JP2006343230A - Detector for residual capacity of storage battery - Google Patents

Detector for residual capacity of storage battery Download PDF

Info

Publication number
JP2006343230A
JP2006343230A JP2005169647A JP2005169647A JP2006343230A JP 2006343230 A JP2006343230 A JP 2006343230A JP 2005169647 A JP2005169647 A JP 2005169647A JP 2005169647 A JP2005169647 A JP 2005169647A JP 2006343230 A JP2006343230 A JP 2006343230A
Authority
JP
Japan
Prior art keywords
storage battery
remaining capacity
current
voltage
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005169647A
Other languages
Japanese (ja)
Other versions
JP4797454B2 (en
Inventor
Taichiro Tamida
太一郎 民田
Tomoyuki Kawakami
知之 川上
Ikuro Suga
郁朗 菅
Tomohiro Kobayashi
知宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005169647A priority Critical patent/JP4797454B2/en
Publication of JP2006343230A publication Critical patent/JP2006343230A/en
Application granted granted Critical
Publication of JP4797454B2 publication Critical patent/JP4797454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a detector for the residual capacity of a storage battery, capable of stably and precisely detecting the residual capacity of a storage battery. <P>SOLUTION: The detector includes a voltage detecting section 3 for measuring the voltage of the storage battery, a current detector 4 for measuring the current flowing in the storage battery, a mean value calculating section 5 for calculating the mean value of voltages and a mean value of currents during a predetermined time, a characteristic data storing section 6 for storing the relation between voltages and currents preacquired, and an average residual capacity estimating section 7 for estimating the residual capacity of the storage battery from the relation between the mean value of the voltages and the mean value of the current and the relation between the voltages and the currents that are acquired in advance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、蓄電池の残存容量を安定して正確に検出する蓄電池残存容量検出装置に関する。   The present invention relates to a storage battery remaining capacity detection device that stably and accurately detects a remaining capacity of a storage battery.

従来の蓄電池残存容量検出装置では、スタータ電流と蓄電池の端子電圧との関係から蓄電池の内部抵抗を求めて走行直前の蓄電池の残存容量であるSOC(State of Charge)を検出し、走行中の収支電流を積算することで充電量または放電量を検出し、初期容量と充放電量とを比較することで蓄電池の残存容量を検出する電流積算による残存容量推定法がある(例えば、特許文献1参照)。
また、蓄電池に流れた電流の大きさと蓄電池の端子間電圧とを検出し、これらの検出値から蓄電池の内部抵抗を求め、蓄電池の内部抵抗と蓄電池の残存容量との相関関係から、蓄電池の残存容量を検出する開放端子電圧であるOCV(Open Circuit Voltage)による残存容量推定法もある(例えば、特許文献2参照)。
In the conventional storage battery remaining capacity detection device, the internal resistance of the storage battery is obtained from the relationship between the starter current and the terminal voltage of the storage battery, and the SOC (State of Charge) that is the remaining capacity of the storage battery immediately before traveling is detected. There is a remaining capacity estimation method based on current integration in which a charge amount or a discharge amount is detected by integrating a current, and a remaining capacity of a storage battery is detected by comparing an initial capacity and a charge / discharge amount (see, for example, Patent Document 1). ).
In addition, the magnitude of the current flowing through the storage battery and the voltage between the terminals of the storage battery are detected, the internal resistance of the storage battery is obtained from these detected values, and the remaining capacity of the storage battery is determined from the correlation between the internal resistance of the storage battery and the remaining capacity of the storage battery. There is also a remaining capacity estimation method using OCV (Open Circuit Voltage) which is an open terminal voltage for detecting capacity (for example, see Patent Document 2).

特開昭53−127646号公報(第2頁、第1図)JP-A-53-127646 (2nd page, Fig. 1) 特開平5−172913号公報(第3−4頁、第1図)JP-A-5-172913 (page 3-4, FIG. 1)

蓄電池の充放電は非常に長い時定数を持っており、充電または放電が終了しても、蓄電池の端子電圧は非常に緩やかに定常値に近づいていくので、充電または放電の終了から非常に長い時間経過しないと、蓄電池の開放端子電圧から蓄電池の残存容量を正確に検出することができない。特に、ハイブリッド車輌のように、非常に大きな電流で放電および充電が繰返される場合には、充放電における電流の履歴が開放端子電圧に与える影響が非常に大きいので、開放端子電圧による残存容量推定法によって正確な蓄電池の残存容量を測定することはできないという問題があった。
一方、電流積算による残存容量推定法は、比較的検出の精度は高い。しかし、蓄電池の残存容量を推定するために、事前の運転期間における蓄電池の残存容量値が必要となる。このため、事前の運転時に生じた誤差がその後の推定に影響を与え、時間の経過と共に誤差がさらに大きく蓄積する可能性があり、頻繁に充放電が繰返される走行に用いることができず、特に残存容量の初期値設定時から長時間経過した場合、信頼性が低くなる。
The charging / discharging of the storage battery has a very long time constant, and even after charging or discharging, the terminal voltage of the storage battery approaches the steady value very slowly, so it is very long from the end of charging or discharging. If the time does not elapse, the remaining capacity of the storage battery cannot be accurately detected from the open terminal voltage of the storage battery. In particular, when discharging and charging are repeated with a very large current as in a hybrid vehicle, the influence of the current history of charging and discharging on the open terminal voltage is very large. Therefore, there is a problem that it is impossible to accurately measure the remaining capacity of the storage battery.
On the other hand, the remaining capacity estimation method using current integration has relatively high detection accuracy. However, in order to estimate the remaining capacity of the storage battery, the remaining capacity value of the storage battery in the prior operation period is required. For this reason, errors that occur during prior driving affect subsequent estimations, and errors may accumulate over time, and cannot be used for traveling where charging and discharging are repeated frequently. When a long time elapses from the initial setting of the remaining capacity, the reliability is lowered.

この発明は、上述のような課題を解決するためになされたものであり、安定で正確な蓄電池の残存容量の検出が可能な蓄電池残存容量検出装置を得るものである。   The present invention has been made to solve the above-described problems, and provides a storage battery remaining capacity detection device capable of detecting the remaining capacity of a storage battery stably and accurately.

この発明に係る蓄電池残存容量検出装置は、蓄電池の電圧を測定する電圧検出手段と、蓄電池に流れる電流を測定する電流検出手段と、所定時間の電圧の平均値および電流の平均値を算出する平均値算出手段と、予め取得した電圧と電流との関係を記憶した特性データ記憶手段と、電圧の平均値と電流の平均値との関係および予め取得した電圧と電流との関係から蓄電池残存容量を推定する平均残存容量推定手段とを備えたものである。   The storage battery remaining capacity detection device according to the present invention includes a voltage detection means for measuring the voltage of the storage battery, a current detection means for measuring a current flowing through the storage battery, an average value for calculating a voltage average value and a current average value for a predetermined time. The storage battery remaining capacity is calculated from the value calculation means, the characteristic data storage means storing the relationship between the voltage and current acquired in advance, the relationship between the average value of voltage and the average value of current, and the relationship between voltage and current acquired in advance. And an average remaining capacity estimating means for estimating.

この発明に係る蓄電池残存容量検出装置は、蓄電池の電圧を測定する電圧検出手段と、蓄電池に流れる電流を測定する電流検出手段と、所定時間の電圧の平均値および電流の平均値を算出する平均値算出手段と、予め取得した電圧と電流との関係を記憶した特性データ記憶手段と、電圧の平均値と電流の平均値との関係および予め取得した電圧と電流との関係から蓄電池残存容量を推定する平均残存容量推定手段とを備えたので、安定で正確な蓄電池の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   The storage battery remaining capacity detection device according to the present invention includes a voltage detection means for measuring the voltage of the storage battery, a current detection means for measuring a current flowing through the storage battery, an average value for calculating a voltage average value and a current average value for a predetermined time. The storage battery remaining capacity is calculated from the value calculation means, the characteristic data storage means storing the relationship between the voltage and current acquired in advance, the relationship between the average value of voltage and the average value of current, and the relationship between voltage and current acquired in advance. Since the estimated average remaining capacity estimating means is provided, a storage battery remaining capacity detecting device capable of detecting the remaining capacity of the storage battery stably and accurately can be obtained.

実施の形態1.
図1は、この発明を実施するための実施の形態1を示す蓄電池残存容量検出装置のブロック図である。蓄電池1は、負荷2に電力を供給する。電圧検出部3は、蓄電池1の電圧を測定する電圧検出手段である。電流検出部4は、蓄電池1に流れる電流を測定する電流検出手段である。平均値算出部5は、電圧検出部3で所定時間の間に測定した電圧の平均値および電流検出部4で所定時間の間に測定した電流の平均値を算出する平均値算出手段である。特性データ記憶部6は、予め取得した電圧と電流との関係を記憶する特性データ記憶手段である。平均残存容量推定部7は、所定時間の間に測定した電圧の平均値と電流の平均値との関係および予め取得した電圧と電流との関係から、サイクル平均による蓄電池残存容量を推定する平均残存容量推定手段である。蓄電池残存容量検出装置11は、電圧検出部3、電流検出部4、平均値算出部5、特性データ記憶部6、平均残存容量推定部7から構成される。
Embodiment 1 FIG.
FIG. 1 is a block diagram of a storage battery remaining capacity detection device showing Embodiment 1 for carrying out the present invention. The storage battery 1 supplies power to the load 2. The voltage detection unit 3 is a voltage detection unit that measures the voltage of the storage battery 1. The current detection unit 4 is a current detection unit that measures the current flowing through the storage battery 1. The average value calculation unit 5 is an average value calculation unit that calculates the average value of the voltage measured by the voltage detection unit 3 during a predetermined time and the average value of the current measured by the current detection unit 4 during the predetermined time. The characteristic data storage unit 6 is characteristic data storage means for storing the relationship between the voltage and current acquired in advance. The average remaining capacity estimator 7 estimates the remaining battery capacity based on the cycle average from the relationship between the average value of the voltage and the average value of the current measured during a predetermined time and the relationship between the voltage and the current acquired in advance. Capacity estimation means. The storage battery remaining capacity detection device 11 includes a voltage detection unit 3, a current detection unit 4, an average value calculation unit 5, a characteristic data storage unit 6, and an average remaining capacity estimation unit 7.

