JP2006343084A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2006343084A
JP2006343084A JP2005171751A JP2005171751A JP2006343084A JP 2006343084 A JP2006343084 A JP 2006343084A JP 2005171751 A JP2005171751 A JP 2005171751A JP 2005171751 A JP2005171751 A JP 2005171751A JP 2006343084 A JP2006343084 A JP 2006343084A
Authority
JP
Japan
Prior art keywords
compressor
evaporator
water
refrigerant
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005171751A
Other languages
Japanese (ja)
Inventor
Toshihiro Goto
敏浩 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITANO KOGYO KK
Original Assignee
ITANO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITANO KOGYO KK filed Critical ITANO KOGYO KK
Priority to JP2005171751A priority Critical patent/JP2006343084A/en
Publication of JP2006343084A publication Critical patent/JP2006343084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device capable of cooling water and air at the same time. <P>SOLUTION: The cooling device comprises a compressor 10; an evaporator 20; an expansion valve 24; a compressor protecting means 30 provided in a circulating line connected to the compressor 10 from the evaporator, to protect the compressor from a liquid refrigerant and/or a high pressure gas refrigerant flowing out of the evaporator; a water sprinkling means 42 for sprinkling water on the surface of the evaporator; a water cooling mechanism 40 disposed below the evaporator and having a cold water tank 44 for holding water sprinkled by the water sprinkling means, and a water circulating means 46 for circulating water held in the cold water tank to the water sprinkling means; and an air circulating means 50 for circulating air in a closed space so as to be blasted toward the surface of the evaporator. The water sprinkled on the surface of the evaporator by the water sprinkling means is cooled by the evaporator to drip into the cold water tank, and at the same time, the air blasted toward the surface of the evaporator by the air circulating means is cooled by the evaporator and circulated in the closed space to cool the water and air in the closed space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は冷却装置に関し、例えば食用動物の中抜き屠体等の食肉屠体を殺菌後に冷却する冷却装置に関する。   The present invention relates to a cooling device, for example, a cooling device that cools a meat carcass such as a hollow carcass of a food animal after sterilization.

冷却器や冷凍機は、空調用、工業用等に広く利用されている。例えば蒸気圧縮式の冷凍機は、図8に示すように蒸発器2、圧縮機1、凝縮器3、受液器4、膨張弁5を冷媒が循環するように循環接続して、冷媒が蒸発、圧縮、凝縮、膨張の4工程で循環し、気化と液化の状態変化を繰り返しながら冷却矢冷凍を行う冷凍サイクルを構成し、熱を冷体から熱体へ移す熱力学的サイクルが実現される。   Coolers and refrigerators are widely used for air conditioning and industrial purposes. For example, in a vapor compression type refrigerator, as shown in FIG. 8, the refrigerant is evaporated by connecting the evaporator 2, the compressor 1, the condenser 3, the liquid receiver 4, and the expansion valve 5 so that the refrigerant circulates. A refrigeration cycle that circulates in four steps, compression, condensation, and expansion, and performs cooling arrow refrigeration while repeating changes in vaporization and liquefaction, and realizes a thermodynamic cycle that transfers heat from a cold body to a hot body .

このような冷凍サイクルによって、特定環境内の空気や水を冷却することができる。例えば、閉鎖環境内の空調や冷房、あるいは冷蔵、冷凍のため、外気よりも数℃〜十数℃低い温度に維持したり、0℃に近い温度あるいは0℃以下に保持する。冷凍機では−40℃程度まで低温に維持できるものも存在する。これらの冷却装置では、冷媒を使用して熱交換により空気の温度を奪うことにより、気温を低下させている。一方、水等の液体を冷却させるには、このように外気を冷却することにより間接的に温度を下げる他、直接水を冷媒のように循環させて熱交換させる方法もある。
特開平11−108507号公報
By such a refrigeration cycle, air and water in a specific environment can be cooled. For example, for air conditioning or cooling in a closed environment, or for refrigeration and freezing, the temperature is maintained at a temperature lower by several to tens of degrees Celsius than the outside air, or is maintained at a temperature close to 0 ° C. or below 0 ° C. Some refrigerators can be maintained at a low temperature of about -40 ° C. In these cooling apparatuses, the temperature is lowered by taking the temperature of air by heat exchange using a refrigerant. On the other hand, in order to cool a liquid such as water, there is a method in which heat is exchanged by directly circulating water like a refrigerant in addition to indirectly lowering the temperature by cooling the outside air.
JP-A-11-108507

しかしながら、水等の液体と気体とを同時に冷却するシステムは利用されていなかった。従来の冷却装置は、水又は空気のいずれかを冷却するものとして開発されており、いずれか一方を直接的に冷却することにより他方を間接的に冷却することはできても、あくまでも副次的な効果に止まり、水と空気を同時に冷却するシステムそのものは利用されていない。その理由は、このようなシステムを組むと冷凍サイクルが破壊されると考えられてきたことによると思われる。   However, a system for simultaneously cooling a liquid such as water and a gas has not been used. Conventional cooling devices have been developed to cool either water or air, and one can be indirectly cooled by directly cooling either one, but only to the secondary The system that cools water and air at the same time is not used. The reason seems to be that the refrigeration cycle has been considered to be destroyed when such a system is assembled.

また、冷却すべき対象物によって熱量が変化することも理由の一つである。すなわち、冷却装置は装置自体の簡略化のため、冷媒を循環させて冷媒がガス化する際の気化熱を利用して熱交換を行う冷凍サイクルが利用されているが、冷却熱量が余剰にある場合はガス化が完全に行われず、一部の冷媒が液体のままコンプレッサに還流されてコンプレッサを破損することがある。また一方で、冷却熱量が不足している場合は一気にガス化が進み、膨張により圧力の増加が急速に進んでコンプレッサを破損するおそれがあった。このような理由から、水等の冷媒を循環させて水と空気を同時に冷却するシステムは実用化されていなかった。   Another reason is that the amount of heat changes depending on the object to be cooled. That is, in order to simplify the cooling device itself, a refrigeration cycle is used in which heat is exchanged using the heat of vaporization when the refrigerant is circulated to gasify the refrigerant, but there is an excess amount of cooling heat. In this case, gasification is not completely performed, and some refrigerant may be returned to the compressor while being in a liquid state, and the compressor may be damaged. On the other hand, when the amount of heat of cooling is insufficient, gasification progresses at a stretch, and the pressure increases rapidly due to expansion, which may damage the compressor. For this reason, a system for simultaneously cooling water and air by circulating a coolant such as water has not been put into practical use.

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、水と空気を同時に冷却することのできる冷却装置を提供することにある。   The present invention has been made in view of such conventional problems. A main object of the present invention is to provide a cooling device capable of simultaneously cooling water and air.

上記目的を達成するために、本発明の第1の側面に係る冷却装置は、閉鎖空間内を一定温度以下に冷却する冷却装置であって、冷媒を一定量以上常時循環させる冷媒循環手段と、冷媒循環手段と接続された入口と出口を備え、冷媒を圧縮して昇圧可能な圧縮機と、冷媒循環手段と接続された入口と出口を備え、冷媒循環手段を介して入口側より送出される冷媒を蒸発させて気化させるための蒸発器と、圧縮機の出口側と蒸発器の入口側との間に接続され、冷媒を減圧して蒸発器側に送出するための膨張弁と、蒸発器から圧縮機に繋がる循環経路に、蒸発器から流出された液冷媒及び/又は高圧ガス冷媒から圧縮機を保護するための圧縮機保護手段とを備え、さらに、水を蒸発器の表面に散布するための水散布手段と、蒸発器の下方に配置され、水散布手段で散布された水を保持するための冷水槽と、冷水槽で保持された水を水散布手段まで循環するための水循環手段とを備える水冷却機構と、閉鎖空間内の空気を、蒸発器の表面に向かって噴射するように循環させるための空気循環手段とを備え、水散布手段で蒸発器の表面に散布された水は、蒸発器で冷却されて冷水槽に滴下され、同時に空気循環手段で蒸発器の表面に向かって噴射された空気は、蒸発器によって冷却されて閉鎖空間内を循環され、これによって閉鎖空間内の水及び空気を冷却するよう構成している。このように、冷媒の循環経路を設けると共に、水及び空気をそれぞれ循環させて蒸発器の表面で顕熱により冷却することで、水及び空気を同時に冷却できる3つの循環経路を備える冷却装置が実現できる。   In order to achieve the above object, a cooling device according to a first aspect of the present invention is a cooling device that cools the inside of a closed space to a constant temperature or lower, and a refrigerant circulation means that constantly circulates a refrigerant at a predetermined amount or more, The compressor has an inlet and an outlet connected to the refrigerant circulation means, can compress the refrigerant and can be pressurized, and has an inlet and an outlet connected to the refrigerant circulation means, and is sent from the inlet side through the refrigerant circulation means. An evaporator for evaporating and evaporating the refrigerant, an expansion valve connected between the outlet side of the compressor and the inlet side of the evaporator, decompressing the refrigerant and sending it to the evaporator side, and the evaporator And a compressor protection means for protecting the compressor from the liquid refrigerant and / or high-pressure gas refrigerant flowing out from the evaporator in a circulation path leading from the compressor to the compressor, and further spraying water on the surface of the evaporator For water spraying means, and placed below the evaporator A water cooling mechanism comprising a cold water tank for holding the water sprayed by the water spraying means, and a water circulation means for circulating the water held in the cold water tank to the water spraying means, and the air in the enclosed space, Air circulating means for circulating so as to spray toward the surface of the evaporator, the water sprayed on the surface of the evaporator by the water spraying means is cooled by the evaporator and dropped into the cold water tank, at the same time The air jetted toward the surface of the evaporator by the air circulation means is cooled by the evaporator and circulated in the closed space, thereby cooling the water and air in the closed space. In this way, a cooling apparatus having three circulation paths capable of simultaneously cooling water and air is realized by providing a refrigerant circulation path and circulating water and air respectively and cooling the surface of the evaporator with sensible heat. it can.

また、本発明の第2の側面に係る冷却装置は、圧縮機保護手段が、圧縮機の入口側に接続され、冷媒を気液分離し、気化された成分のみを圧縮機側に送出するための気液分離器と、気液分離器よりも圧縮機の入口側に接続され、冷媒の気化された成分の圧力を調整するための圧力調整弁とを備える。これによって、蒸発器から圧縮機に送出される冷媒に液冷媒が含まれて圧縮機を破損する事態を気液分離器で回避し、一方気化されたガスが高圧になって圧縮機を破損する事態を圧力調整弁で回避でき、各部材でそれぞれの事態に対処して確実に圧縮機を保護する。   In the cooling device according to the second aspect of the present invention, the compressor protection means is connected to the inlet side of the compressor, gas-liquid separation of the refrigerant, and only the vaporized component is sent to the compressor side. And a pressure adjusting valve connected to the inlet side of the compressor rather than the gas-liquid separator and for adjusting the pressure of the vaporized component of the refrigerant. As a result, the gas-liquid separator avoids a situation in which liquid refrigerant is contained in the refrigerant sent from the evaporator to the compressor and damages the compressor, while the vaporized gas becomes high pressure and damages the compressor. The situation can be avoided by the pressure regulating valve, and the compressor is reliably protected by dealing with each situation with each member.

さらに、本発明の第3の側面に係る冷却装置は、圧縮機が、定速圧縮機と可変容量圧縮機を個別に備え、定速圧縮機及び可変容量圧縮機が、それぞれ気液分離器及び圧力調整弁を個別に備える。この構成により、定速圧縮機で一定量の冷却能力を維持しつつ、可変容量圧縮機で冷却対象の負荷の量に応じて冷却能力を可変でき、効率よく冷却能力を発揮できる。   Further, in the cooling device according to the third aspect of the present invention, the compressor includes a constant speed compressor and a variable capacity compressor separately, and the constant speed compressor and the variable capacity compressor include a gas-liquid separator and a variable capacity compressor, respectively. A pressure regulating valve is provided separately. With this configuration, the constant capacity compressor can maintain a constant amount of cooling capacity, and the variable capacity compressor can vary the cooling capacity according to the amount of load to be cooled, thereby efficiently exhibiting the cooling capacity.

さらにまた、本発明の第4の側面に係る冷却装置は、圧縮機が、定速圧縮機と可変容量圧縮機を一体的に備える。これにより、定速圧縮機と可変容量圧縮機を一の圧縮機ユニットとして省スペース化を図ると共に気液分離器と圧力調整弁を共用でき低コスト化を実現できる。   Furthermore, in the cooling device according to the fourth aspect of the present invention, the compressor integrally includes a constant speed compressor and a variable capacity compressor. As a result, the constant speed compressor and the variable capacity compressor can be used as a single compressor unit to save space, and the gas-liquid separator and the pressure regulating valve can be shared, thereby reducing the cost.

以上のように、本発明の冷却装置によれば、水と閉鎖空間内の室温を同時に冷却することが可能となる。特に、蒸発器表面に水及び空気を同時に噴射し続けることで、氷温付近の低温に維持しつつ氷結を防止することができる。このように、従来成し得なかった冷水と冷気を同時に取り出すことのできる冷却装置を実現できる。   As described above, according to the cooling device of the present invention, it is possible to simultaneously cool water and the room temperature in the closed space. In particular, by continuously spraying water and air onto the evaporator surface, icing can be prevented while maintaining a low temperature around the ice temperature. In this way, it is possible to realize a cooling device that can simultaneously extract cold water and cold air that could not be achieved conventionally.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための冷却装置を例示するものであって、本発明は冷却装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a cooling device for embodying the technical idea of the present invention, and the present invention does not specify the cooling device as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, but are merely described. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Embodiment 1)

図1に、本発明の実施の形態1に係る冷却装置100の概略構成を示す。この図に示す冷却装置100は、冷凍機を構成する冷媒を圧縮可能な圧縮機10と、蒸発器20と、冷媒を一定量以上常時循環させる冷媒循環手段として、蒸発器20と圧縮機10の間で冷媒を循環させる冷媒循環経路22と、圧縮機10の出口側と蒸発器20の入口側との間に接続され、冷媒を減圧して蒸発器20側に送出するための膨張弁24とを備える。さらに蒸発器20の出口側と圧縮機10の入口側との間には、蒸発器20から流出された液冷媒や気化して高圧になった冷媒から圧縮機10を保護するための圧縮機保護手段30を設けている。これら圧縮機10、膨張弁24、蒸発器20、圧縮機保護手段30を冷媒が循環するように循環接続して、熱を冷体から熱体へ移す熱力学的サイクルである冷凍サイクルを構成する。
(蒸発器20)
FIG. 1 shows a schematic configuration of a cooling device 100 according to Embodiment 1 of the present invention. The cooling device 100 shown in this figure includes a compressor 10 capable of compressing a refrigerant constituting the refrigerator, an evaporator 20, and a refrigerant circulating means for constantly circulating a predetermined amount or more of the refrigerant between the evaporator 20 and the compressor 10. A refrigerant circulation path 22 that circulates the refrigerant between them, and an expansion valve 24 that is connected between the outlet side of the compressor 10 and the inlet side of the evaporator 20 to depressurize the refrigerant and send it to the evaporator 20 side. Is provided. Further, between the outlet side of the evaporator 20 and the inlet side of the compressor 10, a compressor protection for protecting the compressor 10 from the liquid refrigerant that has flowed out of the evaporator 20 and the refrigerant that has been vaporized to high pressure. Means 30 are provided. The compressor 10, the expansion valve 24, the evaporator 20, and the compressor protection means 30 are circulated and connected so that the refrigerant circulates, thereby constituting a refrigeration cycle that is a thermodynamic cycle for transferring heat from a cold body to a hot body. .
(Evaporator 20)

蒸発器20は、冷媒を蒸発させる際の気化熱によって熱交換を行うコンプレッサが使用できる。コンプレッサは内部中間圧型の多段(2段)圧縮式ロータリコンプレッサや単段のコンプレッサ、スクロール型のコンプレッサ等、種々のコンプレッサが適宜利用できる。   The evaporator 20 can use a compressor that performs heat exchange by heat of vaporization when the refrigerant is evaporated. As the compressor, various compressors such as an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor, a single-stage compressor, and a scroll-type compressor can be used as appropriate.

蒸発器20は、その表面を氷点以下とすることが可能である。氷点下以下の表面温度を持つ蒸発器20とすることにより、表面に付着した水及び表面に吹き付けられる空気を効率的に冷却できる。なお本明細書において冷却装置は、冷凍機のような氷点下以下に維持可能な機器の他、0℃以上の定温に維持するための冷却器も含む意味で使用する。
(圧縮機10)
The evaporator 20 can have a surface below the freezing point. By setting it as the evaporator 20 with the surface temperature below freezing point, the water adhering to the surface and the air sprayed on the surface can be cooled efficiently. In addition, in this specification, the cooling device is used to include a cooler for maintaining a constant temperature of 0 ° C. or higher, in addition to a device that can be maintained below the freezing point such as a refrigerator.
(Compressor 10)

圧縮機10は、定速圧縮機と可変容量圧縮機を備えた一体型の圧縮機ユニット11として構成される。定速圧縮機と可変容量圧縮機を併用することで、圧縮機の運転効率を向上できる。可変容量圧縮機は、インバータや極数変換により運転周波数を調整して単位時間当りの回転数(回転速度)が制御自在であり、これにより運転容量を可変に制御できるスクロールタイプである。インバータ方式では幅広い能力制御範囲が得られる。一方定速圧縮機は、一定速度で運転するため、効率よく運転できるが、運転容量を変化させることができない。本実施の形態では、図2に示すように定速圧縮機を使用しつつ、負荷の要求量に応じて可変容量圧縮機を切替あるいは併用する運転制御とし、運転効率の向上と容量変化への対応を図っている。特にインバータ駆動では要求負荷に対して効率良く運転できるので、消費電力量等の低減ができ地球環境保全に望ましいものとすることができる。   The compressor 10 is configured as an integrated compressor unit 11 including a constant speed compressor and a variable capacity compressor. By using a constant speed compressor and a variable capacity compressor together, the operating efficiency of the compressor can be improved. The variable capacity compressor is a scroll type in which the operation frequency can be adjusted by an inverter or pole number conversion, and the rotation speed (rotation speed) per unit time can be controlled, whereby the operation capacity can be variably controlled. The inverter system provides a wide range of capability control. On the other hand, since the constant speed compressor operates at a constant speed, it can be operated efficiently, but the operating capacity cannot be changed. In this embodiment, while using a constant speed compressor as shown in FIG. 2, it is set as the operation control which switches or uses a variable capacity compressor according to the request | requirement amount of load, and it improves an operating efficiency and changes to a capacity | capacitance. We are trying to cope. In particular, the inverter drive can efficiently operate with respect to the required load, so that the amount of power consumption can be reduced, which can be desirable for global environmental conservation.

また、これら定速圧縮機と可変容量圧縮機を圧縮機ユニット11とすることで、圧縮機10のサイズの小型化を図ると共に、圧縮機10の上流側に配置される気液分離器、圧力調整弁等の圧縮機保護手段30を共用でき、低コスト化を実現できる。
(実施の形態2)
Further, by making the constant speed compressor and the variable capacity compressor into the compressor unit 11, the size of the compressor 10 can be reduced, and the gas-liquid separator, the pressure disposed on the upstream side of the compressor 10 can be reduced. The compressor protection means 30 such as a regulating valve can be shared, and cost reduction can be realized.
(Embodiment 2)

ただ、圧縮機は定速圧縮機と可変容量圧縮機とを一体とした圧縮機ユニットに限られず、これらを個別に設けて切替あるいは併用して利用することも可能である。この例を実施の形態2として図3に示す。図3に示す冷却装置200は、可変容量圧縮機としてインバータ圧縮機12と、定速圧縮機14とを備える。各圧縮機は、それぞれ気液分離器32A、32Bと圧力調整弁34A、34Bを備えている。各圧縮機は連動して駆動され、図4に示すように負荷要求に応じて切替あるいは併用して駆動される。個別の圧縮機を設けることで、各圧縮機のメンテナンスが容易になり、安定して駆動できる。
(圧縮機保護手段30)
However, the compressor is not limited to a compressor unit in which a constant speed compressor and a variable capacity compressor are integrated, and these can be individually provided and switched or used together. This example is shown in FIG. A cooling device 200 shown in FIG. 3 includes an inverter compressor 12 and a constant speed compressor 14 as variable capacity compressors. Each compressor includes gas-liquid separators 32A and 32B and pressure regulating valves 34A and 34B, respectively. The compressors are driven in conjunction with each other, and are switched or used together according to the load request as shown in FIG. By providing an individual compressor, maintenance of each compressor becomes easy and can be driven stably.
(Compressor protection means 30)

圧縮機10の上流側、すなわち蒸発器20の出口側と圧縮機10の入口側との間には圧縮機保護手段30が設けられる。圧縮機保護手段30は、冷媒を気液分離し、気化された成分のみを蒸発器20側に送出する気液分離器32と、冷媒の気化された成分の圧力を調整するための圧力調整弁34で構成される。図1の例では、圧力調整弁34を気液分離器32よりも下流側、すなわち蒸発器20に近い側に配置している。これによって、圧力調整弁34の上流側に気液分離器32を配置して多少容量を大きくできるので、容量分の減圧効果が期待できる。
(気液分離器32)
A compressor protection means 30 is provided on the upstream side of the compressor 10, that is, between the outlet side of the evaporator 20 and the inlet side of the compressor 10. The compressor protection means 30 gas-liquid separates the refrigerant, sends only the vaporized component to the evaporator 20 side, and a pressure adjustment valve for adjusting the pressure of the vaporized component of the refrigerant 34. In the example of FIG. 1, the pressure adjustment valve 34 is disposed downstream of the gas-liquid separator 32, that is, on the side closer to the evaporator 20. As a result, the gas-liquid separator 32 can be arranged on the upstream side of the pressure regulating valve 34 and the capacity can be increased somewhat, so that a decompression effect corresponding to the capacity can be expected.
(Gas-liquid separator 32)

気液分離器32は、液冷媒を貯留し、気化されない液冷媒が圧縮機10に吸入されるのを防止する。好適にはアキュムレータが利用できる。アキュムレータは、蒸発器20を通過して気化した冷媒を一時的に溜め、一部液体の状態で流れてきた冷媒が直接圧縮機10に流れるのを防ぐために設置されるものであり、一般に外気と熱交換して冷媒を気化している。例えば、蒸発器20の容量が負荷に対して過剰となり、蒸発器20内で蒸発しないままに送出されてきた液冷媒や、除氷時に蒸発器20内で凝縮された液冷媒がアキュムレータに溜められ、圧縮機10が液冷媒を吸引することに起因する故障の防止等を図っている。また気液分離器32は、レシーバタンクとすることもでき、レシーバタンクで液冷媒を溜め、ガスのみを圧縮機10に吸い込ませる構成としてもよい。また気液分離器32やレシーバタンク内の液冷媒が圧縮機10に戻らないように、絞り手段を設けて調整することもできる。
(圧力調整弁34)
The gas-liquid separator 32 stores the liquid refrigerant and prevents the liquid refrigerant that is not vaporized from being sucked into the compressor 10. An accumulator is preferably used. The accumulator is installed to temporarily store the refrigerant evaporated through the evaporator 20 and prevent the refrigerant that has partially flowed into the compressor 10 from flowing directly to the compressor 10. The refrigerant is vaporized through heat exchange. For example, the capacity of the evaporator 20 is excessive with respect to the load, and liquid refrigerant that has been sent out without being evaporated in the evaporator 20 or liquid refrigerant that has been condensed in the evaporator 20 during deicing is stored in the accumulator. The compressor 10 is designed to prevent failure caused by sucking the liquid refrigerant. The gas-liquid separator 32 may be a receiver tank, and may be configured such that liquid refrigerant is stored in the receiver tank and only gas is sucked into the compressor 10. Further, it is possible to adjust by providing a throttle means so that the liquid refrigerant in the gas-liquid separator 32 and the receiver tank does not return to the compressor 10.
(Pressure adjustment valve 34)

圧力調整弁34は、圧力を所定圧に調圧するレギュレータである。負荷が大きい場合等に冷媒がすべて気化して高圧になると、圧縮機10の入口側に過大な圧力が印加されて破損するおそれがある。このため、圧力調整弁34でガス冷媒の圧力を一定以下に抑える。ここでは、圧力調整弁34は、圧力を検知し、圧力が所定圧力以上になると弁を開けて圧力を下げるように圧力調整を行う。具体的には、圧力により移動する弁体で流体通路の開口面積を変化させて圧力を調整する。   The pressure regulating valve 34 is a regulator that regulates the pressure to a predetermined pressure. If the refrigerant is completely vaporized and has a high pressure, such as when the load is large, an excessive pressure may be applied to the inlet side of the compressor 10 to cause damage. For this reason, the pressure of the gas refrigerant is suppressed to a certain level or less by the pressure adjusting valve 34. Here, the pressure adjustment valve 34 detects the pressure, and performs pressure adjustment so that the valve is opened and the pressure is reduced when the pressure exceeds a predetermined pressure. Specifically, the pressure is adjusted by changing the opening area of the fluid passage with a valve body that moves by pressure.

アキュムレータや圧力調整弁は、超臨界冷凍サイクルには一般に使用されるが、0℃近傍の温度に維持するような空調用途では従来殆ど採用されていなかった。その理由は、極低温でなければこれらが特に必要でないこと、また構造の複雑化やコストアップを避けること等であった。これに対して本実施の形態では、空調のための冷凍サイクルに加えて、水及び空気を循環させる二重構造のため、冷却能力のむらが生じやすくなる。すなわち、負荷の状態によっては液冷媒が圧縮機に流入したり、逆にすべて気化したガス冷媒が高圧となるおそれがあり、このような状態から圧縮機の保護を図る必要がある。そこで、圧縮機を適切に保護して安定して冷却能力を発揮するために、気液分離器と圧力調整弁を設けたものである。   An accumulator and a pressure regulating valve are generally used in a supercritical refrigeration cycle, but have been hardly employed in the past in air conditioning applications in which the temperature is maintained near 0 ° C. The reason is that these are not particularly necessary unless the temperature is extremely low, and that the structure is complicated and the cost is avoided. On the other hand, in this embodiment, in addition to the refrigeration cycle for air conditioning, the cooling structure tends to have unevenness because of the dual structure in which water and air are circulated. That is, depending on the state of the load, the liquid refrigerant may flow into the compressor, or conversely, the vaporized gas refrigerant may have a high pressure, and it is necessary to protect the compressor from such a state. Therefore, a gas-liquid separator and a pressure adjusting valve are provided in order to appropriately protect the compressor and stably exhibit the cooling capacity.

冷媒には、既知の流体が利用でき、必要に応じて不凍液、金属腐食防止剤、消泡剤、漏洩防止剤等を混入させて信頼性を向上させる。   As the refrigerant, a known fluid can be used, and if necessary, an antifreeze, a metal corrosion inhibitor, an antifoaming agent, a leakage preventing agent, or the like is mixed to improve reliability.

これら圧縮機10、蒸発器20、膨張弁24等、冷凍サイクルを構成する部材は、従来の冷凍装置に利用されている部材若しくは将来開発される部材が適宜利用できる。なお蒸発器20の表面温度や冷却装置の冷却温度は、使用される用途に応じて任意に設定でき、氷点下以下の冷凍温度や、氷結しない0℃近辺の冷蔵温度等が利用できる。例えば中抜き屠体の冷却用途では、0.5〜3℃程度に維持する。
(水冷却機構40)
As the members constituting the refrigeration cycle, such as the compressor 10, the evaporator 20, and the expansion valve 24, members used in conventional refrigeration apparatuses or members developed in the future can be appropriately used. Note that the surface temperature of the evaporator 20 and the cooling temperature of the cooling device can be arbitrarily set according to the application to be used, and a freezing temperature below the freezing point, a refrigeration temperature around 0 ° C. where no freezing, or the like can be used. For example, in the cooling use of the hollow carcass, the temperature is maintained at about 0.5 to 3 ° C.
(Water cooling mechanism 40)

さらにこの冷却装置は、閉鎖空間内で水を散布し、かつこの水を冷却する水冷却機構40を設けている。水冷却機構40は、水を蒸発器20の表面に散布する水散布手段42と、蒸発器20の下方に配置され、水散布手段42で散布された水を保持するための冷水槽44と、冷水槽44で保持された水を水散布手段42まで循環するための水循環手段46とを備える。水循環手段46は、冷水槽44の水を汲み上げる水循環ポンプが利用できる。また水散布手段42は、水循環ポンプと連結されて、蒸発器20の表面に向かって開口された噴射ノズルとできる。これにより、水をシャワー状に蒸発器20に噴射或いは噴霧でき、効率的な水の冷却が実現できる。水循環ポンプは、水を連続的に循環させて常時噴射させることによって、氷結を防止できる。
(空気循環手段50)
Furthermore, this cooling device is provided with a water cooling mechanism 40 for spraying water in the closed space and cooling the water. The water cooling mechanism 40 includes a water spraying means 42 for spraying water on the surface of the evaporator 20, a cold water tank 44 that is disposed below the evaporator 20 and holds water sprayed by the water spraying means 42, Water circulation means 46 for circulating water held in the cold water tank 44 to the water spraying means 42 is provided. As the water circulation means 46, a water circulation pump that pumps up the water in the cold water tank 44 can be used. Further, the water spraying means 42 can be an injection nozzle that is connected to a water circulation pump and opens toward the surface of the evaporator 20. Thereby, water can be sprayed or sprayed on the evaporator 20 like a shower, and efficient cooling of water can be realized. The water circulation pump can prevent freezing by continuously circulating water and always injecting it.
(Air circulation means 50)

さらに冷却装置は、水冷却機構40に加えて、閉鎖空間内の空気を循環させて冷却させる空気循環手段50を備えている。空気循環手段50が、空気を蒸発器20の表面に向かって循環送風する送風ファン54が好適に利用できる。これにより、簡単な構成で閉鎖空間内の空気を循環させて室温冷却効果を得ることができる。また、送風ファン54で空気を送風パイプに送出し、空気噴射ノズル58から蒸発器20の表面に向かって直接噴射する構成とすることもできる。また空気噴射ノズル58から空気を加圧、付勢して噴射させてもよい。   In addition to the water cooling mechanism 40, the cooling device further includes air circulation means 50 that circulates and cools the air in the closed space. A blower fan 54 in which the air circulation means 50 circulates air toward the surface of the evaporator 20 can be suitably used. Thereby, the air in closed space can be circulated with a simple structure, and the room temperature cooling effect can be acquired. Moreover, it can also be set as the structure which sends out air to a ventilation pipe with the ventilation fan 54, and injects directly toward the surface of the evaporator 20 from the air injection nozzle 58. FIG. In addition, air may be injected from the air injection nozzle 58 by being pressurized and energized.

このように、本実施の形態に係る冷却装置では、単に閉鎖空間内の空気を冷却するために冷凍サイクルを構築して送風ファン54で室内空気を循環させるのみならず、水を散布する機構を備え、かつこの水を蒸発器20で同時に冷却することで、空気と水の同時冷却を実現している。特に、水を冷却するために冷凍サイクルの蒸発器20表面を利用し、ここに直接水を連続的に噴射することで、水を凍らせることなく冷却することができる。水は蒸発器20の下方に配置された冷水槽44で回収され、水循環ポンプで汲み上げて噴射ノズルから連続的に噴射されるため、蒸発器20表面で霜状に付着することも回避できる。また、蒸発器20の負荷を考慮し、水温に応じて噴射量を調整するよう制御することもできる。例えば、蒸発器20の表面温度や水槽内の水温を検出する温度センサTを設け、温度センサの出力を水循環ポンプの運転や噴射ノズルの噴射圧を制御するコントローラCに接続し、センサの信号に基づいて運転量をフィードバック制御することもできる。同様に、送風ファンの送風量も室内の気温に応じて制御することもできる。   Thus, in the cooling device according to the present embodiment, not only a refrigeration cycle is constructed to cool the air in the closed space and the indoor air is circulated by the blower fan 54, but also a mechanism for spraying water. In addition, the water is simultaneously cooled by the evaporator 20 to realize simultaneous cooling of air and water. In particular, by using the surface of the evaporator 20 of the refrigeration cycle in order to cool the water and spraying water directly directly onto the surface, the water can be cooled without freezing. Since water is collected in a cold water tank 44 disposed below the evaporator 20, pumped up by a water circulation pump and continuously injected from the injection nozzle, it is possible to avoid frost-like adhesion on the surface of the evaporator 20. Further, it is possible to control the injection amount to be adjusted according to the water temperature in consideration of the load of the evaporator 20. For example, a temperature sensor T that detects the surface temperature of the evaporator 20 and the water temperature in the water tank is provided, and the output of the temperature sensor is connected to a controller C that controls the operation of the water circulation pump and the injection pressure of the injection nozzle. Based on this, the driving amount can be feedback-controlled. Similarly, the amount of air blown from the blower fan can also be controlled according to the room temperature.

なお、水は閉鎖空間内で使用される水と併用でき、例えば中抜き屠体の洗浄、冷却設備に冷却装置を適用する場合は、中抜き屠体に噴射される水を、冷却用の水として利用できる。この場合、水に必要に応じて殺菌剤等を添加できる。このように、本実施の形態に係る冷却装置が利用される状況に応じて、水には適宜添加剤等を添加できる。また、水溶液のみならず他の液体を利用することもできる。同様に本実施の形態に係る冷却装置は、閉鎖空間内に充填される気体を冷却することができるので、空気に限られず混合ガスその他の気体を適宜利用できることも言うまでもない。   Water can be used in combination with water used in a closed space. For example, when a cooling device is applied to a cleaning and cooling facility for a hollow carcass, the water sprayed on the hollow carcass is used as cooling water. Available as In this case, a disinfectant etc. can be added to water as needed. Thus, depending on the situation where the cooling device according to the present embodiment is used, an additive or the like can be appropriately added to the water. In addition to the aqueous solution, other liquids can be used. Similarly, since the cooling device according to the present embodiment can cool the gas filled in the closed space, it is needless to say that not only air but also a mixed gas or other gas can be used as appropriate.

次に、冷却装置を工場や作業室等の閉鎖空間に配置する例について説明する。図5は、中抜き屠体の冷却施設に冷却装置300を設置する例を示している。この図に示すように、室内の所望の位置、好ましくは上方に蒸発器20C等の冷却ユニットを配置し、蒸発器20Cの上方に噴射ノズル43を、噴射口の少なくとも一部が蒸発器20Cを向く姿勢に固定する。また下部に冷水槽44Cを設け、滴下した水を集めて水循環ポンプ47で汲み上げ、噴射ノズル43に供給するよう循環させる。なおこの例では、ベルトコンベアBで搬送された冷却対象物Wである屠体に冷水を噴射して冷却するために、冷水噴射ノズルNも配置している。この冷水噴射ノズルNから噴射される冷水を、冷水槽44Cに蓄えられて循環される水と共用できることは言うまでもない。   Next, an example in which the cooling device is arranged in a closed space such as a factory or a work room will be described. FIG. 5 shows an example in which the cooling device 300 is installed in the cooling facility for the hollow carcass. As shown in this figure, a cooling unit such as an evaporator 20C is arranged at a desired position in the room, preferably above, an injection nozzle 43 above the evaporator 20C, and at least a part of the injection port with the evaporator 20C. Fix the posture to face. Further, a cold water tank 44C is provided at the lower portion, and the dropped water is collected, pumped up by a water circulation pump 47, and circulated so as to be supplied to the injection nozzle 43. In this example, in order to cool the carcass that is the cooling object W conveyed by the belt conveyor B by injecting the cold water, the cold water injection nozzle N is also arranged. Needless to say, the cold water jetted from the cold water jet nozzle N can be shared with the water stored and circulated in the cold water tank 44C.

一方、仕切り板52等で室内空気の循環経路を構成すると共に、循環経路に送風ファン54を配置して空気を強制的に循環させる。送風ファン54の送風が直接蒸発器20C表面に当たるよう、好ましくは送風ファン54は蒸発器20Cに近い位置に配置する。   On the other hand, the partition plate 52 and the like constitute a circulation path for room air, and a blower fan 54 is disposed in the circulation path to forcibly circulate the air. The blower fan 54 is preferably arranged at a position close to the evaporator 20C so that the blown air from the blower fan 54 directly hits the surface of the evaporator 20C.

噴射ノズルNで蒸発器20Cの表面に散布された水は、蒸発器20Cで冷却されて冷水槽44Cに滴下される。同時に、送風ファン54で蒸発器20Cの表面に向かって噴射された空気は、蒸発器20Cによって冷却されて閉鎖空間内を循環され、水及び空気が同時に冷却される。このように、冷媒及び空気の循環に加えて、水の循環も組み合わせ、効率的な冷却が図られる。特に、本来的に水を使用する場面においては、この水を冷却に直接的に関与させて、さらに冷却能力を高めることができる。   Water sprayed on the surface of the evaporator 20C by the spray nozzle N is cooled by the evaporator 20C and dropped into the cold water tank 44C. At the same time, the air injected by the blower fan 54 toward the surface of the evaporator 20C is cooled by the evaporator 20C and circulated in the closed space, and water and air are simultaneously cooled. Thus, in addition to the circulation of the refrigerant and air, the circulation of water is also combined to achieve efficient cooling. In particular, in a scene where water is originally used, this cooling water can be directly involved in cooling to further increase the cooling capacity.

また閉鎖空間を構成する壁材56に断熱材を備えることで、閉鎖空間を外気と遮断して冷却効果を維持する。   Further, by providing the wall material 56 constituting the closed space with a heat insulating material, the closed space is blocked from the outside air and the cooling effect is maintained.

さらに、複数の部屋を連結した空間においても、水及び空気を効率的に冷却することもできる。図6に示す例では、図5の部屋を3つ連結しており、各部屋に冷却装置400を配置して、部屋毎の冷却を行っている。また、大容量の冷却装置を一台設置して各部屋の冷却を兼用したり、一部屋に複数台の冷却装置を設置して冷却能力を向上させてもよい。さらに、冷却対象物Wの搬送方法は、ベルトコンベアに限られず、例えば図7に示すようにハンガー等で懸吊された屠体(図示せず)に冷水を噴射して冷却する構成等も採用できる。   Furthermore, water and air can be efficiently cooled even in a space where a plurality of rooms are connected. In the example shown in FIG. 6, three rooms in FIG. 5 are connected, and a cooling device 400 is arranged in each room to cool each room. Further, a single large-capacity cooling device may be installed to double the cooling of each room, or a plurality of cooling devices may be installed in one room to improve the cooling capacity. Furthermore, the method for transporting the cooling object W is not limited to the belt conveyor, and for example, a configuration in which cold water is injected and cooled on a carcass (not shown) suspended by a hanger as shown in FIG. it can.

本発明の冷却装置は、鳥類、魚類、甲殻類、貝類、哺乳類等の食用動物の屠体を冷却する冷却処理等に好適に使用できる。   The cooling device of the present invention can be suitably used for cooling treatment for cooling carcasses of food animals such as birds, fish, crustaceans, shellfish, and mammals.

本発明の実施の形態1に係る冷却装置を示す模式図である。It is a schematic diagram which shows the cooling device which concerns on Embodiment 1 of this invention. 図1の冷却装置において、負荷要求に対する圧縮機の運転切り替えを示すグラフである。2 is a graph showing operation switching of a compressor with respect to a load request in the cooling device of FIG. 1. 本発明の実施の形態2に係る冷却装置を示す模式図である。It is a schematic diagram which shows the cooling device which concerns on Embodiment 2 of this invention. 図3の冷却装置において、負荷要求に対する圧縮機の運転切り替えを示すグラフである。4 is a graph showing operation switching of the compressor with respect to a load request in the cooling device of FIG. 3. 冷却装置を閉鎖空間に配置した様子を示す模式図である。It is a schematic diagram which shows a mode that the cooling device has been arrange | positioned in closed space. 複数の部屋を連結した空間内に冷却装置を配置した様子を示す模式図である。It is a schematic diagram which shows a mode that the cooling device has been arrange | positioned in the space which connected the several room. 複数の部屋を連結した空間内に冷却装置を配置した他の例を示す模式図である。It is a schematic diagram which shows the other example which has arrange | positioned the cooling device in the space which connected the several room. 従来の冷凍機の一例を示すブロック図である。It is a block diagram which shows an example of the conventional refrigerator.

符号の説明Explanation of symbols

100、200、300、400…冷却装置
1…圧縮機
2…蒸発器
3…凝縮器
4…受液器
5…膨張弁
10…圧縮機
11…圧縮機ユニット
12…インバータ圧縮機
14…定速圧縮機
20、20C…蒸発器
22…冷媒循環経路
24…膨張弁
30…圧縮機保護手段
32、32A、32B…気液分離器
34、34A、34B…圧力調整弁
40…水冷却機構
42…水散布手段
43…噴射ノズル
44、44C…冷水槽
46…水循環手段
47…水循環ポンプ
50…空気循環手段
52…仕切り板
54…送風ファン
56…壁材
58…空気噴射ノズル
T…温度センサ
C…コントローラ
N…冷水噴射ノズル
B…ベルトコンベア
W…冷却対象物
DESCRIPTION OF SYMBOLS 100, 200, 300, 400 ... Cooling device 1 ... Compressor 2 ... Evaporator 3 ... Condenser 4 ... Liquid receiver 5 ... Expansion valve 10 ... Compressor 11 ... Compressor unit 12 ... Inverter compressor 14 ... Constant speed compression Machine 20, 20C ... Evaporator 22 ... Refrigerant circulation path 24 ... Expansion valve 30 ... Compressor protection means 32, 32A, 32B ... Gas-liquid separator 34, 34A, 34B ... Pressure regulating valve 40 ... Water cooling mechanism 42 ... Water spraying Means 43 ... Injection nozzle 44, 44C ... Cold water tank 46 ... Water circulation means 47 ... Water circulation pump 50 ... Air circulation means 52 ... Partition plate 54 ... Blower fan 56 ... Wall material 58 ... Air injection nozzle T ... Temperature sensor C ... Controller N ... Cold water injection nozzle B ... Belt conveyor W ... Cooling object

Claims (4)

閉鎖空間内を一定温度以下に冷却する冷却装置であって、
冷媒を一定量以上常時循環させる冷媒循環手段と、
前記冷媒循環手段と接続された入口と出口を備え、冷媒を圧縮して昇圧可能な圧縮機と、
前記冷媒循環手段と接続された入口と出口を備え、前記冷媒循環手段を介して前記入口側より送出される前記冷媒を蒸発させて気化させるための蒸発器と、
前記圧縮機の出口側と前記蒸発器の入口側との間に接続され、冷媒を減圧して蒸発器側に送出するための膨張弁と、
蒸発器から圧縮機に繋がる循環経路に、蒸発器から流出された液冷媒及び/又は高圧ガス冷媒から前記圧縮機を保護するための圧縮機保護手段と、
を備え、さらに、
水を前記蒸発器の表面に散布するための水散布手段と、
前記蒸発器の下方に配置され、前記水散布手段で散布された水を保持するための冷水槽と、
前記冷水槽で保持された水を前記水散布手段まで循環するための水循環手段と、
を備える水冷却機構と、
閉鎖空間内の空気を、前記蒸発器の表面に向かって噴射するように循環させるための空気循環手段と、
を備え、
前記水散布手段で前記蒸発器の表面に散布された水は、前記蒸発器で冷却されて前記冷水槽に滴下され、同時に前記空気循環手段で前記蒸発器の表面に向かって噴射された空気は、前記蒸発器によって冷却されて閉鎖空間内を循環され、これによって閉鎖空間内の水及び空気を冷却するよう構成してなることを特徴とする冷却装置。
A cooling device for cooling the enclosed space to a certain temperature or lower,
A refrigerant circulation means for constantly circulating the refrigerant at a predetermined amount or more;
A compressor having an inlet and an outlet connected to the refrigerant circulation means, and capable of compressing and increasing the pressure of the refrigerant;
An evaporator provided with an inlet and an outlet connected to the refrigerant circulating means, and an evaporator for evaporating and evaporating the refrigerant sent from the inlet side via the refrigerant circulating means;
An expansion valve connected between the outlet side of the compressor and the inlet side of the evaporator, for decompressing the refrigerant and sending it to the evaporator side;
Compressor protection means for protecting the compressor from liquid refrigerant and / or high-pressure gas refrigerant flowing out from the evaporator in a circulation path leading from the evaporator to the compressor;
In addition,
Water spraying means for spraying water on the surface of the evaporator;
A cold water tank disposed below the evaporator and holding water sprayed by the water spraying means;
Water circulation means for circulating water held in the cold water tank to the water spraying means;
A water cooling mechanism comprising:
Air circulating means for circulating air in a closed space so as to be jetted toward the surface of the evaporator;
With
The water sprayed on the surface of the evaporator by the water spraying means is cooled by the evaporator and dropped into the cold water tank, and at the same time, the air jetted toward the surface of the evaporator by the air circulation means is The cooling device is configured to be cooled by the evaporator and circulated in a closed space, thereby cooling water and air in the closed space.
請求項1に記載の冷却装置であって、
前記圧縮機保護手段は、
前記圧縮機の入口側に接続され、前記冷媒を気液分離し、気化された成分のみを前記圧縮機側に送出するための気液分離器と、
前記気液分離器よりも前記圧縮機の入口側に接続され、前記冷媒の気化された成分の圧力を調整するための圧力調整弁と、
を備えることを特徴とする冷却装置。
The cooling device according to claim 1,
The compressor protection means includes
A gas-liquid separator connected to the inlet side of the compressor, for gas-liquid separation of the refrigerant, and for sending only vaporized components to the compressor side;
A pressure regulating valve connected to an inlet side of the compressor rather than the gas-liquid separator, and for regulating a pressure of a vaporized component of the refrigerant;
A cooling device comprising:
請求項1又は2に記載の冷却装置であって、
前記圧縮機が、定速圧縮機と可変容量圧縮機を個別に備え、
前記定速圧縮機及び可変容量圧縮機が、それぞれ気液分離器及び圧力調整弁を個別に備えることを特徴とする冷却装置。
The cooling device according to claim 1 or 2,
The compressor comprises a constant speed compressor and a variable capacity compressor separately,
The cooling device, wherein the constant speed compressor and the variable capacity compressor are individually provided with a gas-liquid separator and a pressure regulating valve, respectively.
請求項1又は2に記載の冷却装置であって、
前記圧縮機が、定速圧縮機と可変容量圧縮機を一体的に備えることを特徴とする冷却装置。
The cooling device according to claim 1 or 2,
The cooling device, wherein the compressor is integrally provided with a constant speed compressor and a variable capacity compressor.
JP2005171751A 2005-06-10 2005-06-10 Cooling device Pending JP2006343084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171751A JP2006343084A (en) 2005-06-10 2005-06-10 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171751A JP2006343084A (en) 2005-06-10 2005-06-10 Cooling device

Publications (1)

Publication Number Publication Date
JP2006343084A true JP2006343084A (en) 2006-12-21

Family

ID=37640175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171751A Pending JP2006343084A (en) 2005-06-10 2005-06-10 Cooling device

Country Status (1)

Country Link
JP (1) JP2006343084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107060915A (en) * 2017-06-07 2017-08-18 重庆大学 Heat pump cycle water backheat Rankine cycle system
CN109099617A (en) * 2018-09-03 2018-12-28 浙江杭强制冷设备有限公司 A kind of Vaporizor for refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107060915A (en) * 2017-06-07 2017-08-18 重庆大学 Heat pump cycle water backheat Rankine cycle system
CN109099617A (en) * 2018-09-03 2018-12-28 浙江杭强制冷设备有限公司 A kind of Vaporizor for refrigerator

Similar Documents

Publication Publication Date Title
JP4465686B2 (en) Ammonia / CO2 refrigeration system
US11585608B2 (en) Climate-control system having thermal storage tank
US8109327B2 (en) Temperature control system having heat exchange modules with indirect expansion cooling and in-tube electric heating
KR101760694B1 (en) Cooling mechanism for data center
US9719699B2 (en) Refrigeration device
US10539357B2 (en) Refrigerator and method of controlling the same
CN212179341U (en) Water circulation type cooling system
JP2005172416A (en) Ammonia/co2 refrigeration system
JP2011017455A (en) Turbo refrigerator
JP3461736B2 (en) refrigerator
CN212362559U (en) Diversified refrigeration equipment
JP2006343084A (en) Cooling device
JP2008138979A (en) Refrigeration system
JP3410408B2 (en) refrigerator
CN103486751B (en) Refrigerating circulatory device
JP2003207250A (en) Refrigerator
JP2013104574A (en) Refrigeration device for fishing boat
US20040104278A1 (en) System and apparatus for refrigeration and heating
CN106679211B (en) Indoor cooling and snow making two-in-one system
JP5744424B2 (en) Freezer device and operation control method thereof
JP2001033140A (en) Stirling refrigerator
JP2011112316A (en) Cooling device
CN106257183A (en) There is refrigerator and the control method of described structure of cooling air circulation structure
US20220282900A1 (en) No-frost heat pump
JP3430159B2 (en) refrigerator