JP2006346694A - Method for controlling electric current in non-consumable electrode arc welding - Google Patents

Method for controlling electric current in non-consumable electrode arc welding Download PDF

Info

Publication number
JP2006346694A
JP2006346694A JP2005173335A JP2005173335A JP2006346694A JP 2006346694 A JP2006346694 A JP 2006346694A JP 2005173335 A JP2005173335 A JP 2005173335A JP 2005173335 A JP2005173335 A JP 2005173335A JP 2006346694 A JP2006346694 A JP 2006346694A
Authority
JP
Japan
Prior art keywords
welding
current
filler wire
consumable electrode
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173335A
Other languages
Japanese (ja)
Inventor
Toshiro Uesono
敏郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2005173335A priority Critical patent/JP2006346694A/en
Publication of JP2006346694A publication Critical patent/JP2006346694A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automatically control a welding electric current Iw to be a proper value while manually adjusting a welding speed and a feed speed of a filler wire 4 to make a weld quality uniform corresponding to a temperature rise of a base material due to the progress of a welding process in non-consumable electrode arc welding manually carried out using the filler wire 4. <P>SOLUTION: In a method for controlling an welding current in non-consumable electrode arc welding carried out by manually feeding the filler wire 4 to a molten pool, wire voltage Vw between the filler wire 4 and the base material 2 is detected, and a feed speed Fw of the filler wire 4 is calculated based on the wire voltage Vw, and the welding current Iw is automatically changed according to the feed speed Fw of the filler wire 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶加ワイヤを手動で溶融池に送給しながら行う非消耗電極アーク溶接において、溶接中の母材温度の上昇に伴う溶接品質の変化を抑制することができる非消耗電極アーク溶接の電流制御方法に関するものである。   The present invention relates to non-consumable electrode arc welding that can suppress a change in welding quality due to an increase in base material temperature during welding in non-consumable electrode arc welding performed while manually feeding a filler wire to a molten pool. The present invention relates to a current control method.

図6は、溶加ワイヤを使用する非消耗電極アーク溶接装置のブロック図である。非消耗電極アーク溶接には、ティグ溶接又はプラズマ溶接がある。溶接電源主回路MCは、3相200V等の商用電源を入力として、後述する誤差増幅信号Eaに従ってインバータ制御、チョッパ制御等の出力制御を行い、溶接電流Iwを出力する。タングステン電極等の非消耗電極1は溶接トーチ5の先端部に取り付けられて、母材2との間でアーク3が発生する。溶加ワイヤ4は、溶接作業者によって手動で溶融池に送給される。溶接トーチ5の操作も溶接作業者が行う。溶加ワイヤ4の送給は手動であるので、送給時と停止時とを1周期として繰り返して行われる。したがって、平均の送給速度を速くするためには、この繰り返し周期を短く(周波数を高く)する必要がある。   FIG. 6 is a block diagram of a non-consumable electrode arc welding apparatus using a filler wire. Non-consumable electrode arc welding includes TIG welding or plasma welding. The welding power source main circuit MC receives a commercial power source such as a three-phase 200V input, performs output control such as inverter control and chopper control according to an error amplification signal Ea described later, and outputs a welding current Iw. A non-consumable electrode 1 such as a tungsten electrode is attached to the tip of a welding torch 5, and an arc 3 is generated between the base material 2. The filler wire 4 is manually fed to the molten pool by a welding operator. The welding operator also operates the welding torch 5. Since the feeding of the filler wire 4 is manual, the feeding wire 4 and the stopping time are repeated as one cycle. Therefore, in order to increase the average feeding speed, it is necessary to shorten this repetition cycle (increase the frequency).

電流検出回路IDは、溶接電流Iwを検出して、電流検出信号Idを出力する。電流設定回路IRは、所望値の電流設定信号Irを出力する。誤差増幅回路EAは、上記の電流設定信号Irと上記の電流検出信号Idとの誤差を増幅して、誤差増幅信号Eaを出力する。これにより、溶接装置は、非消耗電極アーク溶接に通常使用される定電流特性となる。   The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The current setting circuit IR outputs a current setting signal Ir having a desired value. The error amplification circuit EA amplifies an error between the current setting signal Ir and the current detection signal Id, and outputs an error amplification signal Ea. Thereby, a welding apparatus becomes a constant current characteristic normally used for non-consumable electrode arc welding.

図7は、上述した溶接装置によって非消耗電極アーク溶接を行ったときの同図(A)に示すビード外観、同図(B)に示す溶接電流Iw及び同図(C)に示す溶接速度Wsの時間変化図である。時刻t1から溶接を開始し、時刻t2に溶接を終了する。同図(B)に示すように、溶接電流Iwは予め定めた一定値である。同図(A)に示すように、溶接開始初期は母材温度は低いが、溶接が進行するに伴い次第に上昇する。このとき溶接電流Iwは一定値であるために、溶接進行に伴い入熱が過多になり、溶込み、ビード外観等の溶接品質が変動する。これを抑制するために、溶接作業者は長年の経験に基づき溶融池形状等から入熱超過を判断し、これを抑制するために溶接トーチの移動を速くする。すなわち、溶接作業者は、溶接進行に伴って、同図(C)に示すように、溶接速度Wsを速くする。同時に、溶接作業者は、溶着量を略一定にするために溶加ワイヤの送給速度を速くする。この溶接速度Wsの変化と溶加ワイヤの送給速度の変化とは略比例関係になる。   FIG. 7 shows the bead appearance shown in FIG. 7A, the welding current Iw shown in FIG. 5B, and the welding speed Ws shown in FIG. FIG. Welding starts from time t1, and welding ends at time t2. As shown in FIG. 5B, the welding current Iw is a predetermined constant value. As shown in FIG. 3A, the base metal temperature is low at the beginning of welding, but gradually increases as welding progresses. At this time, since the welding current Iw is a constant value, heat input becomes excessive as welding progresses, and welding quality such as penetration and bead appearance varies. In order to suppress this, the welding worker determines excess heat input from the molten pool shape or the like based on many years of experience, and speeds up the movement of the welding torch to suppress this. That is, the welding operator increases the welding speed Ws as the welding progresses, as shown in FIG. At the same time, the welding operator increases the feeding speed of the filler wire in order to keep the welding amount substantially constant. The change in the welding speed Ws and the change in the feeding speed of the filler wire are in a substantially proportional relationship.

上述した溶接作業者の溶接速度及び送給速度の手動操作によって、溶込み、ビード外観の大きな変化は抑制することはできる。しかし、同図(A)に示すように、母材2に形成されたビード2aは、溶接速度が速くなると凝固速度が変化してビード表面の波目のピッチが変化する。したがって、溶接品質の変化をより一層抑制するためには、溶接進行に伴って入熱を直接変化させる必要がある。   A large change in the penetration and bead appearance can be suppressed by the above-described manual operation of the welding speed and the feeding speed of the welding operator. However, as shown in FIG. 5A, the bead 2a formed on the base material 2 changes its solidification rate when the welding speed increases, and the pitch of the wave surface on the bead surface changes. Therefore, in order to further suppress the change in the welding quality, it is necessary to directly change the heat input as the welding progresses.

溶接進行に伴う母材温度の変化に対応して溶接品質をより均一に保つためには、上述したように入熱量を直接変化させる必要がある。入熱は溶接電流Iwに略比例するので、溶接進行に伴って溶接電流Iwを変化させることで入熱を直接変化させて溶接品質をより均一にすることができる。溶接作業者が溶接中に溶接電流Iwを調整できるようにした従来技術としては、以下の2つの方法等がある。第1の方法は、溶接トーチに電流調整ツマミを設けるものである。溶接作業者は、溶接を行いながら溶融池等の観察から溶接品質が均一になるようにこの電流調整ツマミを調整して溶接電流Iwを変化させる。次に、第2の方法は、足踏み電流調整器を使用するものである。この足踏み電流調整器は、車のアクセルのように踏む角度に応じて溶接電流Iwを調整できるものである。この場合も同様に、溶接作業者は、溶接を行いながら踏む角度を調整して溶接電流Iwを変化させる。   In order to keep the welding quality more uniform corresponding to the change in the base metal temperature as the welding progresses, it is necessary to directly change the heat input as described above. Since the heat input is substantially proportional to the welding current Iw, by changing the welding current Iw as the welding progresses, the heat input can be directly changed to make the welding quality more uniform. There are the following two methods as the prior art that enables the welding operator to adjust the welding current Iw during welding. The first method is to provide a current adjusting knob on the welding torch. The welding operator adjusts the current adjustment knob to change the welding current Iw so that the welding quality becomes uniform from observation of the molten pool or the like while welding. Next, the second method uses a stepping current regulator. This stepping current adjuster can adjust the welding current Iw according to the stepping angle like an accelerator of a car. In this case as well, the welding operator adjusts the stepping angle while performing welding to change the welding current Iw.

特開昭56―131072号公報JP-A-56-131072 特許第3030953号公報Japanese Patent No. 3030953

上述したように、溶加ワイヤを使用する非消耗電極アーク溶接において、溶接作業者は、溶接中に溶融池、アーク、母材等の様子を観察しながら、溶接品質が良好かつ均一になるように溶接速度(トーチ移動速さ)、溶加ワイヤの送給速度(手動による挿入ピッチ)及び溶接電流値を変化させる。溶接電流値の調整は、上述したように、電流調整ツマミ、足踏み電流調整器等で行う。しかし、溶接作業者が、上記の4つの行為(観察と3つの操作)を同時に行いながら溶接を進行させることは、溶接作業者へ大きな負担を強いることになっていた。さらに、3つの操作を同時に行うために、常にベストな操作を行うことは困難であった。このために、ある程度の溶接品質の変化は許容して、溶接電流値は一定値のままで行うことも多い。   As described above, in non-consumable electrode arc welding using a filler wire, a welding operator observes the state of a molten pool, an arc, a base material, etc. during welding so that the welding quality becomes good and uniform. The welding speed (torch moving speed), the feeding speed of the filler wire (manual insertion pitch), and the welding current value are changed. As described above, the welding current value is adjusted with a current adjustment knob, a stepping current adjuster, or the like. However, if the welding worker advances welding while simultaneously performing the above four actions (observation and three operations), a heavy burden has been imposed on the welding worker. Further, since the three operations are performed simultaneously, it is difficult to always perform the best operation. For this reason, a certain amount of welding quality change is allowed, and the welding current value is often kept constant.

そこで、本発明では、溶加ワイヤを使用する非消耗電極アーク溶接において、溶接作業者が溶接中に溶融池等を観察しながら溶接速度及び送給速度を手動で調整し、かつ、溶接電流の調整を自動化することができる非消耗電極アーク溶接の電流制御方法を提供する。   Therefore, in the present invention, in non-consumable electrode arc welding using a filler wire, the welding operator manually adjusts the welding speed and the feeding speed while observing the molten pool during welding, and the welding current is adjusted. Provided is a current control method for non-consumable electrode arc welding in which adjustment can be automated.

上述した課題を解決するために、第1の発明は、溶加ワイヤを手動で溶融池に送給しながら行う非消耗電極アーク溶接の電流制御方法において、
前記溶加ワイヤと母材との間のワイヤ電圧を検出し、このワイヤ電圧によって前記溶加ワイヤの送給速度を算出し、この溶加ワイヤの送給速度に応じて溶接電流値を自動的に変化させる、ことを特徴とする非消耗電極アーク溶接の電流制御方法である。
In order to solve the above-described problem, the first invention is a current control method for non-consumable electrode arc welding performed while manually feeding a filler wire to a molten pool.
The wire voltage between the filler wire and the base metal is detected, the feeding speed of the filler wire is calculated based on the wire voltage, and the welding current value is automatically set according to the feeding speed of the filler wire. The current control method for non-consumable electrode arc welding is characterized in that

また、第2の発明は、第1の発明記載の溶加ワイヤの送給速度を前記ワイヤ電圧のリップル周波数によって算出する、ことを特徴とする非消耗電極アーク溶接の電流制御方法である。   According to a second aspect of the present invention, there is provided a current control method for non-consumable electrode arc welding, wherein the feeding speed of the filler wire according to the first aspect of the invention is calculated from the ripple frequency of the wire voltage.

また、第3の発明は、溶接開始からの予め定めた初期期間中は前記溶接電流の変化を禁止する、ことを特徴とする第1又は第2の発明記載の非消耗電極アーク溶接の電流制御方法である。   According to a third aspect of the present invention, the current control for non-consumable electrode arc welding according to the first or second aspect is characterized in that the change in the welding current is prohibited during a predetermined initial period from the start of welding. Is the method.

上記第1の発明によれば、ワイヤ電圧に基づいて溶加ワイヤの送給速度を算出し、この送給速度の変化に応じて溶接電流値を変化させることによって、溶接進行に伴う溶接品質の変動を抑制して均一にすることができる。さらに、溶接電流値の変化は自動的に行われるので、溶接作業者の負担にはならない。   According to the first aspect of the invention, the feeding speed of the filler wire is calculated based on the wire voltage, and the welding current value is changed in accordance with the change in the feeding speed, so that the welding quality associated with the progress of welding can be improved. Variation can be suppressed and uniform. Furthermore, since the change in the welding current value is automatically performed, there is no burden on the welding operator.

上記第2の発明によれば、ワイヤ電圧のリップル周波数によって送給速度を算出することができ、上記の効果を奏する。   According to the second aspect of the invention, the feeding speed can be calculated from the ripple frequency of the wire voltage, and the above effect is achieved.

上記第3の発明によれば、溶接開始からの初期期間中は送給速度に応じた溶接電流の変化を禁止することによって、過渡状態での溶接電流の不要な変化を禁止することができる。このために、初期期間中の溶接状態が不安定になることなく、上記の効果を奏することができる。   According to the third aspect of the present invention, during the initial period from the start of welding, it is possible to prohibit an unnecessary change in the welding current in a transient state by prohibiting a change in the welding current according to the feeding speed. For this reason, said effect can be show | played, without the welding state in an initial period becoming unstable.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る非消耗電極アーク溶接の電流制御方法を実施するための溶接装置のブロック図である。同図において上述した図6と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図6とは異なる点線で示すブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding apparatus for carrying out a current control method for non-consumable electrode arc welding according to Embodiment 1 of the present invention. In the figure, the same blocks as those in FIG. 6 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 6 will be described.

電圧検出回路VDは、溶加ワイヤ4と母材2との間のワイヤ電圧Vwを検出して、電圧検出信号Vdを出力する。溶加ワイヤ4が導電性材料であるので、このワイヤ電圧Vwは、溶加ワイヤ4の先端と母材2との距離に略比例する値となる。したがって、溶接作業者が溶加ワイヤ4を挿入するごとに上記のワイヤ先端・母材間距離が周期的に変化して。ワイヤ電圧Vwにはリップルが重畳する。すなわち、このワイヤ電圧Vwのリップルの周波数Fw[Hz]は、溶加ワイヤ4の挿入ピッチと同期している。ここで、溶接作業者が行う溶加ワイヤ4の挿入1回当たりの挿入長さは略一定であると見なせるので、結果的にワイヤ電圧Vwのリップル周波数Fwは、溶加ワイヤ4の送給速度に略比例することになる。リップル周波数検出回路FWは、上記の電圧検出信号Vdを入力として、そのリップルの周波数を検出してリップル周波数信号Fwを出力する。   The voltage detection circuit VD detects a wire voltage Vw between the filler wire 4 and the base material 2 and outputs a voltage detection signal Vd. Since the filler wire 4 is a conductive material, the wire voltage Vw is a value that is substantially proportional to the distance between the tip of the filler wire 4 and the base material 2. Therefore, each time the welding operator inserts the filler wire 4, the distance between the wire tip and the base material changes periodically. A ripple is superimposed on the wire voltage Vw. That is, the ripple frequency Fw [Hz] of the wire voltage Vw is synchronized with the insertion pitch of the filler wire 4. Here, since the insertion length per one insertion of the filler wire 4 performed by the welding operator can be considered to be substantially constant, as a result, the ripple frequency Fw of the wire voltage Vw is the feeding speed of the filler wire 4. It is approximately proportional to The ripple frequency detection circuit FW receives the voltage detection signal Vd, detects the ripple frequency, and outputs a ripple frequency signal Fw.

電流増減値算出回路DIRは、上記のリップル周波数信号Fwを入力として、予め定めた関係に従って電流増減値信号ΔIrを出力する。この予め定めた関係は、リップル周波数信号Fwの値が大きくなると電流増減値信号ΔIrの値は負の値でその絶対値は大きくなる。この予め定めた関係については、図2〜3で後述する。加算回路ADは、電流設定信号Irと上記の電流増減値信号ΔIrとの加算を行い、電流制御設定信号Icrを出力する。これ以降は図6と同一である。   The current increase / decrease value calculation circuit DIR receives the ripple frequency signal Fw and outputs a current increase / decrease value signal ΔIr according to a predetermined relationship. This predetermined relationship is that when the value of the ripple frequency signal Fw increases, the value of the current increase / decrease value signal ΔIr is a negative value and its absolute value increases. This predetermined relationship will be described later with reference to FIGS. The adder circuit AD adds the current setting signal Ir and the current increase / decrease value signal ΔIr and outputs a current control setting signal Icr. The subsequent steps are the same as in FIG.

溶接作業者は、溶融池等を観察しながら溶接速度を変化させると共に、それに略比例して溶加ワイヤ4の送給速度を変化させる。そして、この送給速度の変化をワイヤ電圧Vwのリップル周波数Fwによって検出する。続いて、このリップル周波数Fwに応じて電流増減値信号ΔIrを変化させて溶接電流Iwを自動的に変化させる。これにより、溶接作業者は溶接中に電流調整をする必要がなくなり、負担が軽減する。さらに、溶接電流値Iwが溶接進行状態(送給速度)に連動して自動調整されるために、良好でかつ均一な溶接品質を得ることができる。上記では、送給速度をリップル周波数Fwによって検出したが、これ以外にも溶加ワイヤ4の送給経路にロールを設けてそのロールの回転速度を検出しても良い。   The welding operator changes the welding speed while observing the molten pool and the like, and changes the feeding speed of the filler wire 4 substantially in proportion thereto. Then, the change in the feeding speed is detected by the ripple frequency Fw of the wire voltage Vw. Subsequently, the current increase / decrease value signal ΔIr is changed according to the ripple frequency Fw to automatically change the welding current Iw. This eliminates the need for the welding operator to adjust the current during welding, reducing the burden. Furthermore, since the welding current value Iw is automatically adjusted in conjunction with the welding progress state (feeding speed), good and uniform welding quality can be obtained. In the above description, the feeding speed is detected by the ripple frequency Fw. However, a roll may be provided in the feeding path of the filler wire 4 and the rotational speed of the roll may be detected.

図2は、上記の電流増減値算出回路DIRにおけるリップル周波数Fwと電流増減値ΔIrとの関係図の一例である。横軸のリップル周波数Fwは0〜2Hzの範囲で変化し、縦軸の電流増減値ΔIrは0〜−15Aの範囲で変化する。例えば、P1点に示すように、Fw=1HzのときはΔIr=−4Aとなり、電流設定信号Irによって設定された電流値から−4Aされる。また、P2点に示すように、Fw=2HzのときはΔIr=−15Aとなり、電流設定信号Irによって設定された電流値から−15Aされる。同図のFwとΔIrとの関係は、母材の材質、板厚、継手等によって異なるので、これらの溶接条件ごとに予め定めておく。   FIG. 2 is an example of a relationship diagram between the ripple frequency Fw and the current increase / decrease value ΔIr in the current increase / decrease value calculation circuit DIR. The ripple frequency Fw on the horizontal axis changes in the range of 0 to 2 Hz, and the current increase / decrease value ΔIr on the vertical axis changes in the range of 0 to −15 A. For example, as indicated by point P1, ΔIr = −4A when Fw = 1 Hz, and is −4A from the current value set by the current setting signal Ir. Further, as indicated by point P2, when Fw = 2 Hz, ΔIr = −15A, which is −15A from the current value set by the current setting signal Ir. Since the relationship between Fw and ΔIr in the figure varies depending on the material of the base material, the plate thickness, the joint, and the like, it is determined in advance for each of these welding conditions.

図3は、リップル周波数Fwと電流増減値ΔIrとの上述した図2とは異なる関係図である。同図では、横軸にリップル周波数偏差ΔFwを示し、縦軸に電流増減値ΔIrを示す。このリップル周波数偏差ΔFwは、予め定めた基準リップル周波数FwtによってΔFw=Fw−Fwtで定義される。但し、ΔFw<0のときはΔFw=0とする。この基準リップル周波数Fwtは、ワークの種類ごとに予め定めた値とする。これにより、溶接中のリップル周波数Fwが基準リップル周波数Fwt以上になったときに母材への入熱が超過していると判別して、溶接電流値Iwを減少させる。   FIG. 3 is a relationship diagram between the ripple frequency Fw and the current increase / decrease value ΔIr, which is different from FIG. 2 described above. In the figure, the horizontal axis represents the ripple frequency deviation ΔFw, and the vertical axis represents the current increase / decrease value ΔIr. This ripple frequency deviation ΔFw is defined as ΔFw = Fw−Fwt by a predetermined reference ripple frequency Fwt. However, when ΔFw <0, ΔFw = 0. The reference ripple frequency Fwt is a value determined in advance for each type of workpiece. Thereby, when the ripple frequency Fw during welding becomes more than the reference ripple frequency Fwt, it is determined that the heat input to the base material has been exceeded, and the welding current value Iw is decreased.

上記の基準リップル周波数Fwtを、溶接開始から所定時間経過した時点でのリップル周波数Fwに自動設定する方法もある。この基準リップル周波数Fwtが設定されるまでの上記所定時間中は溶接電流の増減を禁止する。このようにすれば、基準リップル周波数Fwtを予め実験等によって設定しておく必要がなくなる。   There is also a method of automatically setting the reference ripple frequency Fwt to the ripple frequency Fw when a predetermined time has elapsed from the start of welding. During the predetermined time until the reference ripple frequency Fwt is set, increase / decrease of the welding current is prohibited. In this way, it is not necessary to set the reference ripple frequency Fwt beforehand through experiments or the like.

図4は、上述した実施の形態1に係る非消耗電極アーク溶接の電流制御方法によって非消耗電極アーク溶接を行ったときの同図(A)に示すビード外観、同図(B)に示す溶接電流Iw、同図(C)に示す溶接速度Ws及び同図(D)に示すリップル周波数Fwの時間変化図である。同図は上述した図7と対応している。時刻t1から溶接を開始し、溶接が進行するのに伴い母材温度が上昇して入熱超過になる。溶接作業者は溶融池等の観察から入熱超過を判断して、同図(C)に示すように、溶接速度及び送給速度を速くする。送給速度が速くなると、同図(D)に示すように、ワイヤ電圧のリップル周波数Fwが高くなる。これに応動して、電流増減値ΔIrの負値が大きくなり、同図(B)に示すように、溶接電流値Iwは次第に減少する。このために、溶接速度及び送給速度の上昇度合いは、図7に比較して小さく抑制される。この結果、同図(A)に示すように、ビード表面の波目のピッチ、溶込み、ビード外観等の溶接品質は略均一で良好になる。   FIG. 4 shows the bead appearance shown in FIG. 4A and the welding shown in FIG. 4B when the non-consumable electrode arc welding is performed by the current control method for non-consumable electrode arc welding according to Embodiment 1 described above. It is a time change figure of electric current Iw, welding speed Ws shown in the figure (C), and ripple frequency Fw shown in the figure (D). This figure corresponds to FIG. 7 described above. Welding is started at time t1, and as the welding progresses, the base material temperature rises and heat input is exceeded. The welding operator judges that the heat input has been exceeded from observation of the molten pool and the like, and increases the welding speed and the feeding speed as shown in FIG. As the feeding speed increases, the ripple frequency Fw of the wire voltage increases as shown in FIG. In response to this, the negative value of the current increase / decrease value ΔIr increases, and the welding current value Iw gradually decreases as shown in FIG. For this reason, the degree of increase in the welding speed and the feeding speed is suppressed to be smaller than that in FIG. As a result, as shown in FIG. 5A, the weld quality such as the pitch of the wave on the bead surface, penetration, and bead appearance becomes substantially uniform and good.

[実施懈怠2]
図5は、本発明の実施の形態2に係る非消耗電極アーク溶接の電流制御方法を示す溶接速度Ws及びリップル周波数Fwの時間変化図である。同図は、上述した図4において、(C)に示す溶接速度Ws及び(D)に示すリップル周波数Fwを抽出したものである。溶接開始後の初期期間Ts中は溶接状態は過渡的な状態にあるために、この初期期間Ts中のリップル周波数Fwに応じて溶接電流Iwを変化させる必要はあまりない。これは、この初期期間Ts中溶接作業者は入熱超過を判断して溶接速度及び送給速度を変化させているのではなく、過渡状態を迅速に定常状態にするために操作しているからである。したがって、予め定めた初期期間Ts中は、リップル周波数Fwによる溶接電流の変化を禁止して不要に溶接電流が変化するのを防止する。
[Implementation default 2]
FIG. 5 is a time variation diagram of welding speed Ws and ripple frequency Fw showing a current control method of non-consumable electrode arc welding according to Embodiment 2 of the present invention. In FIG. 4, the welding speed Ws shown in FIG. 4C and the ripple frequency Fw shown in FIG. Since the welding state is in a transient state during the initial period Ts after the start of welding, it is not necessary to change the welding current Iw according to the ripple frequency Fw during the initial period Ts. This is because during the initial period Ts, the welding operator does not change the welding speed and the feeding speed by judging that the heat input has been exceeded, but operates to quickly bring the transient state into the steady state. It is. Therefore, during the predetermined initial period Ts, a change in the welding current due to the ripple frequency Fw is prohibited to prevent the welding current from changing unnecessarily.

本発明の実施の形態1に係る非消耗電極アーク溶接の電流制御方法を実施するための溶接装置のブロック図である。It is a block diagram of the welding apparatus for enforcing the electric current control method of the non-consumable electrode arc welding which concerns on Embodiment 1 of this invention. 実施の形態1に係るリップル周波数Fwと電流増減値ΔIrとの関係図である。FIG. 5 is a relationship diagram between a ripple frequency Fw and a current increase / decrease value ΔIr according to the first embodiment. 実施の形態1に係るリップル周波数偏差ΔFwと電流増減値ΔIrとの関係図である。FIG. 6 is a relationship diagram between a ripple frequency deviation ΔFw and a current increase / decrease value ΔIr according to the first embodiment. 実施の形態1によって溶接を行ったときのビード外観、溶接電流Iw、溶接速度Ws及びリップル周波数Fwの時間変化図である。It is a time change figure of a bead appearance when welding is performed by Embodiment 1, welding current Iw, welding speed Ws, and ripple frequency Fw. 実施の形態2に係る非消耗電極アーク溶接の電流制御方法を示す溶接速度Ws及びリップル周波数Fwの時間変化図である。It is a time change figure of welding speed Ws and ripple frequency Fw which shows the electric current control method of non-consumable electrode arc welding concerning Embodiment 2. FIG. 従来技術の非消耗電極アーク溶接装置のブロック図である。It is a block diagram of the non-consumable electrode arc welding apparatus of a prior art. 従来技術によって溶接を行ったときのビード外観、溶接電流Iw及び溶接速度Wsの時間変化図である。It is a time change figure of a bead appearance, welding current Iw, and welding speed Ws when welding is performed by a conventional technique.

符号の説明Explanation of symbols

1 非消耗電極
2 母材
2a ビード
3 アーク
4 溶加ワイヤ
5 溶接トーチ
DIR 電流増減値算出回路
EA 誤差増幅回路
Ea 誤差増幅信号
FW リップル周波数検出回路
Fw リップル周波数(信号)
Icr 電流制御設定信号
ID 電流検出回路
Id 電流検出信号
IR 電流設定回路
Ir 電流設定信号
Iw 溶接電流
MC 溶接電源主回路
Ts 初期期間
VD 電圧検出回路
Vd 電圧検出信号
Vw ワイヤ電圧
Ws 溶接速度
ΔFw リップル周波数偏差
ΔIr 電流増減値(信号)

1 Non-consumable electrode 2 Base material 2a Bead 3 Arc 4 Filler wire 5 Welding torch DIR Current increase / decrease value calculation circuit EA Error amplification circuit Ea Error amplification signal FW Ripple frequency detection circuit Fw Ripple frequency (signal)
Icr current control setting signal ID current detection circuit Id current detection signal IR current setting circuit Ir current setting signal Iw welding current MC welding power supply main circuit Ts initial period VD voltage detection circuit Vd voltage detection signal Vw wire voltage Ws welding speed ΔFw ripple frequency deviation ΔIr Current increase / decrease value (signal)

Claims (3)

溶加ワイヤを手動で溶融池に送給しながら行う非消耗電極アーク溶接の電流制御方法において、
前記溶加ワイヤと母材との間のワイヤ電圧を検出し、このワイヤ電圧によって前記溶加ワイヤの送給速度を算出し、この溶加ワイヤの送給速度に応じて溶接電流値を自動的に変化させる、ことを特徴とする非消耗電極アーク溶接の電流制御方法。
In the current control method of non-consumable electrode arc welding performed while manually feeding the filler wire to the molten pool,
The wire voltage between the filler wire and the base metal is detected, the feeding speed of the filler wire is calculated based on the wire voltage, and the welding current value is automatically set according to the feeding speed of the filler wire. A current control method for non-consumable electrode arc welding, characterized in that:
請求項1記載の溶加ワイヤの送給速度を前記ワイヤ電圧のリップル周波数によって算出する、ことを特徴とする非消耗電極アーク溶接の電流制御方法。   2. A current control method for non-consumable electrode arc welding, wherein a feeding speed of the filler wire according to claim 1 is calculated by a ripple frequency of the wire voltage. 溶接開始からの予め定めた初期期間中は前記溶接電流の変化を禁止する、ことを特徴とする請求項1又は請求項2記載の非消耗電極アーク溶接の電流制御方法。

3. The current control method for non-consumable electrode arc welding according to claim 1, wherein the change of the welding current is prohibited during a predetermined initial period from the start of welding.

JP2005173335A 2005-06-14 2005-06-14 Method for controlling electric current in non-consumable electrode arc welding Pending JP2006346694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173335A JP2006346694A (en) 2005-06-14 2005-06-14 Method for controlling electric current in non-consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173335A JP2006346694A (en) 2005-06-14 2005-06-14 Method for controlling electric current in non-consumable electrode arc welding

Publications (1)

Publication Number Publication Date
JP2006346694A true JP2006346694A (en) 2006-12-28

Family

ID=37643076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173335A Pending JP2006346694A (en) 2005-06-14 2005-06-14 Method for controlling electric current in non-consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP2006346694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237154A (en) * 2013-06-07 2014-12-18 株式会社安川電機 Arc-welding apparatus, arc-welding system, and arc-welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237154A (en) * 2013-06-07 2014-12-18 株式会社安川電機 Arc-welding apparatus, arc-welding system, and arc-welding method
CN104227188A (en) * 2013-06-07 2014-12-24 株式会社安川电机 Arc welding apparatus, arc welding system, and arc welding method
CN104227188B (en) * 2013-06-07 2016-08-17 株式会社安川电机 Arc-welding apparatus, arc welding system and arc-welding method
US10518350B2 (en) 2013-06-07 2019-12-31 Kabushiki Kaisha Yaskawa Denki Arc welding apparatus, arc welding system, and arc welding method

Similar Documents

Publication Publication Date Title
Li et al. Double-electrode GMAW process and control
JP5083415B2 (en) Arc welding method and arc welding apparatus
US4195216A (en) Plasma welding
EP1609557A1 (en) Arc starting method in a hybrid welding process using laser and electric arc, welding device for performing the method, and controller
US20060131291A1 (en) Method and system of welding with auto-determined startup parameters
WO2008047488A1 (en) Method for controlling arc welding and arc welding apparatus
US10766089B2 (en) Heat input control for welding systems
JPH10277740A (en) Pulse arc welding equipment
JPH0655268A (en) Welding robot
CN112423926B (en) Arc welding method including consumable wire
CN108890081B (en) Method and apparatus for stabilizing arc length
JP2004237342A (en) Pulse output control method, and consumable electrode type pulse arc welding equipment
US20220410300A1 (en) Method and apparatus for welding a weld seam
JP2005066615A (en) Arc-length control method at starting of gas-shielding arc welding with consumable electrode
JP2006198668A (en) Method for controlling arc welding power output
JP2006346694A (en) Method for controlling electric current in non-consumable electrode arc welding
JP5200624B2 (en) Multi-electrode submerged arc welding machine
JP5154872B2 (en) Output control method of pulse arc welding
JP2010214462A (en) Arc welding equipment
JP2016520003A (en) Welding control method
JP2002224829A (en) Method and equipment for welding narrow groove with peak pulse tig
KR20120033538A (en) Fill area control method and system of all position weld
JP2002316264A (en) Rotating arc welding equipment and welding speed setting device
JP2004223584A (en) Welding device and welding method
JP7300001B2 (en) Double pulse welding method