JP2006344459A - Transfer method and transfer device - Google Patents

Transfer method and transfer device Download PDF

Info

Publication number
JP2006344459A
JP2006344459A JP2005168018A JP2005168018A JP2006344459A JP 2006344459 A JP2006344459 A JP 2006344459A JP 2005168018 A JP2005168018 A JP 2005168018A JP 2005168018 A JP2005168018 A JP 2005168018A JP 2006344459 A JP2006344459 A JP 2006344459A
Authority
JP
Japan
Prior art keywords
transfer
transfer substrate
substrate
vacuum chamber
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005168018A
Other languages
Japanese (ja)
Inventor
Keisuke Matsuo
圭介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005168018A priority Critical patent/JP2006344459A/en
Priority to TW095113099A priority patent/TWI307612B/en
Priority to US11/380,280 priority patent/US7648944B2/en
Priority to KR1020060037548A priority patent/KR20060113456A/en
Publication of JP2006344459A publication Critical patent/JP2006344459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer method and a transfer device wherein device configuration can be simplified and miniaturized. <P>SOLUTION: In the transfer method, first, a process overlapping the transfer substrate 20 wherein a luminous layer 23 is formed on one main surface side of a supporting substrate on a substrate 10 to be transferred is performed in such a state that the luminous layer 23 is directed to the substrate 10 to be transferred, then, a process making a vacuum atmosphere between the substrate 10 to be transferred and the transfer substrates 20 is performed in such a state that the transfer substrate 20 is overlapped on the substrate 10 to be transferred, and then, a process transferring the luminous layer 23 to the substrate 10 to be transferred is performed by irradiating the transfer substrate 20 with laser light from a laser light source 41 under the vacuum atmosphere. The transfer device 30 used for this transfer method is also disclosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、転写方法およびこれに用いる転写装置に関し、特に、有機電界発光素子(有機EL素子)の発光層の熱転写に用いる転写方法および転写装置に関するものである。   The present invention relates to a transfer method and a transfer apparatus used therefor, and particularly to a transfer method and a transfer apparatus used for thermal transfer of a light emitting layer of an organic electroluminescent element (organic EL element).

有機材料のエレクトロルミネッセンス(Electroluminescence)を利用した有機電界発光素子は、下部電極と上部電極との間に、正孔輸送層や発光層を積層させた有機層を設けてなり、低電圧直流駆動による高輝度発光が可能な発光素子として注目されている。   An organic electroluminescent element using electroluminescence of an organic material has an organic layer in which a hole transport layer and a light emitting layer are laminated between a lower electrode and an upper electrode, and is driven by a low voltage direct current drive. It attracts attention as a light emitting element capable of emitting light with high luminance.

このような有機電界発光素子を用いたフルカラーの表示装置は、R(赤)、G(緑)、
B(青)の各色の有機電界発光素子を基板上に配列形成してなる。このような表示装置の
製造においては、少なくとも各色に発光する有機発光材料からなる発光層を、発光素子毎
にパターン形成する必要がある。
A full-color display device using such an organic electroluminescent element has R (red), G (green),
B (blue) organic electroluminescent elements of respective colors are arranged on a substrate. In manufacturing such a display device, it is necessary to pattern-form a light emitting layer made of an organic light emitting material that emits light of each color for each light emitting element.

この発光層のパターン形成方法の一つとして、エネルギー源(熱源)を用いた転写法(すなわち熱転写法)が提案されている。熱転写法としては、転写用基板と被転写基板とを転写層を介して密着させた状態で転写する密着方式(例えば、特許文献1参照)と、転写用基板と被転写基板とを離間させた状態で転写する離間方式(例えば、特許文献2参照)とが報告されている。   As one method for forming the pattern of the light emitting layer, a transfer method using an energy source (heat source) (that is, a thermal transfer method) has been proposed. As the thermal transfer method, a transfer method in which a transfer substrate and a transfer substrate are transferred in close contact with each other via a transfer layer (see, for example, Patent Document 1), and the transfer substrate and the transfer substrate are separated from each other. There has been reported a separation method in which transfer is performed in a state (see, for example, Patent Document 2).

特開2004−200170号公報JP 2004-200170 A 特開2004−79540号公報JP 2004-79540 A

上記熱転写法に用いる転写装置は、一般的に、転写処理を行う真空チャンバと真空チャンバ内に導入された転写用基板に熱を付与するための輻射線を照射する照射源とを備えている。一例を挙げて説明すると、上記真空チャンバ内には、被転写基板と転写用基板とをそれぞれ保持し、上下方向に可動させる可動式の保持部材が配置されている。転写用基板の保持部材は、被転写基板用の保持部材よりも真空チャンバの上部側に、被転写基板と転写用基板とが対向配置するように配置される。   A transfer apparatus used for the thermal transfer method generally includes a vacuum chamber for performing a transfer process and an irradiation source for irradiating radiation for applying heat to a transfer substrate introduced into the vacuum chamber. For example, a movable holding member that holds the transfer substrate and the transfer substrate and moves in the vertical direction is disposed in the vacuum chamber. The transfer substrate holding member is arranged on the upper side of the vacuum chamber with respect to the transfer substrate holding member so that the transfer substrate and the transfer substrate face each other.

また、真空チャンバの上部には、転写用基板よりも一回り小さい開口部が設けられており、上記真空チャンバの上部の内壁側には、開口部の周縁に、気密シールが設けられている。そして、上記転写用基板がこの気密シールを介して上記開口部を塞ぐことで、真空チャンバ内を気密状態にすることができる。   Further, an opening that is slightly smaller than the transfer substrate is provided in the upper part of the vacuum chamber, and an airtight seal is provided on the periphery of the opening on the inner wall side of the upper part of the vacuum chamber. The transfer substrate closes the opening through the hermetic seal, so that the vacuum chamber can be hermetically sealed.

一方、上記転写用基板に輻射線の照射源は、真空チャンバの上方に配置されており、転写用基板に熱を与えるように構成されている。熱源としては、例えばレーザ光源があり、レーザ光源をXY方向に移動させることで、レーザ光をスポット照射しつつ走査するXYスキャナが配置されている。   On the other hand, the radiation source of the transfer substrate is disposed above the vacuum chamber, and is configured to apply heat to the transfer substrate. As the heat source, for example, there is a laser light source, and an XY scanner that performs scanning while irradiating the laser beam with a spot by moving the laser light source in the XY direction is disposed.

上述したような転写装置を用いて、例えば密着方式の熱転写法により有機電界発光素子の発光層を形成する場合には、表示装置の基板上に下部電極(陽極)を介して正孔注入層、正孔輸送層を順次積層形成し、被転写基板を形成しておく。一方、別の基板上に、光熱変換層(光吸収層)を介して発光層を成膜することで、転写用基板を形成しておく。次いで、真空チャンバ内に、被転写基板と転写用基板を導入し、被転写基板に設けられた正孔輸送層と転写用基板に設けられた発光層とが対向するように、各保持部材に装着する。   In the case where the light emitting layer of the organic electroluminescent element is formed by using, for example, a contact thermal transfer method using the transfer device as described above, a hole injection layer is formed on the substrate of the display device via the lower electrode (anode), A hole transport layer is sequentially laminated to form a transfer substrate. On the other hand, a transfer substrate is formed by forming a light emitting layer on another substrate via a photothermal conversion layer (light absorption layer). Next, the transfer substrate and the transfer substrate are introduced into the vacuum chamber, and each holding member is placed so that the hole transport layer provided on the transfer substrate and the light emitting layer provided on the transfer substrate face each other. Installing.

次いで、真空チャンバ上部の開口部を外側からゲートバルブで塞ぎ、真空チャンバを閉塞した後、真空チャンバ内を減圧して真空雰囲気下とする。続いて、転写用基板が保持された保持部材を上方に移動して、真空チャンバ上部の開口部を転写用基板により内側から塞ぐとともに、被転写用基板が保持された保持部材を押し上げて、転写用基板と被転写基板とを重ね合わせる。その後、ゲートバルブを開けると、転写用基板を含む真空チャンバの上部は上方から大気圧で押されるため、転写用基板と被転写用基板とが密着する。この状態で、転写用基板にレーザ光をスポット照射しつつ走査させることにより、所定領域の正孔輸送層上に位置精度良好に発光層が熱転写される。   Next, the opening at the top of the vacuum chamber is closed with a gate valve from the outside to close the vacuum chamber, and then the inside of the vacuum chamber is decompressed to be in a vacuum atmosphere. Subsequently, the holding member holding the transfer substrate is moved upward to close the opening in the upper part of the vacuum chamber from the inside with the transfer substrate, and the holding member holding the transfer substrate is pushed up to transfer The substrate for transfer and the substrate to be transferred are overlaid. After that, when the gate valve is opened, the upper portion of the vacuum chamber including the transfer substrate is pushed from above by the atmospheric pressure, so that the transfer substrate and the transfer substrate are brought into close contact with each other. In this state, the light-emitting layer is thermally transferred onto the hole transport layer in a predetermined region with good positional accuracy by scanning the transfer substrate while irradiating it with laser light.

一方、離間方式の熱転写法により転写する場合には、転写装置の基本的な構成は同じであり、真空チャンバに導入した転写用基板と被転写基板とを、ある程度の間隔を有した状態で対向配置する。その後、真空チャンバ内を真空雰囲気下とし、レーザ光を転写用基板に照射して、転写用基板から被転写基板に転写層を転写する。   On the other hand, when transferring by the thermal transfer method of the separation method, the basic configuration of the transfer device is the same, and the transfer substrate introduced into the vacuum chamber and the transfer substrate are opposed to each other with a certain distance. Deploy. Thereafter, the inside of the vacuum chamber is placed in a vacuum atmosphere, and the transfer substrate is transferred from the transfer substrate to the transfer substrate by irradiating the transfer substrate with laser light.

しかしながら、上述したような密着方式の転写方法によれば、真空雰囲気下で転写用基板と被転写基板とを対向配置した後に、転写用基板と被転写基板とを重ね合わせるため、転写用基板と被転写基板とを移動させる可動式の保持部材を真空チャンバ内に配置する必要がある。また、各保持部材は、大気圧に対して上記基板を押し上げた状態で維持するため、荷重に耐えうる強度が必要である。このため、真空チャンバの構成が複雑化および大型化してしまい、設備コストの増大が問題となる。さらに、転写用基板と被転写基板とを密着させるため、有機電界発光素子の発光層を形成する場合には、被転写基板の画素内への異物の混入や損傷も問題となっている。   However, according to the above-described close-contact transfer method, the transfer substrate and the transfer target substrate are placed in opposition to each other in a vacuum atmosphere, and then the transfer substrate and the transfer target substrate are overlapped. It is necessary to dispose a movable holding member that moves the transfer substrate in the vacuum chamber. Moreover, since each holding member maintains the said board | substrate in the state pushed up with respect to atmospheric pressure, the intensity | strength which can endure a load is required. This complicates and enlarges the configuration of the vacuum chamber, which increases the equipment cost. Furthermore, when forming the light emitting layer of the organic electroluminescent element in order to bring the transfer substrate and the transfer substrate into close contact with each other, there is a problem of contamination and damage of foreign matters in the pixels of the transfer substrate.

また、離間方式の転写装置についても、真空チャンバ内に転写用基板と被転写基板とを離間した状態で維持するための可動式の保持部材やスペースが必要となるため、真空チャンバの構成が複雑化および大型化してしまう。   The separation type transfer device also requires a movable holding member and a space for maintaining the transfer substrate and the transfer substrate in a separated state in the vacuum chamber, so that the structure of the vacuum chamber is complicated. Will become larger and larger.

このため、装置構成が簡略化されるとともに小型化が可能な転写装置および転写方法が望まれていた。   For this reason, there has been a demand for a transfer device and a transfer method that can simplify the apparatus configuration and can be miniaturized.

上述したような目的を達成するために、本発明の転写方法は、まず、支持基板の一主面側に転写層を形成してなる転写用基板を、転写層を被転写基板側に向けた状態で、被転写基板上に重ね合わせる工程を行う。次に、被転写基板上に転写用基板を重ね合わせた状態で、被転写基板と転写用基板との間を真空雰囲気にする工程を行う。次いで、真空雰囲気下で転写用基板に輻射線を照射することにより、転写層を被転写基板に転写する工程を行うことを特徴としている。   In order to achieve the above-described object, the transfer method of the present invention is such that a transfer substrate having a transfer layer formed on one main surface side of a support substrate is first directed to the transfer substrate side. In this state, a process of superimposing on the transfer substrate is performed. Next, a process of creating a vacuum atmosphere between the transfer substrate and the transfer substrate is performed with the transfer substrate superimposed on the transfer substrate. Next, the transfer substrate is transferred to the transfer substrate by irradiating the transfer substrate with radiation in a vacuum atmosphere.

このような転写方法によれば、被転写基板上に転写用基板を重ね合わせる工程の後に、転写用基板と被転写基板との間を真空雰囲気にすることから、この転写方法に用いる真空チャンバ内には、転写用基板と被転写基板とを重ね合わせるための可動式の保持部材を配備しなくてもよい。   According to such a transfer method, a vacuum atmosphere is formed between the transfer substrate and the transfer substrate after the step of superimposing the transfer substrate on the transfer substrate. Therefore, it is not necessary to provide a movable holding member for superimposing the transfer substrate and the transfer substrate.

また、本発明の転写装置は、転写用基板上に形成された転写層を被転写基板に転写する転写装置であって、被転写基板上に転写用基板を重ね合わせた状態で載置可能な載置部を有し、重ね合わせた状態の被転写基板と転写用基板とが収納される真空チャンバと、真空チャンバの上方に配置され、転写用基板に輻射線を照射する照射源とを備えている。そして、真空チャンバは、載置部上に重ね合わせた状態で載置された被転写基板と転写用基板とを、載置部と真空チャンバの上部とで挟持するように構成されており、載置部は、被転写基板と転写用基板とを挟持する位置で固定されている   The transfer device of the present invention is a transfer device for transferring a transfer layer formed on a transfer substrate to a transfer substrate, and can be placed in a state where the transfer substrate is superimposed on the transfer substrate. A vacuum chamber having a mounting portion and storing the transfer target substrate and the transfer substrate in an overlapped state; and an irradiation source disposed above the vacuum chamber and irradiating the transfer substrate with radiation. ing. The vacuum chamber is configured to sandwich the substrate to be transferred and the transfer substrate placed in a state of being superimposed on the placement unit between the placement unit and the upper portion of the vacuum chamber. The mounting portion is fixed at a position where the transfer substrate and the transfer substrate are sandwiched.

このような転写装置によれば、真空チャンバは、転写用基板と被転写基板とを重ねた状態で収納するスペースがあればよいことから、従来の密着方式の転写装置と比較して、真空チャンバ内に転写用基板と被転写基板とを対向配置して重ねるための可動式の保持部材を配備する必要がない。また、従来の離間方式の転写装置と比較しても、転写用基板と被転写基板とを離間させた状態で維持する可動式の保持部材およびスペースを必要としない。このため、真空チャンバの構成が簡略化されるとともに容積を小さくすることが可能となる。   According to such a transfer apparatus, the vacuum chamber needs only to have a space for storing the transfer substrate and the transfer target substrate in an overlapped state. There is no need to provide a movable holding member for superposing the transfer substrate and the transfer substrate in an opposing manner. Further, even when compared with a conventional separation type transfer apparatus, a movable holding member and a space for maintaining the transfer substrate and the transfer substrate in a separated state are not required. For this reason, the configuration of the vacuum chamber is simplified and the volume can be reduced.

以上説明したように、本発明における転写方法および転写装置によれば、従来の転写装置と比較して、真空チャンバの構成が簡略化されるとともに真空チャンバの容積を小さくすることが可能となる。したがって、設備コストの増大が防止できるとともに、転写装置の小型化が可能である。   As described above, according to the transfer method and transfer apparatus of the present invention, the configuration of the vacuum chamber is simplified and the volume of the vacuum chamber can be reduced as compared with the conventional transfer apparatus. Therefore, an increase in equipment cost can be prevented and the transfer device can be downsized.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。基板上に赤(R)、緑(G)、青(B)の各色の有機電界発光素子を配列してなるフルカラー表示の表示装置の製造方法に本発明の転写方法および転写装置を適用した実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Implementation of applying the transfer method and transfer device of the present invention to a manufacturing method of a full-color display device in which organic electroluminescent elements of each color of red (R), green (G), and blue (B) are arranged on a substrate Will be described.

<被転写基板>
まず、被転写基板について説明する。図1(a)は、本実施形態で使用する被転写基板10を説明する要部拡大断面図であり、図1(b)は、要部拡大平面図である。なお、図1(a)は図1(b)のX−X’線断面図とする。
<Transfer substrate>
First, the transferred substrate will be described. FIG. 1A is an enlarged cross-sectional view of a main part illustrating a transfer substrate 10 used in the present embodiment, and FIG. 1B is an enlarged plan view of the main part. FIG. 1A is a cross-sectional view taken along the line XX ′ of FIG.

まず、図1(a)に示すように、例えばガラスからなる基板11上にTFT(thin film transistor)(図示省略)を配列形成した後、層間絶縁膜(図示省略)を介して、例えばクロム(Cr)からなる複数の下部電極(陽極)12を各画素毎にパターン形成する。次いで、下部電極12を覆う状態で、例えばポリイミドを成膜した後、1度目のフォトリソグラフィプロセスを経て各画素を分離する平面視的に格子状の絶縁層13を形成する。これにより、各画素Aを、300um/pixelのピッチPを有する短冊形状のパターンに形成する。   First, as shown in FIG. 1A, after TFTs (thin film transistors) (not shown) are arrayed on a substrate 11 made of, for example, glass, for example, chromium (not shown) is interposed via an interlayer insulating film (not shown). A plurality of lower electrodes (anodes) 12 made of Cr) are pattern-formed for each pixel. Next, after forming a film of polyimide, for example, in a state of covering the lower electrode 12, an insulating layer 13 having a lattice shape in plan view for separating each pixel is formed through a first photolithography process. Thereby, each pixel A is formed in a strip-shaped pattern having a pitch P of 300 um / pixel.

次いで、2度目のフォトリソグラフィプロセスを経ることで、上記絶縁層13の上部をパターン加工して略直方体状の突起部13aを形成する。ここでは、この突起部13aを、画素Aが配列形成される画素領域の全域に渡って、格子状の絶縁層13の全ての交差部上に形成する(図1(b)参照)。この際、絶縁層13の高さhは1μm、突起部13aの高さh’は2μmであることとする。   Next, through a second photolithography process, the upper portion of the insulating layer 13 is patterned to form a substantially rectangular parallelepiped protrusion 13a. Here, the protrusions 13a are formed on all the intersections of the grid-like insulating layer 13 over the entire pixel region where the pixels A are arranged (see FIG. 1B). At this time, the height h of the insulating layer 13 is 1 μm, and the height h ′ of the protrusion 13a is 2 μm.

ここで、この突起部13aは、後述する転写工程において、被転写基板10上に転写用基板を重ね合わせる際のスペーサとして機能する。これにより、上記基板を重ね合わせた状態でも、被転写基板10の絶縁層13と後述する転写用基板に設けられる発光層との間には突起部13a分の空間が生じ、この空間は基板の外部に連通している。このため、基板を重ね合わせた後に基板間の空間を真空雰囲気にすることが可能となる。   Here, the protrusion 13a functions as a spacer when the transfer substrate is superimposed on the transfer substrate 10 in a transfer process described later. As a result, even when the substrates are stacked, a space corresponding to the protrusion 13a is generated between the insulating layer 13 of the substrate to be transferred 10 and a light emitting layer provided on the transfer substrate described later. It communicates with the outside. For this reason, it is possible to create a vacuum atmosphere between the substrates after the substrates are stacked.

また、被転写基板10上に転写用基板を重ね合わせる際に突起部13aが介在することで、画素A内に、転写用基板の発光層が密着することが防止されるため、密着による画素A内の損傷や転写用基板からの異物の侵入が防止される。さらに、突起部13a部分のみが転写用基板の発光層と接触するため、転写用基板の発光層を再利用できる。   Further, since the protrusion 13a is interposed when the transfer substrate is overlaid on the transfer substrate 10, the light emitting layer of the transfer substrate is prevented from coming into close contact with the pixel A. Damage to the inside and entry of foreign matter from the transfer substrate is prevented. Furthermore, since only the protrusion 13a is in contact with the light emitting layer of the transfer substrate, the light emitting layer of the transfer substrate can be reused.

なお、本発明は上記突起部13aを形成しない場合でも適用可能である。ただし、突起部13aを形成した方が、被転写基板10上に転写用基板を重ね合わせた状態で、基板間の空間を基板の外部の空間と連通させることができ、基板間を確実に真空雰囲気とすることができるため、好ましい。さらに、基板間を密着させることによる転写用基板から被転写基板の画素内への異物の侵入や損傷が防止されるため、好ましい。   The present invention can be applied even when the protrusion 13a is not formed. However, when the protrusion 13a is formed, the space between the substrates can be communicated with the space outside the substrate in a state where the transfer substrate is superimposed on the substrate 10 to be transferred, and the substrate is reliably vacuumed. Since it can be set as an atmosphere, it is preferable. Furthermore, it is preferable because foreign substances can be prevented from entering and damaging the pixels of the transfer substrate from the transfer substrate by bringing the substrates into close contact with each other.

また、ここでは、格子状の絶縁層13における全ての交差部上に突起部13aを形成する例について説明したが、突起部13aは、転写用基板と被転写基板10とを重ね合わせた状態で、基板間を真空雰囲気にすることが可能であれば、全ての交差部上に設けられなくてもよく、交差部上でなくてもよい。さらに、突起部13aは画素領域内に設けられる必要はなく、例えば、画素領域よりも外側の絶縁層13上に、複数の突起部13aが額縁状に配置されてもよい。ただし、複数の突起部13aが画素領域に均等に配置される方が、被転写基板10と転写用基板とを重ね合わせた状態で、画素領域の全ての領域で被転写基板10と転写用基板との間隔が均等に維持される。このため、画素領域の全ての領域において、基板間を確実に真空雰囲気とすることができるため、好ましい。   Here, the example in which the protruding portions 13a are formed on all the intersecting portions in the lattice-like insulating layer 13 has been described. However, the protruding portions 13a are in a state where the transfer substrate and the transferred substrate 10 are overlapped. As long as it is possible to create a vacuum atmosphere between the substrates, it may not be provided on all the intersections, and may not be on the intersections. Furthermore, the protrusions 13a do not need to be provided in the pixel region. For example, the plurality of protrusions 13a may be arranged in a frame shape on the insulating layer 13 outside the pixel region. However, when the plurality of protrusions 13a are evenly arranged in the pixel region, the substrate to be transferred 10 and the transfer substrate in all regions of the pixel region in a state where the substrate to be transferred 10 and the transfer substrate are overlapped. The distance between and is maintained evenly. For this reason, the vacuum atmosphere can be surely formed between the substrates in all the pixel regions, which is preferable.

次いで、例えば蒸着法により、下部電極12上に、RGB全ての画素に共通して、m−MTDATA〔4,4,4 -tris(3-methylphenylphenylamino)triphenylamine〕からなる正孔注入層14を25nmの膜厚で形成する。続いて、例えば蒸着法により、上記正孔注入層14上に、RGB全ての画素に共通して、α−NPD[4,4-bis(N-1-naphthyl-N-phenylamino)biphenyl]からなる正孔輸送層15を30nmの膜厚で形成する。   Next, a hole injection layer 14 made of m-MTDATA [4,4,4-tris (3-methylphenylphenylamino) triphenylamine] is formed on the lower electrode 12 by using, for example, a vapor deposition method to a thickness of 25 nm. It is formed with a film thickness. Subsequently, it is made of α-NPD [4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl], which is common to all the RGB pixels on the hole injection layer 14, for example, by vapor deposition. The hole transport layer 15 is formed with a film thickness of 30 nm.

尚、ここでの図示は省略するが、複数の画素Aを配列形成してなる画素領域よりも外側の基板11の隅部には、後述するレーザ照射部との位置合わせを行う際の基準となる基準マーク(図示省略)を形成する。以上のようにして、被転写基板10を形成する。   Although illustration is omitted here, the corner of the substrate 11 outside the pixel region formed by arranging a plurality of pixels A is used as a reference for alignment with a laser irradiation unit to be described later. A reference mark (not shown) is formed. As described above, the transfer substrate 10 is formed.

<転写用基板>
次に、転写用基板について説明する。図2は、本実施形態で使用する転写用基板20を説明する模式図で、図2(a)は断面図、図2(b)は平面図である。
<Transfer substrate>
Next, the transfer substrate will be described. 2A and 2B are schematic views for explaining the transfer substrate 20 used in the present embodiment. FIG. 2A is a cross-sectional view, and FIG. 2B is a plan view.

ここでは、一主面側が被転写基板10と略同等の大きさを有するガラス製の支持基板21上に、スパッタリング法により、例えばクロム(Cr)からなる光熱変換層(光吸収層)22を200nmの膜厚で形成する。光熱変換層22は、後述する転写工程において、転写用基板20に向けてレーザ光を照射する際、レーザ光を熱に変換する。   Here, a light-to-heat conversion layer (light absorption layer) 22 made of, for example, chromium (Cr) is formed to 200 nm on a glass support substrate 21 having one main surface side approximately the same size as the transfer substrate 10 by sputtering. The film thickness is formed. The photothermal conversion layer 22 converts laser light into heat when irradiating the transfer substrate 20 with laser light in a transfer step described later.

次に、光熱変換層22上に、発光層23を例えば25nmの膜厚で形成する。本実施の形態においては、上述した被転写基板10上にマトリクス状に配置された複数の表示画素R,G,Bを発光してカラー表示を行うために、R用、G用、B用の各発光層23には、発光機能を備える有機化合物として異なる材料を用いる。つまり、転写用基板20は、1枚の被転写基板10に対し、少なくとも3枚以上用いることとなる。   Next, the light emitting layer 23 is formed with a film thickness of, for example, 25 nm on the photothermal conversion layer 22. In the present embodiment, in order to perform color display by emitting a plurality of display pixels R, G, and B arranged in a matrix on the transfer substrate 10 described above, for R, G, and B For each light emitting layer 23, a different material is used as an organic compound having a light emitting function. That is, at least three transfer substrates 20 are used for one transfer substrate 10.

赤色発光層は、例えば、赤色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。赤色発光材料は、蛍光性のものでも燐光性のものでもよい。本実施の形態では、赤色発光層は、厚みが30nm程度であり、ジ(2−ナフチル)アントラセン(ADN)に2,6−ビス[(4’−メトキシジフェニルアミノ)スチリル]−1,5−ジシアノナフタレン(BSN)を30重量%混合したものにより構成されている。   The red light emitting layer includes, for example, at least one of a red light emitting material, a hole transporting material, an electron transporting material, and a both charge transporting material. The red light emitting material may be fluorescent or phosphorescent. In this embodiment mode, the red light-emitting layer has a thickness of about 30 nm, and di (2-naphthyl) anthracene (ADN) is 2,6-bis [(4′-methoxydiphenylamino) styryl] -1,5- It is composed of 30% by weight of dicyanonaphthalene (BSN).

また、緑色発光層は、例えば、緑色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。緑色発光材料は、蛍光性のものでも燐光性のものでもよい。本実施の形態では、緑色発光層は、本事例では、厚みが30nm程度であり、ADNにクマリン6を5重量%混合したものにより構成されている。   In addition, the green light emitting layer includes, for example, at least one of a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material. The green light emitting material may be fluorescent or phosphorescent. In the present embodiment, the green light-emitting layer has a thickness of about 30 nm in this example, and is configured by mixing 5% by weight of coumarin 6 with ADN.

さらに、青色発光層は、例えば、青色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。青色発光材料は、蛍光性のものでも燐光性のものでもよい。本実施の形態では、青色発光層は、例えば、厚みが30nm程度であり、ADNに4,4’−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を2.5重量%混合したものにより構成されている。   Furthermore, the blue light emitting layer contains, for example, at least one of a blue light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material. The blue light emitting material may be fluorescent or phosphorescent. In the present embodiment, the blue light emitting layer has a thickness of about 30 nm, for example, and 4,4′-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl (DPAVBi) is added to ADN. Is mixed with 2.5% by weight.

ここで、光熱変換層22および発光層23の成膜範囲は、図2(b)に示すように、被転写基板10と重ねたときに、基板11(前記図1(a)参照)上の隅部に設けられた基準マークを覆わないようなエリアになるようにする。以上のようにして、転写用基板20を形成する。なお、ここでは、支持基板21としてガラス基板を用いることとしたが、本発明はこれに限定されず、支持基板21がフィルム状であってもよい。   Here, the film-forming range of the light-to-heat conversion layer 22 and the light emitting layer 23 is on the substrate 11 (see FIG. 1A) when it is overlapped with the transfer substrate 10, as shown in FIG. An area that does not cover the reference mark provided at the corner is formed. As described above, the transfer substrate 20 is formed. Here, a glass substrate is used as the support substrate 21, but the present invention is not limited to this, and the support substrate 21 may be in the form of a film.

<転写装置>
次に、転写装置について、図3を用いて説明する。この図に示すように、この転写装置30は、被転写基板10上に転写用基板20を重ね合わせた状態で収納可能な真空チャンバ31と、真空チャンバ31に収納された転写用基板20に向けて、輻射線を照射するレーザ照射部40とを備えている。
<Transfer device>
Next, the transfer device will be described with reference to FIG. As shown in this figure, the transfer device 30 is directed to a vacuum chamber 31 that can be accommodated in a state where the transfer substrate 20 is superimposed on the transfer substrate 10, and a transfer substrate 20 that is accommodated in the vacuum chamber 31. And a laser irradiation unit 40 for irradiating radiation.

真空チャンバ31は、例えばステンレス等からなる上部が開口された容器状の基体32と、この基体32の上部に配置される例えばステンレス等からなる枠状の蓋体33とを備えている。   The vacuum chamber 31 includes a container-like base body 32 having an upper portion made of, for example, stainless steel and an upper portion opened, and a frame-like lid body 33 made of, for example, stainless steel disposed on the upper portion of the base body 32.

基体32は、被転写基板10上に転写用基板20を重ねた状態で載置可能な載置部34を有している。載置部34は基体32の底部と一体で構成されている。そして、容器状の基体32は、上記載置部34上に重ねた状態で載置された被転写基板10と転写用基板20とを収納可能な高さを有して構成されている。   The base 32 has a placement portion 34 that can be placed in a state where the transfer substrate 20 is stacked on the transfer substrate 10. The mounting portion 34 is configured integrally with the bottom portion of the base body 32. The container-like base 32 is configured to have a height that can accommodate the transfer target substrate 10 and the transfer substrate 20 placed in a state of being stacked on the placement portion 34.

また、基体32の側壁32bには、真空チャンバ31内を真空雰囲気下とするための真空ポンプ(図示省略)が接続された排気口35と、真空チャンバ31内の真空雰囲気を解放するためのリーク口36が設けられている。排気口35にはバルブ35aが設けられているとともに、リーク口36にはバルブ36aが設けられている。   Further, the side wall 32b of the base 32 is connected to an exhaust port 35 connected to a vacuum pump (not shown) for bringing the inside of the vacuum chamber 31 into a vacuum atmosphere, and a leak for releasing the vacuum atmosphere in the vacuum chamber 31. A mouth 36 is provided. The exhaust port 35 is provided with a valve 35a, and the leak port 36 is provided with a valve 36a.

ここで、上記側壁32bは、前期載置部34上に重ね合わせた状態で載置される被転写基板10と転写用基板20の周囲に空間Bを介在させて設けられることが好ましい。これにより、後述する転写工程において、被転写基板10に設けられた突起部13aにより形成される被転写基板10と転写用基板20との間の空間をこの空間Bと連通させることができる。そして、真空チャンバ31内を真空雰囲気にすることで空間Bを介して、基板間の空間を確実に真空雰囲気にすることができる。ただし、この空間Bは小さい方が、真空チャンバ31の容積を小さくできるため、好ましい。   Here, it is preferable that the side wall 32 b is provided with a space B interposed between the transfer target substrate 10 and the transfer substrate 20 placed in a state of being superimposed on the previous placement portion 34. As a result, in the transfer step described later, the space between the transfer substrate 10 and the transfer substrate 20 formed by the protrusions 13a provided on the transfer substrate 10 can be communicated with the space B. Then, by making the inside of the vacuum chamber 31 a vacuum atmosphere, the space between the substrates can be surely made a vacuum atmosphere via the space B. However, a smaller space B is preferable because the volume of the vacuum chamber 31 can be reduced.

一方、枠状の蓋体33は、上記基体32を覆うとともに、真空チャンバ31の上部を構成しており、蓋体33の枠を構成する開口部33aは転写用基板20よりも一回り小さく設けられている。蓋体33における基体32と対向する面(内壁面)33bには、外縁部と開口部33aの周縁に、気密シール37が配置されている。   On the other hand, the frame-shaped lid 33 covers the base 32 and constitutes the upper portion of the vacuum chamber 31, and the opening 33 a constituting the frame of the lid 33 is provided slightly smaller than the transfer substrate 20. It has been. On the surface (inner wall surface) 33b facing the base body 32 in the lid 33, an airtight seal 37 is disposed on the outer edge and the periphery of the opening 33a.

上記基体32と蓋体33とで構成される真空チャンバ31は、基体32と蓋体33とが、例えば蓋体33の一辺で連結されており、その反対側を持ち上げることで開放され、蓋体33を下ろして閉じた状態でロックされるように構成されている。なお、ここでは蓋体33の一辺で基体32と蓋体33とが連結されることとしたが、蓋体33は基体32上をスライドする状態で設けられていてもよく、基体32と連結していなくてもよい。   The vacuum chamber 31 composed of the base body 32 and the lid body 33 is configured such that the base body 32 and the lid body 33 are connected by, for example, one side of the lid body 33 and opened by lifting the opposite side. 33 is configured to be locked in the closed state. Here, the base body 32 and the lid body 33 are connected to each other on one side of the lid body 33, but the lid body 33 may be provided so as to slide on the base body 32, and is connected to the base body 32. It does not have to be.

ここで、本発明の特徴的な構成として、真空チャンバ31は、上記載置部34上に重ね合わせた状態で載置された被転写基板10と転写用基板20とを、上記載置部34と上記蓋体33とで挟持するように構成されている。すなわち、上記載置部34上に被転写基板10を介して載置された転写用基板20上と基体32上に気密シール37を介して蓋体33を載置することで、転写用基板20により上記開口部33aが塞がれ、転写用基板20と蓋体33と基体32とで、気密空間が形成される。そして、この状態で真空チャンバ31内を真空雰囲気にすることで、蓋体33が真空チャンバ31の内側に引かれ、転写用基板と蓋体33とが上方から大気圧で押される。これにより、上記載置部34上に重ね合わせた状態で載置された被転写基板10と転写用基板20とが載置部34と蓋体33とで挟持された状態となる。   Here, as a characteristic configuration of the present invention, the vacuum chamber 31 is configured such that the transfer target substrate 10 and the transfer substrate 20 that are placed on the placement portion 34 are superposed on the placement portion 34. And the lid 33. That is, by placing the lid 33 on the transfer substrate 20 and the base body 32 placed on the placement portion 34 via the transfer substrate 10 via the airtight seal 37, the transfer substrate 20 is placed. Thus, the opening 33 a is closed, and an airtight space is formed by the transfer substrate 20, the lid 33, and the base 32. In this state, the inside of the vacuum chamber 31 is made into a vacuum atmosphere, whereby the lid 33 is pulled inside the vacuum chamber 31 and the transfer substrate and the lid 33 are pressed from above at atmospheric pressure. As a result, the transfer substrate 10 and the transfer substrate 20 placed in a state of being superimposed on the placement portion 34 are sandwiched between the placement portion 34 and the lid 33.

また、上記載置部34は被転写基板10と転写用基板20とを挟持する位置で固定されている。ここでは、載置部34が基体32の底部と一体で構成されることで固定されることとする。これにより、従来の転写装置と比較して真空チャンバ31内に被転写基板10を保持するための可動式の保持部材を必要せず、また、大気圧による荷重にも十分に耐えうる。これにより、真空チャンバ31内の構成が簡略化される。   The placement portion 34 is fixed at a position where the transfer substrate 10 and the transfer substrate 20 are sandwiched. Here, the mounting portion 34 is fixed by being configured integrally with the bottom portion of the base body 32. Accordingly, a movable holding member for holding the transfer target substrate 10 in the vacuum chamber 31 is not required as compared with the conventional transfer apparatus, and it can sufficiently withstand a load due to atmospheric pressure. Thereby, the structure in the vacuum chamber 31 is simplified.

また、載置部34の載置面34aは、基体32の底面32aと同一平面に設けられており、載置面34aと蓋体33の内壁面33aとの距離Dが被転写基板10と転写用基板20とを重ねた状態の厚みD’と略同等となるように設けられることとする。これにより、真空チャンバ31の容積を規定する高さ(距離D)が、被転写基板10上に転写用基板20を重ねた状態で配置するのに最低限必要な高さでよいことから、従来の転写装置と比較して真空チャンバ31の容積を小さくすることが可能となるため、好ましい。ただし、この場合には、気密シール37は真空チャンバ31内を真空雰囲気とすることでつぶれるため、無視できる程度の厚みであることとする。   Further, the mounting surface 34 a of the mounting portion 34 is provided on the same plane as the bottom surface 32 a of the base 32, and the distance D between the mounting surface 34 a and the inner wall surface 33 a of the lid 33 is determined so that the transfer surface 10 and the transfer substrate 10 are transferred. Suppose that it is provided so that it may become substantially equivalent to thickness D 'of the state which piled up the board | substrate 20 for an object. As a result, the height (distance D) that defines the volume of the vacuum chamber 31 may be a minimum height required for placing the transfer substrate 20 on the transfer substrate 10 in a conventional manner. This is preferable because the volume of the vacuum chamber 31 can be reduced as compared with the transfer apparatus of FIG. However, in this case, since the airtight seal 37 is crushed when the inside of the vacuum chamber 31 is placed in a vacuum atmosphere, the thickness is negligible.

また、上記真空チャンバ31の上方には、輻射線の照射源としてレーザ照射部40が配置されている。レーザ照射部40は、レーザ光源41と、レーザ光源41をスポット照射させつつXY方向に移動させるXYスキャナ42とを備えている。また、ここでの図示は省略したが、レーザ光源41には、アライメントカメラが隣接して設けられており、被転写基板10に設けられた基準マークを取り込み、レーザ光源41と被転写基板10との位置合わせを行うことが可能である。   A laser irradiation unit 40 is disposed above the vacuum chamber 31 as a radiation source. The laser irradiation unit 40 includes a laser light source 41 and an XY scanner 42 that moves the laser light source 41 in the X and Y directions while performing spot irradiation. Although not shown in the figure, the laser light source 41 is provided with an alignment camera adjacent thereto, and a reference mark provided on the transfer substrate 10 is taken in. The laser light source 41 and the transfer substrate 10 Can be aligned.

なお、ここでは、輻射線の照射源としてレーザ光源41を用いることとしたが、この照射源はレーザ光源42に限定されず、ヒートバー、サーマルヘッドなどを用いることも可能である。この場合には、転写用基板20に直接熱を与えられるため、転写用基板20に光熱変換層22を形成しなくてもよい。   Here, the laser light source 41 is used as the radiation source. However, the irradiation source is not limited to the laser light source 42, and a heat bar, a thermal head, or the like may be used. In this case, since heat is directly applied to the transfer substrate 20, it is not necessary to form the photothermal conversion layer 22 on the transfer substrate 20.

上述した転写装置30は、例えば各色の発光層23を転写するための3台の転写装置30が不活性ガスで置換された外部チャンバ50の内部に配置されていることとする。これにより、転写後の被転写基板11を他の色の発光層23を転写する転写装置に移動する際、大気中の水や酸素に発光層23を含む有機層を晒すことなく、有機層の損傷が防止されるため、好ましい。   In the transfer device 30 described above, it is assumed that, for example, three transfer devices 30 for transferring the light emitting layers 23 of the respective colors are arranged inside an external chamber 50 replaced with an inert gas. Accordingly, when the transferred substrate 11 after transfer is moved to a transfer device that transfers the light emitting layer 23 of another color, the organic layer including the light emitting layer 23 is not exposed to water or oxygen in the atmosphere. It is preferable because damage is prevented.

なお、ここでは、基板の載置面が基体32の底面32aと同一平面に設けられる例について説明したが、基体32の底面32aに基板を載置するステージ部が段差を有して設けられていてもよい。ただし、基板の載置面が基体32の底面32aと同一平面に設けられる方が、真空チャンバ31の容積を小さくできるため、好ましい。   Here, the example in which the substrate mounting surface is provided in the same plane as the bottom surface 32a of the base 32 has been described, but the stage portion for mounting the substrate on the bottom surface 32a of the base 32 is provided with a step. May be. However, it is preferable that the mounting surface of the substrate is provided in the same plane as the bottom surface 32 a of the base 32 because the volume of the vacuum chamber 31 can be reduced.

また、ここでは、蓋体33が枠体である例について説明するが、蓋体33は枠体ではなく、板状部材であってもよい。この場合には、後述する転写工程において、蓋体33を介して転写用基板20にレーザ光が照射されるため、蓋体33は、例えばガラス等の透明性を有する板状部材で構成されることとする。ただし、蓋体33は枠体であるほうが、転写用基板20にレーザ光が直接照射できることから、透過率がよく、蓋体33の屈折率の影響も受けないため、好ましい。なお、蓋体33が板状部材で構成される場合には、真空雰囲気下で蓋体33を下側に撓ませた状態で、載置部34上に載置された被転写基板10と転写用基板20を挟持することで、転写用基板20の全域が被転写基板10側に均等に押される。このため、真空雰囲気下で蓋体33が転写用基板20の上面全域に当接する範囲で基体32の側壁32bが若干転写用基板20の上面よりも高くなるように構成されることが好ましい。   Although an example in which the lid 33 is a frame will be described here, the lid 33 may be a plate-like member instead of a frame. In this case, in the transfer step to be described later, the transfer substrate 20 is irradiated with laser light through the lid 33. Therefore, the lid 33 is made of a transparent plate-like member such as glass. I will do it. However, it is preferable that the lid 33 is a frame because the transfer substrate 20 can be directly irradiated with laser light, so that the transmittance is good and the refractive index of the lid 33 is not affected. When the lid 33 is formed of a plate-like member, the transfer is performed with the substrate to be transferred 10 placed on the placement portion 34 in a state where the lid 33 is bent downward in a vacuum atmosphere. By sandwiching the transfer substrate 20, the entire area of the transfer substrate 20 is evenly pressed toward the transfer target substrate 10. For this reason, it is preferable that the side wall 32b of the base 32 is slightly higher than the upper surface of the transfer substrate 20 in a range where the lid 33 contacts the entire upper surface of the transfer substrate 20 in a vacuum atmosphere.

さらに、本実施形態では、真空チャンバ31が、容器状の基体32と蓋体33とで構成される例について説明したが、本発明はこれに限定されることなく、真空チャンバ31が、載置部34と真空チャンバ31の上部とで、重ね合わせた状態の被転写基板10と転写用基板20とを挟持するように構成されており、載置部34がこれら基板を挟持する位置で固定されていればよい。例えば、板状部材からなる基体と、この基体を覆う状態で閉塞するような箱状の蓋体とを備えた真空チャンバであってもよく、基体と蓋体とが一体で構成されており、側壁側から基板を導入可能な真空チャンバであってもよい。さらには、上述したような外部チャンバ50の底面部に、被転写基板10と転写用基板20とを重ねた状態で収納可能な複数の凹部が形成されており、この凹部を閉塞する板状部材からなる蓋体を備えた真空チャンバであってもよい。   Further, in the present embodiment, the example in which the vacuum chamber 31 is configured by the container-like base body 32 and the lid body 33 has been described. However, the present invention is not limited to this, and the vacuum chamber 31 is mounted. The portion 34 and the upper portion of the vacuum chamber 31 are configured to sandwich the transferred substrate 10 and the transfer substrate 20 in an overlapped state, and the mounting portion 34 is fixed at a position where the substrate is sandwiched. It only has to be. For example, it may be a vacuum chamber provided with a base made of a plate-like member and a box-like lid that closes in a state of covering the base, and the base and the lid are integrally formed. It may be a vacuum chamber into which the substrate can be introduced from the side wall side. Furthermore, a plurality of recesses that can be accommodated in a state where the transfer substrate 10 and the transfer substrate 20 are stacked are formed on the bottom surface of the external chamber 50 as described above, and a plate-like member that closes the recesses It may be a vacuum chamber provided with a lid made of

<転写工程>
次いで、上述した転写装置30を用いて、転写用基板20から被転写基板10に、例えば赤色の発光層23(転写層)を転写する転写方法について説明する。まず、外部チャンバ50内を不活性ガス雰囲気にした状態で、被転写基板10を、真空チャンバ31を構成する基体32の載置部34上に載置する。この際、図4(a)に示すように、下部電極12の形成面側を上方に向けた状態で載置する。ここで、下部電極12上には、ここでの図示は省略したが、図1(a)を用いて説明した正孔注入層14、正孔輸送層15が順次積層されているため、被転写面は正孔輸送層15となる。
<Transfer process>
Next, a transfer method for transferring, for example, the red light emitting layer 23 (transfer layer) from the transfer substrate 20 to the transfer substrate 10 using the transfer apparatus 30 described above will be described. First, the substrate 10 to be transferred is placed on the placement portion 34 of the base 32 constituting the vacuum chamber 31 with the inside of the external chamber 50 in an inert gas atmosphere. At this time, as shown in FIG. 4A, the lower electrode 12 is placed with the formation surface side facing upward. Here, although not shown here, since the hole injection layer 14 and the hole transport layer 15 described with reference to FIG. 1A are sequentially stacked on the lower electrode 12, The surface becomes the hole transport layer 15.

次に、転写用基板20に設けられた発光層23の形成面側を被転写基板10側に向けた状態で、上記被転写基板10上に上記転写用基板20を重ね合わせる。これにより、被転写基板10には複数の突起部13aが設けられていることから、突起部13aにより、転写用基板20が支持される。また、この突起部13aにより、被転写基板10と転写用基板20との間に外部に連通する空間Cが形成される。この際、図4(b)の上面図に示すように、被転写基板10の隅部に設けられた基準マークSは、転写用基板20を透過して確認されることとする。   Next, the transfer substrate 20 is overlaid on the transfer substrate 10 with the formation surface side of the light emitting layer 23 provided on the transfer substrate 20 facing the transfer substrate 10 side. As a result, since the substrate to be transferred 10 is provided with a plurality of protrusions 13a, the transfer substrate 20 is supported by the protrusions 13a. In addition, a space C communicating with the outside is formed between the substrate to be transferred 10 and the transfer substrate 20 by the protruding portion 13a. At this time, as shown in the top view of FIG. 4B, the reference mark S provided at the corner of the transfer substrate 10 is confirmed through the transfer substrate 20.

なお、ここでは、基体32内で被転写基板10と転写用基板20とを重ね合わせることとしたが、図3に示す不活性ガス雰囲気下の外部チャンバ50内で被転写基板10上に転写用基板20を重ね合わせた後、重ね合わせた状態で上記載置部34上に被転写基板10と転写用基板20とを載置してもよい。   Here, the transfer substrate 10 and the transfer substrate 20 are overlapped in the base 32, but the transfer substrate 10 is transferred onto the transfer substrate 10 in the external chamber 50 in an inert gas atmosphere shown in FIG. After the substrate 20 is overlaid, the transfer substrate 10 and the transfer substrate 20 may be placed on the placement portion 34 in the overlaid state.

次いで、図3に示すように、枠状の蓋体33を気密シール37を介して基体32上および転写用基板20上に配置してロックする。これにより、転写用基板20により、蓋体33の開口部33aが塞がれるため、真空チャンバ31は閉塞される。   Next, as shown in FIG. 3, the frame-shaped lid 33 is disposed and locked on the base 32 and the transfer substrate 20 through an airtight seal 37. As a result, the transfer chamber 20 closes the opening 33a of the lid 33, so that the vacuum chamber 31 is closed.

その後、排気口35に設けられたバルブ35aを開き、真空チャンバ31内を減圧する。この際、基体32上および転写用基板20上に気密シール37を介して載置された蓋体33は真空チャンバ31の内側に引かれ、真空チャンバ31内が真空雰囲気下となる。また、上方から大気圧により蓋体33と転写用基板20とが被転写基板11側に押され、被転写基板10上の転写用基板20は、突起部13aにより支持された状態で、載置部34と蓋体33とに挟持される。   Thereafter, the valve 35 a provided at the exhaust port 35 is opened, and the inside of the vacuum chamber 31 is depressurized. At this time, the lid 33 placed on the substrate 32 and the transfer substrate 20 via the airtight seal 37 is pulled inside the vacuum chamber 31, and the inside of the vacuum chamber 31 is in a vacuum atmosphere. Also, the lid 33 and the transfer substrate 20 are pushed toward the transfer substrate 11 by atmospheric pressure from above, and the transfer substrate 20 on the transfer substrate 10 is placed in a state of being supported by the protrusions 13a. It is sandwiched between the part 34 and the lid 33.

この状態で、真空チャンバ31内の空間Bが真空雰囲気となり、空間Bと連通する被処理基板10と転写用基板20との間の空間C(前記図4(a)参照)が真空雰囲気となる。この際、転写用基板20に設けられた発光層23は、突起部13aとのみ接触するため、発光層23への損傷は抑制されることから、この転写用基板20を2度目以降の転写に用いることができる。さらに、突起部13aが介在することで、転写用基板20と被転写基板との密着が防止されるため、転写用基板20からの異物が被転写基板10の画素A(前記図4(a)参照)内に混入することなく、転写用基板20による被転写基板10の画素A内の損傷も抑制される。   In this state, the space B in the vacuum chamber 31 becomes a vacuum atmosphere, and the space C (see FIG. 4A) between the substrate to be processed 10 and the transfer substrate 20 communicating with the space B becomes a vacuum atmosphere. . At this time, since the light emitting layer 23 provided on the transfer substrate 20 is in contact only with the protrusion 13a, damage to the light emitting layer 23 is suppressed, so that the transfer substrate 20 is used for the second and subsequent transfers. Can be used. Further, since the protrusion 13a is interposed, adhesion between the transfer substrate 20 and the transfer substrate is prevented, so that the foreign matter from the transfer substrate 20 is detected by the pixel A of the transfer substrate 10 (see FIG. 4A). Reference)), the damage in the pixel A of the substrate 10 to be transferred due to the transfer substrate 20 is also suppressed.

次いで、被転写基板10の基準マークS(前記図4(a)参照)を、レーザ照射部40のアライメントカメラに取り込むことで、被転写基板10とレーザ光源41との位置合わせを行った後、レーザ光源41から、例えば800nmの赤外レーザ光をスポット照射して、転写用基板20の光熱変換層22に吸収させる。そして、この熱を利用して、発光層23を被処理基板10上に成膜された正孔輸送層15上に選択的に転写する。この際、この赤外レーザ光の刈幅は100μmとする。   Next, the reference mark S (see FIG. 4A) of the substrate to be transferred 10 is taken into the alignment camera of the laser irradiation unit 40, thereby aligning the substrate to be transferred 10 and the laser light source 41, For example, an infrared laser beam of 800 nm is spot-irradiated from the laser light source 41 and absorbed by the photothermal conversion layer 22 of the transfer substrate 20. Then, using this heat, the light emitting layer 23 is selectively transferred onto the hole transport layer 15 formed on the substrate 10 to be processed. At this time, the cutting width of the infrared laser light is 100 μm.

なお、ここでは、スポット照射させたレーザ光をXY方向に走査して選択的に照射する転写工程について説明したが、レーザ照射部40と転写用基板20との間にレーザ光を照射する部分のみが開口された遮光マスク(図示省略)を配置して、全面にレーザ光を照射してもよい。   Here, the transfer process of selectively irradiating the spot-irradiated laser beam in the X and Y directions has been described, but only the portion that irradiates the laser beam between the laser irradiation unit 40 and the transfer substrate 20. A light-shielding mask (not shown) having an opening may be arranged to irradiate the entire surface with laser light.

転写完了後、排気口35のバルブ35aを閉じ、リーク口36のバルブ36aを開くことで、真空雰囲気下の真空チャンバ31を、常圧に覆圧する。その後、蓋体33を開け、転写用基板20を被転写基板10から離間して、不活性ガス雰囲気下の外部チャンバ50内を移動させて、B,G用の転写装置30に被処理基板10を移動する。その後、BおよびGに対応した転写用基板20を用いて、青色発光層および緑色発光層についても同様の工程で転写を行う。   After the transfer is completed, the valve 35a of the exhaust port 35 is closed, and the valve 36a of the leak port 36 is opened, thereby covering the vacuum chamber 31 in a vacuum atmosphere to normal pressure. Thereafter, the lid 33 is opened, the transfer substrate 20 is moved away from the transfer substrate 10 and moved in the external chamber 50 under an inert gas atmosphere, and the transfer substrate 30 for B and G is transferred to the transfer substrate 10. To move. Thereafter, using the transfer substrate 20 corresponding to B and G, the blue light emitting layer and the green light emitting layer are also transferred in the same process.

この後の製造工程は、通常の有機電界発光素子の製造方法と同様の工程で行う。すなわち、表示エリアの全面にベタ付けにする状態で、発光層23上に電子輸送層を成膜する。電子輸送層は、厚みが20nm程度であり、8−ヒドロキシキノリンアルミニウム(Alq3 )により構成する。   The subsequent manufacturing process is performed in the same process as the manufacturing method of a normal organic electroluminescent element. That is, the electron transport layer is formed on the light emitting layer 23 in a state where the entire display area is solid. The electron transport layer has a thickness of about 20 nm and is made of 8-hydroxyquinoline aluminum (Alq3).

続いて、電子注入層として、フッ化リチウム(LiF)を真空蒸着法により約0.3nm(蒸着速度〜0.01nm/sec)の膜厚で形成し、次いで、上部電極として、マグネシウム銀(MgAg)からなる陰極を真空蒸着法により10nmの膜厚で形成する。この陰極は、共通の上部共通電極として形成される。   Subsequently, as an electron injection layer, lithium fluoride (LiF) is formed with a film thickness of about 0.3 nm (deposition rate˜0.01 nm / sec) by vacuum deposition, and then magnesium silver (MgAg) is formed as an upper electrode. ) Is formed with a film thickness of 10 nm by a vacuum deposition method. This cathode is formed as a common upper common electrode.

この際、下地に対して影響を及ぼすことのない程度に、成膜粒子のエネルギーが小さい成膜方法、例えば蒸着法やCVD(chemical vapor deposition)法によって上部共通電極の形成を行うこととする。また、望ましくは、有機層を大気に暴露することなく、有機層の形成と同一の装置内において連続して上部共通電極の形成を行うことで、大気中の水分による有機層の劣化を防止する。   At this time, the upper common electrode is formed by a film forming method in which the energy of the film forming particles is small enough not to affect the base, for example, a vapor deposition method or a CVD (chemical vapor deposition) method. Desirably, the upper common electrode is continuously formed in the same apparatus as the formation of the organic layer without exposing the organic layer to the atmosphere, thereby preventing deterioration of the organic layer due to moisture in the atmosphere. .

この場合、上部共通電極は、有機層に対して電子を効率的に注入できるように、仕事関数の小さい材料で透明に形成され、特に蒸着法のような成膜粒子のエネルギーが小さい成膜方法によって形成できる金属薄膜として形成することが好ましい。   In this case, the upper common electrode is formed transparently with a material having a low work function so that electrons can be efficiently injected into the organic layer. It is preferable to form as a metal thin film that can be formed by

以上の後、上述した上部共通電極上に、絶縁性または導電性の保護膜を設ける。この際、下地に対して影響を及ぼすことのない程度に、成膜粒子のエネルギーが小さい成膜方法で、例えば蒸着法や化学的気相成長(Chemical Vapor Deposition(CVD)法によって保護膜の形成を行うこととする。また、保護膜の形成は、上部共通電極を大気に暴露することなく、上部共通電極の形成と同一の装置内において連続して行うこととする。これによって、大気中の水分や酸素による有機層の劣化を防止する。   After the above, an insulating or conductive protective film is provided on the upper common electrode described above. In this case, a protective film is formed by, for example, a vapor deposition method or a chemical vapor deposition (CVD) method with a film formation method in which the energy of the film formation particles is small so as not to affect the base. In addition, the protective film is formed continuously in the same apparatus as the formation of the upper common electrode without exposing the upper common electrode to the atmosphere. Prevents deterioration of the organic layer due to moisture and oxygen.

また、この保護膜は、有機層への水分の到達防止を目的とし、透過水性,吸水性の低い材料を用いて十分な膜厚で形成されることとする。さらに、表示装置が上面発光型である場合には、この保護膜は有機層で発生した光を透過する材料からなり、例えば80%程度の透過率が確保されていることとする。   The protective film is formed with a sufficient film thickness using a material having low permeability and water absorption for the purpose of preventing moisture from reaching the organic layer. Further, when the display device is a top emission type, this protective film is made of a material that transmits light generated in the organic layer, and has a transmittance of, for example, about 80%.

そして、特にここでは、保護膜を絶縁性材料によって形成する、つまり、金属薄膜からなる単層構造の上部共通電極上に、絶縁性の保護膜を直接形成する。   In particular, here, the protective film is formed of an insulating material, that is, the insulating protective film is directly formed on the upper common electrode having a single-layer structure made of a metal thin film.

このような保護膜として、無機アモルファス性の絶縁性材料、例えばアモルファスシリコン(α−Si),アモルファス炭化シリコン(α−SiC),アモルファス窒化シリコン(α−Si1-x Nx )さらにはアモルファスカーボン(α−C)等を好適に用いることができる。このような無機アモルファス性の絶縁性材料は、グレインを構成しないため透水性が低く、良好な保護膜となる。   As such a protective film, an inorganic amorphous insulating material such as amorphous silicon (α-Si), amorphous silicon carbide (α-SiC), amorphous silicon nitride (α-Si1-x Nx) or amorphous carbon (α -C) and the like can be preferably used. Such an inorganic amorphous insulating material does not constitute grains, and thus has low water permeability and becomes a good protective film.

例えば、アモルファス窒化シリコンからなる保護膜を形成する場合には、CVD法によって2〜3μmの膜厚に形成されることとする。ただし、この際、有機層の劣化による輝度の低下を防止するため成膜温度を常温に設定し、さらに、保護膜の剥がれを防止するために膜のストレスを最小になる条件で成膜することが望ましい。   For example, when forming a protective film made of amorphous silicon nitride, it is formed to a thickness of 2 to 3 μm by a CVD method. However, at this time, the film formation temperature is set to room temperature in order to prevent a decrease in luminance due to the deterioration of the organic layer, and further, film formation is performed under conditions that minimize film stress in order to prevent the protective film from peeling off. Is desirable.

なお、保護膜を導電性材料で構成する場合には、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)のような透明導電性材料が用いられる。以上のようにして保護膜を形成した後、必要に応じて保護膜上に紫外線硬化樹脂を介してガラス基板を固着し、表示装置を完成させる。   When the protective film is made of a conductive material, a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used. After the protective film is formed as described above, a glass substrate is fixed on the protective film via an ultraviolet curable resin as necessary to complete the display device.

以上説明したような転写方法および転写装置によれば、被転写基板10上に転写用基板20を重ね合わせる工程の後に、転写用基板20と被転写基板10との間を真空雰囲気にすることから、この転写方法に用いる転写装置30の真空チャンバ31は、被転写基板10上に転写用基板20を重ねた状態で配置するスペースがあればよい。これにより、従来の密着方式の転写装置と比較して、真空チャンバ31内に被転写基板10と転写用基板20とを対向配置して重ねるための可動式の保持部材を配備する必要がない。また、従来の離間方式の転写装置と比較して、被転写基板10と転写用基板20とを離間させた状態で維持する保持部材およびスペースを必要としない。このため、真空チャンバ31の構成が簡略化されるとともに真空チャンバ31の容積を小さくすることが可能となる。したがって、設備コストの増大が防止できるとともに、転写装置の小型化が可能である。   According to the transfer method and the transfer apparatus as described above, a vacuum atmosphere is formed between the transfer substrate 20 and the transfer substrate 10 after the step of superimposing the transfer substrate 20 on the transfer substrate 10. The vacuum chamber 31 of the transfer device 30 used in this transfer method only needs to have a space for placing the transfer substrate 20 on the transfer target substrate 10. Accordingly, it is not necessary to provide a movable holding member for placing the transfer target substrate 10 and the transfer substrate 20 in the vacuum chamber 31 so as to face each other and to stack them in the vacuum chamber 31 as compared with a conventional close-contact transfer device. Further, as compared with a conventional separation type transfer apparatus, a holding member and a space for maintaining the transfer target substrate 10 and the transfer substrate 20 in a separated state are not required. For this reason, the configuration of the vacuum chamber 31 can be simplified and the volume of the vacuum chamber 31 can be reduced. Therefore, an increase in equipment cost can be prevented and the transfer device can be downsized.

また、真空チャンバ31の構成が簡略化されるとともに容積を小さくすることできるため、転写用基板20とレーザ光源41との距離を比較的短くすることができる。例えば、半導体レーザなど、対物集光レンズが必要で焦点距離の制約がある光源を使用することも可能となり、光源の選択性が広がる。また、その距離の短縮により光の照射位置と被転写基板とのアライメント精度も向上する。さらに、常圧環境下に被転写基板10と転写用基板20とを重ね合わせるための可動部材を配置することができるため、アクセス性が向上し、メンテナンス性も向上させることができる。   Further, since the configuration of the vacuum chamber 31 is simplified and the volume can be reduced, the distance between the transfer substrate 20 and the laser light source 41 can be made relatively short. For example, it is possible to use a light source that requires an objective condenser lens and has a limited focal length, such as a semiconductor laser, and the selectivity of the light source is expanded. Further, the shortening of the distance also improves the alignment accuracy between the light irradiation position and the transferred substrate. Furthermore, since a movable member for superimposing the transfer substrate 10 and the transfer substrate 20 can be disposed under a normal pressure environment, accessibility can be improved and maintenance can be improved.

また、被転写基板10に突起部13aが設けられていることから、被転写基板10上に転写用基板20を重ね合わせた状態で、基板間の空間を確実に真空雰囲気にすることができる。したがって、転写用基板10から発光層23を位置精度よく転写することができる。   Further, since the protrusions 13 a are provided on the transfer substrate 10, the space between the substrates can be surely set in a vacuum atmosphere in a state where the transfer substrate 20 is superimposed on the transfer substrate 10. Therefore, the light emitting layer 23 can be transferred from the transfer substrate 10 with high positional accuracy.

なお、上記実施形態では、有機電界発光素子を構成する有機層のうち発光層23のみを熱転写法により形成する例について説明したが、発光層23に限らず、正孔注入層14、正孔輸送層15、電子輸送層等、他の有機層であっても、本発明は適用可能である。   In the above embodiment, an example in which only the light emitting layer 23 of the organic layers constituting the organic electroluminescent element is formed by the thermal transfer method has been described. However, the present invention is not limited to the light emitting layer 23, and the hole injection layer 14, hole transport The present invention can be applied to other organic layers such as the layer 15 and the electron transport layer.

また、本実施形態では、有機電界発光素子を用いた上面発光型の表示装置の製造方法の例を用いて説明したが、本発明はこれに限定されず、下面発光型(透過型)の表示装置であってもよい。この場合には、下部電極12をITO等透明性の高い導電材料を用いて形成し、上部電極を反射性の高い導電材料で形成する。   In the present embodiment, the example of the method for manufacturing the top emission display device using the organic electroluminescence element has been described. However, the present invention is not limited to this, and the bottom emission type (transmission type) display is provided. It may be a device. In this case, the lower electrode 12 is formed using a highly transparent conductive material such as ITO, and the upper electrode is formed using a highly reflective conductive material.

また、上記実施形態では、下部電極12を陽極、上部電極を陰極とする例について説明したが、下部電極12を陰極、上部電極を陽極とした表示装置であっても、本発明は適用可能である。この場合には、下部電極12上に電子注入層、電子輸送層が積層された状態で発光層23が形成される。   In the above embodiment, an example in which the lower electrode 12 is an anode and the upper electrode is a cathode has been described. However, the present invention can be applied to a display device in which the lower electrode 12 is a cathode and the upper electrode is an anode. is there. In this case, the light emitting layer 23 is formed in a state where the electron injection layer and the electron transport layer are laminated on the lower electrode 12.

なお、上述した転写装置30を用い、本実施形態で用いた被転写基板10または転写用基板20よりも薄い基板を用いて、熱転写を行う場合には、基体32の底面32aの高さを調整する載置板(図示省略)を配置し、載置板上に被処理基板10を載置してもよい。この場合には、載置板の上面が載置面となる。また、上記転写装置30を用いて本実施形態で用いた被転写基板10または転写用基板20よりも厚い基板を用いて熱転写を行う場合には、基体32と同一の開口形状を有する枠状の構成部材を基体32上に別途配置して、基体32の高さを調整することも可能である。   In the case where thermal transfer is performed using the transfer device 30 described above and a substrate thinner than the transfer target substrate 10 or the transfer substrate 20 used in this embodiment, the height of the bottom surface 32a of the base 32 is adjusted. A mounting plate (not shown) may be arranged, and the substrate 10 to be processed may be mounted on the mounting plate. In this case, the upper surface of the mounting plate is the mounting surface. Further, when thermal transfer is performed using the transfer apparatus 30 using a substrate that is thicker than the transfer target substrate 10 or the transfer substrate 20 used in the present embodiment, a frame-like shape having the same opening shape as the base 32 is used. It is also possible to separately arrange the constituent members on the base body 32 and adjust the height of the base body 32.

本発明の転写方法に係る実施の形態に用いる被転写基板の要部拡大断面図(a)および要部拡大平面図(b)である。It is the principal part expanded sectional view (a) and principal part enlarged plan view (b) of the to-be-transferred substrate used for embodiment which concerns on the transfer method of this invention. 本発明の転写方法に係る実施の形態に用いる転写用基板の模式図であり、断面図(a)および平面図(b)である。It is a schematic diagram of the transfer substrate used in the embodiment according to the transfer method of the present invention, a sectional view (a) and a plan view (b). 本発明の転写装置に係る実施の形態を説明するための断面構成図である。It is a section lineblock diagram for explaining an embodiment concerning a transfer device of the present invention. 本発明の転写方法に係る実施の形態を説明するための断面図(a)および上面図(b)である。It is sectional drawing (a) and top view (b) for demonstrating embodiment which concerns on the transfer method of this invention.

符号の説明Explanation of symbols

10…被転写基板、12…下部電極、13a…突起部、20…転写用基板、21…支持基板、23…発光層、30…転写装置、31…真空チャンバ、32…基体、32a…底面、33…蓋体、33a…開口部、33b…内壁面、34…載置部、34a…載置面、41…レーザ光源   DESCRIPTION OF SYMBOLS 10 ... Substrate to be transferred, 12 ... Lower electrode, 13a ... Projection, 20 ... Transfer substrate, 21 ... Support substrate, 23 ... Light emitting layer, 30 ... Transfer device, 31 ... Vacuum chamber, 32 ... Substrate, 32a ... Bottom surface, 33 ... lid, 33a ... opening, 33b ... inner wall surface, 34 ... mounting part, 34a ... mounting surface, 41 ... laser light source

Claims (8)

支持基板の一主面側に転写層を形成してなる転写用基板を、前記転写層を被転写基板側に向けた状態で、当該被転写基板上に重ね合わせる工程と、
前記被転写基板上に前記転写用基板を重ね合わせた状態で、当該被転写基板と当該転写用基板との間を真空雰囲気にする工程と、
真空雰囲気下で前記転写用基板に輻射線を照射することにより、前記転写層を前記被転写基板に転写する工程とを有する
ことを特徴とする転写方法。
A step of superimposing a transfer substrate having a transfer layer formed on one main surface side of a support substrate on the transfer substrate in a state where the transfer layer faces the transfer substrate;
In a state where the transfer substrate is superimposed on the transfer substrate, a step of creating a vacuum atmosphere between the transfer substrate and the transfer substrate;
And a step of transferring the transfer layer onto the transfer substrate by irradiating the transfer substrate with radiation in a vacuum atmosphere.
前記被転写基板には、当該被転写基板上に前記転写用基板を重ね合わせた状態で、前記転写用基板を支持するとともに、当該転写用基板と前記被転写基板との間に外部に連通する空間を形成する突起部が設けられている
ことを特徴とする請求項1記載の転写方法。
The transfer substrate supports the transfer substrate in a state where the transfer substrate is superimposed on the transfer substrate, and communicates with the outside between the transfer substrate and the transfer substrate. The transfer method according to claim 1, wherein a projecting portion that forms a space is provided.
前記被転写基板は、有機電界発光素子に用いる基板の一主面側に電極を設けてなり、
前記転写層は、少なくとも発光層を含む有機層である
ことを特徴とする請求項1記載の転写方法。
The substrate to be transferred is provided with an electrode on one main surface side of the substrate used for the organic electroluminescence device,
The transfer method according to claim 1, wherein the transfer layer is an organic layer including at least a light emitting layer.
転写用基板上に形成された転写層を被転写基板に転写する転写装置であって、
前記被転写基板上に前記転写用基板を重ね合わせた状態で載置可能な載置部を有し、重ね合わせた状態の前記被転写基板と前記転写用基板とを収納する真空チャンバと、
前記真空チャンバの上方に配置され、前記転写用基板に輻射線を照射する照射源とを備え、
前記真空チャンバは、前記載置部上に重ね合わせた状態で載置された前記被転写基板と前記転写用基板とを、前記載置部と前記真空チャンバの上部とで挟持するように構成されており、
前記載置部は、前記被転写基板と前記転写用基板とを挟持する位置で固定されている
ことを特徴とする転写装置。
A transfer device that transfers a transfer layer formed on a transfer substrate to a transfer substrate,
A vacuum chamber that has a placement portion that can be placed in a state where the transfer substrate is overlaid on the transfer substrate, and stores the transfer substrate and the transfer substrate in the overlaid state;
An irradiation source that is disposed above the vacuum chamber and irradiates the transfer substrate with radiation;
The vacuum chamber is configured to sandwich the substrate to be transferred and the transfer substrate placed in a state of being superimposed on the placement unit between the placement unit and the upper portion of the vacuum chamber. And
The transfer device according to claim 1, wherein the placement unit is fixed at a position where the transfer substrate and the transfer substrate are sandwiched.
前記載置部は、前記真空チャンバの底面と同一平面に載置面を有しており、前記底面と前記真空チャンバの上部の内壁面との距離は、前記被転写基板と前記転写用基板とを重ね合わせた状態の厚みと略同等となるように設けられている
ことを特徴とする請求項4記載の転写装置。
The mounting portion has a mounting surface in the same plane as the bottom surface of the vacuum chamber, and the distance between the bottom surface and the inner wall surface of the upper portion of the vacuum chamber is determined by the transfer substrate and the transfer substrate. The transfer device according to claim 4, wherein the transfer device is provided so as to be substantially equal to a thickness in a state where the two are overlapped.
前記真空チャンバは、前記載置部を有する基体と、当該基体を覆うとともに前記真空チャンバの上部を構成する蓋体とを備えている
ことを特徴とする請求項4記載の転写装置。
The transfer apparatus according to claim 4, wherein the vacuum chamber includes a base body having the mounting portion described above and a lid that covers the base body and forms an upper portion of the vacuum chamber.
前記蓋体が前記転写用基板より一回り小さい開口部を有する枠体であり、前記載置部上に前記被転写基板を介して載置された前記転写用基板により前記枠体を構成する開口部が塞がれることで、前記転写用基板と前記蓋体と前記基体とで気密空間が形成される
ことを特徴とする請求項6記載の転写装置。
The lid is a frame having an opening that is slightly smaller than the transfer substrate, and the opening comprises the frame by the transfer substrate placed on the placement portion via the transfer substrate. The transfer device according to claim 6, wherein an airtight space is formed by the transfer substrate, the lid, and the base body by closing the portion.
前記照射源がレーザ光源である
ことを特徴とする請求項4記載の転写装置。
The transfer apparatus according to claim 4, wherein the irradiation source is a laser light source.
JP2005168018A 2005-04-27 2005-06-08 Transfer method and transfer device Pending JP2006344459A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005168018A JP2006344459A (en) 2005-06-08 2005-06-08 Transfer method and transfer device
TW095113099A TWI307612B (en) 2005-04-27 2006-04-13 Transfer method and transfer apparatus
US11/380,280 US7648944B2 (en) 2005-04-27 2006-04-26 Transfer method and transfer apparatus
KR1020060037548A KR20060113456A (en) 2005-04-27 2006-04-26 Transfer method and transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168018A JP2006344459A (en) 2005-06-08 2005-06-08 Transfer method and transfer device

Publications (1)

Publication Number Publication Date
JP2006344459A true JP2006344459A (en) 2006-12-21

Family

ID=37641267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168018A Pending JP2006344459A (en) 2005-04-27 2005-06-08 Transfer method and transfer device

Country Status (1)

Country Link
JP (1) JP2006344459A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009935A (en) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd Manufacturing device and manufacturing method of light-emitting device
JP2009120946A (en) * 2007-10-23 2009-06-04 Semiconductor Energy Lab Co Ltd Deposition method and method for manufacturing light emitting device
JP2009277649A (en) * 2008-04-15 2009-11-26 Semiconductor Energy Lab Co Ltd Film deposition method, and manufacturing method for light-emitting element
WO2011001599A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Organic el element, process for production of organic el element, and organic el lighting device
WO2011001598A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Organic el element, process for production of organic el element, and organic el display device
US7932112B2 (en) 2008-04-14 2011-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US7993945B2 (en) 2008-04-11 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
JP2012028316A (en) * 2010-07-19 2012-02-09 Samsung Mobile Display Co Ltd Organic light-emitting display device and method of manufacturing the same
US8153201B2 (en) 2007-10-23 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8241700B2 (en) 2008-12-15 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8277871B2 (en) 2007-10-23 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US8293319B2 (en) 2008-04-25 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
US8703530B2 (en) 2010-06-24 2014-04-22 Panasonic Corporation Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8852977B2 (en) 2010-08-06 2014-10-07 Panasonic Corporation Method for producing light-emitting elements
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167684A (en) * 1995-11-13 1997-06-24 Eastman Kodak Co Preparation of organic electroluminescence display panel
JP2003229258A (en) * 2002-01-30 2003-08-15 Eastman Kodak Co Manufacturing method of organic electroluminescent display device
JP2003257650A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electro-luminescence panel, organic electro-luminescence element, and mask
JP2004087143A (en) * 2002-08-22 2004-03-18 Sony Corp Transfer base, transferring apparatus, and transferring method
JP2004134404A (en) * 2002-10-08 2004-04-30 Eastman Kodak Co Method of manufacturing organic light emitting diode device
JP2004192813A (en) * 2002-12-06 2004-07-08 Toshiba Matsushita Display Technology Co Ltd Organic electroluminescent display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167684A (en) * 1995-11-13 1997-06-24 Eastman Kodak Co Preparation of organic electroluminescence display panel
JP2003229258A (en) * 2002-01-30 2003-08-15 Eastman Kodak Co Manufacturing method of organic electroluminescent display device
JP2003257650A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electro-luminescence panel, organic electro-luminescence element, and mask
JP2004087143A (en) * 2002-08-22 2004-03-18 Sony Corp Transfer base, transferring apparatus, and transferring method
JP2004134404A (en) * 2002-10-08 2004-04-30 Eastman Kodak Co Method of manufacturing organic light emitting diode device
JP2004192813A (en) * 2002-12-06 2004-07-08 Toshiba Matsushita Display Technology Co Ltd Organic electroluminescent display device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009935A (en) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd Manufacturing device and manufacturing method of light-emitting device
JP2009120946A (en) * 2007-10-23 2009-06-04 Semiconductor Energy Lab Co Ltd Deposition method and method for manufacturing light emitting device
US9444051B2 (en) 2007-10-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8153201B2 (en) 2007-10-23 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light-emitting device, and evaporation donor substrate
US8277871B2 (en) 2007-10-23 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate and method for manufacturing light-emitting device
US7993945B2 (en) 2008-04-11 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US7932112B2 (en) 2008-04-14 2011-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8653543B2 (en) 2008-04-14 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Deposition substrate and method for manufacturing light-emitting device
JP2009277649A (en) * 2008-04-15 2009-11-26 Semiconductor Energy Lab Co Ltd Film deposition method, and manufacturing method for light-emitting element
US8293319B2 (en) 2008-04-25 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8241700B2 (en) 2008-12-15 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8890174B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer that includes a dissolvable metal compound, and display device and method for manufacturing thereof
US8651912B2 (en) 2009-07-02 2014-02-18 Sharp Kabushiki Kaisha Organic EL element, method for manufacturing the same, and organic EL lighting apparatus
WO2011001599A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Organic el element, process for production of organic el element, and organic el lighting device
WO2011001598A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Organic el element, process for production of organic el element, and organic el display device
US9093648B2 (en) 2009-07-02 2015-07-28 Sharp Kabushiki Kaisha Organic EL element, method for manufacturing the same, and organic EL display device
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
US8703530B2 (en) 2010-06-24 2014-04-22 Panasonic Corporation Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
JP2012028316A (en) * 2010-07-19 2012-02-09 Samsung Mobile Display Co Ltd Organic light-emitting display device and method of manufacturing the same
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US8852977B2 (en) 2010-08-06 2014-10-07 Panasonic Corporation Method for producing light-emitting elements
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus

Similar Documents

Publication Publication Date Title
JP2006344459A (en) Transfer method and transfer device
US7648944B2 (en) Transfer method and transfer apparatus
JP4340982B2 (en) Manufacturing method of display device
CN100466333C (en) Transfer method and transfer apparatus
KR100932940B1 (en) Organic light emitting display device
US9735393B2 (en) Organic electroluminescent display device
US20070123135A1 (en) Method of fabricating Organic Light Emitting Diode (OLED)
US20120025182A1 (en) Donor substrate, process for production of transfer film, and process for production of organic electroluminescent element
WO2011001596A1 (en) Method for forming organic layer, method for producing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence display device
JP2007281159A (en) Red organic electroluminescent element, display having same element, donor substrate, transcriptional method using same substrate, manufacturing method of same display, and manufacturing system of same display
US20080233827A1 (en) Method for manufacturing display device
JP2007173145A (en) Substrate for transfer, transfer method and manufacturing method for organic electroluminescent element
JP2008287949A (en) Organic electroluminescent display manufacturing device and method
US20150001495A1 (en) Donor substrate for transfer and manufacturing method of organic light emitting diode display
US9118014B2 (en) Donor substrate for organic light emitting diode display and organic light emitting diode display
US7317469B2 (en) Laser induced thermal imaging apparatus
JP2010123474A (en) Method of manufacturing organic el element, and transcription device of organic el layer
JP2009266451A (en) Method for manufacturing display, and transfer substrate
JP2008311103A (en) Manufacturing method of display device, and the display device
JP2009170282A (en) Manufacturing method of substrate processing apparatus, and organic electroluminescent device
JP2010020973A (en) Manufacturing method of organic el display device
US9692019B2 (en) Element manufacturing method and element manufacturing apparatus utilizing differential pressure for covering a substrate
JP2011023119A (en) Method of manufacturing display device, method of manufacturing organic light-emitting element and transfer method
KR20080102982A (en) Transfer method, transfer apparatus, and method of manufacturing organic light emitting element
JP4797889B2 (en) Transfer method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329