JP2006342636A - Building structure and its construction method - Google Patents

Building structure and its construction method Download PDF

Info

Publication number
JP2006342636A
JP2006342636A JP2005171735A JP2005171735A JP2006342636A JP 2006342636 A JP2006342636 A JP 2006342636A JP 2005171735 A JP2005171735 A JP 2005171735A JP 2005171735 A JP2005171735 A JP 2005171735A JP 2006342636 A JP2006342636 A JP 2006342636A
Authority
JP
Japan
Prior art keywords
building
retaining wall
pile
steel
foundation beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005171735A
Other languages
Japanese (ja)
Other versions
JP4621546B2 (en
Inventor
Haruo Kobayashi
治男 小林
Keiji Sato
啓治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2005171735A priority Critical patent/JP4621546B2/en
Publication of JP2006342636A publication Critical patent/JP2006342636A/en
Application granted granted Critical
Publication of JP4621546B2 publication Critical patent/JP4621546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure constructed by a rational design method. <P>SOLUTION: This structure is a structure having a building 1, a pile 2 for supporting the building and an earth retaining wall 3 constructed on the ground around the building 2, and is formed by joining the earth retaining wall 3 and the building 1 by an anchor member 12, and is characterized in that a part lower than at least a foundation beam or a mat slab 11 of a steel frame member for constituting the earth retaining wall 3, is formed as a permanent structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れた耐震性能を有する建築構造物と当該構造物の合理的断面設計に関するもので、特に山留め壁の鉄骨部材のうち少なくとも基礎梁またはマットスラブより下の部分を本設構造とした構造物および、応力解析に際して、山留め壁の鉄骨部材の少なくとも基礎梁またはマットスラブより下の部分の水平荷重負担を考慮して建物及び基礎の断面設計を行った建築構造物および当該設計方法に関する。   The present invention relates to a building structure having excellent seismic performance and a rational cross-sectional design of the structure, and in particular, at least a portion below a foundation beam or a mat slab among steel members of a retaining wall is a permanent structure. The present invention relates to a structure and a building structure in which a cross section of a building and a foundation is designed in consideration of a horizontal load burden on at least a portion of a steel member of a retaining wall below a base beam or a mat slab in stress analysis, and the design method.

図3は、一般的な高層ビル等の建物が建設された状態を示した断面図である。当該構造物は、建物1、杭2、山留め壁3を有する。山留め壁3は、建物1の低部が地中に埋設される区画を画定するために地中に打設されており、建物1の地中部分の外壁と連結されている。杭群4は、建物1を支持するために地中に打ち込まれた複数の杭2からなり、建物の自重を支持すると同時に、地震時には建物の上下水平方向の地震荷重を支持する。符号9は、建物1から図中右方向に荷重が加わった場合の、山留め壁3及び杭2(一群の杭2を総称して杭群4と称することもある)に対して地盤から作用する水平反力の方向を示している。各杭2の断面の形状及び寸法は、建物の自重及び地震時の荷重によって決定される。   FIG. 3 is a cross-sectional view showing a state in which a building such as a general high-rise building is constructed. The structure has a building 1, a pile 2, and a mountain retaining wall 3. The mountain retaining wall 3 is placed in the ground in order to demarcate a section where the lower part of the building 1 is buried in the ground, and is connected to the outer wall of the underground part of the building 1. The pile group 4 is composed of a plurality of piles 2 driven into the ground to support the building 1 and supports the building's own weight and also supports the earthquake load in the vertical direction of the building during an earthquake. The code | symbol 9 acts from the ground with respect to the retaining wall 3 and the pile 2 (a group of piles 2 may be named generically as the pile group 4) when a load is added to the right direction in the figure from the building 1. The direction of the horizontal reaction force is shown. The shape and size of the cross section of each pile 2 are determined by the weight of the building and the load during an earthquake.

山留め壁を有する建物の場合、山留め壁3と建物1とを連結することにより山留め壁3が地震時の水平荷重を負担する効果、つまり山留め壁が地震時に建物を支持する効果を期待できることが考えられる。特開平10−298976号公報には、山留め壁上部と建物下部とを連結した構造物が開示されている。
特開平10−298976号
In the case of a building having a retaining wall, it can be expected that the retaining wall 3 bears a horizontal load during an earthquake by connecting the retaining wall 3 and the building 1, that is, the retaining wall supports the building during an earthquake. It is done. Japanese Patent Application Laid-Open No. 10-298976 discloses a structure in which a mountain retaining wall upper part and a building lower part are connected.
JP-A-10-298976

従来技術によれば、山留め壁の上部と建物底部を連結することで山留め壁が建物と一体となって地震に抵抗する効果を発揮することが理解される。しかし、発明者らは山留め壁の効果はそれだけではないことを発見した。すなわち、山留め壁は、杭と同様に建物の上下及び水平方向の荷重を支持するので、上記従来技術においては考慮されていない、山留め壁の建物基礎梁またはマットスラブよりも下の部分による荷重負担を適切に考慮すれば杭の設計を合理化できるはずである。さらに、山留め壁の存在を適切に考慮することは、建物の耐震設計の合理化にも結びつくものである。ここで、山留め壁は一般に、鉛直方向に地中に打ち込まれたH型鋼やI型鋼等の鉄骨部材の列と、当該鉄骨部材の列の周囲に打設されたソイルセメントから構成されている。   According to the prior art, it can be understood that by connecting the upper part of the retaining wall and the bottom of the building, the retaining wall is integrated with the building and exhibits the effect of resisting earthquakes. However, the inventors have found that the effect of the retaining wall is not the only one. That is, since the retaining wall supports the vertical and horizontal loads of the building in the same manner as the pile, the load burden due to the portion below the building foundation beam or mat slab of the retaining wall, which is not considered in the above-described conventional technology. Proper design should be able to streamline pile design. In addition, appropriate consideration of the existence of retaining walls also leads to rationalization of the seismic design of buildings. Here, the retaining wall is generally composed of a row of steel members such as H-shaped steel and I-type steel driven into the ground in the vertical direction and a soil cement placed around the row of the steel members.

ところが、従来、山留め壁は仮設構造物として設計されており、設計仕様も本設構造物とは異なっているために、地震時等における山留め壁の特に上記部分の荷重負担を考慮することはできなかった。従来、建物の耐震設計において山留め壁の存在を考慮していなかった理由は、仮設構造物である山留め壁は本設構造物とは設計思想が異なることおよび山留め壁を本設構造として設計するとコスト高になるという懸念があったためと思われる。   However, since the retaining wall is conventionally designed as a temporary structure and the design specifications are also different from that of the main structure, it is not possible to consider the load burden on the retaining wall, especially in the case of an earthquake. There wasn't. Conventionally, the reason for not including the retaining wall in the seismic design of the building is that the retaining wall, which is a temporary structure, has a different design philosophy from the actual structure, and it is costly to design the retaining wall as a permanent structure. It seems that there was a concern that it would be high.

上記のような従来の認識とは反対に、本発明の発明者らは、山留め壁の特に鉄骨部材の少なくとも基礎梁またはマットスラブよりも下の部分を本設構造とし、同時に建物と基礎と山留め壁から構成される構造物において、山留め壁の荷重負担を適切に考慮することによって構造物全体の設計を合理化し、構造物全体としてはコスト低減を実現できることを発見し、本発明に至ったものである。   Contrary to the conventional recognition as described above, the inventors of the present invention set the structure of the retaining wall, in particular, at least the portion of the steel member below the foundation beam or mat slab, and at the same time, the building, the foundation, and the retaining structure. In a structure composed of walls, it was discovered that the design of the entire structure can be rationalized by appropriately considering the load burden on the retaining wall, and the cost of the entire structure can be reduced, leading to the present invention. It is.

(1)上記の目的を達成するために、建物と、該建物を支持する杭と、建物周囲の地盤に構築された山留め壁とを有し、該山留め壁と建物とをアンカー部材で接合した構造物であって、該山留め壁を構成する鉄骨部材の少なくとも基礎梁またはマットスラブより下の部分を本設構造とした構造物を提案する。   (1) In order to achieve the above object, the building has a pile supporting the building, and a retaining wall constructed on the ground around the building, and the retaining wall and the building are joined by an anchor member. A structure is proposed in which at least a portion below the foundation beam or mat slab of the steel member constituting the retaining wall is a permanent structure.

(2)また、本発明の好ましい実施態様によれば、本発明の提案する構造物は、前記山留め壁を構成する鉄骨部材の基礎梁またはマットスラブより下の部分の水平荷重負担を考慮して、建物と杭の負担荷重を軽減した構造物である。   (2) Further, according to a preferred embodiment of the present invention, the structure proposed by the present invention takes into account the horizontal load burden on the portion below the foundation beam or mat slab of the steel member constituting the retaining wall. A structure that reduces the burden on buildings and piles.

(3)さらに、本発明は、建物と、該建物を支持する杭と、建物周囲の地盤に構築された山留め壁とを有し、該山留め壁と建物とをアンカー部材で接合した構造物の設計方法であって、該山留め壁を構成する鉄骨部材の少なくとも基礎梁またはマットスラブより下の部分を本設構造とし、当該部分による水平荷重負担を考慮して杭及び山留め壁の応力部材の断面を決定する設計方法を提案する。   (3) Furthermore, the present invention includes a building, a pile that supports the building, and a retaining wall constructed on the ground around the building, and a structure in which the retaining wall and the building are joined by an anchor member. A method of design, wherein at least a portion below the foundation beam or mat slab of the steel member constituting the retaining wall is a permanent structure, and the cross section of the stress member of the pile and retaining wall in consideration of the horizontal load burden due to the portion. We propose a design method to determine

(1)請求項1に係る発明によれば、山留め壁の鉄鋼部材のうち特に少なくとも基礎梁またはマットスラブよりも下の部分が本設構造となっているので、山留め壁による水平荷重負担を考慮することができ、建物の地震荷重や土圧などの水平荷重を山留め壁の応力部材に分散させて、建物と杭が負担すべき荷重を従来よりも軽減することができる。
(2)請求項2に係る発明によれば、山留め壁による水平荷重負担を考慮して結果的に建物と杭の断面低減が達成される。
(3)請求項3に係る発明によれば、山留め壁の鉄鋼部材のうち特に少なくとも基礎梁またはマットスラブよりも下の部分を本設構造とし、当該部分の水平荷重負担を考慮して杭及び山留め壁の応力部材の断面を決定しているので、従来と比較して合理的且つ経済的な構造物を設計することができる。
(1) According to the invention according to claim 1, since the steel member of the retaining wall has a permanent structure particularly at least the part below the foundation beam or mat slab, the horizontal load burden due to the retaining wall is taken into consideration. The horizontal load such as seismic load or earth pressure of the building can be distributed to the stress members of the retaining wall, and the load that the building and the pile should bear can be reduced more than before.
(2) According to the invention which concerns on Claim 2, considering the horizontal load burden by a mountain retaining wall, the cross-sectional reduction of a building and a pile is achieved as a result.
(3) According to the invention according to claim 3, at least a portion below the foundation beam or mat slab is a permanent structure among the steel members of the retaining wall, and the pile and Since the cross section of the stress member of the retaining wall is determined, a rational and economical structure can be designed as compared with the conventional structure.

本発明の好ましい実施形態について実施例を挙げて図面を参照して説明する。なお、添付図において同じ要素には同じ符号を用い、適宜その説明を省略する。   Preferred embodiments of the present invention will now be described with reference to the accompanying drawings. In addition, the same code | symbol is used for the same element in an accompanying drawing, and the description is abbreviate | omitted suitably.

図1は、図3における杭群4の各杭2と山留め壁の応力部材3とを基礎梁またはマットスラブ11で連結した構造物を線材でモデル化した2次元解析モデルを図示したものである。当該2次元解析モデルは、地盤による反力をバネ9反力として考慮している。当該2次元解析モデルは、奥行き方向も考慮して3次元解析モデルとすることもできる。   FIG. 1 illustrates a two-dimensional analysis model obtained by modeling a structure in which each pile 2 of the pile group 4 in FIG. 3 and the stress member 3 of the retaining wall are connected by a foundation beam or a mat slab 11 with a wire rod. . In the two-dimensional analysis model, the ground reaction force is considered as the spring 9 reaction force. The two-dimensional analysis model can be a three-dimensional analysis model in consideration of the depth direction.

当該2次元解析モデルを用いた設計方法の一例を説明する。
まず、地震時における建物の動的挙動を算出し、建物基礎底部から杭頭および山留め壁の上部(建物と連結されている部分)に加えられる動的荷重を算出する。この場合の地震応答解析は、いわゆる地盤建物連成系モデルによるものであっても良いし、建物基礎底部に地震加速度が直接入力されると仮定した建物のみの解析モデルであっても良い。何れのモデルあるいはさらに他のモデル化手法を採用すべきかは、地盤及び建物等の条件によって適宜決定することができる。重要なことは、本設構造である山留め壁、特に鉄骨部材の少なくとも基礎梁またはマットスラブよりの下の部分は、本設構造としての設計条件に従がわなければならない反面、地震時には水平荷重負担を考慮することができることである。
An example of a design method using the two-dimensional analysis model will be described.
First, the dynamic behavior of the building at the time of the earthquake is calculated, and the dynamic load applied from the bottom of the building to the top of the pile head and the retaining wall (portion connected to the building) is calculated. The seismic response analysis in this case may be based on a so-called ground building coupled system model, or may be an analysis model of only a building assuming that the earthquake acceleration is directly input to the bottom of the building foundation. Which model or further modeling method should be used can be determined as appropriate according to the conditions of the ground and the building. The important thing is that the retaining wall, which is a permanent structure, especially at least the part below the foundation beam or mat slab of steel members must comply with the design conditions for the permanent structure, but in the event of an earthquake, the horizontal load The burden can be taken into account.

次に、上記の動的解析によって得られた建物基礎底部から杭頭及び山留め壁の上部に加えられる荷重を入力して杭群4の各杭2及び山留め壁3の応力部材の応力を算出する。この場合の荷重は、動的荷重として杭と山留め壁の応力解析を行うこともできるが、動的荷重の最大値を静的荷重として加えた静的応力解析を行うこともできる。何れの解析手法がより合理的であるかは、地盤、杭、山留め壁、建物及び入力荷重の選択等の条件によって決定されるべきである。
また、建物を含めた地盤、杭、山留め壁、建物全体を連成系としてモデル化して地震応答解析を行ってもよい。
Next, the load applied to the top of the pile head and the retaining wall is input from the bottom of the building foundation obtained by the above dynamic analysis, and the stress of the stress member of each pile 2 and the retaining wall 3 of the pile group 4 is calculated. . In this case, the load can be subjected to a stress analysis of the pile and the retaining wall as a dynamic load, but can also be subjected to a static stress analysis in which the maximum value of the dynamic load is added as a static load. Which analysis method is more reasonable should be determined by conditions such as selection of ground, piles, retaining walls, buildings and input loads.
In addition, the ground response including buildings, piles, retaining walls, and the entire building may be modeled as a coupled system to perform earthquake response analysis.

以上のように、基礎、杭、山留め壁、及び地盤をモデル化し地震による水平荷重に対する応力解析を行うことにより、杭の鋼材及び山留め壁の応力部材における形状及び寸法を適切に決定することができる。
なお、本発明は、山留め壁の鉄骨部材の建物基礎またはマットスラブよりも上の部分を本設構造として設計する可能性を排除するわけではない。また、山留め壁の鉄骨部材だけでなく、その他の部分も含めて本設構造として設計することも可能であり、本発明はその可能性も排除しないが、一般には、鉄骨部材のみを本設構造とする方が投資対効果の観点からは好ましいと考えられる。
As described above, by modeling the foundation, pile, mountain retaining wall, and ground and performing stress analysis for horizontal loads due to earthquakes, the shape and dimensions of pile steel materials and mountain retaining wall stress members can be appropriately determined. .
Note that the present invention does not exclude the possibility of designing a portion above the building foundation or mat slab of the steel member of the retaining wall as a permanent structure. Further, not only the steel member of the retaining wall but also other parts can be designed as a permanent structure, and the present invention does not exclude this possibility, but generally only the steel member is a permanent structure. Is considered preferable from the viewpoint of return on investment.

図2は、図3のAの拡大図であって、山留め壁の応力部材3と建物の基礎梁またはマットスラブ11との連結部分を示した模式図である。当該連結は、基礎梁またはマットスラブ11の厚さ方向または幅方向の端部近傍に配置されたスタッドボルト等のアンカー部材12によって行われており、山留め壁の応力部材3は建物1の地中に埋設された外壁面13に沿って接触している。アンカー部材12は少なくとも2本以上配置されていればよく、山留め壁の応力部材3に対する回転剛性は強固に設計されている。アンカー部材はさらに建物1の底部にも設けられていても良い。これにより、山留め壁の応力部材3は、地震による水平荷重を多く負担することができるので、地震による耐震性を向上させることができる。   FIG. 2 is an enlarged view of A of FIG. 3, and is a schematic diagram showing a connecting portion between the stress member 3 of the retaining wall and the foundation beam or mat slab 11 of the building. The connection is made by an anchor member 12 such as a stud bolt arranged near the end in the thickness direction or the width direction of the foundation beam or mat slab 11, and the stress member 3 of the retaining wall is the underground of the building 1. It contacts along the outer wall surface 13 embedded in. The anchor member 12 should just be arrange | positioned at least 2 or more, and the rotational rigidity with respect to the stress member 3 of a mountain retaining wall is designed firmly. The anchor member may also be provided at the bottom of the building 1. Thereby, since the stress member 3 of a retaining wall can bear much horizontal load by an earthquake, the earthquake resistance by an earthquake can be improved.

図4は、本発明の効果を確認するために行った数値解析モデルを示すものである。本発明の実施例である構造物は、4スパン×5スパンの平面形状を有する地上12階、地下2階建ての建物と、φ1500の杭を30本と、建物の基礎周囲に建物基礎を囲むように連続して設けられ、建物の基礎に結合されたSMWを心材とする一連の山留め壁を有するものとした。比較対象構造物は、杭径をφ1800として、解析上は山留め壁が存在しないことを除いて本発明の実施例と同じ構造である。   FIG. 4 shows a numerical analysis model performed to confirm the effect of the present invention. A structure according to an embodiment of the present invention includes a building having 12 floors above ground and two floors below ground having a plane shape of 4 spans × 5 spans, 30 φ1500 piles, and the building foundation around the foundation of the building. It was assumed that it had a series of mountain retaining walls with SMW as a core material, which were continuously provided and joined to the foundation of the building. The comparison target structure has the same structure as the embodiment of the present invention except that the pile diameter is φ1800 and there is no retaining wall in the analysis.

図5は、26550kNの水平力を加えた場合の、杭に作用するモーメント、せん断力および変位を示すものである。その結果が顕著に示しているように、山留め壁の荷重負担を考慮することによって、例えば曲げモーメントは1/3以下に低減しており、杭頭の変位とせん断力に関しても低減は顕著である。さらに、概算を行った結果、杭工事および杭のコンクリートボリュームは、山留め壁を本設構造として荷重負担を考慮することによって70%程度にまで低減できることも確認できた。   FIG. 5 shows the moment, shearing force and displacement acting on the pile when a horizontal force of 26550 kN is applied. As the result shows prominently, for example, the bending moment is reduced to 1/3 or less by considering the load burden of the retaining wall, and the reduction in the displacement and shear force of the pile head is also remarkable. . Furthermore, as a result of the rough estimation, it was confirmed that the pile construction and the concrete volume of the pile can be reduced to about 70% by considering the load burden with the retaining wall as the main structure.

本発明による構造物を線材化した2次元解析モデル。The two-dimensional analysis model which made the structure by this invention a wire. 山留め壁の応力部材と建物の基礎梁またはマットスラブとの連結を示した様態図。The state figure which showed the connection of the stress member of a mountain retaining wall, and the foundation beam or mat slab of a building. 一般的な高層ビル等の建物が建設された構造物を示した断面図。Sectional drawing which showed the structure where buildings, such as a general high-rise building, were constructed. 本発明の実施例(および比較例)に関する応力解析モデルStress analysis model for examples (and comparative examples) of the present invention 本発明の実施例(および比較例)の応力解析結果Stress analysis results of examples (and comparative examples) of the present invention

Claims (3)

建物と、該建物を支持する杭と、建物周囲の地盤に構築された山留め壁とを有し、該山留め壁と建物とをアンカー部材で接合した構造物であって、該山留め壁を構成する鉄骨部材の少なくとも基礎梁またはマットスラブより下の部分を本設構造とした構造物。   A structure having a building, a pile supporting the building, and a retaining wall constructed on the ground around the building, wherein the retaining wall and the building are joined by an anchor member, and constitutes the retaining wall A structure in which at least the part below the foundation beam or mat slab of steel members is a permanent structure. 前記山留め壁を構成する鉄骨部材の基礎梁またはマットスラブより下の部分の水平荷重負担を考慮して、建物と杭の負担荷重を軽減した構造物。   A structure in which the burden load on the building and the pile is reduced in consideration of the horizontal load burden on the portion below the foundation beam or mat slab of the steel member constituting the retaining wall. 建物と、該建物を支持する杭と、建物周囲の地盤に構築された山留め壁とを有し、該山留め壁と建物とをアンカー部材で接合した構造物の設計方法であって、該山留め壁を構成する鉄骨部材の少なくとも基礎梁またはマットスラブより下の部分を本設構造とし、当該部分による水平荷重負担を考慮して杭及び山留め壁の応力部材の断面を決定する設計方法。   A design method for a structure having a building, a pile supporting the building, and a retaining wall constructed on the ground around the building, wherein the retaining wall and the building are joined by an anchor member. A method of determining the cross section of the stress member of the pile and the retaining wall in consideration of the horizontal load burden by at least the part below the foundation beam or mat slab of the steel member constituting the steel structure.
JP2005171735A 2005-06-10 2005-06-10 Building structure and construction method thereof Expired - Fee Related JP4621546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171735A JP4621546B2 (en) 2005-06-10 2005-06-10 Building structure and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171735A JP4621546B2 (en) 2005-06-10 2005-06-10 Building structure and construction method thereof

Publications (2)

Publication Number Publication Date
JP2006342636A true JP2006342636A (en) 2006-12-21
JP4621546B2 JP4621546B2 (en) 2011-01-26

Family

ID=37639797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171735A Expired - Fee Related JP4621546B2 (en) 2005-06-10 2005-06-10 Building structure and construction method thereof

Country Status (1)

Country Link
JP (1) JP4621546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107700300A (en) * 2017-10-17 2018-02-16 蒋昌霞 A kind of safety protective road foundation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152853A (en) * 1996-11-25 1998-06-09 Kato Kensetsu:Kk Method of building underground structure and structure member used therein
JP2000008393A (en) * 1998-06-25 2000-01-11 Kajima Corp Underground external wall
JP2002061212A (en) * 2000-08-11 2002-02-28 Okumura Corp Structure of underground section of building
JP2005120781A (en) * 2003-10-20 2005-05-12 Shimizu Corp Structure of composite wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152853A (en) * 1996-11-25 1998-06-09 Kato Kensetsu:Kk Method of building underground structure and structure member used therein
JP2000008393A (en) * 1998-06-25 2000-01-11 Kajima Corp Underground external wall
JP2002061212A (en) * 2000-08-11 2002-02-28 Okumura Corp Structure of underground section of building
JP2005120781A (en) * 2003-10-20 2005-05-12 Shimizu Corp Structure of composite wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107700300A (en) * 2017-10-17 2018-02-16 蒋昌霞 A kind of safety protective road foundation

Also Published As

Publication number Publication date
JP4621546B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
KR101780370B1 (en) Composite structure using shear connector made of anchor and socket shoe
JP6719293B2 (en) Seismic reinforcement structure of pile foundation
CN108999288B (en) Prefabricated assembled beam column node
JP3799036B2 (en) Building basic structure and construction method
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP5077857B1 (en) Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology
JP4621546B2 (en) Building structure and construction method thereof
JP5337329B2 (en) Post-installed anchor, seismic reinforcement structure using the anchor, and seismic reinforcement method
JP6461690B2 (en) Foundation structure and foundation construction method
KR200205092Y1 (en) A reinforced earthquake-proof device
JP6261964B2 (en) Seismic reinforcement structure
JP2009121051A (en) Method of re-constructing building
KR20060048843A (en) Reinforcement structure for a foundation pile
JP5411375B1 (en) Buildings using seismic control columns
JP4449595B2 (en) Column-beam joint structure, method for constructing column-beam joint structure, method for constructing underground structure, and building
JP2005082995A (en) Pile head connection structure
JP5541520B2 (en) Underground construction
JP2018178364A (en) Earthquake reinforcement structure for building and construction method thereof
JP6774774B2 (en) Pile foundation structure
JP7283659B2 (en) Mountain retaining structure
KR101115015B1 (en) Construction method for building remodeling by using precast panel, and connecting structure for remodeling precast panel
KR102608439B1 (en) Method for post-casting connection part between existing structure and horizontal extension part during remodeling construction, and remodeling building using the same
JPH0813848A (en) Structure of boundary column base for multistory shear wall
JP4647396B2 (en) Bending strength strengthening method for upper end of foundation pile or upper and lower ends of pillar of existing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees