably 0% to 12.0%.
The content of the SrO component can be preferably 0% to 10.0%, more preferably 0% to 8.0%, and even more preferably 0% to 7.0%.

結晶化ガラスは、ZrO成分、WO成分、La成分、P成分、Nb成分をそれぞれ含んでもよいし、含まなくてもよい。各々の成分の含有量は0〜10.0%、0〜8.0%、または0〜7.0%とできる。 The crystallized glass may or may not contain ZrO 2 component, WO 3 component, La 2 O 3 component, P 2 O 5 component, and Nb 2 O 5 component, respectively. The content of each component can be 0-10.0%, 0-8.0%, or 0-7.0%.

結晶化ガラスは、Gd成分、Bi成分をそれぞれ含んでもよいし、含まなくてもよい。各々の成分の含有量は0〜15.0%、0〜13.0%、または0〜10.0%とできる。 The crystallized glass may or may not contain the Gd 2 O 3 component and the Bi 2 O 3 component, respectively. The content of each component can be 0 to 15.0%, 0 to 13.0%, or 0 to 10.0%.

また、結晶化ガラスは、B成分、Y成分、TeO成分をそれぞれ含んでもよいし、含まなくてもよい。各々の成分の含有量は、0%〜2.0%、0%以上2.0%未満、または0%〜1.0%とできる。 Further, the crystallized glass may or may not contain the B 2 O 3 component, the Y 2 O 3 component, and the TeO 2 component, respectively. The content of each component can be 0% to 2.0%, 0% or more and less than 2.0%, or 0% to 1.0%.

結晶化ガラスは、清澄剤として、Sb成分、SnO成分およびCeO成分から選択される1以上を0%〜5.0%、好ましくは0.03%〜2.0%、さらに好ましくは0.05%〜1.0%含むことができる。 The crystallized glass contains 1 or more selected from Sb 2 O 3 component, SnO 2 component and CeO 2 component as a fining agent from 0% to 5.0%, preferably 0.03% to 2.0%, and further. It can preferably contain 0.05% to 1.0%.

上記の配合量は適宜組み合わせることができる。 The above blending amounts can be combined as appropriate.

SiO成分、RnO成分、Al成分、MgO成分、ZnO成分およびTa成分の合計含有量を調整することで、RAl、RSiO、(ただし、RはZn、Mgから選択される1種類以上)から選ばれる一種類以上を結晶相として含有しつつ、イオン交換による化学強化が可能となる。同時に、優れた機械的強度および屈折率の高いガラスを得ることができる。
従って、質量和SiO+RnO+Al+MgO+ZnO+Taの下限は70.0%以上、75.0%以上、80.0%以上、または85.0%以上とすることができる。
By adjusting the total content of SiO 2 component, Rn 2 O component, Al 2 O 3 component, Mg O component, Zn O component and Ta 2 O 5 component, RAl 2 O 4 , R 2 SiO 4 , (however, R Contains one or more selected from (one or more selected from Zn and Mg) as a crystal phase, and can be chemically strengthened by ion exchange. At the same time, it is possible to obtain a glass having excellent mechanical strength and a high refractive index.
Therefore, the lower limit of the mass sum SiO 2 + Rn 2 O + Al 2 O 3 + MgO + ZnO + Ta 2 O 5 can be 70.0% or more, 75.0% or more, 80.0% or more, or 85.0% or more.

本発明の結晶化ガラスは、高い屈折率(n)を有する。好ましくは屈折率の下限は1.55以上、1.58以上、1.60以上、または1.61以上である。通常、屈折率の上限は1.65以下である。 The crystallized glass of the present invention has a high refractive index ( nd ). Preferably, the lower limit of the refractive index is 1.55 or more, 1.58 or more, 1.60 or more, or 1.61 or more. Generally, the upper limit of the refractive index is 1.65 or less.

本発明の結晶化ガラスは、高いビッカース硬度を有する。通常、ビッカース硬度の下限は500以上、好ましくは600以上、さらに好ましくは700以上である。通常、ビッカース硬度の上限は800以下である。また、化学強化などで強化した結晶化ガラスは、さらに硬度が高くなり、800〜900のものもある。 The crystallized glass of the present invention has a high Vickers hardness. Generally, the lower limit of Vickers hardness is 500 or more, preferably 600 or more, and more preferably 700 or more. Generally, the upper limit of Vickers hardness is 800 or less. Further, the crystallized glass strengthened by chemical strengthening or the like has a higher hardness, and some of them are 800 to 900.

本発明の結晶化ガラスは、通常、比重が重く、比重の下限は2.95以上、または3.00以上である。通常、比重の上限は3.40以下である。 The crystallized glass of the present invention usually has a heavy specific gravity, and the lower limit of the specific gravity is 2.95 or more, or 3.00 or more. Usually, the upper limit of specific gravity is 3.40 or less.

本発明の結晶化ガラスは、以下の方法で作製できる。すなわち、原料を均一に混合し、熔解成形して原ガラスを製造する。次にこの原ガラスを結晶化して結晶化ガラスを作製する。さらに結晶化ガラスを母材として圧縮応力層を形成して強化してもよい。 The crystallized glass of the present invention can be produced by the following method. That is, the raw materials are uniformly mixed and melt-molded to produce raw glass. Next, this raw glass is crystallized to produce crystallized glass. Further, a compressive stress layer may be formed and strengthened using crystallized glass as a base material.

原ガラスは、熱処理しガラス内部に結晶を析出させる。この熱処理は、1段階でもよく2段階の温度で熱処理してもよい。
2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
1段階熱処理では、1段階の温度で核形成工程と結晶成長工程を連続的に行う。通常、所定の熱処理温度まで昇温し、当該熱処理温度に達した後に一定時間その温度を保持し、その後、降温する。
2段階熱処理の第1の温度は600℃〜750℃が好ましい。第1の温度での保持時間は30分〜2000分が好ましく、180分〜1440分がより好ましい。
2段階熱処理の第2の温度は650℃〜850℃が好ましい。第2の温度での保持時間は30分〜600分が好ましく、60分〜300分がより好ましい。
1段階の温度で熱処理する場合、熱処理の温度は600℃〜800℃が好ましく、630℃〜770℃がより好ましい。また、熱処理の温度での保持時間は、30分〜500分が好ましく、60分〜300分がより好ましい。
The raw glass is heat-treated to precipitate crystals inside the glass. This heat treatment may be performed in one step or in two steps.
In the two-step heat treatment, the nucleation step is first performed by heat treatment at the first temperature, and after this nucleation step, the crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
In the one-step heat treatment, the nucleation step and the crystal growth step are continuously performed at the one-step temperature. Usually, the temperature is raised to a predetermined heat treatment temperature, the temperature is maintained for a certain period of time after reaching the heat treatment temperature, and then the temperature is lowered.
The first temperature of the two-step heat treatment is preferably 600 ° C. to 750 ° C. The holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes.
The second temperature of the two-step heat treatment is preferably 650 ° C to 850 ° C. The holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 300 minutes.
When the heat treatment is performed at a one-step temperature, the heat treatment temperature is preferably 600 ° C. to 800 ° C., more preferably 630 ° C. to 770 ° C. The holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, more preferably 60 minutes to 300 minutes.

基板を化学強化するときは、通常、結晶化ガラスから、例えば研削および研磨加工の手段などを用いて、薄板状の結晶化ガラスを作製する。この後、化学強化法によるイオン交換により、結晶化ガラス基板に圧縮応力層を形成する。 When the substrate is chemically strengthened, a thin plate-shaped crystallized glass is usually produced from the crystallized glass by means of grinding and polishing, for example. After that, a compressive stress layer is formed on the crystallized glass substrate by ion exchange by a chemical strengthening method.

圧縮応力層の形成方法としては、例えば結晶化ガラスの表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成する化学強化法がある。また、結晶化ガラスを加熱し、その後急冷する熱強化法、結晶化ガラスの表面層にイオンを注入するイオン注入法がある。 As a method for forming the compressive stress layer, for example, a chemical strengthening method in which an alkaline component existing in the surface layer of crystallized glass is exchanged with an alkaline component having a larger ionic radius to form a compressive stress layer in the surface layer is used. is there. Further, there are a heat strengthening method in which the crystallized glass is heated and then rapidly cooled, and an ion implantation method in which ions are implanted into the surface layer of the crystallized glass.

化学強化法は、例えば次のような工程で実施することができる。結晶化ガラス母材を、カリウムまたはナトリウムを含有する塩、例えば硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)またはその混合塩や複合塩の溶融塩に接触または浸漬させる。この溶融塩に接触または浸漬させる処理(化学強化処理)は、1段階でもよく2段階で処理してもよい。 The chemical strengthening method can be carried out, for example, in the following steps. The crystallized glass base material is contacted or immersed in a salt containing potassium or sodium, for example, potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ) or a mixed salt thereof or a molten salt of a composite salt thereof. The treatment of contacting or immersing the molten salt (chemical strengthening treatment) may be performed in one step or in two steps.

例えば2段階化学強化処理の場合、第1に350℃〜550℃で加熱したナトリウム塩またはカリウムとナトリウムの混合塩に1〜1440分、好ましくは90〜800分接触または浸漬させる。続けて第2に350℃〜550℃で加熱したカリウム塩またはカリウムとナトリウムの混合塩に1〜1440分、好ましくは60〜800分接触または浸漬させる。
1段階化学強化処理の場合、350℃〜550℃で加熱したカリウムまたはナトリウムを含有する塩、またはその混合塩に1〜1440分、好ましくは60〜800分接触または浸漬させる。
For example, in the case of a two-step chemical strengthening treatment, first contact or immersion is carried out in a sodium salt heated at 350 ° C. to 550 ° C. or a mixed salt of potassium and sodium for 1-1440 minutes, preferably 90 to 800 minutes. Subsequently, it is contacted or immersed in a potassium salt or a mixed salt of potassium and sodium heated at 350 ° C. to 550 ° C. for 1 to 1440 minutes, preferably 60 to 800 minutes.
In the case of one-step chemical strengthening treatment, contact or immersion is carried out in a salt containing potassium or sodium heated at 350 ° C. to 550 ° C., or a mixed salt thereof for 1-1440 minutes, preferably 60 to 800 minutes.

熱強化法については、特に限定されないが、例えば結晶化ガラス母材を、300℃〜600℃に加熱した後に、水冷および/または空冷などの急速冷却を実施することにより、ガラス基板の表面と内部の温度差によって、圧縮応力層を形成することができる。なお、上記化学処理法と組み合わせることにより、圧縮応力層をより効果的に形成することもできる。 The heat strengthening method is not particularly limited, but for example, the surface and the inside of the glass substrate are obtained by heating the crystallized glass base material to 300 ° C. to 600 ° C. and then performing rapid cooling such as water cooling and / or air cooling. A compressive stress layer can be formed by the temperature difference of. The compressive stress layer can be formed more effectively by combining with the above chemical treatment method.

イオン注入法については、特に限定されないが、例えば結晶化ガラス母材表面に任意のイオンを母材表面が破壊しない程度の加速エネルギー、加速電圧にて衝突させることで母材表面にイオンを注入する。その後必要に応じて熱処理を行うことにより、他方法と同様に表面に圧縮応力層を形成することができる。 The ion implantation method is not particularly limited, but for example, ions are implanted into the surface of the base metal by colliding arbitrary ions on the surface of the crystallized glass base material with acceleration energy and acceleration voltage that do not destroy the surface of the base material. .. After that, by performing heat treatment as necessary, a compressive stress layer can be formed on the surface in the same manner as in other methods.

実施例1〜35
1.結晶化ガラスの製造
結晶化ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、メタ燐酸化合物などの原料を選定し、これらの原料を表1〜4に記載の組成(質量%)になるように秤量して均一に混合した。
Examples 1-35
1. 1. Manufacture of crystallized glass Raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, and metaphosphate compounds corresponding to each component of crystallized glass are selected and these raw materials are shown in the table. Weighed so as to have the composition (% by mass) described in 1 to 4, and mixed uniformly.

次に、混合した原料を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1300℃〜1600℃で、2〜24時間溶融した。その後、溶融したガラスを攪拌して均質化してから1000℃〜1450℃に温度を下げてから金型に鋳込み、徐冷して原ガラスを作製した。得られた原ガラスを730℃で加熱して結晶化させた。 Next, the mixed raw materials were put into a platinum crucible and melted in an electric furnace at 1300 ° C. to 1600 ° C. for 2 to 24 hours depending on the degree of difficulty in melting the glass composition. Then, the molten glass was stirred and homogenized, the temperature was lowered to 1000 ° C. to 1450 ° C., the glass was cast into a mold, and the glass was slowly cooled to prepare a raw glass. The obtained raw glass was heated at 730 ° C. to crystallize it.

作製した結晶化ガラスを切断および研削し、さらに1mmの厚さとなるように対面平行研磨し、結晶化ガラス基板を得た。次に、結晶化ガラス基板を母材として用いて、420℃のKNOの溶融塩に500分浸漬して強化結晶化ガラスを得た。 The produced crystallized glass was cut and ground, and face-to-face parallel polishing was performed to a thickness of 1 mm to obtain a crystallized glass substrate. Next, using the crystallized glass substrate as a base material, it was immersed in a molten salt of KNO 3 at 420 ° C. for 500 minutes to obtain a strengthened crystallized glass.

2.結晶化ガラスの評価
得られた結晶化ガラスおよび強化結晶化ガラスについて、以下の物性を測定した。結果を表1〜4に示す。
2. Evaluation of Crystallized Glass The following physical properties of the obtained crystallized glass and strengthened crystallized glass were measured. The results are shown in Tables 1-4.

(1)屈折率(n
屈折率(n)は、JIS B 7071−2:2018に規定されるVブロック法に準じて、ヘリウムランプのd線(587.56nm)に対する測定値で示した。
(1) Refractive index ( nd )
Refractive index (n d) is, JIS B 7071-2: according to the V block method specified in 2018, indicated by measured values for helium lamp d line (587.56 nm).

(2)比重(d)
アルキメデス法により測定した。
(2) Specific gravity (d)
It was measured by Archimedes' method.

(3)ビッカース硬度(Hv)
136°のダイヤモンド四角錘圧子を荷重980.7mNで10秒間押し込み、圧痕のくぼみの長さから算出した表面積(mm)で割ることにより求めた。(株)島津製作所製マイクロビッカース硬度計HMV−Gを用いて測定した。
(3) Vickers hardness (Hv)
It was determined by pushing a 136 ° diamond square weight indenter under a load of 980.7 mN for 10 seconds and dividing by the surface area (mm 2) calculated from the length of the indentation. The measurement was performed using a micro Vickers hardness tester HMV-G manufactured by Shimadzu Corporation.

(4)応力測定
実施例3,5,6,13,20の強化結晶化ガラスについて、表面の圧縮応力値(CS)と圧縮応力層の厚さ(応力深さDOLzero)を、折原製作所製のガラス表面応力計FSM−6000LEシリーズを用いて測定した。CS測定において用いられる測定機の光源は、596nmの波長の光源を選択し測定を行った。CS測定に用いる屈折率は、596nmの屈折率の値を使用した。なお、波長596nmにおける屈折率の値は、JIS B 7071−2:2018に規定されるVブロック法に準じてC線、d線、F線、g線の波長における屈折率の測定値から二次の近似式を用いて算出した。中心圧縮応力値(CT)は、曲線解析(Curve analysis)により求めた。
(4) Stress measurement For the reinforced crystallized glass of Examples 3, 5, 6, 13, 20, the surface compressive stress value (CS) and the thickness of the compressive stress layer (stress depth DOLzero) were determined by Orihara Seisakusho. The measurement was performed using a glass surface stress meter FSM-6000LE series. As the light source of the measuring machine used in the CS measurement, a light source having a wavelength of 596 nm was selected for measurement. As the refractive index used for the CS measurement, the value of the refractive index of 596 nm was used. The value of the refractive index at a wavelength of 596 nm is secondary from the measured values of the refractive index at the wavelengths of C line, d line, F line, and g line according to the V block method defined in JIS B 7071-2: 2018. It was calculated using the approximate expression of. The central compressive stress value (CT) was determined by curve analysis.

(4)光弾性定数(β)
CS測定条件となる光弾性定数β(nm/cm/10Pa)の値は表1〜4に示す値を用いた。CS測定に用いる光弾性定数は、596nmの光弾性定数の値を使用した。
光弾性定数の測定方法は、試料形状を対面研磨して直径25mm、厚さ8mmの円板状とし、側面方向に圧縮荷重0〜約100.kgfを加え、ガラスの中心に生じる光路差を測定し、δ=β・d・Fの関係式により求めた。上記式では、光路差をδ(nm)、ガラスの厚さをd(cm)、応力をF(MPa)として表記している。
(4) Photoelastic constant (β)
The value of the photoelastic constant as the CS measurement condition β (nm / cm / 10 5 Pa) was used the values shown in Table 1-4. As the photoelastic constant used for the CS measurement, the value of the photoelastic constant at 596 nm was used.
The photoelastic constant is measured by face-to-face polishing the sample shape into a disk shape with a diameter of 25 mm and a thickness of 8 mm, and a compressive load of 0 to about 100 in the lateral direction. kgf was added, and the optical path difference generated in the center of the glass was measured and determined by the relational expression of δ = β · d · F. In the above formula, the optical path difference is expressed as δ (nm), the glass thickness is expressed as d (cm), and the stress is expressed as F (MPa).

尚、実施例11,14,23,24,26〜30は、結晶化温度が高いため失透したので、屈折率は測定できなかった。表1〜4に示すように、化学強化によりビッカース硬度が高くなっているので、圧縮応力層は形成されている。実施例29は塩浴中で粉々になり化学強化できなかった。 In Examples 11, 14, 23, 24, 26 to 30, the refractive index could not be measured because the crystallization temperature was high and devitrification occurred. As shown in Tables 1 to 4, the Vickers hardness is increased by chemical strengthening, so that the compressive stress layer is formed. Example 29 shattered in a salt bath and could not be chemically fortified.

実施例36
結晶化温度を680℃とした他は、実施例24と同様にして、結晶化ガラスを作製した。失透せず屈折率を測定できた。屈折率は1.63、比重は3.16、ビッカース硬度は755であった。
Example 36
Crystallized glass was produced in the same manner as in Example 24 except that the crystallization temperature was set to 680 ° C. The refractive index could be measured without devitrification. The refractive index was 1.63, the specific gravity was 3.16, and the Vickers hardness was 755.

実施例37
結晶化温度を700℃とした他は、実施例26と同様にして、結晶化ガラスを作製した。失透せず屈折率を測定できた。屈折率は1.63、比重は3.18であった。
Example 37
Crystallized glass was produced in the same manner as in Example 26 except that the crystallization temperature was 700 ° C. The refractive index could be measured without devitrification. The refractive index was 1.63 and the specific gravity was 3.18.

実施例38
結晶化温度を760℃とした他は、実施例2と同様にして、結晶化ガラスと強化結晶化ガラスを作製した。結晶化ガラスの屈折率は1.60、比重は3.05、ビッカース硬度は682、強化結晶化ガラスのビッカース硬度は803であった。
Example 38
Crystallized glass and strengthened crystallized glass were produced in the same manner as in Example 2 except that the crystallization temperature was set to 760 ° C. The refractive index of the crystallized glass was 1.60, the specific gravity was 3.05, the Vickers hardness was 682, and the Vickers hardness of the strengthened crystallized glass was 803.

実施例39
結晶化温度を760℃とした他は、実施例7,8と同様にして、結晶化ガラスと強化結晶化ガラスを作製した。結晶化ガラスの比重はそれぞれ3.17、3.15、強化結晶化ガラスのビッカース硬度はそれぞれ815,834であった。
Example 39
Crystallized glass and strengthened crystallized glass were produced in the same manner as in Examples 7 and 8 except that the crystallization temperature was set to 760 ° C. The specific gravity of the crystallized glass was 3.17 and 3.15, respectively, and the Vickers hardness of the strengthened crystallized glass was 815,834, respectively.

比較例1
比較例1として、特許文献2の実施例26の結晶化ガラスを用いて、実施例と同様に評価した。結果を、表4に示す。

Comparative Example 1
As Comparative Example 1, the crystallized glass of Example 26 of Patent Document 2 was used and evaluated in the same manner as in Example. The results are shown in Table 4.

Figure 2021042116
Figure 2021042116

Figure 2021042116
Figure 2021042116

Figure 2021042116
Figure 2021042116

Figure 2021042116
Figure 2021042116

Claims (7)

酸化物換算の質量%で、
SiO成分を20.0%以上40.0%未満、
RnO成分を0%超20.0%以下(ただしRnはLi、Na、Kから選択される1種類以上)、
Al成分を7.0%〜25.0%、
MgO成分を0%〜25.0%、
ZnO成分を0%〜45.0%、
Ta成分を0%〜20.0%、
含有し、
MgO成分とZnO成分とTa成分の合計量が10.0%以上である結晶化ガラス。
By mass% in terms of oxide,
SiO 2 component is 20.0% or more and less than 40.0%,
Rn 2 O component is more than 0% and 20.0% or less (however, Rn is one or more selected from Li, Na, and K).
Al 2 O 3 component 7.0% to 25.0%,
MgO component 0% to 25.0%,
ZnO component is 0% -45.0%,
Ta 2 O 5 component 0% to 20.0%,
Contains,
A crystallized glass in which the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component is 10.0% or more.
酸化物換算の質量%で、
TiO成分を0%〜15.0%、
CaO成分を0%〜15.0%、
BaO成分を0%〜15.0%、
SrO成分を0%〜10.0%を含有する請求項1に記載の結晶化ガラス。
By mass% in terms of oxide,
TiO 2 component from 0% to 15.0%,
CaO component 0% -15.0%,
BaO component 0% -15.0%,
The crystallized glass according to claim 1, which contains 0% to 10.0% of the SrO component.
酸化物換算の質量%で、
ZrO成分を0%〜10.0%、
WO成分を0%〜10.0%、
La成分を0〜10.0%、
Gd成分を0〜15.0%、
Bi成分を0〜15.0%、
成分を0〜10.0%、
Nb成分を0〜10.0%、
Sb成分を0〜5.0%を含有する請求項1または2に記載の結晶化ガラス。
By mass% in terms of oxide,
ZrO 2 component from 0% to 10.0%,
WO 3 component from 0% to 10.0%,
La 2 O 3 component 0 to 10.0%,
Gd 2 O 3 component 0 to 15.0%,
Bi 2 O 3 component 0 to 15.0%,
P 2 O 5 component 0 to 10.0%,
Nb 2 O 5 component 0 to 10.0%,
The crystallized glass according to claim 1 or 2, which contains 0 to 5.0% of the Sb 2 O 3 component.
前記MgO成分とZnO成分とTa成分の合計量が18.0%以上である請求項1から3のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 3, wherein the total amount of the MgO component, the ZnO component and the Ta 2 O 5 component is 18.0% or more. 屈折率(n)が1.55以上である請求項1から4のいずれかに記載の結晶化ガラス。 Refractive index (n d) of crystallized glass according to claim 1 is 1.55 or more 4. 比重が3.0以上である請求項1から5のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 5, which has a specific gravity of 3.0 or more. 請求項1から6のいずれかに記載の結晶化ガラスを母材とし、表面に圧縮応力層を有する強化結晶化ガラス。

A reinforced crystallized glass using the crystallized glass according to any one of claims 1 to 6 as a base material and having a compressive stress layer on the surface.

JP2019188957A 2019-09-05 2019-10-15 Crystallized glass and reinforced crystallized glass Pending JP2021042116A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202410318426.5A CN118184131A (en) 2019-09-05 2020-08-19 Crystallized glass and strengthened crystallized glass
US17/640,341 US20220324749A1 (en) 2019-09-05 2020-08-19 Crystallized glass and reinforced crystallized glass
PCT/JP2020/031201 WO2021044841A1 (en) 2019-09-05 2020-08-19 Crystallized glass and reinforced crystallized glass
CN202080061796.5A CN114341068A (en) 2019-09-05 2020-08-19 Crystallized glass and reinforced crystallized glass
TW109129967A TW202114955A (en) 2019-09-05 2020-09-02 Crystallized glass and reinforced crystallized glass
JP2024015869A JP2024036512A (en) 2019-09-05 2024-02-05 Crystallized glass and reinforced crystallized glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161899 2019-09-05
JP2019161899 2019-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024015869A Division JP2024036512A (en) 2019-09-05 2024-02-05 Crystallized glass and reinforced crystallized glass

Publications (1)

Publication Number Publication Date
JP2021042116A true JP2021042116A (en) 2021-03-18

Family

ID=74863605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188957A Pending JP2021042116A (en) 2019-09-05 2019-10-15 Crystallized glass and reinforced crystallized glass

Country Status (2)

Country Link
JP (1) JP2021042116A (en)
TW (1) TW202114955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262155A (en) * 2021-11-11 2022-04-01 深圳旭安光学有限公司 Crystallized glass, strengthened crystallized glass and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313639A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, and substrate using the same and used for information recording medium, information recording medium and information recording device
JP2001287938A (en) * 2000-04-03 2001-10-16 Minolta Co Ltd Glass composition
JP2001325718A (en) * 2000-03-08 2001-11-22 Hoya Corp Substrate for information recording medium and information recording medium
JP2006512274A (en) * 2002-12-31 2006-04-13 コーニング インコーポレイテッド ZnO-based glass ceramic
JP2009504563A (en) * 2005-08-17 2009-02-05 コーニング インコーポレイテッド High strain point glass
JP2014114200A (en) * 2012-11-16 2014-06-26 Ohara Inc Crystallized glass and crystallized glass substrate for information recording medium
JP2014237564A (en) * 2013-06-07 2014-12-18 日本電気硝子株式会社 Optical glass
JP2017001937A (en) * 2015-06-04 2017-01-05 株式会社オハラ Crystallized glass and crystallized glass substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313639A (en) * 1999-02-25 2000-11-14 Nippon Sheet Glass Co Ltd Crystallized glass and method for producing the same, and substrate using the same and used for information recording medium, information recording medium and information recording device
JP2001325718A (en) * 2000-03-08 2001-11-22 Hoya Corp Substrate for information recording medium and information recording medium
JP2001287938A (en) * 2000-04-03 2001-10-16 Minolta Co Ltd Glass composition
JP2006512274A (en) * 2002-12-31 2006-04-13 コーニング インコーポレイテッド ZnO-based glass ceramic
JP2009504563A (en) * 2005-08-17 2009-02-05 コーニング インコーポレイテッド High strain point glass
JP2014114200A (en) * 2012-11-16 2014-06-26 Ohara Inc Crystallized glass and crystallized glass substrate for information recording medium
JP2014237564A (en) * 2013-06-07 2014-12-18 日本電気硝子株式会社 Optical glass
JP2017001937A (en) * 2015-06-04 2017-01-05 株式会社オハラ Crystallized glass and crystallized glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262155A (en) * 2021-11-11 2022-04-01 深圳旭安光学有限公司 Crystallized glass, strengthened crystallized glass and preparation method thereof

Also Published As

Publication number Publication date
TW202114955A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
JP6765748B2 (en) Crystallized glass and crystallized glass substrate
JP7184073B2 (en) glass for chemical strengthening
JP6995459B1 (en) Inorganic composition articles and crystallized glass
TW201245079A (en) Method for producing chemically tempered glass, and glass for chemical tempering
US20200189962A1 (en) Ion-exchangeable lithium-containing aluminosilicate glasses
JPWO2019194110A1 (en) Chemical strengthening glass
WO2023082935A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
WO2023082936A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
JP7013623B1 (en) Crystallized glass and reinforced crystallized glass
CN116768480A (en) Glass ceramics and chemically strengthened glass
JP2021042116A (en) Crystallized glass and reinforced crystallized glass
JP2021084828A (en) Optical filter glass ceramic and optical filter
WO2022030174A1 (en) Glass and crystallized glass
WO2021044841A1 (en) Crystallized glass and reinforced crystallized glass
JP2017114718A (en) Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement
JP7019941B2 (en) Manufacturing method of tempered glass and manufacturing method of tempered glass
JP7460586B2 (en) crystallized glass
WO2024143174A1 (en) Inorganic composition article
WO2023145956A1 (en) Inorganic composition article
WO2024062797A1 (en) Crystallised glass
WO2022168895A1 (en) Crystallized glass and chemically strengthened glass
CN116813204A (en) Crystallized glass, reinforced crystallized glass and preparation method thereof
TW202413297A (en) crystallized glass
JP2024011923A (en) Inorganic composition article
JP2024011959A (en) Inorganic composition article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240213

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240510