JP2006342975A - Dynamic pressure type bearing device - Google Patents

Dynamic pressure type bearing device Download PDF

Info

Publication number
JP2006342975A
JP2006342975A JP2006259446A JP2006259446A JP2006342975A JP 2006342975 A JP2006342975 A JP 2006342975A JP 2006259446 A JP2006259446 A JP 2006259446A JP 2006259446 A JP2006259446 A JP 2006259446A JP 2006342975 A JP2006342975 A JP 2006342975A
Authority
JP
Japan
Prior art keywords
bearing
housing
thrust
thrust plate
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006259446A
Other languages
Japanese (ja)
Inventor
Tsuguto Nakaseki
嗣人 中関
Kazuo Okamura
一男 岡村
Masayuki Kuroda
正幸 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006259446A priority Critical patent/JP2006342975A/en
Publication of JP2006342975A publication Critical patent/JP2006342975A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately set a thrust bearing clearance in a thrust bearing part. <P>SOLUTION: A rotary shaft 2 is inserted into a housing 7, and the lower end face 2b2 of a thrust plate 2b is brought into contact with the inner bottom face 7c1 of the housing 7. Thereafter, when a bearing member 8 is pushed along the inner peripheral face 7a of the housing 7 till it abuts on the upper end face 2b1 of the thrust plate 2b, the fixing position of the bearing member 8 is determined relative to the housing 7. After fixing the bearing member 8 at this position, a solvent is supplied into the housing 7 to dissolve a resin layer 19 for elimination. When the resin layer 19 is eliminated, a thrust bearing clearance having a width equal to thickness δ of the resin layer 19 is formed between the lower end face 8b of the bearing member 8 and the inner bottom face 7c1 of the housing 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、動圧型軸受装置に関する。この軸受装置は、特に情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、DVD−ROM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータなどのスピンドル支持用として好適である。   The present invention relates to a hydrodynamic bearing device. This bearing device is especially a spindle motor such as an information device, for example, a magnetic disk device such as HDD or FDD, an optical disk device such as CD-ROM or DVD-ROM, a magneto-optical disk device such as MD or MO, or a laser beam printer ( It is suitable for supporting a spindle such as a polygon scanner motor of LBP).

上記各種情報機器のスピンドルモータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧型軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, spindle motors of the various information devices are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor.In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied as this type of bearing. Or it is actually used.

図7は、HDD等のディスク装置のスピンドルモータに組込まれる動圧型軸受装置の一構成例を示している(例えば、特許文献1参照)。この動圧軸受装置には、軸部材としての回転軸20をラジアル方向に回転自在に非接触支持するラジアル軸受部21と、回転軸20をスラスト方向に回転自在に非接触支持するスラスト軸受部22とが設けられ、これらの軸受部21、22は何れも軸受面に動圧発生用の溝(動圧溝)を有する動圧型軸受である。ラジアル軸受部21の動圧溝は、ハウジング23の内周面(ラジアル軸受面)23a又は回転軸20の外周面に形成され、スラスト軸受部22の動圧溝は、回転軸20の下端に設けられたスラスト板20bの両端面20b1、20b2、あるいは、これに対向する面(スラスト軸受面)にそれぞれ形成される。ハウジング23の側部23bの下方部分には、スラスト板20bの幅寸法にスラスト軸受隙間の大きさ(両側で10〜20μm程度)を加算した幅寸法の段差部23cが設けられ、この段差部23cに続くインロー部23dに底部(バックメタル)23eを組み込むことによって、スラスト板20bの軸方向両側に所定値のスラスト軸受隙間S1、S2が形成される。
特開平10−269691号公報
FIG. 7 shows a configuration example of a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD (see, for example, Patent Document 1). The hydrodynamic bearing device includes a radial bearing portion 21 that supports a rotary shaft 20 as a shaft member in a non-contact manner so as to be rotatable in a radial direction, and a thrust bearing portion 22 that supports the rotary shaft 20 in a non-contact manner so as to be rotatable in a thrust direction. These bearing portions 21 and 22 are both dynamic pressure bearings having a dynamic pressure generating groove (dynamic pressure groove) on the bearing surface. The dynamic pressure groove of the radial bearing portion 21 is formed on the inner peripheral surface (radial bearing surface) 23 a of the housing 23 or the outer peripheral surface of the rotary shaft 20, and the dynamic pressure groove of the thrust bearing portion 22 is provided at the lower end of the rotary shaft 20. The thrust plate 20b is formed on both end surfaces 20b1 and 20b2 or on the opposite surfaces (thrust bearing surfaces). A step portion 23c having a width dimension obtained by adding the size of the thrust bearing gap (approximately 10 to 20 μm on both sides) to the width dimension of the thrust plate 20b is provided at a lower portion of the side portion 23b of the housing 23. By incorporating the bottom (back metal) 23e into the following spigot 23d, thrust bearing gaps S1, S2 having predetermined values are formed on both axial sides of the thrust plate 20b.
Japanese Patent Laid-Open No. 10-269691

上記軸受装置において、スラスト軸受隙間S1、S2を所定値に設定するためには、ハウジング23の段差部23cの幅寸法(軸方向寸法)とスラスト板20bの幅寸法を精度良く管理する必要があり、段差部23cの幅寸法を精度良く管理することは、ハウジング23の製造工数や製造コストを増加させる一因となる。   In the above bearing device, in order to set the thrust bearing gaps S1 and S2 to predetermined values, it is necessary to accurately manage the width dimension (axial dimension) of the step portion 23c of the housing 23 and the width dimension of the thrust plate 20b. Managing the width dimension of the step portion 23c with high accuracy contributes to an increase in the number of manufacturing steps and manufacturing cost of the housing 23.

そこで、本発明は、スラスト軸受部のスラスト軸受隙間を簡易かつ精度良く設定することができる構成を提供し、それによって、この種の動圧型軸受装置の優れた軸受性能を確保しつつ、製造コストをさらに低減させることを目的とする。   Therefore, the present invention provides a configuration capable of easily and accurately setting the thrust bearing gap of the thrust bearing portion, thereby ensuring the excellent bearing performance of this type of hydrodynamic bearing device, and manufacturing cost. It aims at further reducing.

本発明は、上記目的を達成するため、円筒状の内周面を有する有底筒状のハウジングと、ハウジングの内周面に固定された軸受部材と、軸受部材の内周面に挿入される軸部と、軸部に設けられたスラスト板とを有する軸部材と、軸受部材の内周面と、軸部材の軸部の外周面との間に設けられ、軸部材と軸受部材との相対回転時に生じる動圧作用で軸部をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材のスラスト板の両端面と、軸受部材の下端面およびハウジングの内底面との間にそれぞれ設けられ、軸部材と軸受部材との相対回転時に生じる動圧作用で前記スラスト板をスラスト方向に回転自在に非接触支持するスラスト軸受部とを備えた動圧型軸受装置であって、この動圧型軸受装置の組立て時に、ハウジングの内底面とスラスト板の下端面との間、および軸受部材の下端面とスラスト板の上端面との間のうち、少なくとも一の部位に所定厚さの樹脂層を介在させることによって、軸受部材のハウジングに対する固定位置を調整し、その後、樹脂層を溶剤によって溶解して除去することによって、スラスト軸受隙間を所定値に設定した構成を提供する。   In order to achieve the above object, the present invention provides a bottomed cylindrical housing having a cylindrical inner peripheral surface, a bearing member fixed to the inner peripheral surface of the housing, and an inner peripheral surface of the bearing member. A shaft member having a shaft portion, a thrust plate provided on the shaft portion, an inner peripheral surface of the bearing member, and an outer peripheral surface of the shaft portion of the shaft member, the relative relationship between the shaft member and the bearing member. A radial bearing portion that supports the shaft portion in a non-contact manner so that the shaft portion can rotate in the radial direction by a dynamic pressure action generated during rotation, and between the both end surfaces of the thrust plate of the shaft member, the lower end surface of the bearing member, and the inner bottom surface of the housing, respectively A dynamic pressure type bearing device provided with a thrust bearing portion that is provided in a non-contact manner to support the thrust plate so as to be rotatable in the thrust direction by a dynamic pressure effect generated at the time of relative rotation between the shaft member and the bearing member. When assembling the bearing device, the inner bottom of the housing And a lower end surface of the thrust plate, and between the lower end surface of the bearing member and the upper end surface of the thrust plate, a resin layer having a predetermined thickness is interposed in at least one portion, thereby A structure is provided in which the thrust bearing gap is set to a predetermined value by adjusting the fixing position and then dissolving and removing the resin layer with a solvent.

上記の部位に樹脂層を介在させることによって、軸受部材はハウジング内で樹脂層の厚さを加えた位置に固定される。従って、樹脂層を除去すると、スラスト板の両端面と、ハウジングの内底面および軸受部材の下端面との間に樹脂層の厚さに等しい隙間ができ、この隙間がスラスト軸受隙間になる。この構成によっても、スラスト軸受隙間を所定値に簡易かつ精度良く設定することができる。   By interposing the resin layer in the above-mentioned part, the bearing member is fixed at a position where the thickness of the resin layer is added in the housing. Therefore, when the resin layer is removed, a gap equal to the thickness of the resin layer is formed between both end faces of the thrust plate and the inner bottom face of the housing and the lower end face of the bearing member, and this gap becomes the thrust bearing gap. Also with this configuration, the thrust bearing gap can be set to a predetermined value easily and accurately.

上記構成において、樹脂層はスラスト板の下端面に形成することができ、その場合、樹脂層は、スラスト板の下端面に滴下した樹脂液を軸部材の回転に伴う遠心力で流動させて所定厚さの層状にした後、これを乾燥固化させて形成することができる。これにより、所定厚さの樹脂層を簡易かつ精度良く形成することができる。また、ハウジングの底部に、樹脂層の溶解液を排出するための排出部を設けることにより、溶解液の排出作業が容易になる。   In the above configuration, the resin layer can be formed on the lower end surface of the thrust plate. In this case, the resin layer is made to flow by the centrifugal force accompanying the rotation of the shaft member with the resin liquid dropped on the lower end surface of the thrust plate. After forming a layer of thickness, it can be dried and solidified. Thereby, a resin layer having a predetermined thickness can be easily and accurately formed. Further, by providing a discharge portion for discharging the resin layer solution at the bottom of the housing, the discharge operation of the solution is facilitated.

以上の構成において、軸受部材は好ましくは多孔質体で形成され、より好ましくは燒結金属で形成される。これにより、軸受部材に動圧溝を形成する場合の加工が容易になり、また、軸受部材の気孔内に潤滑油又は潤滑グリースを含浸させて動圧型含油軸受としたり、動圧型気体軸受として、軸受性能の向上を図ることができる。   In the above configuration, the bearing member is preferably formed of a porous body, more preferably formed of sintered metal. This facilitates processing when the dynamic pressure groove is formed in the bearing member, and also impregnates the pores of the bearing member with lubricating oil or lubricating grease to make a dynamic pressure type oil-impregnated bearing, or as a dynamic pressure type gas bearing, The bearing performance can be improved.

本発明によれば、スラスト軸受部のスラスト軸受隙間を簡易かつ精度良く設定することができ、それによって、この種の動圧型軸受装置の優れた軸受性能を確保しつつ、製造コストをさらに低減させることができる。   According to the present invention, the thrust bearing gap of the thrust bearing portion can be set easily and accurately, thereby further reducing the manufacturing cost while ensuring the excellent bearing performance of this type of hydrodynamic bearing device. be able to.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の実施形態に係る動圧型軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材としての回転軸2を回転自在に非接触支持する動圧型軸受装置1と、回転軸2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。動圧型軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによって、ディスクハブ3および回転軸2が一体となって回転する。   FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a rotating shaft 2 as a shaft member in a non-contact manner, and a disk hub 3 mounted on the rotating shaft 2. The motor stator 4 and the motor rotor 5 are provided to face each other via a radial gap. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the rotating shaft 2 are rotated together.

図2は、動圧型軸受装置1を示している。動圧型軸受装置1は、円筒状の内周面7aを有する有底筒状のハウジング7と、ハウジング7の内周面7aに固定された円筒状の軸受部材8と、軸部材としての回転軸2と、軸受部材8の上端面側(ハウジング7の開口側)を密封するシール部材10とを主要な構成要素とする。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 having a cylindrical inner peripheral surface 7a, a cylindrical bearing member 8 fixed to the inner peripheral surface 7a of the housing 7, and a rotating shaft as a shaft member. 2 and the seal member 10 that seals the upper end surface side (opening side of the housing 7) of the bearing member 8 are main components.

ハウジング7は、円筒状の側部7bと、底部7cとで構成され、側部7bの内周面7aは上端から下端にかけて同一内径に形成される。ハウジング7の底部7cには排出部7dが設けられており、この排出部7dは適当な栓、例えば図2に示すようなボール栓7d1によって封止される。尚、この実施形態では、ハウジング7の側部7bと底部7cとを一体構造にしているが、両者を別体構造としても良い。   The housing 7 includes a cylindrical side portion 7b and a bottom portion 7c, and the inner peripheral surface 7a of the side portion 7b is formed to have the same inner diameter from the upper end to the lower end. The bottom portion 7c of the housing 7 is provided with a discharge portion 7d, and this discharge portion 7d is sealed by a suitable plug, for example, a ball plug 7d1 as shown in FIG. In this embodiment, the side portion 7b and the bottom portion 7c of the housing 7 are integrated, but both may be separate structures.

回転軸2は、軸部2aと、軸部2aに一体又は別体に設けられたスラスト板2bとを備えている。スラスト板2bの幅寸法はW1である。軸部2aは、軸受部材8の内周面8aに所定のラジアル軸受隙間S5をもって挿入され、スラスト板2bは、軸受部材8の下端面8bとハウジング7の内底面7c1との間の空間部に収容される。スラスト板2bの上端面2b1と軸受部材8の下端面8bとの間、および、スラスト板2bの下端面2b2とハウジング7の内底面7c1との間には、それぞれ、所定の大きさをもったスラスト軸受隙間S3、S4が設けられる。   The rotating shaft 2 includes a shaft portion 2a and a thrust plate 2b provided integrally with or separately from the shaft portion 2a. The width dimension of the thrust plate 2b is W1. The shaft portion 2a is inserted into the inner peripheral surface 8a of the bearing member 8 with a predetermined radial bearing gap S5, and the thrust plate 2b is located in the space between the lower end surface 8b of the bearing member 8 and the inner bottom surface 7c1 of the housing 7. Be contained. The thrust plate 2b has a predetermined size between the upper end surface 2b1 and the lower end surface 8b of the bearing member 8, and between the lower end surface 2b2 of the thrust plate 2b and the inner bottom surface 7c1 of the housing 7. Thrust bearing gaps S3 and S4 are provided.

軸受部材8は、例えば多孔質材、特に燒結金属で形成され、その内部の気孔に潤滑油又は潤滑グリースが含浸されて含油軸受とされる。軸受部材8の内周面8aの、ラジアル軸受面となる領域には動圧溝が形成される。この動圧溝は圧縮成形、例えば、コアロッドの外周面にラジアル軸受面の動圧溝形状(図3(a)参照)に対応した凹凸パターンを有する溝型を形成し、コアロッドの外周に焼結金属を供給して焼結金属を圧迫し、焼結金属の内周部に溝型形状に対応した動圧溝を転写することによって、低コストにかつ高精度に成形することができる。回転軸2が回転すると、ラジアル軸受隙間S5に動圧作用が発生し、回転軸2の軸部2aがラジアル軸受隙間S5内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、回転軸2をラジアル方向に回転自在に非接触支持するラジアル軸受部11が構成される。尚、軸受部材8は、燒結金属の他、軟質金属あるいは合金(例えば銅、真鍮等)で形成しても良い。また、ラジアル軸受面の動圧溝は、回転軸2の軸部2aの外周面に形成しても良い。   The bearing member 8 is formed of, for example, a porous material, particularly a sintered metal, and an oil-impregnated bearing is formed by impregnating the inside pores with lubricating oil or lubricating grease. A dynamic pressure groove is formed in a region of the inner peripheral surface 8a of the bearing member 8 that serves as a radial bearing surface. This dynamic pressure groove is compression-molded, for example, a groove mold having an uneven pattern corresponding to the dynamic pressure groove shape of the radial bearing surface (see FIG. 3A) is formed on the outer peripheral surface of the core rod, and sintered on the outer periphery of the core rod. By supplying a metal, pressing the sintered metal, and transferring a dynamic pressure groove corresponding to the groove shape to the inner peripheral portion of the sintered metal, the metal can be formed at low cost and with high accuracy. When the rotary shaft 2 rotates, a dynamic pressure action is generated in the radial bearing gap S5, and the shaft portion 2a of the rotary shaft 2 is supported in a non-contact manner so as to be rotatable in the radial direction by an oil film of lubricating oil formed in the radial bearing gap S5. Is done. Thereby, the radial bearing part 11 which non-contact supports the rotating shaft 2 rotatably in the radial direction is configured. The bearing member 8 may be formed of a soft metal or an alloy (for example, copper, brass, etc.) in addition to the sintered metal. Further, the dynamic pressure groove on the radial bearing surface may be formed on the outer peripheral surface of the shaft portion 2 a of the rotating shaft 2.

スラスト板2bの上端面2b1又は軸受部材8の下端面8b、および、スラスト板2bの下端面2b2又はハウジング7の内底面7c1の、スラスト軸受面となる領域には、それぞれ動圧溝が形成される。回転軸2が回転すると、スラスト軸受隙間S3およびS4に動圧作用が発生し、回転軸2のスラスト板2bがスラスト軸受隙間S3、S4内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、回転軸2をスラスト方向に回転自在に非接触支持するスラスト軸受部12が構成される。   Dynamic pressure grooves are respectively formed in the upper end surface 2b1 of the thrust plate 2b or the lower end surface 8b of the bearing member 8 and the lower end surface 2b2 of the thrust plate 2b or the inner bottom surface 7c1 of the housing 7 that serve as the thrust bearing surface. The When the rotary shaft 2 rotates, a dynamic pressure action is generated in the thrust bearing gaps S3 and S4, and the thrust plate 2b of the rotary shaft 2 is rotatable in the thrust direction by the oil film of the lubricating oil formed in the thrust bearing gaps S3 and S4. Is supported in a non-contact manner. Thereby, the thrust bearing part 12 which non-contact-supports the rotating shaft 2 rotatably in a thrust direction is comprised.

ラジアル軸受面およびスラスト軸受面の動圧溝形状は任意に選択することができ、公知のへリングボーン型、スパイラル型、ステップ型、多円弧型等の何れかを選択し、あるいはこれらを適宜組合わせて使用することができる。図3(a)(b)は、一例としてへリングボーン型を示すもので、図3(a)は軸受部材8の内周面8aにおけるラジアル軸受面8a1に動圧溝14を設けた例、図3(b)は、スラスト板2bの下端面2b2におけるスラスト軸受面2b21に動圧溝16を設けた例を示している。例えば、軸受部材8の内周面8aには、2つのラジアル軸受面8a1が軸方向に離間して設けられている。スラスト軸受面2b1の動圧溝16は、半径方向のほぼ中心部に屈曲部分を有するほぼV字状をなしている。   The dynamic pressure groove shape of the radial bearing surface and the thrust bearing surface can be arbitrarily selected, and a known herringbone type, spiral type, step type, multi-arc type or the like is selected, or these are appropriately combined. Can be used together. 3A and 3B show a herringbone type as an example, and FIG. 3A shows an example in which the dynamic pressure groove 14 is provided on the radial bearing surface 8a1 of the inner peripheral surface 8a of the bearing member 8. FIG. 3B shows an example in which the dynamic pressure groove 16 is provided on the thrust bearing surface 2b21 on the lower end surface 2b2 of the thrust plate 2b. For example, two radial bearing surfaces 8a1 are provided on the inner peripheral surface 8a of the bearing member 8 so as to be separated from each other in the axial direction. The dynamic pressure groove 16 of the thrust bearing surface 2b1 has a substantially V shape having a bent portion at a substantially central portion in the radial direction.

この実施形態において、スラスト軸受隙間S3、S4は、例えば以下の手順での設定されている。   In this embodiment, the thrust bearing gaps S3 and S4 are set in the following procedure, for example.

まず、図4に示す態様で、回転軸2のスラスト板2bの下端面2b2に所定厚さδの樹脂層19を形成する。樹脂層19の形成材料となる合成樹脂材料を溶剤で溶かして樹脂液Lを作り、その樹脂液Lをスラスト板2bの下端面2b2に所定量滴下する。その後、回転軸2を所定速度で回転させる。そうすると、滴下された樹脂液Lが遠心力で外径側に流動して、スラスト板2bの下端面2b2に均一厚さで広がる。その後、樹脂液Lを乾燥固化させると、スラスト板2bの下端面2b2に所定厚さδの樹脂層19が形成される。この方法によれば、均一厚さの樹脂層19を精度良く形成することができる。樹脂層19の厚さδは、スラスト軸受隙間S3とS4の設定値を合計した値(δ=S3+S4)となるように管理する(10〜20μm程度)。   First, the resin layer 19 having a predetermined thickness δ is formed on the lower end surface 2b2 of the thrust plate 2b of the rotating shaft 2 in the manner shown in FIG. A synthetic resin material that forms the resin layer 19 is dissolved with a solvent to form a resin liquid L, and a predetermined amount of the resin liquid L is dropped onto the lower end surface 2b2 of the thrust plate 2b. Thereafter, the rotating shaft 2 is rotated at a predetermined speed. Then, the dropped resin liquid L flows to the outer diameter side by centrifugal force and spreads on the lower end surface 2b2 of the thrust plate 2b with a uniform thickness. Thereafter, when the resin liquid L is dried and solidified, a resin layer 19 having a predetermined thickness δ is formed on the lower end surface 2b2 of the thrust plate 2b. According to this method, the resin layer 19 having a uniform thickness can be formed with high accuracy. The thickness δ of the resin layer 19 is managed so as to be a value (δ = S3 + S4) obtained by adding the set values of the thrust bearing gaps S3 and S4 (about 10 to 20 μm).

つぎに、図5に示すように、回転軸2をハウジング7に挿入し、スラスト板2bの下端面2b2を樹脂層19を介してハウジング7の内底面7c1に当接させる。その後、軸受部材8をハウジング7の内周面7aに沿ってスラスト板2bの上端面2b1に当接するまで押し込むと、軸受部材8のハウジング7に対する固定位置が決まる。すなわち、軸受部材8の下端面8bとハウジング7の内底面7c1との間の間隔(軸方向寸法)が、スラスト板2bの幅寸法W1と樹脂層19の厚さδによって寸法(W1+δ)に決まる。この状態で、軸受部材8をハウジング7の内周面7aに固定する。固定方法としては、圧入、接着等がある。尚、回転軸2と軸受部材8とを予めアッセンブリしておき、両者を一緒にハウジング7に挿入しても良い。   Next, as shown in FIG. 5, the rotary shaft 2 is inserted into the housing 7, and the lower end surface 2 b 2 of the thrust plate 2 b is brought into contact with the inner bottom surface 7 c 1 of the housing 7 through the resin layer 19. Thereafter, when the bearing member 8 is pushed in along the inner peripheral surface 7a of the housing 7 until it comes into contact with the upper end surface 2b1 of the thrust plate 2b, the fixing position of the bearing member 8 with respect to the housing 7 is determined. That is, the distance (axial dimension) between the lower end surface 8b of the bearing member 8 and the inner bottom surface 7c1 of the housing 7 is determined by the width dimension W1 of the thrust plate 2b and the thickness δ of the resin layer 19 (W1 + δ). . In this state, the bearing member 8 is fixed to the inner peripheral surface 7 a of the housing 7. Examples of the fixing method include press-fitting and adhesion. Alternatively, the rotary shaft 2 and the bearing member 8 may be assembled in advance, and both may be inserted into the housing 7 together.

上記のようにして軸受部材8の固定位置を決めた後、ハウジング7の内部に溶剤を供給して樹脂層19を溶解する。この溶解液は、ハウジング7の底部7cに設けられた排出部7dから排出される。溶解液を排出した後、排出部7dは適当な栓、例えば図2に示すようなボール栓7d1によって封止される。   After the fixing position of the bearing member 8 is determined as described above, a solvent is supplied into the housing 7 to dissolve the resin layer 19. This dissolved solution is discharged from a discharge portion 7 d provided on the bottom portion 7 c of the housing 7. After discharging the solution, the discharge portion 7d is sealed with an appropriate stopper, for example, a ball stopper 7d1 as shown in FIG.

上記の態様で樹脂層19を除去すると、図2に示すように、スラスト板2bの両端面2b1、2b2と、軸受部材8の下端面8bおよびハウジング7の内底面7c1との間に、樹脂層19の厚さδに等しい大きさをもったスラスト軸受隙間S3、S4(δ=S3+S4)が形成される。その後、軸受部材8の上面側をシール部材10でシールし、ハウジング7内を潤滑油で満たすと、図2に示す動圧型軸受装置1が得られる。   When the resin layer 19 is removed in the above-described manner, as shown in FIG. 2, the resin layer is interposed between the both end faces 2b1, 2b2 of the thrust plate 2b and the lower end face 8b of the bearing member 8 and the inner bottom face 7c1 of the housing 7. Thrust bearing gaps S3 and S4 (δ = S3 + S4) having a size equal to 19 thickness δ are formed. Then, when the upper surface side of the bearing member 8 is sealed with the seal member 10 and the inside of the housing 7 is filled with lubricating oil, the hydrodynamic bearing device 1 shown in FIG. 2 is obtained.

この実施形態によれば、スラスト軸受隙間S3、S4の合計値が樹脂層19の厚さδと等しくなるので(δ=S3+S4)、樹脂層19の厚さδを正確に管理すれば、スラスト板2bの幅寸法W1に多少の寸法誤差がある場合でも、スラスト軸受隙間S3、S4を高精度に設定することができる。   According to this embodiment, since the total value of the thrust bearing gaps S3 and S4 is equal to the thickness δ of the resin layer 19 (δ = S3 + S4), if the thickness δ of the resin layer 19 is accurately managed, the thrust plate Even when there is some dimensional error in the width dimension W1 of 2b, the thrust bearing gaps S3 and S4 can be set with high accuracy.

尚、供給した溶剤がスムーズに樹脂層19まで達するよう、軸受部材8の外周面に溶剤供給用の軸方向溝8cを形成しておくのが望ましい。   It is desirable to form an axial groove 8c for supplying a solvent on the outer peripheral surface of the bearing member 8 so that the supplied solvent can reach the resin layer 19 smoothly.

また、この実施形態では、スラスト軸受隙間S3、S4の設定工程において、樹脂層19をスラスト板2bの下端面2b2とハウジング7の内底面7c1との間に介在させる構成にしているが、樹脂層19をスラスト板2bの上端面2b1と軸受部材8の下端面8bとの間に介在させても良く、あるいは、これらの2つの部位に同時に介在させても良い。   In this embodiment, the resin layer 19 is interposed between the lower end surface 2b2 of the thrust plate 2b and the inner bottom surface 7c1 of the housing 7 in the step of setting the thrust bearing gaps S3 and S4. 19 may be interposed between the upper end surface 2b1 of the thrust plate 2b and the lower end surface 8b of the bearing member 8, or may be interposed simultaneously in these two parts.

樹脂層19を形成する合成樹脂材料と溶剤との組合わせは、樹脂層19を確実に溶解させ得る限り任意に選択することができるが、含塩素樹脂、塩素系溶剤、腐食性溶剤は除外するのが好ましい。樹脂材料と溶剤の具体的な組合わせとしては、例えば図6の○印で示すものが考えられる   The combination of the synthetic resin material and the solvent for forming the resin layer 19 can be arbitrarily selected as long as the resin layer 19 can be reliably dissolved, but excludes chlorinated resins, chlorinated solvents, and corrosive solvents. Is preferred. As a specific combination of the resin material and the solvent, for example, the one indicated by a circle in FIG.

本発明の実施形態に係る動圧型軸受装置を有するスピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor having a hydrodynamic bearing device according to an embodiment of the present invention. 本発明の実施形態に係る動圧型軸受装置の断面図である。1 is a cross-sectional view of a hydrodynamic bearing device according to an embodiment of the present invention. 軸受部材の断面図{図3(a)}、スラスト板の上端面を示す平面図{図3(b)}である。It is sectional drawing {FIG. 3 (a)} of a bearing member, and top view (FIG. 3 (b)) which shows the upper end surface of a thrust board. 樹脂層の形成工程を示す概念図である。It is a conceptual diagram which shows the formation process of a resin layer. スラスト軸受隙間の設定工程を説明する図である。It is a figure explaining the setting process of a thrust bearing clearance gap. 実施形態で適用され得る樹脂材料と溶剤の組合わせを示す図である。It is a figure which shows the combination of the resin material and solvent which can be applied in embodiment. 従来の動圧型軸受装置を示す断面図である。It is sectional drawing which shows the conventional dynamic pressure type bearing apparatus.

符号の説明Explanation of symbols

1 動圧型軸受装置
2 回転軸
2a 軸部
2b スラスト板
2b1 上端面
2b2 下端面
7 ハウジング
7a 内周面
7a1 段部
7c 底部
7c1 内底面
7d 排出部
8 軸受部材
8b 下端面
11 ラジアル軸受部
12 スラスト軸受部
19 樹脂層
S3 スラスト軸受隙間
S4 スラスト軸受隙間
S5 ラジアル軸受隙間
1 Hydrodynamic bearing device 2 Rotating shaft
2a Shaft
2b Thrust plate 2b1 Upper end surface 2b2 Lower end surface 7 Housing 7a Inner peripheral surface 7a1 Stepped portion 7c Bottom portion 7c1 Inner bottom surface 7d Discharge portion 8 Bearing member 8b Lower end surface 11 Radial bearing portion 12 Thrust bearing portion 19 Resin layer S3 Thrust bearing gap S4 Thrust bearing Clearance S5 Radial bearing clearance

Claims (6)

円筒状の内周面を有する有底筒状のハウジングと、
ハウジングの内周面に固定された軸受部材と、
前記軸受部材の内周面に挿入される軸部と、前記軸部に設けられたスラスト板とを有する軸部材と、
前記軸受部材の内周面と、前記軸部材の軸部の外周面との間に設けられ、前記軸部材と軸受部材との相対回転時に生じる動圧作用で前記軸部をラジアル方向に回転自在に非接触支持するラジアル軸受部と、
前記軸部材のスラスト板の両端面と、前記軸受部材の下端面および前記ハウジングの内底面との間にそれぞれ設けられ、前記軸部材と軸受部材との相対回転時に生じる動圧作用で前記スラスト板をスラスト方向に回転自在に非接触支持するスラスト軸受部とを備えた動圧型軸受装置であって、
前記動圧型軸受装置の組立て時に、前記ハウジングの内底面と前記スラスト板の下端面との間、および前記軸受部材の下端面と前記スラスト板の上端面との間のうち、少なくとも一の部位に所定厚さの樹脂層を介在させることによって、前記軸受部材の前記ハウジングに対する固定位置を調整し、その後、前記樹脂層を溶剤によって溶解して除去することによって、前記スラスト軸受隙間を所定値に設定したことを特徴とする動圧型軸受装置。
A bottomed cylindrical housing having a cylindrical inner peripheral surface;
A bearing member fixed to the inner peripheral surface of the housing;
A shaft member having a shaft portion inserted into the inner peripheral surface of the bearing member, and a thrust plate provided on the shaft portion;
Provided between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft portion of the shaft member, the shaft portion can be freely rotated in the radial direction by a dynamic pressure action generated during relative rotation between the shaft member and the bearing member. A non-contact radial bearing portion,
The thrust plate is provided between both end surfaces of the thrust plate of the shaft member, a lower end surface of the bearing member, and an inner bottom surface of the housing, and is caused by a dynamic pressure action generated during relative rotation between the shaft member and the bearing member. A hydrodynamic bearing device provided with a thrust bearing portion that supports non-contact in a thrust direction so as to be freely rotatable,
At the time of assembling the dynamic pressure type bearing device, at least one portion is provided between the inner bottom surface of the housing and the lower end surface of the thrust plate, and between the lower end surface of the bearing member and the upper end surface of the thrust plate. The thrust bearing gap is set to a predetermined value by adjusting the fixing position of the bearing member with respect to the housing by interposing a resin layer having a predetermined thickness, and then dissolving and removing the resin layer with a solvent. A hydrodynamic bearing device characterized by that.
前記樹脂層を、前記スラスト板の下端面に形成した請求項1記載の動圧型軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the resin layer is formed on a lower end surface of the thrust plate. 前記樹脂層が、前記スラスト板の下端面に滴下した樹脂液を前記軸部材の回転に伴う遠心力で流動させて所定厚さの層状にした後、これを乾燥固化させて形成したものである請求項2記載の動圧型軸受装置。   The resin layer is formed by allowing the resin liquid dropped on the lower end surface of the thrust plate to flow with a centrifugal force accompanying the rotation of the shaft member to form a layer with a predetermined thickness, and then drying and solidifying it. The hydrodynamic bearing device according to claim 2. 前記ハウジングの底部に、前記樹脂層の溶解液を排出するための排出部を設けた請求項1記載の動圧型軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a discharge portion for discharging the solution of the resin layer is provided at a bottom portion of the housing. 前記軸受部材が多孔質体で形成されている請求項1記載の動圧型軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing member is formed of a porous body. 前記多孔質体が燒結金属である請求項5記載の動圧型軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the porous body is a sintered metal.
JP2006259446A 2006-09-25 2006-09-25 Dynamic pressure type bearing device Withdrawn JP2006342975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259446A JP2006342975A (en) 2006-09-25 2006-09-25 Dynamic pressure type bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259446A JP2006342975A (en) 2006-09-25 2006-09-25 Dynamic pressure type bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000252943A Division JP2002061637A (en) 2000-08-23 2000-08-23 Dynamic pressure type bearing device

Publications (1)

Publication Number Publication Date
JP2006342975A true JP2006342975A (en) 2006-12-21

Family

ID=37640069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259446A Withdrawn JP2006342975A (en) 2006-09-25 2006-09-25 Dynamic pressure type bearing device

Country Status (1)

Country Link
JP (1) JP2006342975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267531A (en) * 2007-04-23 2008-11-06 Ntn Corp Method for manufacturing dynamic pressure bearing device
US20120315169A1 (en) * 2010-03-29 2012-12-13 Ntn Corporation Fluid dynamic bearing device and assembly method for same
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267531A (en) * 2007-04-23 2008-11-06 Ntn Corp Method for manufacturing dynamic pressure bearing device
US8578610B2 (en) 2007-04-23 2013-11-12 Ntn Corporation Method for manufacturing fluid dynamic bearing device
US20120315169A1 (en) * 2010-03-29 2012-12-13 Ntn Corporation Fluid dynamic bearing device and assembly method for same
US9154012B2 (en) * 2010-03-29 2015-10-06 Ntn Corporation Fluid dynamic bearing device and assembly method for same
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices
JP2016098891A (en) * 2014-11-20 2016-05-30 Ntn株式会社 Manufacturing method of fluid dynamic pressure bearing device
CN107002762A (en) * 2014-11-20 2017-08-01 Ntn株式会社 The manufacture method of fluid dynamic-pressure bearing device
US9964144B2 (en) 2014-11-20 2018-05-08 Ntn Corporation Manufacturing method for fluid dynamic bearing devices
CN107002762B (en) * 2014-11-20 2019-05-28 Ntn株式会社 The manufacturing method of fluid dynamic-pressure bearing device

Similar Documents

Publication Publication Date Title
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2006226410A (en) Fluid dynamic pressure bearing device and motor having it
JP4408788B2 (en) Brushless motor and manufacturing method thereof
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
KR101405075B1 (en) Fluid bearing device and its manufacturing method
JP2002061637A (en) Dynamic pressure type bearing device
JP2000291648A (en) Dynamic pressure-type bearing unit
JP2003307221A (en) Method of manufacturing dynamic pressure bearing device
JP2002061641A (en) Dynamic pressure type bearing device
JP2006342975A (en) Dynamic pressure type bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP3686630B2 (en) Hydrodynamic bearing device
JP2005163903A (en) Dynamic bearing device
JP4172944B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2008144847A (en) Dynamic pressure bearing device
JP4795116B2 (en) Hydrodynamic bearing device
JP2009092197A (en) Dynamic pressure bearing device and its manufacturing method
JP3782918B2 (en) Hydrodynamic bearing unit
JP2005337364A (en) Dynamic pressure bearing device
JP2004316926A (en) Dynamic pressure-type bearing unit and method for manufacturing the same
JP2005140344A (en) Dynamic pressure type bearing device
JPH11313461A (en) Motor with dynamic pressure fluid bearing and device mounted with the motor
JP2002161912A (en) Manufacturing method of fluid bearing unit
JP2003314533A (en) Fluid bearing device
JP2006300178A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106