蓄電池残存容量検出装置を搭載する機器または装置としては、蓄電池1の電力を動力に変換し、制動力で発電して蓄電する電動機を備えた車輌がある。また、この車輌に内燃機関を備えたハイブリッド車輌もある。図2にハイブリッド車輌の走行に関連する速度と蓄電池1に流れるDC電流との関係を示す。図2において、横軸は経過時間である。まず、発進・加速を行う際には非常に大きな放電電流が流れる。次に、定速運転を行う際には電流値はそれほど大きくない。その後、減速・停止する際には回生電流による充電が行われ、蓄電池1には非常に大きな電流が逆方向に流れ込んでいる。蓄電池1では、車輌の発進から停止までの間で充電と放電とを含む充放電パターンが繰返し行われている。   As a device or apparatus equipped with the storage battery remaining capacity detection device, there is a vehicle including an electric motor that converts electric power of the storage battery 1 into motive power, generates electric power with braking force, and stores the electric power. There is also a hybrid vehicle equipped with an internal combustion engine in this vehicle. FIG. 2 shows the relationship between the speed related to the traveling of the hybrid vehicle and the DC current flowing through the storage battery 1. In FIG. 2, the horizontal axis represents elapsed time. First, when starting and accelerating, a very large discharge current flows. Next, the current value is not so large when performing constant speed operation. After that, when decelerating and stopping, charging is performed with a regenerative current, and a very large current flows into the storage battery 1 in the reverse direction. In the storage battery 1, a charging / discharging pattern including charging and discharging is repeatedly performed from the start to the stop of the vehicle.

図3に、図2で示したハイブリッド車輌の蓄電池1に流れるDC電流と蓄電池1の端子電圧との関係を示す。蓄電池1から電流が流れ出す放電電流の場合には、蓄電池1の内部抵抗の分だけ端子電圧が低くなる。逆に、蓄電池1に電流が流れ込む充電電流の場合には、端子電圧が高くなる。図3からは、電流の変化に対して、電圧はかなり遅れて変化していることがわかる。つまり、端子電圧の変化と蓄電池1の内部抵抗とは相関関係があるものの、蓄電池1の電圧値を内部抵抗と電流値とだけから決定することはできない。更に、蓄電池1の電圧および電流の時定数は例えば1時間など非常に長いものであり、ハイブリッド車輌の走行中に電圧は定常値に達しないので、ハイブリッド車輌の走行中は開放端子電圧による残存容量の推定を行うことができない。   FIG. 3 shows the relationship between the DC current flowing through the storage battery 1 of the hybrid vehicle shown in FIG. 2 and the terminal voltage of the storage battery 1. In the case of a discharge current in which a current flows from the storage battery 1, the terminal voltage is lowered by the amount corresponding to the internal resistance of the storage battery 1. On the other hand, in the case of a charging current in which a current flows into the storage battery 1, the terminal voltage becomes high. From FIG. 3, it can be seen that the voltage changes considerably delayed with respect to the change in current. That is, although the change in the terminal voltage and the internal resistance of the storage battery 1 are correlated, the voltage value of the storage battery 1 cannot be determined only from the internal resistance and the current value. Further, the time constant of the voltage and current of the storage battery 1 is very long, for example, 1 hour, and the voltage does not reach a steady value while the hybrid vehicle is running. Cannot make an estimate.

そこで、図2に示した車輌の発進(図2のグラフの左端)から停止(図2のグラフの右端)までの1運転サイクルの期間における、電圧検出部3で測定した蓄電池1の電圧の平均値を平均値算出部5にて算出する。同様に、車輌の発進から停止までの1運転サイクルの期間における、電流検出部4で測定した蓄電池1に流れる電流の平均値を平均値算出部5にて算出する。平均値算出のための時間は少なくとも1運転サイクル以上の時間が必要である。つまり、蓄電池1が充電と放電とを含む充放電パターンを繰返し行い、平均値算出のための所定時間内に充放電パターンを少なくとも1回以上行うことになる。   Therefore, the average of the voltage of the storage battery 1 measured by the voltage detector 3 during the period of one driving cycle from the start of the vehicle shown in FIG. 2 (left end of the graph of FIG. 2) to stop (right end of the graph of FIG. 2). The value is calculated by the average value calculation unit 5. Similarly, the average value calculation unit 5 calculates the average value of the current flowing through the storage battery 1 measured by the current detection unit 4 during the period of one driving cycle from the start to the stop of the vehicle. The time for calculating the average value needs at least one operation cycle. That is, the storage battery 1 repeatedly performs a charge / discharge pattern including charging and discharging, and the charge / discharge pattern is performed at least once within a predetermined time for calculating the average value.

図4に蓄電池1が平均的には放電状態にある場合の蓄電池1の残存容量に対する端子電圧の時間変化を示す。図4において、破線は電流の平均値を18Aとして図2に示したような1運転サイクルの電流パターンを伴う充放電を繰返した場合の端子電圧の時間変化である。また、実線は電流を18A一定として満充電状態から蓄電池1を放電させた場合の端子電圧の時間変化である。図4から1運転サイクルにおける端子電圧の平均値の変化の様子がわかる。一定電流で放電した場合の端子電圧の変化と、充放電を繰返した場合の1運転サイクルにおける端子電圧の平均値の変化とがほぼ等しくなっている。   FIG. 4 shows the time variation of the terminal voltage with respect to the remaining capacity of the storage battery 1 when the storage battery 1 is in a discharged state on average. In FIG. 4, the broken line is the time change of the terminal voltage when charging / discharging with the current pattern of one operation cycle as shown in FIG. The solid line represents the time variation of the terminal voltage when the storage battery 1 is discharged from the fully charged state with a constant current of 18A. FIG. 4 shows how the average value of the terminal voltage changes in one operation cycle. The change in the terminal voltage when discharged at a constant current is almost equal to the change in the average value of the terminal voltage in one operation cycle when charging and discharging are repeated.

一定電流で放電したときの端子電圧の変化と、充放電を繰返す1運転サイクルにおける端子電圧の平均値の変化とが、ほぼ等しくなる理由は次のとおりである。1運転サイクルにはハイレートの充電とハイレートの放電とが同時に含まれており、1運転サイクルの最初および最後には車輌は停止し、原則として停止時に電流値はゼロになっている。このため、充電電流による電圧の上昇と放電電流による電圧の低下とが1運転サイクルの間でキャンセルされる。また、時定数による電圧の変化の応答の遅れ分は、連続する運転サイクルの間でキャンセルされる。   The reason why the change in the terminal voltage when discharged at a constant current and the change in the average value of the terminal voltage in one operation cycle in which charging and discharging are repeated are substantially the same as follows. One driving cycle includes high-rate charging and high-rate discharging at the same time. The vehicle stops at the beginning and end of one driving cycle, and the current value is zero when the vehicle is stopped. For this reason, the voltage increase due to the charging current and the voltage decrease due to the discharging current are canceled during one operation cycle. In addition, the delay in the response to the voltage change due to the time constant is canceled between successive operation cycles.

図5に蓄電池1が平均的には充電状態にある場合の蓄電池1の残存容量に対する端子電圧の時間変化を示す。図5において、破線は電流の平均値を16Aとして図2に示したような1運転サイクルの電流パターンを伴う充放電を繰返した場合の端子電圧の時間変化である。蓄電池1の残存容量がほぼゼロの状態からスタートしている。また、実線は電流を16A一定として蓄電池1の残存容量がゼロの状態から蓄電池1を充電させた場合の端子電圧の時間変化である。図5から1運転サイクルにおける端子電圧の平均値の変化の様子がわかる。一定電流で充電した場合の端子電圧の変化と、充放電を繰返した場合の1運転サイクルにおける端子電圧の平均値の変化とがほぼ等しくなっている。   FIG. 5 shows the time variation of the terminal voltage with respect to the remaining capacity of the storage battery 1 when the storage battery 1 is in an average charged state. In FIG. 5, the broken line is the time variation of the terminal voltage when charging / discharging with a current pattern of one operation cycle as shown in FIG. The storage battery 1 starts from a state where the remaining capacity is almost zero. The solid line represents the change over time of the terminal voltage when the battery 1 is charged from a state where the current is constant at 16 A and the remaining capacity of the battery 1 is zero. FIG. 5 shows how the average value of the terminal voltage changes in one operation cycle. The change in the terminal voltage when charged with a constant current is substantially equal to the change in the average value of the terminal voltage in one operation cycle when charging and discharging are repeated.

図4および図5に示した、一定電流で放電または充電した場合の端子電圧の変化は、電圧変化が十分に定常値に達した時の電圧、つまり、その時の蓄電池1の残存容量に対応した開放端子電圧、電流値、および内部抵抗で決まる値である。このため、一定電流での放電または充電の電圧特性を、いくつかの電流値に対して取得して、予め取得した電圧と電流との関係として特性データ記憶部6に記憶しておけば、平均残存容量推定部7において1運転サイクルの間に測定した電圧の平均値と電流の平均値との関係および予め取得した電圧と電流との関係から蓄電池1の残存容量を推定することができる。   The change in the terminal voltage when discharging or charging with a constant current shown in FIGS. 4 and 5 corresponds to the voltage when the voltage change sufficiently reaches a steady value, that is, the remaining capacity of the storage battery 1 at that time. The value is determined by the open terminal voltage, current value, and internal resistance. For this reason, if the voltage characteristics of discharging or charging at a constant current are acquired for several current values and stored in the characteristic data storage unit 6 as the relationship between the voltage and current acquired in advance, the average The remaining capacity of the storage battery 1 can be estimated from the relationship between the average value of the voltage and the average value of the current measured during one operation cycle in the remaining capacity estimation unit 7 and the relationship between the voltage and the current acquired in advance.

図6に予め取得した電圧と電流との関係の一例を示す。この電圧と電流との関係の取得の方法は次のとおりである。まず、一定電流で充放電を行った場合の電圧の変化を測定する。一定電流で充放電を行うので、蓄電池1の残存容量は正確に推定でき、この測定データは電流値、電圧値、および蓄電池1の残存容量値を関連づけるものとなる。次に、電流値をいくつか変えて同様のデータを測定する。その結果、電流値および電圧値から蓄電池1の残存容量を推定するためのマトリックスを構成することができる。図6は、横軸を電流値、縦軸を電圧値とし、各残存容量値を等高線グラフとして示したものである。なお、図6は蓄電池1の電流電圧特性を示しているので、この特性の傾きが蓄電池1の内部抵抗を表すことになる。   FIG. 6 shows an example of the relationship between the voltage and current acquired in advance. The method for obtaining the relationship between the voltage and current is as follows. First, a change in voltage when charging / discharging at a constant current is measured. Since charging / discharging is performed at a constant current, the remaining capacity of the storage battery 1 can be accurately estimated, and this measurement data relates the current value, the voltage value, and the remaining capacity value of the storage battery 1. Next, similar data is measured by changing several current values. As a result, a matrix for estimating the remaining capacity of the storage battery 1 from the current value and the voltage value can be configured. In FIG. 6, the horizontal axis represents the current value, the vertical axis represents the voltage value, and each remaining capacity value is represented as a contour graph. 6 shows the current-voltage characteristic of the storage battery 1, and the slope of this characteristic represents the internal resistance of the storage battery 1.

図6から、電流値と電圧値とがわかれば、蓄電池1の残存容量を推定できる。走行中の蓄電池1の端子電圧および電流の時間変化を測定し、ハイブリッド車輌が停止してから、次に停止するまでの期間で、電圧および電流の時間変化の平均値を求める。電流電圧の1運転サイクルの平均値を図6のマトリックスに照らし合わせると、蓄電池1の残存容量値を求めることができる。このような蓄電池1の残存容量の推定法をサイクル平均による残存容量推定法とする。   If the current value and the voltage value are known from FIG. 6, the remaining capacity of the storage battery 1 can be estimated. The time change of the terminal voltage and current of the storage battery 1 during traveling is measured, and the average value of the time change of voltage and current is obtained during the period from when the hybrid vehicle stops until it stops next. The remaining capacity value of the storage battery 1 can be obtained by comparing the average value of the current voltage in one operation cycle with the matrix of FIG. Such a method for estimating the remaining capacity of the storage battery 1 is referred to as a remaining capacity estimating method based on cycle average.

なお、蓄電池1の内部抵抗には温度依存性があり、特に低温時には抵抗が高くなる。したがって、図6には温度依存性があり、温度に依存したデータ、または温度に依存させるための補正を行う必要がある。また、内部抵抗は電池の劣化状態にも依存するので、電池の劣化状態による補正を行う必要がある。   In addition, the internal resistance of the storage battery 1 has temperature dependence, and the resistance becomes high particularly at low temperatures. Accordingly, FIG. 6 has temperature dependence, and it is necessary to perform temperature-dependent data or correction for temperature dependence. Further, since the internal resistance also depends on the deterioration state of the battery, it is necessary to perform correction based on the deterioration state of the battery.

ここで、ハイブリッド車輌の運転に関する運転サイクルについて補足説明する。運転サイクルとは、ハイブリッド車輌が停止してから、発進、加速、減速、停止するまでの一連の動作のことである。先の停止と次の停止との間には加速と減速とが含まれるので、この間に蓄電池1の充電および放電が行われる。つまり、車輌の発進、加速、減速、停止の一連の動作は、充放電パターンの中で少なくとも1回以上行うことになる。先の停止から次の停止までの期間を1運転サイクルと定義する。1運転サイクルの最初および最後は停止と定義する理由は、停止の際には蓄電池1へ流入または流出する電流はほぼゼロであるので、1運転サイクルの最初および最後は、ほぼ同様の状態であり、繰返しの区切りとして定義しやすく、システムとして検出もしやすい。サイクル平均による残存容量推定法は、このような運転サイクルに適用することができる。   Here, a supplementary explanation will be given of the driving cycle related to the driving of the hybrid vehicle. The driving cycle is a series of operations from the stop of the hybrid vehicle to the start, acceleration, deceleration and stop. Since acceleration and deceleration are included between the previous stop and the next stop, the storage battery 1 is charged and discharged during this time. That is, a series of operations of starting, accelerating, decelerating, and stopping the vehicle is performed at least once in the charge / discharge pattern. The period from the previous stop to the next stop is defined as one operation cycle. The reason for defining a stop at the beginning and end of one operation cycle is that the current flowing into or out of the storage battery 1 is almost zero at the time of stop, so that the first and the end of one operation cycle are substantially the same. It is easy to define as a break of repetition, and it is easy to detect as a system. The remaining capacity estimation method based on cycle averaging can be applied to such an operation cycle.

サイクル平均による残存容量推定法においては、電流の平均値および電圧の平均値を測定することで、ハイレートの充電およびハイレートの放電の影響をキャンセルし、平均的な電流が流れている状況に近づけることが必要である。このため、電流および電圧の平均値算出のための所定時間としては、できるだけ瞬時瞬時のばらつきが平均化される程度に長い時間が望ましい。また、平均値算出中に蓄電池1の残存容量が大きく変化すると、蓄電池1の残存容量の推定できなくなるので、蓄電池1の残存容量の変化が十分小さい期間を選ぶ必要がある。このため、1運転サイクルを複数回繰返した場合を、所定時間である1運転サイクルとしてもよい。また、電流および電圧の平均値算出のための所定時間の設定については、予め決めておいた時間を経過した時点としてもよいし、電流の平均値の時間積分値が所定値に達した時点としてもよい。   In the remaining capacity estimation method based on cycle average, the average value of current and the average value of voltage are measured to cancel the effects of high-rate charging and high-rate discharge, and to approximate the situation where average current flows. is required. For this reason, the predetermined time for calculating the average values of the current and voltage is preferably as long as possible so that the instantaneous instantaneous variation is averaged. Further, if the remaining capacity of the storage battery 1 changes greatly during the average value calculation, the remaining capacity of the storage battery 1 cannot be estimated. Therefore, it is necessary to select a period in which the change in the remaining capacity of the storage battery 1 is sufficiently small. For this reason, a case where one operation cycle is repeated a plurality of times may be one operation cycle which is a predetermined time. In addition, the setting of the predetermined time for calculating the average value of the current and voltage may be a time when a predetermined time has elapsed, or a time when the time integral value of the average value of the current reaches a predetermined value. Also good.

1運転サイクルの時間の長さとしては、次のように定義してもよい。例えば、容量50Ahの蓄電池1において平均電流18Aの電流を流した場合には、蓄電池1の残存容量が2%変化する時間は200秒、蓄電池1の残存容量が10%変化する時間は1000秒である。このため、走行の条件にも依存するものの、蓄電池1の残存容量が10%程度変化する時間である1000秒を上限とし、例えば市街地で信号による停車などで頻繁に発進および停止を繰返す場合を想定して30秒を下限とすることができる。   The time length of one operation cycle may be defined as follows. For example, when an average current of 18 A is passed through the storage battery 1 having a capacity of 50 Ah, the time for the remaining capacity of the storage battery 1 to change by 2% is 200 seconds, and the time for the remaining capacity of the storage battery 1 to change by 10% is 1000 seconds. is there. For this reason, although depending on the driving conditions, it is assumed that the upper limit is 1000 seconds, which is the time for the remaining capacity of the storage battery 1 to change by about 10%, and the vehicle is frequently started and stopped repeatedly, for example, by stopping at a signal in an urban area. Thus, 30 seconds can be set as the lower limit.

一方、必ずしも発進または停止を繰返さなくとも、本発明によるサイクル平均による残存容量推定法を適用することが可能である。例えば、長時間停止している場合に、電流の平均値と電圧の平均値とを求めることは、原理的に長時間経過した後の開放端子電圧による残存容量推定と同様になる。したがって、停止時間が十分に長ければ、それぞれの平均値から十分に正確な蓄電池1の残存容量を推定することができる。また、高速道路における走行など、ほぼ一定の速度で長時間の走行する場合には、ほぼ一定の電流の平均値と電圧の平均値とを求めることは、一定電流での放電時の電圧変化または充電時の電圧変化を測定することと同様であり、原理的に蓄電池1の残存容量の推定を行うことが可能である。   On the other hand, it is possible to apply the remaining capacity estimation method based on the cycle average according to the present invention without necessarily repeating the start or stop. For example, when the operation is stopped for a long time, obtaining the average value of the current and the average value of the voltage is similar to the estimation of the remaining capacity by the open terminal voltage after a long time in principle. Therefore, if the stop time is sufficiently long, the remaining capacity of the storage battery 1 can be estimated with sufficient accuracy from the respective average values. In addition, when traveling for a long time at a substantially constant speed, such as traveling on a highway, obtaining the average value of the substantially constant current and the average value of the voltage is the change in voltage during discharge at a constant current or It is the same as measuring the voltage change at the time of charge, and the remaining capacity of the storage battery 1 can be estimated in principle.

ところで、1運転サイクルの電流の平均値が高い場合には、正確な蓄電池1の残存容量を推定することが困難となる。図7に蓄電池1が平均的には放電状態にある場合の蓄電池1の残存容量に対する端子電圧の時間変化を示す。図7において、破線は電流の平均値を36Aとして図2に示したような1運転サイクルの電流パターンを伴う充放電を繰返した場合の端子電圧の時間変化である。また、実線は電流を36A一定として満充電状態から蓄電池1を充電させた場合の端子電圧の時間変化である。図7から1運転サイクルにおける端子電圧の平均値の変化と、一定電流で放電した場合の端子電圧の変化とが異なっていることがわかる。この原因としては、蓄電池1の残存容量が大きい場合には、ハイレートの充電を行うので、その充電電流が蓄電池1の充電に寄与せず、充電効率が低くなり、一定電流で放電した場合とは、かなり違った充放電の状態になっていると考えられる。   By the way, when the average value of the current in one operation cycle is high, it is difficult to estimate the remaining capacity of the storage battery 1 accurately. FIG. 7 shows the time change of the terminal voltage with respect to the remaining capacity of the storage battery 1 when the storage battery 1 is in a discharged state on average. In FIG. 7, the broken line is the time change of the terminal voltage when charging / discharging with a current pattern of one operation cycle as shown in FIG. The solid line represents the change over time of the terminal voltage when the storage battery 1 is charged from the fully charged state with the current kept constant at 36A. It can be seen from FIG. 7 that the change in the average value of the terminal voltage in one operation cycle is different from the change in the terminal voltage when discharged at a constant current. This is because, when the remaining capacity of the storage battery 1 is large, charging is performed at a high rate, so that the charging current does not contribute to the charging of the storage battery 1, the charging efficiency is low, and the discharge is performed at a constant current. It seems that the state of charge and discharge is quite different.

図8に1運転サイクルにおける電流の平均値を変えて取得した場合の1運転サイクルの端子電圧の平均値の変化と一定電流で放電した場合の端子電圧の変化との差から得られる標準偏差の測定結果を示す。図8において、横軸は1運転サイクルの電流の平均値で、縦軸は標準偏差である。1運転サイクルにおける電流の平均値が20A以上になると、1運転サイクルにおける端子電圧の平均値の変化と、一定電流で放電した場合の端子電圧の変化との差が大きくなる。なお、充電状態に場合でも、電流の平均値が20A以上になると、1運転サイクルにおける電圧の平均値の変化と一定電流で放電した場合の電圧の変化との差が大きい。   FIG. 8 shows the standard deviation obtained from the difference between the change in the average value of the terminal voltage in one operation cycle when the average value of the current in one operation cycle is changed and the change in the terminal voltage when discharged at a constant current. The measurement results are shown. In FIG. 8, the horizontal axis represents the average value of current in one operation cycle, and the vertical axis represents the standard deviation. When the average value of the current in one operation cycle is 20 A or more, the difference between the change in the average value of the terminal voltage in one operation cycle and the change in the terminal voltage when discharged at a constant current increases. Even in the charged state, when the average value of the current is 20 A or more, the difference between the change in the average value of the voltage in one operation cycle and the change in the voltage when discharged at a constant current is large.

このことから、電流の平均値が20A以下の場合には、サイクル平均による残存容量推定法によって比較的高い精度で蓄電池1の残存容量の推定を行うことができる。なお、1運転サイクルにおける電流の平均値が20A以上の場合には、予め電圧が高めに設定されることを見込んで、予め取得した電圧と電流との関係を補正すればよい。上記の説明では電流値20Aという値を示した。これは容量50Ahの蓄電池を用いて行ったので、蓄電池の容量によって規格化して0.4Cとすることもできる。ただし、この値は蓄電池の種類や使用環境によって変化する。   From this, when the average value of the current is 20 A or less, the remaining capacity of the storage battery 1 can be estimated with relatively high accuracy by the remaining capacity estimation method based on the cycle average. Note that when the average value of the current in one operation cycle is 20 A or more, the relationship between the voltage and current acquired in advance may be corrected in anticipation that the voltage is set higher in advance. In the above description, a current value of 20 A is shown. Since this was performed using a storage battery with a capacity of 50 Ah, it can be normalized to 0.4 C by the capacity of the storage battery. However, this value varies depending on the type of storage battery and the usage environment.

さて、蓄電池1に流れる電流の形状は車輌の走行パターンによって大きく変化し、特にハイブリッド車輌の場合には内燃機関による充電も別に行われる。また、電圧の変化に非常に長い時定数が存在するので、その前の走行による電圧の変化が必ず影響する。もし、毎回同様の充放電が行われるのであれば、この時定数の影響はかなりキャンセルされる。もっとも、実際の走行において全く同様な走行が繰返されることはありえないので、サイクル平均による残存容量推定法は完全な推定法ではない。   Now, the shape of the current flowing through the storage battery 1 varies greatly depending on the traveling pattern of the vehicle. In particular, in the case of a hybrid vehicle, charging by the internal combustion engine is also performed separately. In addition, since a very long time constant exists in the change in voltage, the change in voltage due to the previous travel always affects. If the same charging / discharging is performed every time, the influence of this time constant is considerably canceled. However, since the same traveling cannot be repeated in actual traveling, the remaining capacity estimation method based on the cycle average is not a complete estimation method.

しかしながら、特定の条件のもとでは、ほぼ正確に蓄電池1の残存容量の推定が行うことができる。サイクル平均による残存容量推定法は、開放端子電圧による残存容量推定法および電流積算による残存容量推定法と比較して決定的に有利な点がある。開放端子電圧による残存容量推定法では、電圧の変化の時定数相当の時間が経過しないと、走行中の正確な蓄電池1の残存容量の推定を行うことができない。これに対して、サイクル平均による残存容量推定法では時定数による電圧の変化の応答の遅れ分を含めて平均化するので、その影響がキャンセルされ、走行中でも比較的正確な蓄電池1の残存容量を推定することができる。   However, the remaining capacity of the storage battery 1 can be estimated almost accurately under specific conditions. The remaining capacity estimation method based on the cycle average has a decisive advantage compared with the remaining capacity estimation method based on the open terminal voltage and the remaining capacity estimation method based on current integration. In the remaining capacity estimation method based on the open terminal voltage, it is impossible to accurately estimate the remaining capacity of the storage battery 1 while traveling unless a time corresponding to the time constant of the voltage change has elapsed. On the other hand, in the remaining capacity estimation method based on cycle averaging, the delay including the response delay of the voltage change due to the time constant is averaged, so that the influence is canceled and the remaining capacity of the storage battery 1 is relatively accurate even during traveling. Can be estimated.

一方、電流積算による残存容量推定法は、蓄電池1の残存容量を推定するために、その前の運転期間の蓄電池1の残存容量値が必要となるので、前回の運転時に生じた誤差がその後の蓄電池1の残存容量の推定に影響を与え、時間の経過と共に誤差が大きく蓄積する可能性がある。また、蓄電池1の残存容量の初期値を必要とするので、別の蓄電池1の残存容量推定法が必ず必要になる。これに対して、サイクル平均による残存容量推定法では、その時点での電流値および電圧値に基づき推定を行うので、誤差の蓄積が少なく、初期値の設定も不要である。   On the other hand, the remaining capacity estimation method based on current integration requires the remaining capacity value of the storage battery 1 in the previous operation period in order to estimate the remaining capacity of the storage battery 1, so that an error generated during the previous operation may be This may affect the estimation of the remaining capacity of the storage battery 1, and errors may accumulate with time. Moreover, since the initial value of the remaining capacity of the storage battery 1 is required, another method for estimating the remaining capacity of the storage battery 1 is necessarily required. On the other hand, in the remaining capacity estimation method based on the cycle average, the estimation is performed based on the current value and the voltage value at that time.

サイクル平均による残存容量推定法は、特に鉄道、路線バス、路面電車などのハイブリッド車輌への適用に有効である。鉄道、路線バス、路面電車などのハイブリッド車輌では、燃費向上という目的以外に、環境保護のために市街地を走行している場合には排出ガスを抑えるために電池のみで走行し、郊外を走行する場合には内燃機関を動かして充電するという運用方法も考えられる。また、低床電車およびニュートラムなどの新交通システムにも、サイクル平均による残存容量推定法が適用できる。   The remaining capacity estimation method based on cycle averaging is particularly effective for application to hybrid vehicles such as railways, route buses, and trams. In hybrid vehicles such as railroads, route buses, and trams, in addition to the purpose of improving fuel efficiency, when driving in urban areas to protect the environment, the vehicle only runs on batteries and runs in the suburbs to suppress exhaust emissions. In such a case, an operation method of charging by moving the internal combustion engine is also conceivable. The remaining capacity estimation method based on cycle average can also be applied to new transportation systems such as low-floor trains and new trams.

鉄道、路線バス、路面電車などの交通機関には極端に高速で走り、ハイレートの充放電を伴う急加速および急減速が少なく、決まった経路を走行することが多い。また、運行の時間帯が決められており、夜間を中心に一定時間以上車庫に停車し、所定の間隔にある停留所に停止するなどの特徴がある。このような運行形態はサイクル平均による残存容量推定法に適している。   Railways, route buses, trams, and other transportation systems run at extremely high speeds, and often travel on a fixed route with few rapid accelerations and decelerations with high-rate charging and discharging. In addition, there is a feature such that the operating time zone is determined, and the vehicle stops at a garage for a certain period of time, mainly at night, and stops at a stop at a predetermined interval. This type of operation is suitable for the remaining capacity estimation method based on cycle averaging.

ハイレートの充放電が少なければ、電圧の変化も少ないので、サイクル平均による残存容量推定法の精度が高くなる。鉄道、路線バス、路面電車などの場合には、ハイレートの走行が少なくなり、サイクル平均による残存容量推定法を適用できる範囲が広くなる。また、夜間を中心に一定時間以上車庫に停車しているので、出発前に安定して開放端子電圧による残存容量推定法で蓄電池1の残存容量の推定を行うことが可能である。   If the charge / discharge at a high rate is small, the change in the voltage is also small, so that the accuracy of the remaining capacity estimation method by cycle averaging is high. In the case of railways, route buses, trams, etc., high-rate traveling is reduced, and the range in which the remaining capacity estimation method based on cycle averaging can be applied is widened. Further, since the vehicle is stopped in the garage for a certain time or more, mainly at night, the remaining capacity of the storage battery 1 can be estimated stably by the remaining capacity estimation method using the open terminal voltage before departure.

さらに、停留所での停車を有効に活用することができる。サイクル平均による残存容量推定法では、先の停止から次の停止までを1運転サイクルとしてもよい。つまり、停留所での停車を運転サイクルの1パターンとしてもよい。停留所が所定の間隔で存在し、確実にそこに停車する場合には、非常に安定した条件でサイクル平均による残存容量推定を行うことができる。サイクル平均における平均化とは、充電および放電による電圧の変化を平均化するという目的と、ある時定数を持って持続する電圧の変化の応答の遅れ分を平均化する目的とがある。つまり、同様の走行が繰返されることで、サイクル平均による残存容量推定法が有効となる。このため、停留所間の走行では、同様の走行、同様の加速、減速のパターンでの走行が繰返され、きわめて安定して正確に残存容量推定を行うことができる。   Furthermore, it is possible to effectively use the stop at the stop. In the remaining capacity estimation method based on cycle averaging, one operation cycle may be from the previous stop to the next stop. That is, the stop at the stop may be one pattern of the driving cycle. When there are stops at predetermined intervals and the vehicle stops there with certainty, the remaining capacity can be estimated by cycle averaging under very stable conditions. The averaging in the cycle average has the purpose of averaging the change in voltage due to charging and discharging, and the purpose of averaging the delay of the response of the voltage change that lasts with a certain time constant. In other words, by repeating the same running, the remaining capacity estimation method based on the cycle average becomes effective. For this reason, in traveling between stops, the same traveling, traveling in the same acceleration and deceleration patterns are repeated, and the remaining capacity can be estimated extremely stably and accurately.

なお、実施の形態1では蓄電池残存容量検出装置を搭載する機器または装置として、蓄電池1の電力を動力に変換し、制動力で発電して蓄電する電動機を備えた車輌またはハイブリッド車輌について説明したが、他の蓄電池を備えた機器または装置でもよい。   In the first embodiment, a vehicle or a hybrid vehicle provided with an electric motor that converts the electric power of the storage battery 1 into motive power, generates electric power with a braking force, and stores it as an apparatus or device on which the storage battery remaining capacity detection device is mounted has been described. A device or an apparatus provided with another storage battery may be used.

以上のように、蓄電池1の電圧を測定する電圧検出手段と、蓄電池1に流れる電流を測定する電流検出手段と、所定時間の電圧の平均値および電流の平均値を算出する平均値算出手段と、予め取得した電圧と電流との関係を記憶した特性データ記憶手段と、電圧の平均値と電流の平均値との関係および予め取得した電圧と電流との関係から蓄電池残存容量を推定する平均残存容量推定手段とを備えたので、安定で正確な蓄電池1の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   As described above, the voltage detection means for measuring the voltage of the storage battery 1, the current detection means for measuring the current flowing through the storage battery 1, the average value calculation means for calculating the average value of the voltage and the average value of the current for a predetermined time, Characteristic data storage means for storing the relationship between the voltage and current acquired in advance, the average remaining value for estimating the remaining capacity of the storage battery from the relationship between the average value of voltage and the average value of current and the relationship between voltage and current acquired in advance Since the capacity estimation means is provided, a storage battery remaining capacity detection device capable of detecting the remaining capacity of the storage battery 1 stably and accurately can be obtained.

実施の形態2.
サイクル平均による残存容量推定法は、単独でも十分に効果のある方法であるが、別の残存容量推定法と組合せて推定を行うことで、推定精度を更に向上させることができる。図9は、この発明を実施するための実施の形態2を示す蓄電池残存容量検出装置のブロック図である。図9において、積算残存容量推定部8、OCV残存容量推定部9、およびシステム制御部10を備えている点で実施の形態1と異なっている。積算残存容量推定部8は、蓄電池1に流れる電流の時間積分から蓄電池残存容量を推定する積算残存容量推定手段である。OCV残存容量推定部9は、開放端子電圧による蓄電池残存容量を推定する残存容量推定手段である。システム制御部10は、平均残存容量推定部7、積算残存容量推定部8、OCV残存容量推定部9を制御し、これらの推定部で推定された蓄電池1の残存容量のうち、最適な残存容量を抽出する。蓄電池残存容量検出装置12は、電圧検出部3、電流検出部4は、平均値算出部5、特性データ記憶部6、平均残存容量推定部7、積算残存容量推定部8、OCV残存容量推定部9、システム制御部10から構成される。
Embodiment 2. FIG.
The remaining capacity estimation method based on cycle averaging is a method that is sufficiently effective by itself, but estimation accuracy can be further improved by performing estimation in combination with another remaining capacity estimation method. FIG. 9 is a block diagram of a storage battery remaining capacity detection device showing Embodiment 2 for carrying out the present invention. 9 is different from the first embodiment in that an integrated remaining capacity estimation unit 8, an OCV remaining capacity estimation unit 9, and a system control unit 10 are provided. The accumulated remaining capacity estimating unit 8 is an accumulated remaining capacity estimating unit that estimates the remaining battery capacity from the time integration of the current flowing through the storage battery 1. The OCV remaining capacity estimating unit 9 is a remaining capacity estimating means for estimating the storage battery remaining capacity based on the open terminal voltage. The system control unit 10 controls the average remaining capacity estimation unit 7, the accumulated remaining capacity estimation unit 8, and the OCV remaining capacity estimation unit 9, and among the remaining capacity of the storage battery 1 estimated by these estimation units, the optimum remaining capacity To extract. The storage battery remaining capacity detection device 12 includes a voltage detection unit 3, the current detection unit 4 includes an average value calculation unit 5, a characteristic data storage unit 6, an average remaining capacity estimation unit 7, an integrated remaining capacity estimation unit 8, and an OCV remaining capacity estimation unit. 9 and a system control unit 10.

サイクル平均による残存容量推定法の特長は、電流積算による残存容量推定法のように、誤差の蓄積が少ないことである。一方、電流積算による残存容量推定法がある程度正確に充電効率ηを求めれば、原理的に正確な蓄電池1の残存容量の推定が可能なのに対して、サイクル平均による方法は原理的に正確な推定は困難である。つまり、電流積算による残存容量推定法は、蓄電池1の残存容量の初期値が設定された直後は精度が非常に高いが、時間が経過するにつれて徐々に誤差が増大していくのに対して、サイクル平均による残存容量推定法は、それほど精度が高いわけではないが、時間が経過してもその誤差が増大せず一定である。このことから、精度の特徴の異なるこの2つの方法を組合せれば、システムとして精度がより高く、かつ信頼性の高い蓄電池1の残存容量の推定を実現することができる。   The feature of the remaining capacity estimation method based on cycle averaging is that there is less error accumulation as in the remaining capacity estimation method based on current integration. On the other hand, if the remaining capacity estimation method based on current integration obtains the charging efficiency η to some extent accurately, the remaining capacity of the storage battery 1 can be estimated in principle accurately. On the other hand, the cycle average method is theoretically accurate. Have difficulty. That is, the remaining capacity estimation method based on current integration is very accurate immediately after the initial value of the remaining capacity of the storage battery 1 is set, but the error gradually increases as time passes. Although the remaining capacity estimation method based on cycle averaging is not so accurate, the error does not increase over time and is constant. From this, if these two methods having different characteristics of accuracy are combined, the remaining capacity of the storage battery 1 can be estimated with higher accuracy and higher reliability as a system.

蓄電池1の残存容量の初期値を求めるためには、開放端子電圧による残存容量推定法を用いることが考えられる。まず、開放端子電圧による残存容量推定法について、測定前に必要な無負荷待機時間について説明する。開放端子電圧による残存容量推定法では、充電および放電の影響による電圧の変化が、十分に落ち着いて定常値に達した後の電圧を測定する必要があるので、電圧が定常値に達するまでの時間である無負荷待機時間を明確にしておいたほうがよい。   In order to obtain the initial value of the remaining capacity of the storage battery 1, it is conceivable to use a remaining capacity estimation method based on an open terminal voltage. First, regarding the remaining capacity estimation method using the open terminal voltage, the no-load standby time required before measurement will be described. In the remaining capacity estimation method based on the open terminal voltage, it is necessary to measure the voltage after the voltage change due to the effect of charging and discharging has sufficiently settled and reached the steady value, so the time until the voltage reaches the steady value It is better to clarify the no-load standby time.

充電後の時定数に比べて、放電後の時定数は短い。しかし、最後の動作が放電であっても、その直前に充電が行われた場合、充電の影響が充電の時定数だけ持続するので、充電の時定数だけ時間が経過しないと電圧は安定な値に到達しない。また、ハイブリッド車輌の場合には、最後はブレーキによる回生電流によって、充電を行いながら停止するので、停止する直前は充電が行われていると考えてよい。従って、必要な無負荷待機時間として、充電後の電圧変化の時定数相当の時間を選ぶべきである。一例として、蓄電池1として鉛蓄電池を用いて実験を行った結果、充電後の場合は1時間30分、放電後の場合は15分程度で、最終到達電圧の0.05V以内に達することが確認された。これは蓄電池1の残存容量値に換算して、5%程度に相当する。従って、充電後の場合は1時間30分、放電後の場合は15分以上経過すれば、5%の精度で蓄電池1の残存容量の判定を行うことが可能である。   Compared to the time constant after charging, the time constant after discharging is short. However, even if the last operation is discharging, if charging is performed immediately before that, the effect of charging lasts only for the time constant of charging. Not reach. Further, in the case of a hybrid vehicle, the battery is stopped while being charged by the regenerative current due to the brake at the end, so that it may be considered that the battery is charged immediately before stopping. Therefore, the time corresponding to the time constant of the voltage change after charging should be selected as the necessary no-load standby time. As an example, as a result of conducting an experiment using a lead storage battery as the storage battery 1, it was confirmed that it reached within 0.05V of the final ultimate voltage after 1 hour 30 minutes after charging and after 15 minutes after discharging. It was done. This corresponds to about 5% in terms of the remaining capacity value of the storage battery 1. Therefore, the remaining capacity of the storage battery 1 can be determined with an accuracy of 5% after 1 hour 30 minutes after charging and after 15 minutes after discharging.

開放端子電圧による残存容量推定法は、より正確に蓄電池1の残存容量を測定できる。しかし、電極を開放した状態で十分長い時間経過している必要がある。運転の状態によっては、先の運転の終了から次の運転の開始時までに開放端子電圧の判定に必要なだけの時間が経過しているかどうか不明である。このため、停止時間が十分経過していない場合には、停止から次の停止までの期間は、サイクル平均による残存容量推定法によって推定した蓄電池1の残存容量を初期値とする。   The remaining capacity estimation method based on the open terminal voltage can measure the remaining capacity of the storage battery 1 more accurately. However, it is necessary that a sufficiently long time elapses with the electrode opened. Depending on the state of operation, it is unclear whether the time necessary for the determination of the open terminal voltage has elapsed from the end of the previous operation to the start of the next operation. For this reason, when the stop time has not sufficiently elapsed, the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on the cycle average is set as an initial value for the period from the stop to the next stop.

図10は、この発明の実施の形態2における蓄電池残存容量検出装置の動作を示すフローチャートである。この実施の形態での蓄電池1の残存容量検出のための動作は、主としてサイクル平均による残存容量推定法を用い、電流積算による残存容量推定法を補助的に用いる場合である。まず、ステップST101において、車輌の運転を開始する。ステップST102において、車輌の停止時間を判断し、停止時間がTs以上の場合には、ステップST103において、開放端子電圧による残存容量推定法で蓄電池1の残存容量の初期設定を行い、停止時間がTs未満の場合には、ステップST104において、前回の運転時の値を初期値に設定する。   FIG. 10 is a flowchart showing an operation of the storage battery remaining capacity detection device according to Embodiment 2 of the present invention. The operation for detecting the remaining capacity of the storage battery 1 in this embodiment is mainly when the remaining capacity estimation method based on cycle average is used and the remaining capacity estimation method based on current integration is used as an auxiliary. First, in step ST101, driving of the vehicle is started. In step ST102, the stop time of the vehicle is determined. If the stop time is equal to or longer than Ts, in step ST103, the remaining capacity of the storage battery 1 is initialized by the remaining capacity estimation method using the open terminal voltage, and the stop time Ts. If it is less, the value at the previous operation is set to the initial value in step ST104.

次に、ステップST105において、車輌の停止の判断をする。車輌が停止している場合には、ステップST106において、サイクル平均による残存容量推定法で蓄電池1の残存容量の推定を行い、ステップST107において、サイクル平均による残存容量推定法で推定した蓄電池1の残存容量を採用することを決定する。ステップST108において、蓄電池1の残存容量を更新する。車輌が停止していない場合には、ステップST109において、電流積算による残存容量推定法で蓄電池1の残存容量の推定を行い、ステップST110において、電流積算による残存容量推定法で推定した蓄電池1の残存容量を採用することを決定する。ステップST108において、蓄電池1の残存容量を更新する。蓄電池1の残存容量を更新した後はステップST105に戻る。なお、車輌が出庫する際に開放端子電圧による残存容量推定法で蓄電池1の残存容量の検出を行ってもよく、この検出値を初期値として電流積算による残存容量推定法で蓄電池1の残存容量の推定を行う場合もある。   Next, in step ST105, it is determined whether or not the vehicle is stopped. If the vehicle is stopped, in step ST106, the remaining capacity of the storage battery 1 is estimated by the cycle-average remaining capacity estimation method. In step ST107, the remaining capacity of the storage battery 1 estimated by the cycle-average remaining capacity estimation method is estimated. Decide to adopt capacity. In step ST108, the remaining capacity of the storage battery 1 is updated. If the vehicle is not stopped, the remaining capacity of the storage battery 1 is estimated by the remaining capacity estimation method based on current integration in step ST109, and the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on current integration is determined in step ST110. Decide to adopt capacity. In step ST108, the remaining capacity of the storage battery 1 is updated. After updating the remaining capacity of the storage battery 1, the process returns to step ST105. When the vehicle leaves the vehicle, the remaining capacity of the storage battery 1 may be detected by the remaining capacity estimation method using the open terminal voltage, and the remaining capacity of the storage battery 1 is determined by the remaining capacity estimation method using current integration with this detected value as an initial value. May be estimated.

以上のように、サイクル平均による残存容量推定法と開放端子電圧による残存容量推定法および電流積算による残存容量推定法とを組合せることで、安定で正確な蓄電池1の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   As described above, it is possible to detect the remaining capacity of the storage battery 1 in a stable and accurate manner by combining the remaining capacity estimation method based on the cycle average, the remaining capacity estimation method based on the open terminal voltage, and the remaining capacity estimation method based on the current integration. A storage battery residual capacity detection apparatus can be obtained.

実施の形態3.
サイクル平均による残存容量推定法で蓄電池1の残存容量の推定を行う場合には、実施の形態1で説明したように、蓄電池1に流れる電流の平均値が大きくなると蓄電池1の残存容量の推定精度が低くなる。そこで、本実施の形態3では、蓄電池1に流れる電流の平均値が大きくなった場合には、電流積算による残存容量推定法で蓄電池1の残存容量の推定を行う事を併用する。
Embodiment 3 FIG.
When estimating the remaining capacity of the storage battery 1 by the method of estimating the remaining capacity by cycle averaging, as described in the first embodiment, the estimation accuracy of the remaining capacity of the storage battery 1 when the average value of the current flowing through the storage battery 1 increases. Becomes lower. Therefore, in the present third embodiment, when the average value of the current flowing through the storage battery 1 is increased, the remaining capacity of the storage battery 1 is estimated by a remaining capacity estimation method based on current integration.

図11は、この発明の実施の形態3における蓄電池残存容量検出装置の動作を示すフローチャートである。図11において、ステップST101〜ステップST104については実施の形態2と同様である。ステップST105において、車輌の停止の判断をする。車輌が停止している場合には、ステップST106において、サイクル平均による残存容量推定法で蓄電池1の残存容量の推定を行い、ステップST111において、電流サイクル平均値(運転サイクルでの電流の平均値)と所定電流Ithとの大きさを比較する。電流サイクル平均値がIthより小さい場合には、ステップST107において、サイクル平均による残存容量推定法で推定した蓄電池1の残存容量を採用することを決定する。ステップST108において、蓄電池1の残存容量を更新する。Ithの設定については、1運転サイクルの電圧の平均値の変化と、一定電流で放電したときの電圧の変化との差が大きくなる値に設定する。例えば、実施の形態1に示したように、20Aに設定してよい。車輌が停止していない場合および電流の平均値がIthを超える場合には、ステップST109において、電流積算による残存容量推定法で蓄電池1の残存容量の推定を行い、ステップST110において、電流積算による残存容量推定法で推定した蓄電池1の残存容量を採用することを決定する。ステップST108において、蓄電池1の残存容量を更新する。蓄電池1の残存容量を更新した後はステップST105に戻る。   FIG. 11 is a flowchart showing the operation of the storage battery remaining capacity detection device according to Embodiment 3 of the present invention. In FIG. 11, step ST101 to step ST104 are the same as those in the second embodiment. In step ST105, it is determined whether or not the vehicle is stopped. When the vehicle is stopped, in step ST106, the remaining capacity of the storage battery 1 is estimated by the remaining capacity estimation method based on the cycle average, and in step ST111, the current cycle average value (the average value of the current in the driving cycle). And the predetermined current Ith are compared. When the current cycle average value is smaller than Ith, in step ST107, it is determined to adopt the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on the cycle average. In step ST108, the remaining capacity of the storage battery 1 is updated. About setting of Ith, it sets to the value from which the difference of the change of the average value of the voltage of 1 driving cycle and the change of the voltage when it discharges with a fixed current becomes large. For example, as shown in Embodiment 1, it may be set to 20A. When the vehicle is not stopped and the average value of the current exceeds Ith, the remaining capacity of the storage battery 1 is estimated by the remaining capacity estimation method by current integration in step ST109, and the remaining capacity by current integration is determined in step ST110. It is decided to adopt the remaining capacity of the storage battery 1 estimated by the capacity estimation method. In step ST108, the remaining capacity of the storage battery 1 is updated. After updating the remaining capacity of the storage battery 1, the process returns to step ST105.

このように、基本的にはサイクル平均による残存容量推定法で蓄電池1の残存容量の推定を行う。停止から次の停止までは、サイクル平均による残存容量推定法で推定した蓄電池1の残存容量を初期値として、電流積算による残存容量推定法で推定した蓄電池1の残存容量から大きくずれていないかどうかの確認を行う。また、車輌が停止していても、電流サイクル平均値がIthを超えるようであれば、その期間のサイクル平均による残存容量推定法は精度が低いとみなして採用せず、電流積算による残存容量推定法による推定を継続する。その後、電流サイクル平均値がIth以下になれば、サイクル平均による残存容量推定法で推定した蓄電池1の残存容量を採用し、この値を電流積算による残存容量推定法における蓄電池1の残存容量の初期値に設定し、推定を続行する。なお、運転サイクルでの電流の平均値である電流サイクル平均値が規定値であるIthよりも大きい場合には、電流積算による残存容量推定法によって推定された蓄電池1の残存容量を表示する。   As described above, the remaining capacity of the storage battery 1 is basically estimated by the remaining capacity estimation method based on the cycle average. From the stop to the next stop, whether the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on the cycle average is an initial value, and whether or not there is a large deviation from the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on current integration Confirm. In addition, even if the vehicle is stopped, if the current cycle average value exceeds Ith, the remaining capacity estimation method based on the cycle average for that period is not considered to be low, and the remaining capacity estimation based on current integration is not adopted. Continue statutory estimation. Thereafter, when the current cycle average value becomes Ith or less, the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method based on the cycle average is adopted, and this value is used as the initial value of the remaining capacity of the storage battery 1 in the remaining capacity estimation method based on the current integration. Set to value and continue estimation. When the current cycle average value, which is the average value of the current in the operation cycle, is larger than the specified value Ith, the remaining capacity of the storage battery 1 estimated by the remaining capacity estimation method by current integration is displayed.

このように、サイクル平均による残存容量推定法、電流積算による残存容量推定法、および開放端子電圧による残存容量推定法を組合せ、それぞれの残存容量推定法の長所をいかしたアルゴリズムを構築することで、それぞれの残存容量推定法の欠点を補完した、信頼性および精度が高い蓄電池1の残存容量の推定を行うことができる。なお、残存容量値、1運転サイクルの長さなどの条件を設定して、最適な残存容量推定法を選択してもよい。   In this way, by combining the remaining capacity estimation method by cycle average, the remaining capacity estimation method by current integration, and the remaining capacity estimation method by open-circuit voltage, by constructing algorithms that take advantage of each remaining capacity estimation method, The remaining capacity of the storage battery 1 can be estimated with high reliability and accuracy, complementing the drawbacks of the remaining capacity estimation methods. Note that an optimum remaining capacity estimation method may be selected by setting conditions such as a remaining capacity value and a length of an operation cycle.

以上のように、サイクル平均による残存容量推定法、開放端子電圧による残存容量推定法、および電流積算による残存容量推定法とを組合せることで、安定で正確な蓄電池1の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   As described above, it is possible to detect the remaining capacity of the storage battery 1 stably and accurately by combining the remaining capacity estimation method using cycle average, the remaining capacity estimation method using open-circuit voltage, and the remaining capacity estimation method using current integration. A storage battery remaining capacity detection device can be obtained.

実施の形態4.
実施の形態1〜3では、サイクル平均による残存容量推定法を主に用いる場合について説明したが、本実施の形態では、サイクル平均による残存容量推定法を補助的に用いる場合について説明する。図12は、この発明の実施の形態3における蓄電池残存容量検出装置の動作を示すフローチャートである。まず、ステップST201において、運転開始時に開放端子電圧による残存容量推定法を用いて蓄電池1の残存容量の初期値を設定する。開放端子電圧による方法は最も正確に蓄電池1の残存容量を測定できる。しかし、電極を開放した状態で十分長い時間経過しないと用いることができないので、運転開始時に適用する。但し、運転開始時に十分長い時間が経過しているかどうかはわからないので、十分長い時間経過していなければ、前回運転時の最後の蓄電池1の残存容量値を初期値として用いる。次に、ステップST202において、電流積算による残存容量推定法で蓄電池1の残存容量の推定を行う。車輌の走行中は常に電流積算による残存容量推定法で蓄電池1の残存容量を推定する。
Embodiment 4 FIG.
In the first to third embodiments, the case where the remaining capacity estimation method based on the cycle average is mainly used has been described, but in this embodiment, the case where the remaining capacity estimation method based on the cycle average is used as an auxiliary will be described. FIG. 12 is a flowchart showing the operation of the storage battery remaining capacity detection device according to Embodiment 3 of the present invention. First, in step ST201, the initial value of the remaining capacity of the storage battery 1 is set using the remaining capacity estimation method based on the open terminal voltage at the start of operation. The method using the open terminal voltage can measure the remaining capacity of the storage battery 1 most accurately. However, since it cannot be used unless a sufficiently long time has passed with the electrode opened, it is applied at the start of operation. However, since it is not known whether a sufficiently long time has elapsed at the start of operation, if the sufficiently long time has not elapsed, the remaining capacity value of the last storage battery 1 at the previous operation is used as the initial value. Next, in step ST202, the remaining capacity of the storage battery 1 is estimated by a remaining capacity estimation method based on current integration. While the vehicle is traveling, the remaining capacity of the storage battery 1 is always estimated by a remaining capacity estimation method based on current integration.

ステップST203において、車輌の停止の判断をする。車輌が停止している場合には、ステップST204において、サイクル平均による残存容量推定法で蓄電池1の残存容量の推定を行う。ここで、電流積算による残存容量推定法で求めた蓄電池1の残存容量値と、サイクル平均による残存容量推定法で求めた蓄電池1の残存容量値とが存在する。ここで、どちらが信頼性の高い方法であるかを判定して、信頼性の高い方法で求めた蓄電池1の残存容量値に基づいて内燃機関によって蓄電池1を制御するとか、過充電防止のために回生電流を遮断するといったシステム制御を行う。   In step ST203, it is determined whether the vehicle is stopped. When the vehicle is stopped, in step ST204, the remaining capacity of the storage battery 1 is estimated by the remaining capacity estimation method based on the cycle average. Here, there are the remaining capacity value of the storage battery 1 obtained by the remaining capacity estimation method based on current integration and the remaining capacity value of the storage battery 1 obtained by the remaining capacity estimation method based on cycle average. Here, it is determined which method is highly reliable, and the storage battery 1 is controlled by the internal combustion engine based on the remaining capacity value of the storage battery 1 obtained by the highly reliable method, or in order to prevent overcharge. System control such as shutting off the regenerative current is performed.

電流積算による残存容量推定法は、蓄電池1の残存容量の初期設定を行ってからの時間が経過するほど、推定値の誤差が蓄積していく可能性があるので、運転開始時からの経過時間によって、蓄電池1の残存容量推定法を決定する。ステップST205において、運転開始からの経過時間がTthよりも長い場合には、ステップST206において、サイクル平均による残存容量推定法を採用することを決定する。ステップST207において、蓄電池1の残存容量を更新する。車輌が停止していない場合および運転開始からの経過時間がTth未満の場合には、ステップST208において、電流積算による残存容量推定法を採用することを決定する。ステップST207において、蓄電池1の残存容量を更新する。蓄電池1の残存容量を更新した後はステップST105に戻る。   In the remaining capacity estimation method based on current integration, the error in the estimated value may accumulate as the time after the initial setting of the remaining capacity of the storage battery 1 elapses. Therefore, the elapsed time from the start of operation. Thus, the remaining capacity estimation method of the storage battery 1 is determined. In step ST205, when the elapsed time from the start of operation is longer than Tth, it is determined in step ST206 to adopt the remaining capacity estimation method based on cycle averaging. In step ST207, the remaining capacity of the storage battery 1 is updated. If the vehicle is not stopped and if the elapsed time from the start of operation is less than Tth, it is determined in step ST208 that the remaining capacity estimation method based on current integration is adopted. In step ST207, the remaining capacity of the storage battery 1 is updated. After updating the remaining capacity of the storage battery 1, the process returns to step ST105.

Tthは、電流積算による残存容量推定法に比べて、サイクル平均による残存容量推定法の方が蓄電池1の残存容量の推定精度が高くなる時間である。電流積算による残存容量推定法は時間とともに残存容量推定の誤差が拡大してしまうと言う欠点があり、Tthの時間を超えると、この誤差がサイクル平均による残存容量推定法の持つ本質的な精度の不確定さを上回る。このTthを具体的に決めるためには、全体のシステムや相応の条件などを考慮し、この誤差の大きさを定量化するなどの必要がある。なお、実験結果からTthとして2時間という値が得られている。   Tth is the time during which the remaining capacity estimation method based on the cycle average increases the estimation accuracy of the remaining capacity of the storage battery 1 compared to the remaining capacity estimation method based on current integration. The remaining capacity estimation method based on current integration has the disadvantage that the error in remaining capacity estimation increases with time. When the time exceeds Tth, this error is the inherent accuracy of the remaining capacity estimation method based on cycle averaging. Exceeds uncertainty. In order to determine this Tth specifically, it is necessary to quantify the magnitude of this error in consideration of the overall system and appropriate conditions. From the experimental results, a value of 2 hours is obtained as Tth.

電流積算による残存容量推定法では、何らかの方法で蓄電池1の残存容量の初期値を求めておく必要がある。このため、例えば開放端子電圧による残存容量推定法を用いる。ハイブリッド車輌などの車輌に適用する場合には、夜間など長時間休止した後に発進の直前の開放端子電圧から蓄電池1の残存容量を推定して初期値とする方法などがある。   In the remaining capacity estimation method based on current integration, it is necessary to obtain the initial value of the remaining capacity of the storage battery 1 by some method. For this reason, for example, a remaining capacity estimation method using an open terminal voltage is used. When applied to a vehicle such as a hybrid vehicle, there is a method in which the remaining capacity of the storage battery 1 is estimated to be an initial value from an open terminal voltage immediately before starting after a long pause such as at night.

以上のように、電流積算による残存容量推定法を主体的に用い、サイクル平均による残存容量推定法を補助的に用いることで、安定で正確な蓄電池1の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   As described above, the remaining capacity estimation method based on current integration is mainly used, and the remaining capacity estimation method based on cycle average is used supplementarily, so that the remaining capacity of the storage battery 1 can be detected stably and accurately. A detection device can be obtained.

実施の形態5.
電流積算による残存容量推定法とサイクル平均による残存容量推定法との採用の選択を電流サイクル平均値によって判定することができる。電流サイクル平均値が大きい場合には電流積算による残存容量推定法を、小さい場合にはサイクル平均による残存容量推定法を採用する。図13は、この発明の実施の形態5における蓄電池残存容量検出装置の動作を示すフローチャートである。図13において、ステップST201〜ステップST205については実施の形態4と同様である。ステップST209において、サイクル平均による残存容量推定法における電流サイクル平均値がIthより小さいかどうかを判断する。電流サイクル平均値がIthより小さい場合には、ステップST206において、サイクル平均による蓄電池1の残存容量推定法を採用することを決定する。ステップST207において、蓄電池1の残存容量を更新する。Ithの設定については、1運転サイクルの電圧の平均値の変化と、一定電流で放電したときの電圧の変化との差が大きくなる値に設定する。例えば、実施の形態1に示したように20Aに設定してもよい。車輌が停止していない場合には、運転開始からの経過時間がtthに満たない場合および電流サイクル平均値がIthを超える場合には、ステップST208において電流積算による残存容量推定法を採用することを決定する。ステップST207において、蓄電池1の残存容量を更新する。蓄電池1の残存容量を更新した後はステップST105に戻る。
Embodiment 5. FIG.
The choice of adopting the remaining capacity estimation method by current integration and the remaining capacity estimation method by cycle average can be determined by the current cycle average value. When the current cycle average value is large, the remaining capacity estimation method by current integration is adopted, and when the current cycle average value is small, the remaining capacity estimation method by cycle average is adopted. FIG. 13 is a flowchart showing the operation of the storage battery remaining capacity detection device according to Embodiment 5 of the present invention. In FIG. 13, step ST201 to step ST205 are the same as in the fourth embodiment. In step ST209, it is determined whether or not the current cycle average value in the remaining capacity estimation method by cycle average is smaller than Ith. When the current cycle average value is smaller than Ith, in step ST206, it is determined to adopt the remaining capacity estimation method of the storage battery 1 by the cycle average. In step ST207, the remaining capacity of the storage battery 1 is updated. About setting of Ith, it sets to the value from which the difference of the change of the average value of the voltage of 1 driving cycle and the change of the voltage when it discharges with a fixed current becomes large. For example, it may be set to 20A as shown in the first embodiment. When the vehicle is not stopped, if the elapsed time from the start of driving is less than tth and the current cycle average value exceeds Ith, the remaining capacity estimation method based on current integration should be adopted in step ST208. decide. In step ST207, the remaining capacity of the storage battery 1 is updated. After updating the remaining capacity of the storage battery 1, the process returns to step ST105.

以上のように、電流積算による残存容量推定法を主体的に用い、サイクル平均による残存容量推定法を補助的に用いることによって、安定で正確な蓄電池1の残存容量の検出が可能な蓄電池残存容量検出装置を得ることができる。   As described above, the remaining battery capacity that enables stable and accurate detection of the remaining capacity of the storage battery 1 by mainly using the remaining capacity estimating method based on current integration and supplementarily using the remaining capacity estimating method based on cycle averaging. A detection device can be obtained.

なお、全ての実施の形態において、残存容量を検出する蓄電池として鉛蓄電池を適用することができる。また、本発明は、充電あるいは放電後の電圧変化に長い時定数がある場合に有効であり、これは一般の蓄電池に共通した特徴である。したがって、リチウムイオン電池、ニッケルカドミウム電池、ニッケル水素電池などの蓄電池に適用してもよい。   In all the embodiments, a lead storage battery can be applied as a storage battery for detecting the remaining capacity. The present invention is effective when there is a long time constant in the voltage change after charging or discharging, which is a feature common to general storage batteries. Therefore, you may apply to storage batteries, such as a lithium ion battery, a nickel cadmium battery, and a nickel metal hydride battery.

この発明の実施の形態1を示す蓄電池残存容量検出装置のブロック図である。It is a block diagram of the storage battery residual capacity detection apparatus which shows Embodiment 1 of this invention. この発明の実施の形態1におけるハイブリッド車輌の走行に関連する速度と蓄電池に流れるDC電流との関係を示す図である。It is a figure which shows the relationship between the speed relevant to driving | running | working of the hybrid vehicle in Embodiment 1 of this invention, and DC current which flows into a storage battery. この発明の実施の形態1におけるハイブリッド車輌の蓄電池に流れるDC電流と蓄電池の端子電圧との関係を示す図である。It is a figure which shows the relationship between the DC current which flows into the storage battery of the hybrid vehicle in Embodiment 1 of this invention, and the terminal voltage of a storage battery. この発明の実施の形態1における平均的には放電状態にある場合の蓄電池の残存容量に対する端子電圧の時間変化を示す図である。It is a figure which shows the time change of the terminal voltage with respect to the remaining capacity of the storage battery in the state in a discharge state on the average in Embodiment 1 of this invention. この発明の実施の形態1における平均的には充電状態にある場合の蓄電池の残存容量に対する端子電圧の時間変化を示す図である。It is a figure which shows the time change of the terminal voltage with respect to the remaining capacity of the storage battery in the state of charge in the average in Embodiment 1 of this invention. この発明の実施の形態1における予め取得した電圧と電流との関係を示す図である。It is a figure which shows the relationship between the voltage acquired previously in Embodiment 1 of this invention, and an electric current. この発明の実施の形態1における平均的には放電状態にある場合の蓄電池の残存容量に対する端子電圧の時間変化を示す図である。It is a figure which shows the time change of the terminal voltage with respect to the remaining capacity of the storage battery in the state in a discharge state on the average in Embodiment 1 of this invention. この発明の実施の形態1における標準偏差の測定結果を示す図である。It is a figure which shows the measurement result of the standard deviation in Embodiment 1 of this invention. この発明の実施の形態2を示す蓄電池残存容量検出装置のブロック図である。It is a block diagram of the storage battery remaining capacity detection apparatus which shows Embodiment 2 of this invention. この発明の実施の形態2における蓄電池残存容量検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the storage battery residual capacity detection apparatus in Embodiment 2 of this invention. この発明の実施の形態3における蓄電池残存容量検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the storage battery residual capacity detection apparatus in Embodiment 3 of this invention. この発明の実施の形態4における蓄電池残存容量検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the storage battery residual capacity detection apparatus in Embodiment 4 of this invention. この発明の実施の形態5における蓄電池残存容量検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the storage battery residual capacity detection apparatus in Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 蓄電池、2 負荷、3 電圧検出部、4 電流検出部、5 平均値算出部、6 特性データ記憶部、7 平均残存容量推定部、8 積算残存容量推定部、9 OCV残存容量推定部、10 システム制御部、11,12 蓄電池残存容量検出装置。   DESCRIPTION OF SYMBOLS 1 Storage battery 2 Load 3 Voltage detection part 4 Current detection part 5 Average value calculation part 6 Characteristic data storage part 7 Average remaining capacity estimation part 8 Accumulated remaining capacity estimation part 9 OCV remaining capacity estimation part 10 System control unit, 11, 12 Storage battery remaining capacity detection device.

Claims (8)

蓄電池の電圧を測定する電圧検出手段と、
前記蓄電池に流れる電流を測定する電流検出手段と、
所定時間の前記電圧の平均値および前記電流の平均値を算出する平均値算出手段と、
予め取得した電圧と電流との関係を記憶した特性データ記憶手段と、
前記電圧の平均値と前記電流の平均値との関係および前記予め取得した電圧と電流との関係から蓄電池残存容量を推定する平均残存容量推定手段とを備えたことを特徴とする蓄電池残存容量検出装置。
Voltage detection means for measuring the voltage of the storage battery;
Current detection means for measuring a current flowing through the storage battery;
An average value calculating means for calculating an average value of the voltage and an average value of the current for a predetermined time;
Characteristic data storage means for storing the relationship between the voltage and current acquired in advance;
Storage battery remaining capacity detection comprising: an average remaining capacity estimating means for estimating a remaining battery capacity from the relationship between the average value of the voltage and the average value of the current and the relationship between the voltage and the current acquired in advance. apparatus.
蓄電池は、充電と放電とを含む充放電パターンを繰返し行い、平均値算出のための所定時間内に前記充放電パターンを少なくとも1回以上行うことを特徴とする請求項1記載の蓄電池残存容量検出装置。 The storage battery residual capacity detection according to claim 1, wherein the storage battery repeatedly performs a charge / discharge pattern including charging and discharging, and performs the charge / discharge pattern at least once within a predetermined time for calculating an average value. apparatus. 蓄電池に流れる電流の時間積分から蓄電池残存容量を推定する積算残存容量推定手段を備えたことを特徴とする請求項1または2のいずれかに記載の蓄電池残存容量検出装置。 3. The storage battery remaining capacity detection device according to claim 1, further comprising integrated remaining capacity estimation means for estimating a storage battery remaining capacity from time integration of a current flowing through the storage battery. 電流の平均値が規定値よりも大きい場合には、積算残存容量推定手段により推定された蓄電池残存容量を表示したことを特徴とする請求項3記載の蓄電池残存容量検出装置。 4. The storage battery remaining capacity detecting device according to claim 3, wherein when the average value of the current is larger than a specified value, the remaining battery capacity estimated by the integrated remaining capacity estimating means is displayed. 蓄電池の電力を動力に変換し、制動力で発電して蓄電する電動機を備えた車輌に搭載したことを特徴とする請求項1から4のいずれかに記載の蓄電池残存容量検出装置。 5. The storage battery remaining capacity detection device according to claim 1, wherein the storage battery remaining capacity detection device is mounted on a vehicle including an electric motor that converts electric power of the storage battery into motive power, generates electric power with braking force, and stores the electric power. 車輌は、内燃機関を備えたハイブリッド車輌としたことを特徴とする請求項5記載の蓄電池残存容量検出装置。 6. The storage battery remaining capacity detection device according to claim 5, wherein the vehicle is a hybrid vehicle including an internal combustion engine. 車輌の発進、加速、減速、停止の一連の動作は、充放電パターンの中で少なくとも1回以上行うことを特徴とする請求項5または6のいずれかに記載の蓄電池残存容量検出装置。 7. The storage battery remaining capacity detection device according to claim 5, wherein a series of operations of starting, accelerating, decelerating, and stopping the vehicle is performed at least once in a charge / discharge pattern. 車輌は、出庫する際に開放端子電圧による蓄電池残存容量の検出を行い、この検出値を初期値として電流値の時間積分による蓄電池残存容量の推定を行ったことを特徴とする請求項5または6のいずれかに記載の蓄電池残存容量検出装置。 The vehicle detects the remaining battery capacity based on the open terminal voltage when leaving the vehicle, and estimates the remaining battery capacity by time integration of the current value using the detected value as an initial value. The storage battery residual capacity detection apparatus in any one of.
JP2005169647A 2005-06-09 2005-06-09 Battery remaining capacity detection device Expired - Fee Related JP4797454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169647A JP4797454B2 (en) 2005-06-09 2005-06-09 Battery remaining capacity detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169647A JP4797454B2 (en) 2005-06-09 2005-06-09 Battery remaining capacity detection device

Publications (2)

Publication Number Publication Date
JP2006343230A true JP2006343230A (en) 2006-12-21
JP4797454B2 JP4797454B2 (en) 2011-10-19

Family

ID=37640295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169647A Expired - Fee Related JP4797454B2 (en) 2005-06-09 2005-06-09 Battery remaining capacity detection device

Country Status (1)

Country Link
JP (1) JP4797454B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019757A (en) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd Battery state monitoring device
WO2011039912A1 (en) 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
JP2013076328A (en) * 2011-09-29 2013-04-25 Suzuki Motor Corp Vehicle control device
JP2014102248A (en) * 2012-10-24 2014-06-05 Gs Yuasa Corp Power storage state detection apparatus
WO2014147982A1 (en) * 2013-03-21 2014-09-25 株式会社デンソー Vehicle-mounted emergency report device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2004150821A (en) * 2002-10-28 2004-05-27 Sharp Corp Apparatus for displaying remaining capacity of battery
JP2004271447A (en) * 2003-03-11 2004-09-30 Nippon Soken Inc Internal resistance detector, degradation judging device, internal resistance detection method and degradation judging method for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189066A (en) * 2000-12-22 2002-07-05 Hitachi Ltd Method for estimating remaining capacity of secondary battery
JP2004150821A (en) * 2002-10-28 2004-05-27 Sharp Corp Apparatus for displaying remaining capacity of battery
JP2004271447A (en) * 2003-03-11 2004-09-30 Nippon Soken Inc Internal resistance detector, degradation judging device, internal resistance detection method and degradation judging method for secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019757A (en) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd Battery state monitoring device
WO2011039912A1 (en) 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
CN102124360A (en) * 2009-09-30 2011-07-13 新神户电机株式会社 Storage battery device, storage battery state of charge evaluation device and method
JP2013076328A (en) * 2011-09-29 2013-04-25 Suzuki Motor Corp Vehicle control device
US9140227B2 (en) 2011-09-29 2015-09-22 Suzuki Motor Corporation Control device for vehicle
JP2014102248A (en) * 2012-10-24 2014-06-05 Gs Yuasa Corp Power storage state detection apparatus
WO2014147982A1 (en) * 2013-03-21 2014-09-25 株式会社デンソー Vehicle-mounted emergency report device
JP2014182747A (en) * 2013-03-21 2014-09-29 Denso Corp Vehicle-mounted emergency report device
US9616835B2 (en) 2013-03-21 2017-04-11 Denso Corporation Vehicle-mounted emergency report device

Also Published As

Publication number Publication date
JP4797454B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US9263909B2 (en) Control device and control method for nonaqueous secondary battery
JP4884945B2 (en) Charging state prediction program, overhead line-less traffic system and charging method thereof
JP3960241B2 (en) Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method
JP6160473B2 (en) Power storage system
US7880442B2 (en) Charging control device for a storage battery
JP5741389B2 (en) A method for estimating a full charge capacity of a power storage device and a power storage system.
US10295610B2 (en) Electric power storage system for a vehicle and method for controlling electric power storage system for a vehicle
JP4797454B2 (en) Battery remaining capacity detection device
US6732043B2 (en) Method and arrangement for determining the starting ability of a starter battery of an internal combustion engine
JP2015050927A (en) Method for electrically regenerating energy accumulator
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2012057956A (en) Deterioration degree estimation apparatus for battery
JP6729312B2 (en) Battery evaluation method and battery evaluation apparatus
CN111038328B (en) SOP control method based on auxiliary power
JP2005037230A (en) Battery degradation detection device and method
CN111257778A (en) Estimating state of health of a battery using open circuit voltage slope
JP7250439B2 (en) BATTERY CONTROL DEVICE, BATTERY CONTROL SYSTEM AND BATTERY CONTROL METHOD
ITUA20164800A1 (en) Procedure for estimating the duration of a vehicle journey based on the determination of the vehicle status.
EP2001074B1 (en) System and method to determine the loss in capacity and energy of a battery determining the output capacity of a battery
ES2303626T3 (en) SYSTEM AND METHOD FOR DETERMINING THE CHARGE STATUS OF A BATTERY AND THE USE OF SUCH METHOD FOR THE CHARGING MANAGER.
JP2007265693A (en) Apparatus and method for battery control
JP5911897B2 (en) Secondary battery charge control device and secondary battery charge control method
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
GB2542212A (en) Battery monitoring system
EP2259080A1 (en) System and procedure for determining the loss of capacity of a battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees