JP2006341687A - Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method - Google Patents

Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method Download PDF

Info

Publication number
JP2006341687A
JP2006341687A JP2005168242A JP2005168242A JP2006341687A JP 2006341687 A JP2006341687 A JP 2006341687A JP 2005168242 A JP2005168242 A JP 2005168242A JP 2005168242 A JP2005168242 A JP 2005168242A JP 2006341687 A JP2006341687 A JP 2006341687A
Authority
JP
Japan
Prior art keywords
vehicle body
collision energy
pillar
body skeleton
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005168242A
Other languages
Japanese (ja)
Inventor
Hideji Saeki
秀司 佐伯
Toshiyuki Asai
俊之 朝井
Tatsuya Ozaki
龍哉 尾崎
Kunshi Nagara
君志 長柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005168242A priority Critical patent/JP2006341687A/en
Publication of JP2006341687A publication Critical patent/JP2006341687A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact energy absorbing structure of a vehicle body frame member capable of efficiently absorbing impact energy while being controlled to an ideal deformation mode by the vehicle body frame member itself subjected to an inputted collision load when inputting the collision load. <P>SOLUTION: A center pillar 3 is formed to have a closed section of a pillar outer panel 3a of a U-shaped cross section and a pillar inner panel 3b, a triple folded part P comprising an outer layer p1, an intermediate layer p2, and an inner layer p3 is formed on the U-shaped cross section by folding back twice the pillar outer panel 3a in a longitudinal direction, and when inputting the collision load, the folded part P is deformed to stretch while restricting the intermediate layer p2 by the outer layer p1 and the inner layer p3. Thereby, when the folded part P is deformed to stretch, a folded back part L1 of the outer layer p1 and the intermediate layer p2 and a folded back part L2 of the intermediate layer p2 and the inner layer p3 are extended in ironing states to exhibit great resistance forces, and control to the ideal deformation mode can be performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車体骨格部材の衝突エネルギー吸収構造および衝突エネルギー吸収方法に関する。   The present invention relates to a collision energy absorption structure and a collision energy absorption method for a vehicle body skeleton member.

従来の側面衝突に対応させた車体構造としては、センタ−ピラー等のピラー部材の全周を閉断面構造化するとともに、そのピラー部材の下方に積極的に強度不連続部を設け、側面衝突時において同部位で的確に内側に折れ曲がるように変形させることにより、衝突前半においては同不連続部での折れ曲がり変形により衝突時の入力を支持し、同部位で折れ曲がり変形した後は、同不連続部を境にピラー部材の上下部とサイドルーフレールおよびサイドシルとの間に引張り力を発生させることにより、衝突時の入力を支持するようにしたものが知られている。   As a conventional vehicle body structure for handling side collisions, the entire circumference of a pillar member such as a center pillar has a closed cross-sectional structure, and a strength discontinuity is actively provided below the pillar member. In the first half of the collision, the input at the time of the collision is supported by bending deformation at the same discontinuous part, and after the bending deformation at the same part, the same discontinuous part It is known that a tensile force is generated between the upper and lower parts of the pillar member and the side roof rail and the side sill with the boundary being used to support the input at the time of collision.

また、ピラー部材の中央部分と上方部分での局部的な折れ曲がりを防止し、ピラー部材を略均一に内側に変位させるとともに、その内側への変形量を比較的少なくするようにしている(例えば、特許文献1参照)。
特開平8−72740号公報(第4頁、第1図)
In addition, local bending at the center portion and the upper portion of the pillar member is prevented, the pillar member is displaced substantially uniformly inward, and the amount of deformation to the inside is relatively reduced (for example, Patent Document 1).
JP-A-8-72740 (page 4, FIG. 1)

しかしながら、かかる従来の車体構造では、ピラー部材を閉断面構造としてその変形モードをコントロールすることで、側面衝突時における衝突エネルギーを車体全体に分散・吸収させることができるが、ピラー部材の変形モードのコントロールはフロア周りの変形を積極的に含めた状態で行われるようになっている。   However, in the conventional vehicle body structure, by controlling the deformation mode of the pillar member as a closed cross-sectional structure, the collision energy at the time of a side collision can be dispersed and absorbed in the entire vehicle body. Control is performed in a state that actively includes deformation around the floor.

ところが、車両によっては床下に燃料タンクを設置する場合があり、また、ハイブリッドカーや電気自動車などでは床下にバッテリを設置するようになっており、このような車両では側面が電柱に衝突する場合などの局部的な入力に対して、前記燃料タンクやバッテリを保護するためにはフロア周辺を強固にしておく必要がある。   However, depending on the vehicle, there is a case where a fuel tank is installed under the floor, and in a hybrid car or an electric vehicle, a battery is installed under the floor. In order to protect the fuel tank and battery against this local input, it is necessary to strengthen the periphery of the floor.

このようにフロア周辺を積極的に強固にする場合は、前記従来の変形モードのコントロール方法を適用することができず、ピラー部材に入力される衝突エネルギーの吸収効率が低下してしまう。   Thus, when the floor periphery is positively strengthened, the conventional deformation mode control method cannot be applied, and the absorption efficiency of the collision energy input to the pillar member is lowered.

そこで、本発明は衝突荷重の入力時に、その衝突荷重が入力される車体骨格部材自体で理想的な変形モードにコントロールしつつ、効率良く衝突エネルギーを吸収することができる車体骨格部材の衝突エネルギー吸収構造および衝突エネルギー吸収方法を提供するものである。   Therefore, according to the present invention, when the collision load is input, the collision energy absorption of the vehicle body skeleton member that can efficiently absorb the collision energy while controlling the ideal deformation mode by the vehicle body skeleton member itself to which the collision load is input. A structure and a collision energy absorption method are provided.

本発明の車体骨格部材の衝突エネルギー吸収構造は、車体骨格部材を、衝突荷重の入力側に配置される断面コ字状のアウタ部材と、このアウタ部材の開放側を閉止するインナ部材と、によって閉断面に形成し、前記アウタ部材に、該アウタ部材を長手方向に2回折り返して外層、中層、内層とした3重の折り畳み部をアウタ部材の断面形状に沿って形成し、衝突荷重の入力時に該折り畳み部を外層と内層とで中層を拘束しつつ伸展変形させることを最も主要な特徴とする。   The collision energy absorbing structure for a vehicle body skeleton member according to the present invention includes a vehicle body skeleton member that includes an outer member having a U-shaped cross section disposed on the input side of the collision load, and an inner member that closes the open side of the outer member. Formed in a closed cross-section, the outer member is folded twice in the longitudinal direction to form a triple folded part of the outer layer, the middle layer, and the inner layer along the cross-sectional shape of the outer member. Sometimes the most important feature is that the folded portion is stretched and deformed while constraining the middle layer between the outer layer and the inner layer.

また、本発明の車体骨格部材の衝突エネルギー吸収方法は、閉断面に形成した車体骨格部材の衝突荷重の入力側に配置される断面コ字状のアウタ部材に、該アウタ部材を長手方向に2回折り返して形成した3重の折り畳み部をアウタ部材の断面形状に沿って形成し、衝突荷重の入力時に該折り畳み部の外層と内層とで中層を拘束しつつ伸展変形させて衝突エネルギーを吸収することを特徴とする。   Further, according to the collision energy absorbing method for a vehicle body skeleton member of the present invention, an outer member having a U-shaped cross section disposed on the input side of the collision load of the vehicle body skeleton member formed in a closed cross section is arranged in the longitudinal direction. A triple folded part formed by folding back is formed along the cross-sectional shape of the outer member, and when the collision load is input, the middle layer is constrained by the outer layer and the inner layer of the folded part to be extended and deformed to absorb the collision energy. It is characterized by that.

本発明の車体骨格部材の衝突エネルギー吸収構造および衝突エネルギー吸収方法によれば、車体骨格部材のアウタ部材に衝突荷重が入力されると、該アウタ部材に形成した3重の折り畳み部が、その外層と内層とで中層を拘束しつつ伸展変形するので、この伸展変形時に前記折り畳み部は、外層と中層との折返し部分と、中層と内層との折返し部分とがそれぞれしごき状態で伸展するため、大きな抵抗力を発揮して理想的な変形モードにコントロールできるとともに、効率良く衝突エネルギーを吸収することができる。   According to the collision energy absorbing structure and the collision energy absorbing method of the vehicle body skeleton member of the present invention, when a collision load is input to the outer member of the vehicle body skeleton member, the triple folded portion formed on the outer member The inner layer and the inner layer are stretched and deformed while constraining the middle layer.At the time of this deforming deformation, the folded portion is expanded in a folded state between the outer layer and the middle layer, and the folded portion between the middle layer and the inner layer. It is possible to control the ideal deformation mode by exerting resistance, and to efficiently absorb the collision energy.

以下、本発明の実施形態を図面と共に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1〜図10は本発明にかかる車体骨格部材の衝突エネルギー吸収構造の第1実施形態を示し、図1は車体の骨格構造を示す全体斜視図、図2は車体左側面の骨格構造を示す斜視図、図3は図2中A−A線に沿った拡大断面図、図4はセンターピラー下部結合部分の分解斜視図であり、図5は折り畳み部の形成工程を(a)〜(d)に順を追って示す斜視図、図6は図4中B−B線に沿った拡大断面図である。   1 to 10 show a first embodiment of a collision energy absorbing structure for a vehicle body skeleton member according to the present invention, FIG. 1 is an overall perspective view showing the skeleton structure of the vehicle body, and FIG. 2 shows a skeleton structure on the left side of the vehicle body. 3 is an enlarged cross-sectional view taken along the line AA in FIG. 2, FIG. 4 is an exploded perspective view of a lower part of the center pillar, and FIG. 5 shows the steps of forming the folding part (a) to (d). FIG. 6 is an enlarged cross-sectional view taken along line BB in FIG.

また、図7は衝突荷重の入力時におけるセンターピラー下部の変形状態を(a),(b)に順を追って示す図2中A−A線に対応した拡大断面図、図8は折り畳み部の伸展変形を(a)〜(c)に順を追って示す斜視図であり、図9はセンターピラーに衝突荷重が入力した際の反力特性を従来と比較して示す説明図、図10は衝突荷重が入力した際のセンターピラーの変形挙動を(a)の従来の場合と(b)の本発明の場合とで示す概略断面図である。   7 is an enlarged cross-sectional view corresponding to the line AA in FIG. 2 showing the deformation state of the lower part of the center pillar in the order of (a) and (b) when the collision load is input, and FIG. 8 is a view of the folding portion. FIG. 9 is a perspective view showing the extension deformation in order from (a) to (c), FIG. 9 is an explanatory view showing reaction force characteristics when a collision load is input to the center pillar, and FIG. It is a schematic sectional drawing which shows the deformation | transformation behavior of the center pillar when a load is input in the case of the conventional case of (a) and the case of the present invention of (b).

本実施形態の車体骨格部材の衝突エネルギー吸収構造は図1に示す車体Bのセンターピラー3に適用され、この車体Bは図2にも示すように、車体上部のルーフ部RFの左右両側に車体前後方向に延在する左,右一対のルーフサイドレール1と、車体下部のフロア部FLの左右両側に車体前後方向に延在する左,右一対のサイドシル2と、これら上下に対向するルーフサイドレール1とサイドシル2とを上下方向に連結する車体骨格部材であるピラー部材としてのセンターピラー3と、を備えている。   The collision energy absorbing structure of the vehicle body skeleton member of the present embodiment is applied to the center pillar 3 of the vehicle body B shown in FIG. 1, and the vehicle body B is mounted on the left and right sides of the roof portion RF on the vehicle body as shown in FIG. A pair of left and right roof side rails 1 extending in the front-rear direction, a pair of left and right side sills 2 extending in the front-rear direction of the vehicle body on the left and right sides of the floor portion FL at the lower part of the vehicle body, and a roof side facing these vertically And a center pillar 3 as a pillar member that is a vehicle body skeleton member that connects the rail 1 and the side sill 2 in the vertical direction.

また、前記ルーフサイドレール1と前記サイドシル2との間には、センターピラー3の車体前方に所定間隔をおいてフロントピラー4が配置されるとともに、センターピラー3の車体後方に所定間隔をおいてリアピラー5が配置され、これらセンターピラー3、フロントピラー4、リアピラー5および上記ルーフサイドレール1、サイドシル2はそれぞれ断面矩形状の閉断面に形成される。   A front pillar 4 is disposed between the roof side rail 1 and the side sill 2 at a predetermined distance in front of the center pillar 3 and at a predetermined distance behind the center pillar 3 in the vehicle body. A rear pillar 5 is disposed, and the center pillar 3, the front pillar 4, the rear pillar 5, the roof side rail 1, and the side sill 2 are each formed in a closed cross section having a rectangular cross section.

更に、図1に示すように前記左右一対のサイドシル2間にはフロアパネル6が敷設され、このフロアパネル6の車幅方向中央部に形成した前後方向に延在するトンネル部7とサイドシル2との間には車幅方向にクロスメンバ8が設けられる。   Further, as shown in FIG. 1, a floor panel 6 is laid between the pair of left and right side sills 2, and a tunnel portion 7 and side sills 2 extending in the front-rear direction formed at the center in the vehicle width direction of the floor panel 6 are provided. A cross member 8 is provided in the vehicle width direction.

前記センターピラー3は、図2に示すように全体的に車体外方に湾曲しており、その長手方向(上下方向)の略下半部の上下2箇所に所定間隔をおいて、リアドアを開閉自在に取付ける一対の上・下ヒンジ9a,9bが設けられる。   As shown in FIG. 2, the center pillar 3 is curved outwardly as a whole, and opens and closes the rear door at predetermined intervals at two upper and lower positions in the substantially lower half of the longitudinal direction (vertical direction). A pair of upper and lower hinges 9a and 9b to be freely attached are provided.

ここで、本実施形態では車体骨格部材としての前記センターピラー3がサイドシル2に連結される下部に本発明の衝突エネルギー吸収構造を適用してある。   Here, in this embodiment, the collision energy absorbing structure of the present invention is applied to the lower part where the center pillar 3 as a vehicle body skeleton member is connected to the side sill 2.

即ち、図3,図4に示すように前記センターピラー3を、側面衝突時に衝突荷重の入力側に配置される断面コ字状のアウタ部材としてのピラーアウタパネル3aと、このピラーアウタパネル3aの開放側を閉止するインナ部材としてのピラーインナパネル3bと、によって閉断面に形成し、ピラーアウタパネル3aの下部に、該ピラーアウタパネル3aを長手方向に2回折り返して外層p1、中層p2、内層p3とした3重の折り畳み部Pをピラーアウタパネル3aの断面形状に沿って断面コ字状に形成し、衝突荷重の入力時に該折り畳み部Pを外層p1と内層p3とで中層p2を拘束しつつ伸展変形させるようにしてある。   That is, as shown in FIGS. 3 and 4, the center pillar 3 includes a pillar outer panel 3 a as an outer member having a U-shaped cross section disposed on the input side of the collision load at the time of a side collision, and an open side of the pillar outer panel 3 a. A pillar inner panel 3b as an inner member that closes the outer periphery of the pillar outer panel 3a. The pillar outer panel 3a is folded twice in the longitudinal direction at the lower portion of the pillar outer panel 3a to form an outer layer p1, an intermediate layer p2, and an inner layer p3. A heavy folded portion P is formed in a U-shaped section along the sectional shape of the pillar outer panel 3a, and the folded portion P is extended and deformed while the middle layer p2 is constrained by the outer layer p1 and the inner layer p3 when a collision load is input. It is.

また、本発明の衝突エネルギー吸収方法では、閉断面に形成した前記センターピラー3の衝突荷重の入力側に配置される断面コ字状のピラーアウタパネル3aに、該ピラーアウタパネル3aを長手方向に2回折り返した3重の折り畳み部Pをピラーアウタパネル3aの断面形状に沿って形成し、衝突荷重の入力時に該折り畳み部Pの外層p1と内層p3とで中層p2を拘束しつつ伸展変形させて衝突エネルギーを吸収するようにしている。   Further, in the collision energy absorbing method of the present invention, the pillar outer panel 3a is disposed twice in the longitudinal direction on the pillar outer panel 3a having a U-shaped cross section disposed on the collision load input side of the center pillar 3 formed in a closed section. The folded triple folded portion P is formed along the cross-sectional shape of the pillar outer panel 3a, and when the collision load is input, the outer layer p1 and the inner layer p3 of the folded portion P are stretched and deformed while constraining the collision energy. To absorb.

一方、前記サイドシル2は、図3に示すようにシルアウタパネル2aとシルインナパネル2bとによって同様に閉断面に形成され、本実施形態では図4に示すようにピラーアウタパネル3aとシルアウタパネル2aとは連続して一体に形成される。   On the other hand, the side sill 2 is similarly formed in a closed section by a sill outer panel 2a and a sill inner panel 2b as shown in FIG. 3, and in this embodiment, the pillar outer panel 3a and the sill outer panel 2a are as shown in FIG. Continuously and integrally formed.

前記折り畳み部Pは、図5に示す工程によって形成されており、まず、(a)に示すようにピラーアウタパネル3aを形成する平板状のブランク材Kを所定形状に裁断した後、(b)に示すように折れ線L1を山折りし、折れ線L2を谷折りして折り畳み、(c)に示すようにその折り畳み部分を加圧して外層p1,中層p2,内層p3を密着させることにより折り畳み部Pを形成し、そして、(d)に示すように前記ブランク材Kを折り畳み部Pとともに断面コ字状にプレス成型することによりピラーアウタパネル3aが形成される。   The folding portion P is formed by the process shown in FIG. 5. First, as shown in FIG. 5A, after cutting the flat blank K forming the pillar outer panel 3 a into a predetermined shape, As shown, the folding line L1 is folded in a mountain, the folding line L2 is folded in a valley, and the folding part P is pressed by pressing the folded part to bring the outer layer p1, the middle layer p2, and the inner layer p3 into close contact with each other. Then, the pillar outer panel 3a is formed by press-molding the blank material K together with the folded portion P into a U-shaped cross section as shown in FIG.

また、前記ピラーアウタパネル3aはプレス成型した際に、両側縁部にピラーインナパネル3bと接合するためのフランジ3fを形成するようにしているが、このフランジ3fは、図5(a)に示すようにブランク材Kを裁断する際に予め折り畳み部Pに対応する部分で切除(切除部分E)しておき、図5(d)に示すように折り畳み部Pを形成して最終的に断面コ字状にプレスした時点で、フランジ3fは重なることなく連続するようになっている。   Further, when the pillar outer panel 3a is press-molded, flanges 3f for joining to the pillar inner panels 3b are formed at both side edges. This flange 3f is formed as shown in FIG. 5 (a). When the blank material K is cut, the portion corresponding to the folded portion P is cut in advance (the cut portion E), and the folded portion P is formed as shown in FIG. When pressed into a shape, the flange 3f is continuous without overlapping.

そして、折り畳み部Pを形成したセンターピラー3は、図2に示すようにルーフサイドレール1とサイドシル2とを車体上下方向に連結してあり、前記折り畳み部Pをサイドシル2との連結部Xと下方のドアヒンジ9bの取付部との間の領域に配置してある。   As shown in FIG. 2, the center pillar 3 in which the folding part P is formed has a roof side rail 1 and a side sill 2 connected in the vertical direction of the vehicle body, and the folding part P is connected to the side sill 2 with a connecting part X. It arrange | positions in the area | region between the attachment parts of the lower door hinge 9b.

前記センターピラー3は、図3,図4に示すようにピラーアウタパネル3aとピラーインナパネル3bとで構成される閉断面内に、ピラー補強部材としてのピラーアウタレインフォース10を設け、このピラーアウタレインフォース10の下部に前記折り畳み部Pの伸展変形に伴って伸展する伸展許容部11を形成してある。   As shown in FIGS. 3 and 4, the center pillar 3 is provided with a pillar outer reinforcement 10 as a pillar reinforcing member in a closed cross section constituted by a pillar outer panel 3a and a pillar inner panel 3b. An extension allowing portion 11 that extends in accordance with extension deformation of the folding portion P is formed in the lower portion of the force 10.

ピラーアウタレインフォース10は、ピラーアウタパネル3aに沿って断面コ字状に形成して前記折り畳み部Pの内面に近接配置するとともに、下端部をサイドシル2の閉断面内に配置されるシル補強部材としてのシルアウタレインフォース12に結合し、かつ、伸展許容部11を折り畳み部Pとの近接部分Nとシルアウタレインフォース12への結合部x1との間に配置してある。   The pillar outer reinforcement 10 is formed as a U-shaped cross section along the pillar outer panel 3 a and is disposed close to the inner surface of the folding portion P, and has a lower end portion as a sill reinforcing member disposed in the closed cross section of the side sill 2. Further, the extension allowing portion 11 is disposed between the proximity portion N with the folding portion P and the connecting portion x1 with the sil outer reinforcement 12.

前記シルアウタレインフォース12は、シルアウタパネル2aの内側に沿った形状に形成されるとともに、その上端部に車幅方向内方に折曲して延設される上端閉止板12aを設けて断面逆コ字状に形成してあり、シルアウタレインフォース12の上・下端部をピラーインナパネル3bの下端部を挟み込んだ状態でシルインナパネル2bに接合してある。   The sill outer reinforcement 12 is formed in a shape along the inside of the sill outer panel 2a, and an upper end closing plate 12a that is bent and extended inward in the vehicle width direction is provided at the upper end of the sill outer reinforcement 12 so that the cross section is reversed The upper and lower ends of the sill outer reinforcement 12 are joined to the sill inner panel 2b with the lower end of the pillar inner panel 3b sandwiched therebetween.

また、前記上端閉止板12aのシルアウタパネル2a寄りには、前記ピラーアウタレインフォース10の下端部の前記結合部x1となる段部12bを形成してある。   Further, a stepped portion 12b serving as the connecting portion x1 at the lower end portion of the pillar outer reinforcement 10 is formed near the sill outer panel 2a of the upper end closing plate 12a.

前記伸展許容部11は、図6に示すように上下方向に波形断面となる凹凸状のビード部11aで形成される。   As shown in FIG. 6, the extension allowing portion 11 is formed by an uneven bead portion 11 a having a wave-like cross section in the vertical direction.

前記ピラーインナパネル3bは、図4に示すようにブランク材を帯状の平板に裁断して形成され、該ピラーインナパネル3bを前記ピラーアウタパネル3aに接合して構成した閉断面内の下部にはシートベルトリトラクタを収納するようになっており、前記ピラーインナパネル3bの下部にはリトラクタに巻き取られたウェビングを取り出すためのほぼ矩形状の開口部13が形成される。   The pillar inner panel 3b is formed by cutting a blank material into a strip-shaped flat plate as shown in FIG. 4, and is formed by joining the pillar inner panel 3b to the pillar outer panel 3a. A belt retractor is accommodated, and a substantially rectangular opening 13 for taking out the webbing wound around the retractor is formed in the lower part of the pillar inner panel 3b.

そして、前記ピラーインナパネル3bには、前記折り畳み部Pの伸展変形に伴って破断する易破断部としてのノッチ14を形成してある。   The pillar inner panel 3b is formed with a notch 14 as an easily breakable portion that breaks along with the extension deformation of the folding portion P.

前記ノッチ14は、前記開口部13の下側縁の前後両角部をV字状に切欠いて形成してあり、衝突荷重の入力によってピラーインナパネル3bに引張り力が作用した際に、そのときの応力が前記ノッチ14に集中して、該ノッチ14を起点としてピラーインナパネル3bが破断C(図7(b)参照)するようにしてある。   The notch 14 is formed by cutting out both front and rear corners of the lower edge of the opening 13 in a V shape, and when a tensile force is applied to the pillar inner panel 3b by the input of a collision load, Stress concentrates on the notch 14, and the pillar inner panel 3b breaks C (see FIG. 7B) with the notch 14 as a starting point.

また、前記ピラーインナパネル3bは、図3,図4に示すように閉断面に形成した前記サイドシル2の外側部分と内側部分とに跨って結合される二股構造部20を備えている。   Moreover, the said pillar inner panel 3b is provided with the bifurcated structure part 20 couple | bonded ranging over the outer part and the inner part of the said side sill 2 formed in the closed cross section as shown in FIG. 3, FIG.

前記二股構造部20は箱状に形成され、その内側フランジ20aを前記ピラーインナパネル3bの前記開口部13周縁部にスポット溶接などにより接合して、ピラーインナパネル3bの下端部を一方の脚とするとともに、外側面20bを下方に延長した延設部21を他方の脚として、これら2つの脚により二股部分を構成してあり、その延設部21を前記シルアウタレインフォース12の段部12bに接合してある。   The bifurcated structure 20 is formed in a box shape, and its inner flange 20a is joined to the periphery of the opening 13 of the pillar inner panel 3b by spot welding or the like, and the lower end of the pillar inner panel 3b is connected to one leg. In addition, the extended portion 21 extending downward from the outer surface 20b is used as the other leg, and the two legs constitute a bifurcated portion, and the extended portion 21 is formed as the stepped portion 12b of the sill outer reinforcement 12. Is joined.

以上の構成により本実施形態の車体骨格部材の衝突エネルギー吸収構造および衝突エネルギー吸収方法によれば、側面衝突によりセンターピラー3のピラーアウタパネル3aに衝突荷重が入力されると、センターピラー3は図7(a)に示す通常状態から図7(b)に示すようにサイドシル2との連結部Xから車両内方(図中左方)に折れ曲がり(図10(b)参照)、このときピラーアウタパネル3aには引張り力が作用することにより、該ピラーアウタパネル3aに形成した3重の折り畳み部Pが、その外層p1と内層p3とで中層p2を拘束しつつ伸展変形する。   With the above configuration, according to the collision energy absorbing structure and the collision energy absorbing method for the vehicle body skeleton member of the present embodiment, when a collision load is input to the pillar outer panel 3a of the center pillar 3 due to a side collision, the center pillar 3 is From the normal state shown in FIG. 7 (a), as shown in FIG. 7 (b), it bends from the connecting portion X to the side sill 2 to the inside of the vehicle (left side in the figure) (see FIG. 10 (b)). At this time, the pillar outer panel 3a When a tensile force acts on the three-fold folded portion P formed in the pillar outer panel 3a, the outer layer p1 and the inner layer p3 constrain the middle layer p2 so as to extend and deform.

つまり、前記折り畳み部Pは、図8(a)に示すようにセンターピラー3に引張り力がFpが作用すると、図8(b)に示すように外層p1と中層p2との折返し部分L1と、中層p2と内層p3との折返し部分L2とがそれぞれしごき状態で伸展する。   That is, the folding portion P has a folded portion L1 between the outer layer p1 and the middle layer p2 as shown in FIG. 8B when the tensile force Fp acts on the center pillar 3 as shown in FIG. The folded portion L2 between the middle layer p2 and the inner layer p3 extends in a squeezed state.

このとき、前記折り畳み部Pはピラーアウタパネル3aの断面形状に沿って断面コ字状に形成してあるため、前記折返し部分L1,L2がしごかれる際に、稜線R部分を引き裂きつつめくれるように伸展するため、大きな抵抗力を発揮して図9中実線の反力特性αに示す理想的な変形モードにコントロールできるとともに、効率良く衝突エネルギーを吸収することができる。   At this time, since the folded portion P is formed in a U-shaped cross section along the cross-sectional shape of the pillar outer panel 3a, when the folded portions L1 and L2 are squeezed, the ridge line R portion is torn and torn. Since it extends, it can be controlled to the ideal deformation mode indicated by the reaction force characteristic α shown by the solid line in FIG. 9 while exhibiting a large resistance, and the collision energy can be absorbed efficiently.

従って、衝突荷重の入力時には、従来では図10(a)に示すようにフロア部FLの変形を伴ってセンターピラー3Aが車室内方に変形することにより衝突エネルギーを吸収するのに対して、本実施形態ではフロア部FLの剛性を高く設定した場合に、図10(b)に示すように衝突荷重の入力時には、フロア部FLの変形を伴うことなくセンターピラー3の下部が前記折り畳み部Pの伸展変形を伴って車室内方に変形することにより、衝突エネルギーを効率良く吸収し、かつ、変形モードをコントロールすることができる。   Therefore, when a collision load is input, conventionally, as shown in FIG. 10 (a), the center pillar 3A is deformed toward the vehicle interior along with the deformation of the floor portion FL, whereas the collision energy is absorbed. In the embodiment, when the rigidity of the floor portion FL is set high, as shown in FIG. 10B, when the collision load is input, the lower portion of the center pillar 3 is not deformed of the folding portion P without deformation of the floor portion FL. By deforming toward the vehicle interior along with extension deformation, the collision energy can be efficiently absorbed and the deformation mode can be controlled.

尚、図9中破線はフロア部FLの変形を伴う従来の反力特性βを示すが、この場合はピラー3Aの変形が大きくなると反力が低下するため、衝突エネルギーの吸収効率が悪化することになる。   The broken line in FIG. 9 shows the conventional reaction force characteristic β accompanied with the deformation of the floor portion FL. In this case, the reaction force decreases as the deformation of the pillar 3A increases, so that the absorption efficiency of the collision energy deteriorates. become.

また、本実施形態では前記折り畳み部Pをサイドシル2との連結部Xと下方のドアヒンジ9bの取付部との間の領域に配置したので、側面衝突時にピラー3の下部を上下方向に延び変形させて車室内に侵入させつつ衝突エネルギーを吸収し、このとき、サイドシル2ひいてはフロア部FLに対して相対的にピラー3が変形できるため、サイドシル2およびフロア部FLの強度を低減することなく、側面衝突に対する変形モードをコントロールすることができる。   Further, in the present embodiment, the folding part P is arranged in a region between the connecting part X with the side sill 2 and the attachment part of the lower door hinge 9b, so that the lower part of the pillar 3 is extended and deformed in the vertical direction at the time of a side collision. In this case, the collision energy is absorbed while invading into the vehicle interior. At this time, the pillar 3 can be deformed relative to the side sill 2 and thus the floor portion FL, so the side sill 2 and the floor portion FL can be reduced without reducing the strength. The deformation mode for collision can be controlled.

更に、前記センターピラー3のピラーアウタパネル3aとピラーインナパネル3bとで構成される閉断面内に設けたピラーアウタレインフォース10に、前記折り畳み部Pの伸展変形に伴って伸展する伸展許容部11を形成したので、通常時には前記ピラーアウタレインフォース10によってセンターピラー3の強度を高めることができる一方、側面衝突時は伸展許容部11が伸展することにより、前記折り畳み部Pの機能を阻害することがなく、しかも、該伸展許容部11の伸展によって衝突エネルギーをより効率良く吸収するとともに、変形モードをコントロールすることができる。   Further, an extension allowing portion 11 that extends along with extension deformation of the folding portion P is provided on a pillar outer reinforcement 10 provided in a closed cross section constituted by the pillar outer panel 3a and the pillar inner panel 3b of the center pillar 3. Since it is formed, the strength of the center pillar 3 can be increased by the pillar outer reinforcement 10 at the normal time, while the extension allowing portion 11 is extended at the time of a side collision, thereby inhibiting the function of the folding portion P. In addition, the extension of the extension allowing portion 11 can absorb the collision energy more efficiently and control the deformation mode.

更にまた、センターピラー3のピラーインナパネル3bには、前記折り畳み部Pの伸展変形に伴って破断する易破断部(ノッチ14)を形成したので、図7(b)に示すように側面衝突時にピラーインナパネル3bが前記破断部から破断Cして前記折り畳み部Pの機能を阻害するのを防止できる。   Furthermore, since the pillar inner panel 3b of the center pillar 3 is formed with an easily breakable portion (notch 14) that breaks along with the extension deformation of the folding portion P, as shown in FIG. It is possible to prevent the pillar inner panel 3b from breaking the C from the broken portion and inhibiting the function of the folded portion P.

また、前記破断部はピラーインナパネル3bに形成した開口部13の下側縁の前後両角部をV字状に切欠いたノッチ14で形成したので、衝突荷重の入力によりピラーインナパネル3bに発生する引張り応力を前記ノッチ14に集中させてピラーインナパネル3bを破断させることができ、易破断部を簡単な構成としてコスト上昇を抑えることができる。   Further, since the broken portion is formed by notches 14 in which the front and rear corners of the lower edge of the opening 13 formed in the pillar inner panel 3b are cut out in a V shape, it is generated in the pillar inner panel 3b by the input of a collision load. The pillar inner panel 3b can be broken by concentrating the tensile stress on the notch 14, and the easily breakable portion can be simplified to suppress an increase in cost.

更に、前記ピラーインナパネル3bは、閉断面に形成したサイドシル2の外側部分と内側部分とに跨って結合される二股構造部20を備えているので、通常状態では二股構造部20によってピラーインナパネル3bとサイドシル2との結合力を高める一方、衝突過重の入力時には図7(b)に示すように二股構造部20が平行四辺形状に圧潰して、ピラーインナパネル3bがサイドシル2に対して車幅方向内方に相対移動できるので、ピラーアウタパネル3aの変形、ひいては折り畳み部Pの機能を阻害するのを防止できる。   Further, since the pillar inner panel 3b includes the bifurcated structure portion 20 that is coupled across the outer portion and the inner portion of the side sill 2 formed in a closed cross section, the pillar inner panel is formed by the bifurcated structure portion 20 in a normal state. While the coupling force between 3b and the side sill 2 is increased, the bifurcated structure 20 is crushed into a parallelogram shape as shown in FIG. Since it can move relatively inward in the width direction, it is possible to prevent the pillar outer panel 3a from being deformed, and thus hindering the function of the folding portion P.

更にまた、ピラーアウタレインフォース10を、ピラーアウタパネル3aに沿って断面コ字状に形成して前記折り畳み部Pの内面に近接配置するとともに、下端部をサイドシル2の閉断面内に配置されるシルアウタレインフォース12に結合し、かつ、前記伸展許容部11を折り畳み部Pとの近接部分Nとシルアウタレインフォース12への結合部x1との間に配置したので、前記ピラーアウタレインフォース10によってセンターピラー3とサイドシル2との連結部Xの結合剛性を高めることができるとともに、伸展許容部11を折り畳み部Pから外して配置できるので、側面衝突時に近接部分Nとなるピラーアウタレインフォース10の一般部分で折り畳み部Pを拘束できることにより、折り畳み部Pが捻れることなく外層p1,中層p2,内層p3をスライドするように伸展変形させて、センターピラー3下部の連続的な曲げ変形を促進し、持続的に抵抗力を発生させることができる。   Furthermore, the pillar outer reinforcement 10 is formed in a U-shaped cross section along the pillar outer panel 3a and is disposed close to the inner surface of the folding part P, and the lower end is disposed in the closed section of the side sill 2. Since it is coupled to the outer reinforcement 12 and the extension allowing portion 11 is disposed between the proximity portion N to the folding portion P and the coupling portion x1 to the sill outer reinforcement 12, the pillar outer reinforcement 10 Since the joint rigidity of the connecting portion X between the center pillar 3 and the side sill 2 can be increased and the extension allowing portion 11 can be arranged away from the folding portion P, the pillar outer reinforcement 10 that becomes the proximity portion N at the time of a side collision can be obtained. By being able to constrain the folding part P at the general part, the outer layer p1, the middle layer p without the folding part P being twisted Can the inner p3 and extension is deformed to slide, to promote the center pillar 3 the lower portion of the continuous bending deformation to generate sustained resistance.

また、前記伸展許容部11を、上下方向に波形断面となる凹凸状のビード部11aで形成したので、衝突荷重の入力によりピラーアウタレインフォース10に発生する引張り力により前記ビード部11aを伸展させることができ、その伸展許容部11を簡単な構成としてコストアップを抑えることができる。   Further, since the extension allowance portion 11 is formed by the uneven bead portion 11a having a corrugated cross section in the vertical direction, the bead portion 11a is extended by a tensile force generated in the pillar outer reinforcement 10 by the input of a collision load. The extension allowance portion 11 can be configured simply and the cost increase can be suppressed.

図11は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図11はピラーアウタパネルの折り畳み部を展開した斜視図である。   FIG. 11 shows a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 11 is an unfolded portion of the pillar outer panel. FIG.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様の構成となり、本実施形態が第1実施形態と特に異なる点は、図11に示すように折り畳み部Pの中層p2を拘束する外層p1および内層p3の剛性を、中層p2の剛性よりも大きくしてある。   The collision energy absorption structure of the vehicle body skeleton member of this embodiment is basically the same as that of the first embodiment, and the difference of this embodiment from the first embodiment is that the folding portion P is as shown in FIG. The rigidity of the outer layer p1 and the inner layer p3 that constrain the middle layer p2 is greater than the rigidity of the middle layer p2.

このように外層p1および内層p3の剛性と中層p2の剛性とを異ならせるにあたって、中層p2の断面コ字状とした稜線R部分に低剛性部としての空孔部30を形成してある。   Thus, in order to make the rigidity of the outer layer p1 and the inner layer p3 different from the rigidity of the middle layer p2, the hole portion 30 as a low rigidity portion is formed in the ridge line R portion having a U-shaped cross section of the middle layer p2.

前記空孔部30は、稜線R部分に沿って断続的に複数形成してある。   A plurality of the hole portions 30 are intermittently formed along the ridge line R portion.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、折り畳み部Pの中層p2を拘束する外層p1および内層p3の剛性を、中層p2の剛性よりも大きくしたので、外層p1および内層p3による中層p2の拘束性を高め、折り畳み部Pが伸展変形する際に、外層p1,中層p2,内層p3が相互に離反することなく連続的にスライドさせて、外層p1と中層p2との折返し部分L1と、中層p2と内層p3との折返し部分L2とのしごき効果を高めることができるため、衝突エネルギーの吸収効率を高めて理想的な変形モードにコントロールできる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the same effects as in the first embodiment can be obtained, and the rigidity of the outer layer p1 and the inner layer p3 that constrain the middle layer p2 of the folded portion P can be set to the middle layer. Since it is larger than the rigidity of p2, the restraint property of the middle layer p2 by the outer layer p1 and the inner layer p3 is enhanced, and the outer layer p1, the middle layer p2, and the inner layer p3 are continuously separated without being separated from each other when the folding part P is extended and deformed. The squeezing effect of the folded portion L1 between the outer layer p1 and the middle layer p2 and the folded portion L2 between the middle layer p2 and the inner layer p3 can be enhanced, so that the collision energy absorption efficiency is increased and ideal deformation is achieved. You can control the mode.

また、中層p2の断面コ字状となった稜線R部分に低剛性部(空孔部30)を形成したので、センターピラー3の長手方向(上下方向)に対して適宜な角度をもった衝突荷重が折り畳み部P以外の領域に入力した場合にも、折り畳み部Pの断面外周形状を維持しつつその折り畳み部Pを確実に伸展変形させることができる。   Further, since the low-rigidity portion (hole portion 30) is formed in the ridge line R portion having a U-shaped cross section of the middle layer p2, the collision with an appropriate angle with respect to the longitudinal direction (vertical direction) of the center pillar 3 Even when a load is input to a region other than the folded portion P, the folded portion P can be reliably extended and deformed while maintaining the cross-sectional outer peripheral shape of the folded portion P.

更に、前記低剛性部を稜線R部分に沿って断続的に形成される複数の空孔部30で形成したので、その空孔部30の大きさやピッチを調整することにより、折り畳み部Pが伸展変形する際の抵抗力をコントロールして、車両に適した変形モードに調整することができる。   Furthermore, since the low-rigidity portion is formed by a plurality of hole portions 30 that are intermittently formed along the ridgeline R portion, the folding portion P extends by adjusting the size and pitch of the hole portions 30. It is possible to adjust the deformation mode suitable for the vehicle by controlling the resistance force during deformation.

図12,図13は本発明の第3実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図12はピラーアウタパネルの折り畳み部を展開した斜視図、図13は折り畳み部の形成工程を(a),(b)に順を追って示す説明図である。   FIGS. 12 and 13 show a third embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 12 shows the folding of the pillar outer panel. FIG. 13 is an explanatory view showing the steps of forming the folded portion in order from (a) to (b).

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様の構成となり、本実施形態が第1実施形態と特に異なる点は、図12に示すように折り畳み部Pの外層p1と中層p2の折返し部分L1および中層p2と内層p3の折返し部分L2に、板厚以上の直径を有する芯金32をそれぞれ内包してある。   The collision energy absorption structure of the vehicle body skeleton member of the present embodiment basically has the same configuration as that of the first embodiment, and the difference of the present embodiment from the first embodiment is that the folding portion P as shown in FIG. The outer layer p1 and the folded part L1 of the middle layer p2 and the folded part L2 of the middle layer p2 and the inner layer p3 each include a core metal 32 having a diameter equal to or greater than the plate thickness.

即ち、前記折返し部分L1,L2に芯金32を内包する方法としては、図13(a)に示すように山折りする折れ線L1に対応する位置ではブランク材Kの下側に芯金32を配置するとともに、谷折りする折れ線L2に対応する位置ではブランク材Kの上側に芯金32を配置し、この状態で図13(b)に示すようにそれぞれの折れ線L1,L2を山折り,谷折りすることにより、それぞれの折返し部分L1,L2に芯金32が内包されるようになっている。   That is, as a method of including the cored bar 32 in the folded portions L1 and L2, the cored bar 32 is disposed below the blank material K at a position corresponding to the fold line L1 as shown in FIG. In addition, the cored bar 32 is arranged on the upper side of the blank material K at the position corresponding to the folding line L2 to be folded, and in this state, as shown in FIG. 13B, the folding lines L1 and L2 are mountain-folded and valley-folded. By doing so, the cored bar 32 is included in the folded portions L1 and L2.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、折り畳み部Pの外層p1と中層p2の折返し部分L1および中層p2と内層p3の折返し部分L2に、板厚以上の直径を有する芯金32をそれぞれ内包したので、それぞれの折返し部分L1,L2でブランク材Kに必要な最小限の曲率を維持できるため、加工硬化による脆性化を防止でき、衝突荷重の入力時に折り畳み部Pを円滑に伸展変形させることができる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the same effects as in the first embodiment can be obtained, and the outer layer p1 of the folded portion P and the folded portion L1 of the middle layer p2 and the middle layer p2 and the inner layer p3. Since the core metal 32 having a diameter equal to or greater than the plate thickness is included in each folded portion L2, the minimum curvature necessary for the blank material K can be maintained in each folded portion L1, L2, and thus brittleness is caused by work hardening. The folding part P can be smoothly extended and deformed when a collision load is input.

図14は本発明の第4実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図14はピラーアウタパネルの折り畳み部を展開した斜視図である。   FIG. 14 shows a fourth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 14 is an unfolded portion of the pillar outer panel. FIG.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様の構成となり、本実施形態が第1実施形態と特に異なる点は、折り畳み部Pを、中層p2を薄肉化した差厚鋼板Mで形成するとともに、中層p2と外層p1との間の差厚境界B1を所定幅d1だけ外層p1側に位置させ、中層p2と内層p3との間の差厚境界B2を所定幅d2だけ内層側に位置させてある。   The collision energy absorption structure of the vehicle body skeleton member of the present embodiment basically has the same configuration as that of the first embodiment. This embodiment is particularly different from the first embodiment in that the folding portion P and the middle layer p2 are thin. The difference thickness boundary B1 between the middle layer p2 and the outer layer p1 is positioned on the outer layer p1 side by a predetermined width d1, and the difference thickness boundary B2 between the middle layer p2 and the inner layer p3 is formed. A predetermined width d2 is positioned on the inner layer side.

即ち、本実施形態では前記差厚鋼板Mを、中層p2部分を形成する板厚t1のブランク材K1を他の一般部分とは別体に形成して、そのブランク材K1を一般部分の板厚tのブランク材Kに2箇所の溶接線Wをもって溶接することにより一体化させて形成してある。   That is, in this embodiment, the difference thickness steel plate M is formed by forming a blank material K1 having a plate thickness t1 forming the middle layer p2 portion separately from other general portions, and the blank material K1 is formed as a plate thickness of the general portion. The two blanks K are integrally formed by welding with two welding lines W.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、折り畳み部Pを、中層p2を薄肉化した差厚鋼板Mで形成したので、外層p1および内層p3による中層p2の拘束性を高めて、折り畳み部Pが伸展変形する際に中層p2の稜線R部分の破断変形を連続的に発生させることができるため、衝突エネルギーの吸収効率を高めて理想的な変形モードにコントロールできる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the folded portion P is formed of the differential thickness steel plate M in which the middle layer p2 is thinned as well as the same effects as the first embodiment. Since the restraint property of the middle layer p2 by the outer layer p1 and the inner layer p3 is enhanced and the folding portion P is deformed in a stretched manner, the rupture deformation of the ridge line R portion of the middle layer p2 can be continuously generated, so that the collision energy absorption efficiency Can be controlled to an ideal deformation mode.

また、センターピラー3への衝突荷重の入力点が折り畳み部Pの上方である場合にも、肉厚な外層p1および内層p3により薄肉な中層p2の高い拘束性により、折り畳み部Pの断面形状を維持しつつ確実にその折り畳み部Pを伸展変形させることができる。   Even when the input point of the collision load to the center pillar 3 is above the folding part P, the cross-sectional shape of the folding part P can be reduced due to the high restraint of the thin middle layer p2 by the thick outer layer p1 and the inner layer p3. The folding part P can be extended and deformed reliably while maintaining.

更に、中層p2と外層p1との間の差厚境界B1を所定幅d1だけ外層p1側に位置させ、中層p2と内層p3との間の差厚境界B2を所定幅d2だけ内層側に位置させたので、外層p1と中層p2の折返し部分L1および中層p2と内層p3の折返し部分L2を薄肉化でき、折り畳み部Pの伸展変形初期から一定の衝突エネルギーの吸収特性を得ることができる。   Further, the difference thickness boundary B1 between the middle layer p2 and the outer layer p1 is located on the outer layer p1 side by a predetermined width d1, and the difference thickness boundary B2 between the middle layer p2 and the inner layer p3 is located on the inner layer side by a predetermined width d2. Therefore, the folded portion L1 of the outer layer p1 and the middle layer p2 and the folded portion L2 of the middle layer p2 and the inner layer p3 can be thinned, and a constant collision energy absorption characteristic can be obtained from the initial stage of the extension deformation of the folded portion P.

図15は本発明の第5実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図15はピラーインナパネルの下部を示す斜視図である。   FIG. 15 shows a fifth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 15 is a perspective view showing the lower part of the pillar inner panel. FIG.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様の構成となり、本実施形態が第1実施形態と特に異なる点は、図15に示すように二股構造部20Aは、センターピラー3の下部に収納されるシートベルトリトラクタの収納スペースSを確保するようにしてピラーインナパネル3bから一体部品で形成してある。   The collision energy absorption structure of the vehicle body skeleton member of this embodiment is basically the same as that of the first embodiment, and this embodiment is particularly different from the first embodiment in that a bifurcated structure portion is shown in FIG. 20A is formed as an integral part from the pillar inner panel 3b so as to secure the storage space S of the seat belt retractor stored in the lower part of the center pillar 3.

即ち、前記二股構造部20Aは、ピラーインナパネル3bの下部に形成したウェビング取出し用の開口部13の上側縁から一体に車幅方向外方に水平部20Aaを一旦突出した後、前記シートベルトリトラクタの収納スペースSの車体外側面に沿って下方に垂下部20Abを垂下させて断面逆L字状に形成してある。   That is, the bifurcated structure portion 20A projects the horizontal portion 20Aa from the upper edge of the webbing take-out opening 13 formed in the lower portion of the pillar inner panel 3b, and then protrudes outward in the vehicle width direction, and then the seat belt retractor. The hanging portion 20Ab is suspended downward along the outer surface of the vehicle body of the storage space S to form an inverted L-shaped cross section.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、二股構造部20Aを、センターピラー3の下部に収納されるシートベルトリトラクタの収納スペースSを確保するようにしてピラーインナパネル3bから一体部品で形成したので、部品点数を削減するとともに、型費の削減などによって生産性を向上することができる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the bifurcated structure portion 20A is of the seat belt retractor housed in the lower part of the center pillar 3 as well as the same effects as the first embodiment. Since the storage space S is secured and formed as an integral part from the pillar inner panel 3b, the number of parts can be reduced and the productivity can be improved by reducing the mold cost.

図16は第5実施形態の変形例を示すピラーインナパネルの下部を示す斜視図で、断面逆L字状に形成した前記二股構造部20Aの垂下部20Abに上下方向に波形断面となる凹凸状のビード部22を形成してある。   FIG. 16 is a perspective view showing a lower part of a pillar inner panel showing a modification of the fifth embodiment, and an uneven shape having a corrugated cross section in the vertical direction on the hanging part 20Ab of the bifurcated structure part 20A formed in an inverted L-shaped cross section. The bead portion 22 is formed.

従って、本変形例では第5実施形態と同様の作用効果を奏するのは勿論のこと、凹凸状のビード部22を二股構造部20Aの垂下部20Abに形成したことにより、側面衝突時にピラーインナパネル3bがノッチ14から破断した際の二股構造部20Aの伸び代を拡大することができる。   Therefore, in this modified example, the same effect as that of the fifth embodiment is obtained, and the pillar inner panel is formed at the time of a side collision by forming the uneven bead portion 22 on the hanging portion 20Ab of the bifurcated structure portion 20A. The elongation allowance of the bifurcated structure portion 20A when 3b breaks from the notch 14 can be increased.

図17は本発明の第6実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図17はピラーアウタパネルの折り畳み部を展開した斜視図である。   FIG. 17 shows a sixth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 17 is an unfolded portion of the pillar outer panel. FIG.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様に、ピラーアウタレインフォース10の下部に折り畳み部Pの伸展変形に伴って伸展する伸展許容部11Aを形成してある。   The collision energy absorbing structure for a vehicle body skeleton member of the present embodiment basically forms an extension allowing portion 11A that extends in accordance with the extension deformation of the folding portion P at the lower portion of the pillar outer reinforcement 10 as in the first embodiment. It is.

そして、本実施形態の伸展許容部11Aは、第1実施形態と同様にピラーアウタレインフォース10の下部に形成され、互いに離れる方向にクランク状に突出させた二股状の前後両側部11Aa,11Abで形成してある。   The extension allowing portion 11A of this embodiment is formed at the lower part of the pillar outer reinforcement 10 as in the first embodiment, and is formed by bifurcated front and rear side portions 11Aa and 11Ab that protrude in a crank shape in directions away from each other. It is formed.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、伸展許容部11Aを、互いに離れる方向にクランク状に突出させた二股状の前後両側部11Aa,11Abで形成したので、側面衝突により伸展許容部11Aに引張り力が発生すると、クランク状に突出した前後両側部11Aa,11Abが図中破線に示すように一直線状になることで、ピラーアウタレインフォース10の下部を引き延ばすことができ、折り畳み部Pの伸展機能を阻害するのを防止できる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the bifurcated shape in which the extension allowing portion 11A is projected in a crank shape in a direction away from each other as well as the same effect as the first embodiment. Since the front and rear side portions 11Aa and 11Ab are formed, when a tensile force is generated in the extension allowance portion 11A due to a side collision, the front and rear side portions 11Aa and 11Ab protruding in a crank shape are straightened as shown by broken lines in the figure. The lower part of the pillar outer reinforcement 10 can be extended, and the extension function of the folding part P can be prevented from being hindered.

図18は本発明の第7実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図18はピラーアウタパネルの折り畳み部を展開した斜視図である。   FIG. 18 shows a seventh embodiment of the present invention, in which the same components as in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 18 is an unfolded portion of the pillar outer panel. FIG.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、第6実施形態と同様に伸展許容部11Bをピラーアウタレインフォース10の下部に形成してあり、この伸展許容部11Bは、ピラーアウタレインフォース10の車両前後幅を上方から下方に向かって徐々に増幅して最大幅部分11Baを形成するとともに、この最大幅部分11Baから下方に向かって徐々に縮幅させ、その最大幅部分11Baに車両前後方向に近接して並設される複数の空孔部33を設けて形成してある。   In the collision energy absorbing structure for a vehicle body skeleton member according to the present embodiment, the extension allowing portion 11B is formed below the pillar outer reinforcement 10 as in the sixth embodiment, and the extension allowing portion 11B is provided with the pillar outer reinforcement 11B. The maximum width portion 11Ba is gradually amplified from the top to the bottom to form the maximum width portion 11Ba, and the maximum width portion 11Ba is gradually reduced in the downward direction. A plurality of hole portions 33 arranged adjacent to each other in the direction are provided.

また、前記空孔部33が近接する間隔s1を、前後終端の空孔部33と前記最大幅部分11Baの前後方向端との間の幅s2よりも十分に小さく設定してある。   Further, the interval s1 at which the air holes 33 approach each other is set to be sufficiently smaller than the width s2 between the air holes 33 at the front and rear ends and the front and rear end of the maximum width portion 11Ba.

従って、本実施形態の本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、伸展許容部11Bを、ピラーアウタレインフォース10の下部に形成した最大幅部分11Baに複数の空孔部33をピラーアウタレインフォース10の車両前後方向に近接して形成したので、側面衝突時に伸展許容部11Bに引張り力が作用すると、近接配置した空孔部33間がそれぞれ破断して相互に繋がり、図中破線に示すようにピラーアウタレインフォース10が上下方向に伸長できるため、折り畳み部Pの伸展機能を阻害するのを防止できる。   Therefore, according to the collision energy absorbing structure of the present embodiment of the present embodiment, the extension allowing portion 11B is formed below the pillar outer reinforcement 10 as well as the same effects as the first embodiment. Since the plurality of hole portions 33 are formed in the maximum width portion 11Ba close to the vehicle front-rear direction of the pillar outer reinforcement 10, when a tensile force acts on the extension allowance portion 11B at the time of a side collision, the adjacent hole portions 33 are broken and connected to each other, and the pillar outer reinforcement 10 can be extended in the vertical direction as indicated by the broken line in the figure, so that the extension function of the folding portion P can be prevented from being hindered.

また、前記空孔部33が近接する間隔s1を、前後終端の空孔部33と前記最大幅部分11Baの前後方向端との間の幅s2よりも十分に小さく設定したので、側面衝突時には隣接する空孔部33間のみを破断して、最大幅部分11Ba両側の幅s2部分を繋げた状態で伸長させることができる。   Further, since the interval s1 between the holes 33 is set to be sufficiently smaller than the width s2 between the holes 33 at the front and rear ends and the front-rear direction end of the maximum width portion 11Ba, Only the gaps 33 between the holes 33 to be cut can be broken and extended in a state where the width s2 portions on both sides of the maximum width portion 11Ba are connected.

図19,図20は本発明の第8実施形態を示し、第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図19はセンターピラーとサイドシルとの連結部分の断面図、図20はシル補強部材の斜視図である。   19 and 20 show an eighth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted, and FIG. 19 shows a center pillar, a side sill, FIG. 20 is a perspective view of a sill reinforcing member.

本実施形態の車体骨格部材の衝突エネルギー吸収構造は、基本的に第1実施形態と同様の構成となり、本実施形態が第1実施形態と特に異なる点は、図19,図20に示すようにシル補強部材としてのサイドシルレインフォース40を、軽合金押出し成型による閉断面の一体成形品で形成してある。   The collision energy absorption structure of the vehicle body skeleton member of this embodiment is basically the same as that of the first embodiment, and this embodiment is particularly different from the first embodiment as shown in FIGS. 19 and 20. The side sill reinforcement 40 as a sill reinforcing member is formed as an integrally molded product having a closed cross section by light alloy extrusion molding.

即ち、一体成形した前記サイドシルレインフォース40は、シルアウタパネル2aの内側に配置されるシルアウタレインフォース41と、シルインナパネル2bの内側に配置されるシルインナレインフォース42と、を縦リブ43を介して一体に結合するとともに、段部12bの下端に位置する水平リブ44をシルアウタレインフォース41とシルインナレインフォース42に亘って結合してある。   That is, the integrally formed side sill reinforcement 40 includes a sill outer reinforcement 41 arranged inside the sill outer panel 2a and a sill inner reinforcement 42 arranged inside the sill inner panel 2b. And a horizontal rib 44 positioned at the lower end of the stepped portion 12b is coupled across the sill outer reinforcement 41 and the sill inner reinforcement 42.

尚、前記サイドシルレインフォース40は、押出し成形によることなく、その他の一体成形方法、例えばスチール液圧成型によっても形成することができる。   The side sill reinforcement 40 can be formed not by extrusion molding but also by other integral molding methods such as steel hydraulic molding.

そして、図19に示すようにシルインナレインフォース42をシルインナパネル2bの内側に締結部材45で結合する一方、ピラーインナパネル3bの下端部を前記縦リブ43の上方突出部43aに結合するとともに、前記段部12bには第1実施形態と同様に二股構造部20の外側面20bの延設部21と、ピラーアウタレインフォース10の下端部とを結合してある。   Then, as shown in FIG. 19, the sill inner reinforcement 42 is coupled to the inside of the sill inner panel 2b by a fastening member 45, while the lower end portion of the pillar inner panel 3b is coupled to the upward projecting portion 43a of the vertical rib 43. As in the first embodiment, the stepped portion 12b is connected to the extending portion 21 of the outer side surface 20b of the bifurcated structure portion 20 and the lower end portion of the pillar outer reinforcement 10.

従って、本実施形態の衝突エネルギー吸収構造によれば、第1実施形態と同様の作用効果を奏するのは勿論のこと、サイドシルレインフォース40を閉断面の一体成形品で形成したので、サイドシル2の強度を大幅に向上できるとともに、局部的な入力が顕著となる衝突形態にあってもサイドシル2の変形を抑制できるため車室内の生存空間を確保でき、また、センターピラー3への入力が顕著となる衝突形態であっても、衝突エネルギーの吸収効率を高めつつ変形モードをコントロールすることができる。   Therefore, according to the collision energy absorbing structure of the present embodiment, the side sill reinforcement 40 is formed of an integrally molded product having a closed cross section, as well as the same effects as the first embodiment. The strength can be greatly improved, and even in a collision mode in which local input becomes significant, deformation of the side sill 2 can be suppressed, so that a living space in the vehicle interior can be secured, and input to the center pillar 3 is remarkable. Even in the collision mode, the deformation mode can be controlled while improving the absorption efficiency of the collision energy.

ところで、本発明は前記第1〜第8実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採用することができる。   By the way, although this invention was demonstrated taking the example in the said 1st-8th embodiment, various other embodiment can be employ | adopted in the range which is not restricted to these embodiments and does not deviate from the summary of this invention.

本発明の第1実施形態における車体の骨格構造を示す全体斜視図。1 is an overall perspective view showing a skeleton structure of a vehicle body in a first embodiment of the present invention. 本発明の第1実施形態における車体左側面の骨格構造を示す斜視図。The perspective view which shows the frame | skeleton structure of the vehicle body left side surface in 1st Embodiment of this invention. 図2中A−A線に沿った拡大断面図。The expanded sectional view along the AA line in FIG. 本発明の第1実施形態におけるセンターピラー下部結合部分の分解斜視図。The disassembled perspective view of the center pillar lower part coupling | bond part in 1st Embodiment of this invention. 本発明の第1実施形態における折り畳み部の形成工程を(a)〜(d)に順を追って示す斜視図。The perspective view which shows the formation process of the folding part in 1st Embodiment of this invention later on in order to (a)-(d). 図4中B−B線に沿った拡大断面図。The expanded sectional view along the BB line in FIG. 本発明の第1実施形態における衝突荷重の入力時におけるセンターピラー下部の変形状態を(a),(b)に順を追って示す図2中A−A線に対応した拡大断面図。The expanded sectional view corresponding to the AA line in FIG. 2 which shows the deformation | transformation state of the center pillar lower part at the time of the input of the collision load in 1st Embodiment of this invention later on to (a), (b). 本発明の第1実施形態における折り畳み部の伸展変形を(a)〜(c)に順を追って示す斜視図。The perspective view which shows the extension deformation | transformation of the folding part in 1st Embodiment of this invention later on in order to (a)-(c). 本発明の第1実施形態におけるセンターピラーに衝突荷重が入力した際の反力特性を従来と比較して示す説明図。Explanatory drawing which shows the reaction force characteristic at the time of a collision load inputting into the center pillar in 1st Embodiment of this invention compared with the past. 本発明の第1実施形態における衝突荷重が入力した際のセンターピラーの変形挙動を(a)の従来の場合と(b)の本発明の場合とで示す概略断面図。The schematic sectional drawing which shows the deformation | transformation behavior of the center pillar when the collision load in 1st Embodiment of this invention is input with the case of this invention of (a), and the case of this invention of (b). 本発明の第2実施形態におけるピラーアウタパネルの折り畳み部を展開した斜視図。The perspective view which expand | deployed the folding part of the pillar outer panel in 2nd Embodiment of this invention. 本発明の第3実施形態におけるピラーアウタパネルの折り畳み部を展開した斜視図。The perspective view which expand | deployed the folding part of the pillar outer panel in 3rd Embodiment of this invention. 本発明の第3実施形態における折り畳み部の形成工程を(a),(b)に順を追って示す説明図。Explanatory drawing which shows the formation process of the folding part in 3rd Embodiment of this invention later on in order to (a), (b). 本発明の第4実施形態におけるピラーアウタパネルの折り畳み部を展開した斜視図。The perspective view which expand | deployed the folding part of the pillar outer panel in 4th Embodiment of this invention. 本発明の第5実施形態におけるピラーインナパネルの下部を示す斜視図。The perspective view which shows the lower part of the pillar inner panel in 5th Embodiment of this invention. 本発明の第5実施形態の変形例におけるピラーインナパネルの下部を示す斜視図。The perspective view which shows the lower part of the pillar inner panel in the modification of 5th Embodiment of this invention. 本発明の第6実施形態におけるピラーアウタパネルの折り畳み部を展開した斜視図。The perspective view which expand | deployed the folding part of the pillar outer panel in 6th Embodiment of this invention. 本発明の第7実施形態におけるピラーアウタパネルの折り畳み部を展開した斜視図。The perspective view which expand | deployed the folding part of the pillar outer panel in 7th Embodiment of this invention. 本発明の第8実施形態におけるセンターピラーとサイドシルとの連結部分の断面図。Sectional drawing of the connection part of the center pillar and side sill in 8th Embodiment of this invention. 本発明の第8実施形態におけるシル補強部材の斜視図。The perspective view of the sill reinforcement member in 8th Embodiment of this invention.

符号の説明Explanation of symbols

1 ルーフサイドレール
2 サイドシル
2a シルアウタパネル
2b シルインナパネル
3 センターピラー(ピラー部材)
3a ピラーアウタパネル(アウタ部材)
3b ピラーインナパネル(インナ部材)
9a,9b ヒンジ
10 ピラーアウタレインフォース(ピラー補強部材)
11,11A,11B 伸展許容部
11a ビード部
11Aa,11Ab 二股状の前後両側部
11Ba 最大幅部分
12 シルアウタレインフォース(シル補強部材)
13 開口部
14 ノッチ
20,20A 二股構造部
30 空孔部
32 芯金
33 空孔部
40 サイドシルレインフォース(シル補強部材)
RF ルーフ部
FL フロア部
P 折り畳み部
p1 外層
p2 中層
p3 内層
R 稜線
L1,L2 折返し部分
M 差厚鋼板
B1,B2 差厚境界
S シートベルトリトラクタの収納スペース
1 roof side rail 2 side sill 2a sill outer panel 2b sill inner panel 3 center pillar (pillar member)
3a Pillar outer panel (outer member)
3b Pillar inner panel (inner member)
9a, 9b Hinge 10 Pillar outer reinforcement (pillar reinforcement member)
11, 11A, 11B Extension permissible part 11a Bead part 11Aa, 11Ab Bifurcated front and rear side parts 11Ba Maximum width part 12 Sill outer reinforcement (sill reinforcing member)
13 Opening 14 Notch 20, 20A Bifurcated Structure 30 Hole Part 32 Core Bar 33 Hole Part 40 Side Sill Reinforce (Sill Reinforcement Member)
RF roof part FL floor part P folding part p1 outer layer p2 middle layer p3 inner layer R ridgeline L1, L2 folded part M differential thickness steel plate B1, B2 differential thickness boundary S seat belt retractor storage space

Claims (18)

車体骨格部材を、衝突荷重の入力側に配置される断面コ字状のアウタ部材と、このアウタ部材の開放側を閉止するインナ部材と、によって閉断面に形成し、前記アウタ部材に、該アウタ部材を長手方向に2回折り返して外層、中層、内層とした3重の折り畳み部をアウタ部材の断面形状に沿って形成し、衝突荷重の入力時に該折り畳み部を外層と内層とで中層を拘束しつつ伸展変形させるようにしたことを特徴とする車体骨格部材の衝突エネルギー吸収構造。   A vehicle body skeleton member is formed in a closed cross section by an outer member having a U-shaped cross section disposed on the collision load input side and an inner member that closes the open side of the outer member, and the outer member is provided with the outer member. The member is folded twice in the longitudinal direction to form an outer layer, an intermediate layer, and an inner layer with a triple fold along the outer member's cross-sectional shape. When the collision load is input, the fold is constrained by the outer layer and the inner layer. A structure for absorbing the collision energy of a vehicle body skeleton member, characterized in that it is deformed while being extended. 折り畳み部は、中層を拘束する外層および内層の剛性を、その中層の剛性よりも大きくしたことを特徴とする請求項1に記載の車体骨格部材の衝突エネルギー吸収構造。   2. The collision energy absorbing structure for a vehicle body skeleton member according to claim 1, wherein the folding portion has a rigidity of an outer layer and an inner layer that restrain the middle layer larger than a stiffness of the middle layer. 折り畳み部は、中層の断面コ字状となった稜線部分に低剛性部を形成したことを特徴とする請求項1または2に記載の車体骨格部材の衝突エネルギー吸収構造。   The collision energy absorbing structure for a vehicle body skeleton member according to claim 1 or 2, wherein the folding portion is formed with a low-rigidity portion at a ridge line portion having a U-shaped cross section in the middle layer. 折り畳み部は、外層と中層の折返し部分および中層と内層の折返し部分に、板厚以上の直径を有する芯金をそれぞれ内包したことを特徴とする請求項1〜3のいずれか1つに記載の車体骨格部材の衝突エネルギー吸収構造。   The folding portion includes a core metal having a diameter equal to or greater than a plate thickness in each of the outer layer and the inner layer folded portion and the middle layer and the inner layer folded portion. Collision energy absorption structure for car body skeleton members. 折り畳み部は、中層を薄肉化した差厚鋼板で形成するとともに、中層と外層との間の差厚境界を所定幅だけ外層側に位置させ、中層と内層との間の差厚境界を所定幅だけ内層側に位置させたことを特徴とする請求項1〜4のいずれか1つに記載の車体骨格部材の衝突エネルギー吸収構造。   The folding part is made of a difference thickness steel plate with a thinned middle layer, and the difference thickness boundary between the middle layer and the outer layer is positioned on the outer layer side by a predetermined width, and the difference thickness boundary between the middle layer and the inner layer is a predetermined width. The collision energy absorbing structure for a vehicle body skeleton member according to any one of claims 1 to 4, wherein the structure is located only on the inner layer side. 低剛性部は、稜線部分に沿って断続的に形成される複数の空孔部で形成したことを特徴とする請求項3に記載の車体骨格部材の衝突エネルギー吸収構造。   4. The collision energy absorbing structure for a vehicle body skeleton member according to claim 3, wherein the low rigidity portion is formed by a plurality of holes formed intermittently along the ridge line portion. 折り畳み部を形成した車体骨格部材は、ルーフ部の左右両側に車体前後方向に延在するルーフサイドレールと、フロア部の左右両側に車体前後方向に延在するサイドシルと、を車体上下方向に連結するピラー部材であり、前記折り畳み部をサイドシルとの連結部と下方のドアヒンジ取付部との間の領域に配置したことを特徴とする請求項1〜6のいずれか1つに記載の車体骨格部材の衝突エネルギー吸収構造。   The car body skeleton member with the folding part connects the roof side rail that extends in the vehicle longitudinal direction on both the left and right sides of the roof part, and the side sill that extends in the vehicle longitudinal direction on the left and right sides of the floor part. The vehicle body skeleton member according to any one of claims 1 to 6, wherein the folding member is disposed in a region between a connecting portion with a side sill and a lower door hinge mounting portion. Collision energy absorption structure. ピラー部材は、アウタ部材とインナ部材とで構成される閉断面内にピラー補強部材を備え、このピラー補強部材に前記折り畳み部の伸展変形に伴って伸展する伸展許容部を形成したことを特徴とする請求項7に記載の車体骨格部材の衝突エネルギー吸収構造。   The pillar member is provided with a pillar reinforcing member in a closed cross section composed of an outer member and an inner member, and the pillar reinforcing member is formed with an extension allowing portion that extends along with the extension deformation of the folding portion. The collision energy absorption structure for a vehicle body skeleton member according to claim 7. インナ部材に、前記折り畳み部の伸展変形に伴って破断する易破断部を形成したことを特徴とする請求項8に記載の車体骨格部材の衝突エネルギー吸収構造。   9. The collision energy absorbing structure for a vehicle body skeleton member according to claim 8, wherein an easily breakable portion that breaks along with the extension deformation of the folding portion is formed on the inner member. 易破断部は、インナ部材をV字状に切欠いたノッチであることを特徴とする請求項9に記載の車体骨格部材の衝突エネルギー吸収構造。   10. The collision energy absorbing structure for a vehicle body skeleton member according to claim 9, wherein the easily breakable portion is a notch formed by cutting an inner member into a V shape. インナ部材は、閉断面に形成した前記サイドシルの外側部分と内側部分とに跨って結合される二股構造部を備えたことを特徴とする請求項9または10に記載の車体骨格部材の衝突エネルギー吸収構造。   11. The collision energy absorption of a vehicle body skeleton member according to claim 9, wherein the inner member includes a bifurcated structure portion joined across an outer portion and an inner portion of the side sill formed in a closed cross section. Construction. 二股構造部は、ピラー部材の下部に収納されるシートベルトリトラクタの収納スペースを確保するようにしてインナ部材から一体部品で形成したことを特徴とする請求項11に記載の車体骨格部材の衝突エネルギー吸収構造。   The collision energy of the vehicle body skeleton member according to claim 11, wherein the bifurcated structure portion is formed as an integral part from the inner member so as to secure a storage space for a seat belt retractor stored in a lower portion of the pillar member. Absorbing structure. ピラー補強部材は、アウタ部材に沿って断面コ字状に形成して前記折り畳み部の内面に近接配置するとともに、下端部をサイドシルの閉断面内に配置されるシル補強部材に結合し、かつ、伸展許容部を折り畳み部との近接部分とシル補強部材への結合部との間に配置したことを特徴とする請求項8〜12のいずれか1つに記載の車体骨格部材の衝突エネルギー吸収構造。   The pillar reinforcing member is formed in a U-shaped cross section along the outer member, and is disposed close to the inner surface of the folded portion, and the lower end portion is coupled to the sill reinforcing member disposed in the closed cross section of the side sill, and The collision energy absorbing structure for a vehicle body skeleton member according to any one of claims 8 to 12, wherein the extension allowing portion is disposed between a portion close to the folding portion and a connecting portion to the sill reinforcing member. . 伸展許容部は、上下方向に波形断面となる凹凸状のビード部であることを特徴とする請求項13に記載の車体骨格部材の衝突エネルギー吸収構造。   14. The collision energy absorbing structure for a vehicle body skeleton member according to claim 13, wherein the extension allowing portion is an uneven bead portion having a corrugated cross section in the vertical direction. 伸展許容部は、互いに離れる方向にクランク状に突出させた二股状の前後両側部であることを特徴とする請求項13に記載の車体骨格部材の衝突エネルギー吸収構造。   14. The collision energy absorbing structure for a vehicle body skeleton member according to claim 13, wherein the extension allowing portion is a bifurcated front and rear side portions protruding in a crank shape in directions away from each other. 伸展許容部は、ピラー補強部材の車両前後幅を上方から下方に向かって徐々に増幅して最大幅部分を形成するとともに、その最大幅部分から下方に向かって徐々に縮幅させ、その最大幅部分に車両前後方向に近接して並設される複数の空孔部を設けて形成したことを特徴とする請求項13に記載の車体骨格部材の衝突エネルギー吸収構造。   The extension allowing portion gradually amplifies the vehicle front-rear width of the pillar reinforcing member from the top to the bottom to form the maximum width portion, and gradually reduces the width from the maximum width portion to the maximum width. 14. The collision energy absorbing structure for a vehicle body skeleton member according to claim 13, wherein the portion is formed with a plurality of hole portions arranged adjacent to each other in the vehicle front-rear direction. シル補強部材は、軽合金押出し成型やスチール液圧成型などによる閉断面の一体成形品で形成したことを特徴とする請求項13または16に記載の車体骨格部材の衝突エネルギー吸収構造。   17. The collision energy absorbing structure for a vehicle body skeleton member according to claim 13, wherein the sill reinforcing member is formed as an integrally molded product having a closed cross section by light alloy extrusion molding or steel hydraulic molding. 閉断面に形成した車体骨格部材の衝突荷重の入力側に配置される断面コ字状のアウタ部材に、該アウタ部材を長手方向に2回折り返して形成した3重の折り畳み部をアウタ部材の断面形状に沿って形成し、衝突荷重の入力時に該折り畳み部の外層と内層とで中層を拘束しつつ伸展変形させて衝突エネルギーを吸収することを特徴とする車体骨格部材の衝突エネルギー吸収方法。   An outer member having a U-shaped cross section disposed on the input side of the collision load of the vehicle body skeleton member formed in a closed cross section has a triple folded portion formed by folding the outer member twice in the longitudinal direction. A collision energy absorption method for a vehicle body skeleton member, which is formed along a shape and absorbs collision energy by extending and deforming while constraining an intermediate layer between an outer layer and an inner layer of the folded portion when a collision load is input.
JP2005168242A 2005-06-08 2005-06-08 Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method Pending JP2006341687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168242A JP2006341687A (en) 2005-06-08 2005-06-08 Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168242A JP2006341687A (en) 2005-06-08 2005-06-08 Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method

Publications (1)

Publication Number Publication Date
JP2006341687A true JP2006341687A (en) 2006-12-21

Family

ID=37638969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168242A Pending JP2006341687A (en) 2005-06-08 2005-06-08 Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method

Country Status (1)

Country Link
JP (1) JP2006341687A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230410A (en) * 2007-03-20 2008-10-02 Honda Motor Co Ltd Vehicle body side part structure
JP2009208149A (en) * 2007-05-31 2009-09-17 Nissan Motor Co Ltd Press-molded product, method and device for manufacturing the same
JP2010505702A (en) * 2006-10-09 2010-02-25 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Joining member of tubular B-pillar to stamped rocker and method of assembling the same
JP2011079413A (en) * 2009-10-07 2011-04-21 Suzuki Motor Corp Lower structure of vehicle center pillar
JP2012116398A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Lower structure of vehicle body
WO2012098630A1 (en) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Structure for side portion of vehicle body
US8573023B2 (en) 2007-05-31 2013-11-05 Nissan Motor Co., Ltd. Press-molded product and method of manufacturing same
WO2016024433A1 (en) * 2014-08-11 2016-02-18 スズキ株式会社 Interior member for vehicle
US10112654B1 (en) 2017-08-02 2018-10-30 Ford Global Technologies, Llc C-pillar assembly for vehicle body
CN114589936A (en) * 2022-01-28 2022-06-07 航天材料及工艺研究所 Manufacturing method of composite material snowmobile body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505702A (en) * 2006-10-09 2010-02-25 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Joining member of tubular B-pillar to stamped rocker and method of assembling the same
JP2008230410A (en) * 2007-03-20 2008-10-02 Honda Motor Co Ltd Vehicle body side part structure
JP2012254483A (en) * 2007-05-31 2012-12-27 Nissan Motor Co Ltd Press-molded product, and method and device for manufacturing the same
JP2009208149A (en) * 2007-05-31 2009-09-17 Nissan Motor Co Ltd Press-molded product, method and device for manufacturing the same
US8573023B2 (en) 2007-05-31 2013-11-05 Nissan Motor Co., Ltd. Press-molded product and method of manufacturing same
JP2011079413A (en) * 2009-10-07 2011-04-21 Suzuki Motor Corp Lower structure of vehicle center pillar
JP2012116398A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Lower structure of vehicle body
WO2012098630A1 (en) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Structure for side portion of vehicle body
WO2016024433A1 (en) * 2014-08-11 2016-02-18 スズキ株式会社 Interior member for vehicle
JP2016037269A (en) * 2014-08-11 2016-03-22 スズキ株式会社 Interior member for vehicle
CN105531153A (en) * 2014-08-11 2016-04-27 铃木株式会社 Interior member for vehicle
US10112654B1 (en) 2017-08-02 2018-10-30 Ford Global Technologies, Llc C-pillar assembly for vehicle body
CN114589936A (en) * 2022-01-28 2022-06-07 航天材料及工艺研究所 Manufacturing method of composite material snowmobile body
CN114589936B (en) * 2022-01-28 2024-03-15 航天材料及工艺研究所 Manufacturing method of composite snowmobile body

Similar Documents

Publication Publication Date Title
JP2006341687A (en) Impact energy absorbing structure of vehicle body frame member, and impact energy absorbing method
JP5927187B2 (en) Automobile pillar reinforcement
JP4648047B2 (en) Automotive panel structure
JP5088570B2 (en) Center pillar structure of the vehicle
US7237832B2 (en) Vehicle body side structure
JP4416807B2 (en) Automotive doors with enhanced side impact performance
US20100194147A1 (en) Vehicle roof support pillar assembly
JP2011088596A (en) Vehicle body constitution member for vehicle
JP2007230408A (en) Roof reinforcement structure for automobile
JP2009269591A (en) Vehicle door structure and method of manufacturing the same
JP2010173403A (en) Side body structure for vehicle
JPWO2008155871A1 (en) Side body structure
JP5346799B2 (en) Body superstructure
WO2021117805A1 (en) Center pillar reinforcement
JP2006321491A (en) Reinforcing structure of vehicle body skeleton frame
JP2015089792A (en) Lower part structure of center pillar of vehicle
JP4764035B2 (en) Automotive panel structure
JP6698393B2 (en) Body side structure
CN109664945B (en) Vehicle side structure
US20230391170A1 (en) Door impact beam
JP2004051065A (en) Vehicle body structural member and collision-proof reinforcing member
JP5513084B2 (en) Energy absorbing beam for vehicle and door structure for vehicle
JP2007055414A (en) Energy absorbing beam for vehicle, and door structure for vehicle
WO2013105439A1 (en) Vehicle
JP6016246B2 (en) Auto body structure