JP2006341188A - Volatile organic compound adsorbent and hydrogen occlusion material - Google Patents

Volatile organic compound adsorbent and hydrogen occlusion material Download PDF

Info

Publication number
JP2006341188A
JP2006341188A JP2005169087A JP2005169087A JP2006341188A JP 2006341188 A JP2006341188 A JP 2006341188A JP 2005169087 A JP2005169087 A JP 2005169087A JP 2005169087 A JP2005169087 A JP 2005169087A JP 2006341188 A JP2006341188 A JP 2006341188A
Authority
JP
Japan
Prior art keywords
organic compound
volatile organic
carboxylic acid
metal complex
compound adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005169087A
Other languages
Japanese (ja)
Other versions
JP5099615B2 (en
Inventor
Satoshi Takamizawa
聡 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Yokohama City University
Original Assignee
Yokohama National University NUC
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC, Yokohama City University filed Critical Yokohama National University NUC
Priority to JP2005169087A priority Critical patent/JP5099615B2/en
Priority to EP06746239A priority patent/EP1914263B1/en
Priority to PCT/JP2006/309429 priority patent/WO2006132049A1/en
Priority to US11/921,681 priority patent/US8034165B2/en
Publication of JP2006341188A publication Critical patent/JP2006341188A/en
Application granted granted Critical
Publication of JP5099615B2 publication Critical patent/JP5099615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which is capable of easily adsorbing, eliminating and continuously using a volatile organic compound and hydrogen, and to provide hydrogen occlusion material. <P>SOLUTION: The volatile organic compound adsorbent and hydrogen occlusion material are composed of an organic carboxylic acid metal complex constituted from a repeating unit represented by general formula [I], wherein M<SP>1</SP>and M<SP>2</SP>are a metal which takes bivalent value independently each other, R<SP>1a</SP>, R<SP>1b</SP>, R<SP>1c</SP>and R<SP>1d</SP>denote an organic group containing a conjugated system independently each other and R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>and R<SP>5</SP>denote hydrogen atom, alkyl group having 1-4 carbon atoms and an alkenyl group having 1-4 carbon atoms independently each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特定の有機カルボン酸金属錯体から成る揮発性有機化合物吸着剤及び水素吸蔵材に関する。   The present invention relates to a volatile organic compound adsorbent and a hydrogen storage material comprising a specific organic carboxylic acid metal complex.

従来より、ベンゼンやトルエン等の有機溶剤の蒸気を吸着除去するための吸着剤としては活性炭やゼオライト等が用いられている(特許文献1及び2)。また、水素吸蔵材としては、合金やその焼結体が用いられている(特許文献3及び4)。   Conventionally, activated carbon, zeolite, or the like has been used as an adsorbent for adsorbing and removing vapors of organic solvents such as benzene and toluene (Patent Documents 1 and 2). Moreover, an alloy and its sintered body are used as a hydrogen storage material (patent documents 3 and 4).

一方、特許文献5には、安息香酸と、金属と、該金属に2座配位可能な有機配位子から成るカルボン酸金属錯体が記載されており、該錯体がメタンガスの吸蔵材として有用なことが記載されている。また、非特許文献1には、安息香酸と、ロジウムと、ピラジンから成る有機金属錯体が一次元的につながった結晶が記載されており、該金属錯体がゲスト分子である二酸化炭素を吸着及び脱着する際に結晶構造が変化することも記載されている。   On the other hand, Patent Document 5 describes a carboxylic acid metal complex composed of benzoic acid, a metal, and an organic ligand capable of bidentate coordination with the metal, and the complex is useful as a methane gas occlusion material. It is described. Non-Patent Document 1 describes a crystal in which an organometallic complex composed of benzoic acid, rhodium, and pyrazine is connected one-dimensionally, and the metal complex adsorbs and desorbs carbon dioxide as a guest molecule. It is also described that the crystal structure changes during the process.

特開2004-255336号公報JP 2004-255336 A 特開2004-261780号公報JP 2004-261780 A 特開2003-1389号公報JP2003-1389 特開2003-3203号公報Japanese Patent Laid-Open No. 2003-3203 特開2000-309592号公報Japanese Unexamined Patent Publication No. 2000-309592 Satoshi Takamizawa et al., Angew. Chem. Int. Ed. 2003, 42, 4331-4334Satoshi Takamizawa et al., Angew. Chem. Int. Ed. 2003, 42, 4331-4334

本発明の目的は、ベンゼンやトルエン等の有機溶剤の蒸気およびホルムアルデヒドなどの有害有機化合物を容易に吸着、脱離し、特に再生処理を行なわなくても持続的に使用することができる揮発性有機化合物の吸着剤を提供することである。また、本発明の目的は、水素を容易に吸着、脱離し、単位体積当りの水素吸蔵量が大きな水素吸蔵材を提供することである。   The object of the present invention is to easily adsorb and desorb organic solvent vapors such as benzene and toluene and harmful organic compounds such as formaldehyde, and can be used continuously without any particular reprocessing. Is to provide an adsorbent. Another object of the present invention is to provide a hydrogen storage material that easily adsorbs and desorbs hydrogen and has a large hydrogen storage amount per unit volume.

本願発明者らは、鋭意研究の結果、特定の構造を有する有機カルボン酸金属錯体が、有機溶剤の蒸気を容易に吸着し、特に再生処理を行なわなくても容易に脱離することを見出し、また、該有機カルボン酸金属錯体が、水素を容易に吸着、脱離し、単位体積当りの水素吸蔵量も大きいことを見出し、本発明を完成した。   As a result of diligent research, the inventors of the present application have found that an organic carboxylic acid metal complex having a specific structure easily adsorbs the vapor of an organic solvent, and easily desorbs even without performing a regeneration treatment. In addition, the present inventors have found that the organic carboxylic acid metal complex easily adsorbs and desorbs hydrogen and has a large hydrogen storage amount per unit volume, thereby completing the present invention.

すなわち、本発明は、下記一般式[I]で示される繰返し単位から構成された有機カルボン酸金属錯体から成る揮発性有機化合物吸着剤を提供する。   That is, the present invention provides a volatile organic compound adsorbent comprising an organic carboxylic acid metal complex composed of a repeating unit represented by the following general formula [I].

Figure 2006341188
Figure 2006341188

(ただし、M1及びM2は互いに独立して2価をとり得る金属、R1a、R1b、R1c及びR1dは互いに独立して、共役系を含む有機基、R2、R3、R4及びR5は互いに独立して水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルケニル基を示す。) (However, M 1 and M 2 are independently divalent metals, R 1a , R 1b , R 1c and R 1d are independently of each other an organic group containing a conjugated system, R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkenyl group having 1 to 4 carbon atoms.

また、本発明は、前記有機カルボン酸金属錯体から成る、空気中の揮発性有機化合物の濃度を所定値以下に保持する揮発性有機化合物濃度保持剤を提供する。さらに、本発明は、前記本発明の揮発性有機化合物吸着剤を空気中に置いておくことにより該空気中の揮発性有機化合物の濃度を所定値以下に保持する方法を提供する。さらに、本発明は、前記有機カルボン酸金属錯体をから成る水素吸蔵材を提供する。さらに、本発明は、有機カルボン酸金属錯体に金属蒸気を吸着させることにより金属原子を1原子ずつ一次元的に配列させる方法及び該方法により製造された、チャンネル構造内にゲストとしての金属原子が1原子ずつ一次元的に配列された有機カルボン酸金属錯体を提供する。   Moreover, this invention provides the volatile organic compound density | concentration holding | maintenance agent which hold | maintains the density | concentration of the volatile organic compound in the air below the predetermined value consisting of the said organic carboxylic acid metal complex. Furthermore, the present invention provides a method for keeping the concentration of the volatile organic compound in the air below a predetermined value by placing the volatile organic compound adsorbent of the present invention in the air. Furthermore, the present invention provides a hydrogen storage material comprising the organic carboxylic acid metal complex. Furthermore, the present invention relates to a method of arranging metal atoms one-dimensionally one by one by adsorbing a metal vapor to an organic carboxylic acid metal complex, and a metal atom as a guest produced by the method in a channel structure. An organic carboxylate metal complex arranged one-dimensionally one atom at a time is provided.

本発明により、特定の構造を有する有機カルボン酸金属錯体から成る新規な揮発性有機化合物蒸気吸着剤及び水素吸蔵材が提供された。本発明の有機溶剤蒸気吸着剤では、有機溶剤蒸気の濃度が所定値以上に高まると、有機カルボン酸金属錯体の結晶構造が変化して吸着量が急激に大きくなるので、空気中の有機溶剤蒸気の濃度を、この吸着量が急激に大きくなる濃度(以下、「臨界濃度」)以下に維持することができる。さらに、有機溶剤蒸気の吸着と脱離は迅速でかつ可逆的であるので、換気等により空気中の有機溶剤蒸気濃度が臨界濃度未満に下がった場合には、吸着剤に吸着された有機溶剤蒸気が速やかに脱離する。このため、吸着剤は加熱処理等の特別の再生処理を行なうことなく持続的に吸着剤としての能力を維持する。また、本発明の水素吸蔵材は、水素を容易に吸着、脱離し、単位体積当りの水素吸蔵量も大きいので、水素の貯蔵に好適である。   According to the present invention, a novel volatile organic compound vapor adsorbent and hydrogen storage material comprising an organic carboxylic acid metal complex having a specific structure are provided. In the organic solvent vapor adsorbent of the present invention, when the concentration of the organic solvent vapor increases to a predetermined value or more, the crystal structure of the organic carboxylic acid metal complex changes and the adsorption amount increases rapidly. Can be maintained below the concentration at which the amount of adsorption increases rapidly (hereinafter referred to as “critical concentration”). Furthermore, since the adsorption and desorption of organic solvent vapor is rapid and reversible, when the organic solvent vapor concentration in the air falls below the critical concentration due to ventilation or the like, the organic solvent vapor adsorbed on the adsorbent is absorbed. Quickly desorbs. Therefore, the adsorbent continuously maintains the ability as an adsorbent without performing a special regeneration process such as a heat treatment. The hydrogen storage material of the present invention is suitable for storing hydrogen because it easily adsorbs and desorbs hydrogen and has a large hydrogen storage amount per unit volume.

上記の通り、本発明に用いられる有機カルボン酸金属錯体は、上記一般式[I]で表される構造を有する繰返し単位から構成される。なお、一般式[I]中、M1とOの間、M2とOの間、M1とM2の間及びM2とNの間は配位結合である。一般式[I]に示される繰返し単位の繰返し数は、特に限定されないが、通常、10〜108、好ましくは102〜107である。なお、一般式[I]から明らかなように、一般式[I]中、M1に結合している4つの酸素原子のうち、右上の酸素原子は、R1bが結合している炭素原子と結合しており、右下の酸素原子はR1cが結合している炭素原子と結合している。同様に、M2に結合している4つの酸素原子のうち、左上の酸素原子は、R1aが結合している炭素原子と結合しており、左下の酸素原子はR1dが結合している炭素原子と結合している。 As described above, the organic carboxylic acid metal complex used in the present invention is composed of a repeating unit having a structure represented by the above general formula [I]. In the general formula [I], coordinate bonds exist between M 1 and O, between M 2 and O, between M 1 and M 2 and between M 2 and N. The repeating number of the repeating unit represented by the general formula [I] is not particularly limited, but is usually 10 to 10 8 , preferably 10 2 to 10 7 . As is clear from the general formula [I], among the four oxygen atoms bonded to M 1 in the general formula [I], the upper right oxygen atom is the carbon atom bonded to R 1b. The oxygen atom in the lower right is bonded to the carbon atom to which R 1c is bonded. Similarly, of the four oxygen atoms bonded to M 2 , the upper left oxygen atom is bonded to the carbon atom bonded to R 1a , and the lower left oxygen atom is bonded to R 1d . It is bonded to a carbon atom.

一般式[I]中、M1及びM2は、互いに独立して、遷移金属でも典型金属でもよい。M1及びM2の好ましい例として、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、クロム、モリブデン、パラジウム及びタングステンを挙げることができ、これらの中でも特に銅及びロジウムが好ましい。なお、M1及びM2は、同じ種類の金属原子であることが好ましい。 In the general formula [I], M 1 and M 2 may be a transition metal or a typical metal independently of each other. Preferable examples of M 1 and M 2 include manganese, iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, chromium, molybdenum, palladium and tungsten. Among these, copper and rhodium are particularly preferable. M 1 and M 2 are preferably the same type of metal atom.

一般式[I]中、R1a、R1b、R1c及びR1d (以下、R1a、R1b、R1c及びR1d を総称して「R1」と記載することがある)は、共役系を含む有機基、すなわち、例えばベンゼン環、ナフタレン環、アントラセン環、これらのヘテロ環等を含む有機基であり、置換されていてもよいフェニル基が好ましく、特に無置換のフェニル基が好ましい。フェニル基が置換されている場合、置換基の例としては、炭素数1〜4のアルキル基、炭素数1〜4のハロアルキル基、水酸基、アミノ基、シアノ基、炭素数1〜4のものアルキルアミノ基、炭素数1〜4のアルコキシル基、ハロゲン原子及び置換されていてもよいフェニル基(置換基は上記と同様(置換フェニル基は除く))を例示することができ、置換基の数は1〜5個である。なお、本明細書において、「アルキル基」は、特に断りがない限り直鎖アルキル基及び分枝アルキル基の両者を包含する。「アルケニル基」、「アルコキシル基」についても同様である。R1a、R1b、R1c及びR1dは、同じ種類の有機基であることが好ましい。 In the general formula [I], R 1a , R 1b , R 1c and R 1d (hereinafter R 1a , R 1b , R 1c and R 1d may be collectively referred to as “R 1 ”) are conjugated An organic group containing a system, that is, an organic group containing, for example, a benzene ring, a naphthalene ring, an anthracene ring, a hetero ring thereof, or the like, an optionally substituted phenyl group is preferable, and an unsubstituted phenyl group is particularly preferable. When the phenyl group is substituted, examples of the substituent include an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, a hydroxyl group, an amino group, a cyano group, and an alkyl having 1 to 4 carbon atoms. An amino group, an alkoxyl group having 1 to 4 carbon atoms, a halogen atom, and an optionally substituted phenyl group (substituents are the same as described above (excluding substituted phenyl groups)) can be exemplified. 1-5. In the present specification, the “alkyl group” includes both a linear alkyl group and a branched alkyl group unless otherwise specified. The same applies to “alkenyl group” and “alkoxyl group”. R 1a , R 1b , R 1c and R 1d are preferably the same type of organic group.

一般式[I]中、R2、R3、R4及びR5は互いに独立して水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルケニル基を表す。R2、R3、R4及びR5の好ましい例としては、水素原子、メチル基、エチル基、プロピル基、アリル基等を挙げることができ、また、R2、R3、R4及びR5のうち2個から4個が水素原子であるものが好ましい。 In general formula [I], R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 1 to 4 carbon atoms. Preferable examples of R 2 , R 3 , R 4 and R 5 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an allyl group and the like, and R 2 , R 3 , R 4 and R Of those, 2 to 4 of 5 are preferably hydrogen atoms.

上記一般式[I]で表される繰返し単位は、一次元的につながり、それらが集まって分子結晶を構成する。その際、R1の共役系が接近するのでπ−π結合が生じ、結晶構造が安定化される。分子結晶は、単結晶であることが好ましい。単結晶であれば、単位体積当りの有機溶剤蒸気又は水素吸着量を大きくすることができるのみならず、物性の均一化を図ることができ、所定の物性を有する錯体を再現性良く製造できるという利点を有する。さらに、後述する方法により、長辺の長さが0.8mm以上の巨大な単結晶をも製造することができ、このような巨大単結晶を用いると、単位見かけ体積当りの蒸気吸着量や水素吸蔵量をさらに大きくすることができるので有利である。 The repeating units represented by the above general formula [I] are connected one-dimensionally, and they gather to constitute a molecular crystal. At this time, since the conjugated system of R 1 approaches, a π-π bond is generated, and the crystal structure is stabilized. The molecular crystal is preferably a single crystal. If it is a single crystal, not only can the amount of organic solvent vapor or hydrogen adsorbed per unit volume be increased, but also physical properties can be made uniform, and complexes having predetermined physical properties can be produced with good reproducibility. Have advantages. Furthermore, a huge single crystal having a long side length of 0.8 mm or more can be produced by the method described later, and if such a large single crystal is used, the amount of vapor adsorbed per unit apparent volume and hydrogen storage This is advantageous because the amount can be further increased.

上記した有機カルボン酸金属錯体は、金属塩(M1とM2が異なる場合は2種類の金属塩、以下同様)と、有機カルボン酸(R1-COOH(R1は上記と同義、R1a、R1b、R1c及びR1dが複数種類の有機基である場合には複数種類の有機カルボン酸、以下同様))と、置換ピラジンとを溶媒中でゆっくり反応させることにより製造することができ、この方法により本発明の有機カルボン酸金属錯体の単結晶を製造することができる。あるいは、有機カルボン酸(R1-COOH(R1は上記と同義))の金属塩を溶媒中で置換ピラジンと反応させることによっても製造することができる。溶媒としては、メタノール及びアセトニトリルが好ましい。また、金属塩としては、酢酸塩、ギ酸塩、硫酸塩、硝酸塩及び炭酸塩が好ましく、特に酢酸塩が好ましい。反応温度は、特に限定されず、0℃〜70℃程度で可能であるが、室温において良好な結果が得られる。また、反応時間は、特に限定されないが、通常、3時間〜1週間程度で良好な結果が得られる。反応させる金属塩と有機カルボン酸の比率は、特に限定されないが、モル比で通常、1:2〜1:8程度、金属塩と置換ピラジンの比率は、モル比で通常、1:0.5〜1:10程度である。なお、製造方法の好ましい例は、下記実施例に詳細に記載されている。 The above-mentioned organic carboxylic acid metal complex includes a metal salt (when M 1 and M 2 are different, two kinds of metal salts, the same shall apply hereinafter) and an organic carboxylic acid (R 1 -COOH (R 1 is as defined above, R 1a , R 1b , R 1c and R 1d can be produced by slowly reacting a plurality of types of organic carboxylic acids (hereinafter the same)) with a substituted pyrazine in a solvent. By this method, a single crystal of the organic carboxylic acid metal complex of the present invention can be produced. Alternatively, it can also be produced by reacting a metal salt of an organic carboxylic acid (R 1 -COOH (R 1 is as defined above)) with a substituted pyrazine in a solvent. As the solvent, methanol and acetonitrile are preferable. As the metal salt, acetate, formate, sulfate, nitrate and carbonate are preferable, and acetate is particularly preferable. The reaction temperature is not particularly limited and can be about 0 ° C. to 70 ° C., but good results can be obtained at room temperature. The reaction time is not particularly limited, but good results are usually obtained in about 3 hours to 1 week. The ratio of the metal salt to be reacted and the organic carboxylic acid is not particularly limited, but the molar ratio is usually about 1: 2 to 1: 8, and the ratio of the metal salt to the substituted pyrazine is usually 1: 0.5 in molar ratio. ˜1: 10 or so. In addition, the preferable example of a manufacturing method is described in detail in the following Example.

また、前記2価をとり得る金属の塩と共役系を有する有機カルボン酸を含む溶液、又は共役系を有する有機カルボン酸の前記2価をとり得る金属塩の溶液を上層とし、該溶液の溶媒と混じり合わない溶媒を下層として2層を形成し、これにピラジン又は置換ピラジンの溶液からのピラジン又は置換ピラジン蒸気を導入して反応させ、前記2層の界面に前記有機カルボン酸金属錯体の単結晶を生成させることにより、長辺の長さが0.8mm以上の巨大な単結晶を製造することもできる。この方法も具体的に下記実施例に記載されている。   Further, a solution containing an organic carboxylic acid having a conjugate system with a metal salt capable of taking the divalent or a solution of a metal salt capable of taking the divalent of the organic carboxylic acid having a conjugated system is used as an upper layer, and the solvent of the solution Two layers are formed with a solvent not mixed with the lower layer, and pyrazine or a substituted pyrazine vapor from a solution of pyrazine or a substituted pyrazine is introduced and reacted, and the organic carboxylic acid metal complex is simply formed at the interface of the two layers. By generating crystals, it is possible to produce huge single crystals having a long side length of 0.8 mm or more. This method is also specifically described in the examples below.

前記有機カルボン酸金属錯体は、分子結晶を形成し、該分子結晶には、結晶内部に一次元的に延びる空孔(チャンネル構造)もしくは規則配列した空隙が存在する。この結晶内部空間にゲストとして気体を吸着及び脱着することができる。本発明の揮発性有機化合物吸着剤は、上記した有機カルボン酸金属錯体から成る。下記実施例において具体的に示されるように、本発明の揮発性有機化合物吸着剤では、有機溶剤蒸気の濃度が特定値以上に高まると、有機カルボン酸金属錯体の結晶構造が変化して吸着量が急激に大きくなる。このため、空気中の有機溶剤蒸気の濃度を、この吸着量が急激に大きくなる濃度(臨界濃度)以下に維持することができる。すなわち、本発明の揮発性有機化合物吸着剤を空気中に置いておくことにより、空気中の有機溶剤蒸気濃度を臨界濃度以下に維持することができる。すなわち、本発明の揮発性有機化合物吸着剤は、有機溶剤蒸気濃度維持剤として使用することができる。さらに、有機溶剤蒸気の吸着と脱離は迅速でかつ可逆的であるので、換気等により空気中の有機溶剤蒸気濃度が臨界濃度未満に下がった場合には、吸着剤に吸着された有機溶剤蒸気が速やかに脱離する。このため、吸着剤は加熱処理等の特別の再生処理を行なうことなく持続的に吸着剤としての能力を維持する。これは、吸着が進むと加熱処理などの再生処理が必要となる活性炭やゼオライト等を用いる従来の吸着剤と比較して非常に有利な特徴である。さらに、臨界濃度未満では有機溶剤蒸気の吸着はほとんど起きないので、有機溶剤蒸気の蓄積による吸着能力の劣化がない。このため、本発明の吸着剤は、その能力を維持したまま恒久的に使用することができる。   The organic carboxylic acid metal complex forms a molecular crystal, and the molecular crystal has pores (channel structure) or regularly arranged voids extending one-dimensionally inside the crystal. A gas can be adsorbed and desorbed as a guest in the crystal internal space. The volatile organic compound adsorbent of the present invention comprises the above-described organic carboxylic acid metal complex. As specifically shown in the following examples, in the volatile organic compound adsorbent of the present invention, when the concentration of the organic solvent vapor increases to a specific value or more, the crystal structure of the organic carboxylic acid metal complex changes and the adsorbed amount. Increases rapidly. For this reason, the density | concentration of the organic solvent vapor | steam in the air can be maintained below the density | concentration (critical density | concentration) from which this adsorption amount becomes large rapidly. That is, by placing the volatile organic compound adsorbent of the present invention in the air, the organic solvent vapor concentration in the air can be maintained below the critical concentration. That is, the volatile organic compound adsorbent of the present invention can be used as an organic solvent vapor concentration maintaining agent. Furthermore, since the adsorption and desorption of organic solvent vapor is rapid and reversible, when the organic solvent vapor concentration in the air falls below the critical concentration due to ventilation or the like, the organic solvent vapor adsorbed on the adsorbent is absorbed. Quickly desorbs. Therefore, the adsorbent continuously maintains the ability as an adsorbent without performing a special regeneration process such as a heat treatment. This is a very advantageous feature compared to conventional adsorbents using activated carbon, zeolite, or the like that require regeneration treatment such as heat treatment as the adsorption proceeds. Furthermore, since adsorption of organic solvent vapor hardly occurs below the critical concentration, there is no deterioration in adsorption capacity due to accumulation of organic solvent vapor. For this reason, the adsorbent of the present invention can be used permanently while maintaining its ability.

本発明の揮発性有機化合物吸着剤の使用態様としては、有機カルボン酸金属錯体の分子結晶、好ましくは単結晶を、空気の流通孔を備えた容器に入れて室内等に放置してもよいし、塗料や建材等の、有機溶剤蒸気を発生する組成物に吸着剤成分として混入してもよい。あるいは、本発明の吸着剤を通気性のある袋等に充填したものを壁の内部や床下等に埋め込んでもよい。本明細書及び特許請求の範囲において、「揮発性有機化合物吸着剤を空気中に置いておく」という文言は、これらのいずれの態様をも包含する意味で用いている。   As a use mode of the volatile organic compound adsorbent of the present invention, a molecular crystal of an organic carboxylate metal complex, preferably a single crystal, may be left in a room or the like in a container having air circulation holes. Further, it may be mixed as an adsorbent component in a composition that generates an organic solvent vapor, such as paint or building material. Or what filled the adsorbent of this invention into the air permeable bag etc. may be embedded in the inside of a wall, under the floor, etc. In the present specification and claims, the phrase “keep the volatile organic compound adsorbent in the air” is used in a sense encompassing any of these embodiments.

本発明の揮発性有機化合物吸着剤により吸着される揮発性有機化合物は、常温で液体の有機化合物又は常温で液体の有機化合物溶液から、常温においてその有機化合物の蒸気が空気中に発散するものを意味し、揮発性の有機化合物であれば特に限定されないが、有機溶剤の蒸気及びホルムアルデヒド等のアルデヒド類の蒸気が好ましい。ここで、有機溶剤は、有機溶剤であれば特に限定されないが、ヘキサン、ヘプタン、オクタン等のアルカンやその誘導体(ハロゲン化物等)の脂肪族の有機溶剤並びにベンゼン、トルエン、キシレン等の芳香族の有機溶剤を好ましい例として挙げることができる。これらの有機溶剤やアルデヒド類は、シックハウスの原因物質の一部であるから、本発明の吸着剤は、シックハウスの防止にも有用である。なお、ホルムアルデヒドは、常温で気体であるが、常温で液体の濃厚水溶液やホルマリンが広く用いられており、ホルムアルデヒドはこれらの溶液から常温において蒸気となって気化するので、本発明でいう「揮発性有機化合物」に包含される。   The volatile organic compound adsorbed by the volatile organic compound adsorbent of the present invention is an organic compound that is liquid at room temperature or an organic compound solution that is liquid at room temperature, and vapor of the organic compound is emitted into the air at room temperature. This means that it is not particularly limited as long as it is a volatile organic compound, but an organic solvent vapor and an aldehyde vapor such as formaldehyde are preferred. Here, the organic solvent is not particularly limited as long as it is an organic solvent, but aliphatic organic solvents such as alkanes such as hexane, heptane, and octane and derivatives thereof (halides), and aromatic solvents such as benzene, toluene, and xylene. An organic solvent can be mentioned as a preferred example. Since these organic solvents and aldehydes are part of the causative substances of sick house, the adsorbent of the present invention is also useful for preventing sick house. Formaldehyde is a gas at normal temperature, but concentrated aqueous solutions and formalin that are liquid at normal temperature are widely used, and formaldehyde vaporizes as vapor at normal temperature from these solutions. Included in “organic compounds”.

臨界濃度は、用いる有機カルボン酸金属錯体の種類や有機溶剤の種類により異なるが、通常、1mmHgないし10mmHg程度である。なお、臨界濃度は、本発明の吸着剤が接する空気中の有機溶剤蒸気の濃度であるから、本発明の吸着剤を塗料や建材に混入させた場合や、あるいは独立して吸着剤として用いる場合でも有機溶剤蒸気を発生する壁や床の近傍に吸着剤を置いた場合には、その場所における有機溶剤蒸気の濃度が臨界濃度以下に維持されるので、壁や床から離れた位置にある空気中の有機溶剤蒸気の濃度は臨界濃度よりも低く抑えることが可能である。   The critical concentration varies depending on the type of organic carboxylic acid metal complex used and the type of organic solvent, but is usually about 1 mmHg to 10 mmHg. The critical concentration is the concentration of the organic solvent vapor in the air in contact with the adsorbent of the present invention. Therefore, when the adsorbent of the present invention is mixed with paint or building material, or when used independently as an adsorbent. However, if an adsorbent is placed near the wall or floor where organic solvent vapor is generated, the concentration of the organic solvent vapor at that location will be maintained below the critical concentration, so air that is far away from the wall or floor The concentration of the organic solvent vapor can be kept lower than the critical concentration.

また、上記した有機カルボン酸金属錯体は、水素を容易に吸着し、かつ、容易に脱離し、しかも水素の拡散が早く短時間で吸着平衡状態に達する。下記実施例において具体的に示されるように、有機カルボン酸金属錯体の結晶構造が水素の安定な吸着構造を実現し、高密度に水素会合体を結晶中の微細空間に生成する。このため、前記有機カルボン酸金属錯体は、水素の吸蔵材として有利に用いることができる。   In addition, the above-described organic carboxylic acid metal complex easily adsorbs hydrogen and desorbs easily, and further, hydrogen diffuses quickly and reaches an adsorption equilibrium state in a short time. As specifically shown in the following examples, the crystal structure of the organic carboxylic acid metal complex realizes a stable adsorption structure of hydrogen, and hydrogen aggregates are formed in a fine space in the crystal at a high density. Therefore, the organic carboxylic acid metal complex can be advantageously used as a hydrogen storage material.

本発明の水素吸蔵材は、従来の合金から成る水素吸蔵材と同様に使用することができる。例えば、密閉容器内に本発明の水素吸蔵材を充填し、高圧で水素ガスを吸蔵させ、水素ガスの使用時に該容器から水素ガスを取り出して使用することができる。取り出した水素ガスは、水素エンジンの燃料等として利用することができる。   The hydrogen storage material of this invention can be used similarly to the hydrogen storage material which consists of a conventional alloy. For example, the hydrogen storage material of the present invention can be filled in a sealed container, the hydrogen gas can be stored at a high pressure, and the hydrogen gas can be taken out from the container when the hydrogen gas is used. The extracted hydrogen gas can be used as fuel for a hydrogen engine.

上記した有機カルボン酸金属錯体の結晶に、金属蒸気を吸着させることにより、結晶内のチャンネル構造に沿って金属原子を1原子ずつ一次元的に配列させることができる。このような金属原子の線は、理論上考えられる最も細い金属線であり、各金属原子は、自由電子の流通が起きる距離内に配列されるので電流を流すことができる。したがって、このような金属線は、最も微細な配線として利用することができ、現在開発が進んでいる量子半導体や各種ナノテクデバイスの微細配線として有用である。   By adsorbing metal vapor to the crystal of the organic carboxylic acid metal complex, metal atoms can be arranged one-dimensionally one by one along the channel structure in the crystal. Such a line of metal atoms is the thinnest metal line that is theoretically conceivable, and each metal atom is arranged within a distance where free electron circulation occurs, and thus a current can flow. Therefore, such a metal wire can be used as the finest wiring, and is useful as a fine wiring of quantum semiconductors and various nanotech devices that are currently under development.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

実施例1〜6 銅錯体の製造及び物性
酢酸銅(II)一水和物, 80mg (2.4x10-4mol)と安息香酸117.2mg (8.4・10-4mol)をメタノール80mlに溶かし青色溶液とした。濾過後、ピラジン:8.0mg(実施例1)、2−メチルピラジン:0.3ml(実施例2)、2,3−ジメチルピラジン:0.3ml(実施例3)、2‐エチルピラジン:0.3ml(実施例4)、2, 3-ジエチルピラジン:0.3ml(実施例5)又は2-プロピルピラジン:0.3ml(実施例6)を加えて室温でゆっくり24時間反応させた。青色の単結晶が生成した。ピラジン錯体(実施例1):12.2mg (58.6%), 2−メチルピラジン錯体(実施例2): 11.7mg (57.4%), 2,3−ジメチルピラジン錯体(実施例3):16.0mg (74.2%)、2‐エチルピラジン錯体(実施例4)(19.2%)、2, 3-ジエチルピラジン錯体(実施例5)(13.2%)、2-プロピルピラジン錯体(実施例6)(39.3%)。同定は単結晶X線構造解析および元素分析により行った。なお、生成した結晶のサイズから算出して(結晶1cm当り約107)、一般式[I]で表される繰返し単位の繰返し数は、約104〜4 x 105程度であった。
Examples 1 to 6 Production and properties of copper complex Copper acetate (II) monohydrate, 80 mg (2.4 × 10 −4 mol) and benzoic acid 117.2 mg (8.4 · 10 −4 mol) were dissolved in 80 ml of methanol to prepare a blue solution. did. After filtration, pyrazine: 8.0 mg (Example 1), 2-methylpyrazine: 0.3 ml (Example 2), 2,3-dimethylpyrazine: 0.3 ml (Example 3), 2-ethylpyrazine: 0.3 ml (implementation) Example 4), 2,3-diethylpyrazine: 0.3 ml (Example 5) or 2-propylpyrazine: 0.3 ml (Example 6) was added and allowed to react slowly at room temperature for 24 hours. A blue single crystal was formed. Pyrazine complex (Example 1): 12.2 mg (58.6%), 2-methylpyrazine complex (Example 2): 11.7 mg (57.4%), 2,3-dimethylpyrazine complex (Example 3): 16.0 mg (74.2 %), 2-ethylpyrazine complex (Example 4) (19.2%), 2,3-diethylpyrazine complex (Example 5) (13.2%), 2-propylpyrazine complex (Example 6) (39.3%). Identification was performed by single crystal X-ray structural analysis and elemental analysis. The number of repeating units represented by the general formula [I] was about 10 4 to 4 × 10 5 calculated from the size of the produced crystal (about 10 7 per 1 cm of crystal).

元素分析結果及びX線構造解析結果を下記表1に示す。   The results of elemental analysis and X-ray structure analysis are shown in Table 1 below.

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

得られた各単結晶の物性データを下記表2−1及び表2−2にまとめて示す。   The physical property data of each obtained single crystal is shown in Table 2-1 and Table 2-2 below.

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

実施例7〜12 ロジウム錯体の製造及び物性
合成した安息香酸ロジウム80mg(1.0x10-4mol)をアセトニトリル80mlに溶かし、赤紫色の溶液とした。濾過後、ピラジン:8.0mg(実施例7)、2−メチルピラジン:0.3ml(実施例8)、2,3−ジメチルピラジン:0.3ml(実施例9)、2‐エチルピラジン:0.3ml(実施例10)、2, 3-ジエチルピラジン:0.3ml(実施例11)又は2-プロピルピラジン:0.3ml(実施例12)を加えて室温でゆっくり24時間反応させた。褐色の微結晶が生成した。ピラジン錯体(実施例7):12.9mg (67.2%), 2−メチルピラジン錯体(実施例8): 11.9mg (60.7%), 2,3−ジメチルピラジン錯体(実施例9):16.3mg (81.7%)、2‐エチルピラジン錯体(実施例10)(42.6%)、2, 3-ジエチルピラジン錯体(実施例11)(85.5%)、2-プロピルピラジン錯体(実施例12)(14.6%)。同定は単結晶X線構造解析および元素分析により行った。なお、生成した結晶のサイズから算出して(結晶1cm当り約107)、一般式[I]で表される繰返し単位の繰返し数は、約104〜5 x 105程度であった。
Examples 7 to 12 Production and properties of rhodium complex 80 mg (1.0 × 10 −4 mol) of synthesized rhodium benzoate was dissolved in 80 ml of acetonitrile to obtain a red-purple solution. After filtration, pyrazine: 8.0 mg (Example 7), 2-methylpyrazine: 0.3 ml (Example 8), 2,3-dimethylpyrazine: 0.3 ml (Example 9), 2-ethylpyrazine: 0.3 ml (implementation) Example 10), 2,3-diethylpyrazine: 0.3 ml (Example 11) or 2-propylpyrazine: 0.3 ml (Example 12) was added and allowed to react slowly at room temperature for 24 hours. Brown microcrystals were formed. Pyrazine complex (Example 7): 12.9 mg (67.2%), 2-methylpyrazine complex (Example 8): 11.9 mg (60.7%), 2,3-dimethylpyrazine complex (Example 9): 16.3 mg (81.7 %), 2-ethylpyrazine complex (Example 10) (42.6%), 2,3-diethylpyrazine complex (Example 11) (85.5%), 2-propylpyrazine complex (Example 12) (14.6%). Identification was performed by single crystal X-ray structural analysis and elemental analysis. The number of repeating units represented by the general formula [I] was about 10 4 to 5 × 10 5 calculated from the size of the produced crystal (about 10 7 per 1 cm of crystal).

元素分析結果及びX線構造解析結果を下記表3に示す。   The results of elemental analysis and X-ray structure analysis are shown in Table 3 below.

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

得られた各単結晶の物性データを下記表4−1及び表4−2にまとめて示す。   The physical property data of each obtained single crystal is shown together in the following Tables 4-1 and 4-2.

Figure 2006341188
Figure 2006341188

Figure 2006341188
Figure 2006341188

実施例13 有機溶剤蒸気の吸着及び脱着
実施例1及び実施例2で製造した有機カルボン酸金属錯体について、n-ヘキサン又はベンゼンを10℃又は20℃の等温下で吸着及び脱着させた際の蒸気の吸着量を測定した。
Example 13 Adsorption and Desorption of Organic Solvent Vapor Vapor when adsorbing and desorbing n-hexane or benzene at an isothermal temperature of 10 ° C or 20 ° C for the organic carboxylate metal complexes produced in Example 1 and Example 2. The adsorption amount of was measured.

結果を図1及び図2に示す。なお、図中、a)はn-ヘキサンについての結果、b)はベンゼンについての結果を示す。また、丸が10℃での結果、四角が20℃での結果を示す。さらに、黒塗りが吸着過程、白抜きが脱着過程における吸着量を示す。   The results are shown in FIGS. In the figure, a) shows the result for n-hexane, and b) shows the result for benzene. Moreover, the results at 10 ° C for the circle and the results at 20 ° C for the square are shown. Further, black indicates the adsorption amount in the adsorption process, and white indicates the adsorption amount in the desorption process.

特徴的な可逆的吸脱着能がみられ、両方の錯体ともほぼ同様の吸着挙動を示していた。これは細孔構造の柔軟性によって様々な形状および性質を持つ有機分子に対して広く吸着剤として機能できることを示している。また、吸着曲線は10℃よりも20℃と温度の上昇によって吸着に必要な圧力が高圧側にシフトする挙動が見られた。これは、吸着挙動と吸着剤の温度の間の熱力学的な相関を示唆する。   Characteristic reversible adsorption / desorption ability was observed, and both complexes showed almost the same adsorption behavior. This indicates that it can function as an adsorbent widely for organic molecules having various shapes and properties due to the flexibility of the pore structure. Further, the adsorption curve showed a behavior in which the pressure required for the adsorption shifted to the high pressure side as the temperature rose to 20 ° C. rather than 10 ° C. This suggests a thermodynamic correlation between adsorption behavior and adsorbent temperature.

吸着挙動で特徴的なのは、いずれの場合にも吸着の飛びが見られることである。(この圧力を臨界圧と以後記述する。)低圧部ではほとんど吸着が見られず、臨界圧になって初めて吸着の飛びが見られる。これは固体試料のバルク相転移によるものである。吸着線の飛びは蒸気吸着によって誘起されたα−β相転移によるものであり、吸着エンタルピーの平たん部はα−β相の二相共存状態によるものである。吸着曲線はα−β相の吸着線間を二相共存状態を経て非常に狭い圧力領域で遷移する。ヘキサンやベンゼンでは臨界圧に達するまで低圧部での吸着は見られない。これは、α相の細孔構造がゲスト分子構造に対して相対的に細く屈曲しているため、拡散が困難であるからである。本材料は結晶でありまた相転移はゲスト吸着によって誘起されるため、ゲスト分子の結晶内での分布によって特異的な吸脱着挙動を示す。固体の体積に比べて表面積の小さい結晶である本材料ではほとんど吸着が臨界圧まで見られない、臨界圧で突然吸着がスタートする蒸気圧(濃度)センシング機能がある。これは、細孔構造の柔軟性と相転移現象に起因して生じる現象であると考えられる。このように、本結晶材料の細孔構造の柔軟性と相転移現象によって、高い蒸気濃度選択性と可逆性をもった吸着特性が明らかになった。   What is characteristic of the adsorption behavior is that adsorption jumps are observed in all cases. (This pressure is hereinafter referred to as critical pressure.) Almost no adsorption is observed in the low pressure part, and the adsorption jump is observed only when the critical pressure is reached. This is due to the bulk phase transition of the solid sample. The jump of the adsorption line is due to the α-β phase transition induced by vapor adsorption, and the flat portion of the adsorption enthalpy is due to the two-phase coexistence state of the α-β phase. The adsorption curve transitions between the adsorption lines of the α-β phase through a two-phase coexistence state in a very narrow pressure region. In hexane and benzene, no adsorption in the low pressure part is observed until the critical pressure is reached. This is because the α phase pore structure is relatively thin and bent with respect to the guest molecular structure, so that diffusion is difficult. Since this material is a crystal and the phase transition is induced by guest adsorption, it exhibits a specific adsorption / desorption behavior depending on the distribution of guest molecules in the crystal. This material, which is a crystal with a small surface area compared to the volume of the solid, has a vapor pressure (concentration) sensing function in which adsorption is hardly observed up to the critical pressure, and sudden adsorption starts at the critical pressure. This is considered to be a phenomenon caused by the flexibility of the pore structure and the phase transition phenomenon. Thus, the flexibility of the pore structure of this crystal material and the phase transition phenomenon revealed the adsorption characteristics with high vapor concentration selectivity and reversibility.

実施例14 安息香酸銅(II)ピラジン付加物巨大単結晶の合成
酢酸銅(II)一水和物350mg (3.50mmol)に50倍等量の安息香酸21.4g (176mmol)をメタノール350mlに溶かし、テフロン(登録商標)容器中でフロリナート(商品名、3M製、FC77)50mlの上に注いだ。上層のメタノール溶液と下層のフロリナート(商品名)の2層に分離させた状態で、エチレングリコール中に溶かして蒸気圧抑制させたピラジンを蒸気拡散によって溶液に導き、20℃で反応させた。蒸気拡散は、ピラジンのエチレングリコール溶液の入った試験管を反応液と接しないように注意して担持して系全体を密閉し、ゆっくりとピラジン蒸気を反応溶液中へと溶け込ませることにより行なった。フロリナート―メタノール2層界面中に結晶成長し、1ヶ月後に単結晶として目的物をろ過によって単離したのち、風乾した。青色板状単結晶360mg(収率60%)。生成した結晶サイズから算出すると(結晶1cm当り約107)、繰返し単位の繰返し数は約5 x 106〜107程度であった。
Example 14 Synthesis of copper (II) benzoate pyrazine adduct giant single crystal 501.4 equivalents of 21.4 g (176 mmol) of benzoic acid were dissolved in 350 mg (3.50 mmol) of copper (II) acetate monohydrate, In a Teflon (registered trademark) container, it was poured on 50 ml of Fluorinert (trade name, manufactured by 3M, FC77). In a state where the upper layer methanol solution and the lower layer florinate (trade name) were separated into two layers, pyrazine dissolved in ethylene glycol and suppressed in vapor pressure was introduced into the solution by vapor diffusion and reacted at 20 ° C. Vapor diffusion was performed by supporting a test tube containing an ethylene glycol solution of pyrazine with care not to contact the reaction solution, sealing the entire system, and slowly dissolving pyrazine vapor into the reaction solution. . Crystal growth occurred in the florinate-methanol bilayer interface, and after 1 month, the target product was isolated as a single crystal by filtration and then air-dried. Blue plate-like single crystal 360 mg (yield 60%). When calculated from the size of the produced crystal (about 10 7 per 1 cm of crystal), the number of repeating units was about 5 × 10 6 to 10 7 .

実施例15 安息香酸ロジウム(II)ピラジン付加物巨大単結晶の合成
安息香酸ロジウム(II)20mg (3.50mmol)をアセトニトリル40mlに溶解し、テフロン(登録商標)容器中でフロリナート(商品名、3M製、FC77)5mlの上に注いだ。上層のアセトニトリル溶液と下層のフロリナートの2層に分離させた状態で、エチレングリコール中に溶かして蒸気圧抑制させたピラジンを実施例1と同様に蒸気拡散によって溶液に導き、15℃でゆっくりと反応させた。フロリナート―メタノール2層界面中に結晶成長し、1ヶ月後に単結晶として目的物をろ過によって単離した。赤色板状単結晶360mg(収率70%)。生成した結晶サイズから算出すると、繰返し単位の繰返し数は約106〜7 x 106程度であった。
Example 15 Synthesis of rhodium (II) benzoate pyrazine adduct giant single crystal Rhodium (II) benzoate (20 mg, 3.50 mmol) was dissolved in acetonitrile (40 ml) and Florinate (trade name, manufactured by 3M) in a Teflon (registered trademark) container. , FC77) poured over 5ml. Pyrazine dissolved in ethylene glycol and suppressed in vapor pressure is introduced into the solution by vapor diffusion in the same manner as in Example 1 while being separated into two layers of the upper acetonitrile solution and the lower fluorinate, and slowly reacted at 15 ° C. I let you. Crystals grew in the interface between the two layers of fluorinate-methanol, and after 1 month, the target product was isolated as a single crystal by filtration. Red plate-like single crystal 360 mg (70% yield). When calculated from the generated crystal size, the number of repeating units was about 10 6 to 7 × 10 6 .

実施例16 水素ガスの吸蔵
実施例1、実施例7、実施例2及び実施例8で製造した有機カルボン酸金属錯体について、水素ガスを77Kの等温下で吸着及び脱着させた際の水素の吸着量を測定した。
Example 16 Occlusion of Hydrogen Gas Adsorption of hydrogen when hydrogen gas was adsorbed and desorbed at an isothermal temperature of 77K with respect to the organic carboxylic acid metal complexes produced in Example 1, Example 7, Example 2 and Example 8. The amount was measured.

結果を図3に示す。なお、図中、a)、b)、c)、d)はそれぞれ実施例1、実施例7、実施例2及び実施例8で製造した有機カルボン酸金属錯体についての結果を示す。また、黒丸が吸着過程、白丸が脱着過程における吸着量を示す。   The results are shown in FIG. In the figure, a), b), c), and d) show the results for the organic carboxylic acid metal complexes produced in Example 1, Example 7, Example 2, and Example 8, respectively. Further, the black circles indicate the adsorption amount in the adsorption process, and the white circles indicate the adsorption amount in the desorption process.

図3に示されるように、有機カルボン酸金属錯体には多量の水素を吸蔵することができる。また、観察の結果、拡散が早く、短時間で吸着平衡状態に達した。   As shown in FIG. 3, a large amount of hydrogen can be stored in the organic carboxylic acid metal complex. Moreover, as a result of observation, the diffusion was fast and the adsorption equilibrium state was reached in a short time.

さらに、実施例7で製造した安息香酸ロジウムピラジンに水素を吸着させた状態の結晶体をX線解析して水素の吸蔵状態を調べた。結果を図4に模式的に示す。また、水素を吸着させた状態の結晶体の結晶学的パラメーターを下記表5に示す。   Furthermore, the occlusion state of hydrogen was examined by X-ray analysis of the crystal in a state where hydrogen was adsorbed on rhodium pyrazine benzoate produced in Example 7. The results are schematically shown in FIG. Table 5 below shows the crystallographic parameters of the crystal in a state where hydrogen is adsorbed.

Figure 2006341188
Figure 2006341188

実施例17 水銀蒸気の吸着
実施例7で製造した安息香酸ロジウムピラジン単結晶(結晶サイズ0.40 x 0.25 x 0.04 mm3)を水銀とともにガラス密閉容器内に入れ、オイル回転ポンプで真空引きした。容器を150℃に加熱して水銀蒸気(蒸気圧2.8mmHg)に結晶を曝した。7日後に水冷して常温にし、空気中で結晶を取り出した。結晶は単結晶状態を保ったままであり、水銀原子の包接結晶を得た。回収率100%
Example 17 Adsorption of mercury vapor The rhodium pyrazine benzoate single crystal (crystal size 0.40 x 0.25 x 0.04 mm 3 ) produced in Example 7 was placed in a glass sealed container together with mercury and evacuated with an oil rotary pump. The vessel was heated to 1500C and the crystals were exposed to mercury vapor (vapor pressure 2.8mmHg). Seven days later, it was cooled with water to room temperature, and the crystals were taken out in the air. The crystal remained in a single crystal state, and an inclusion crystal of mercury atoms was obtained. 100% recovery

得られた水銀原子の包接結晶をX線解析した。結晶の状態を模式的に図5に示す。図中、黒丸が水銀原子である。また、水銀原子の包接結晶の結晶学的パラメーターを下記表6に示す。   The resulting inclusion crystal of mercury atoms was subjected to X-ray analysis. The state of the crystal is schematically shown in FIG. In the figure, black circles are mercury atoms. The crystallographic parameters of the inclusion crystal of mercury atoms are shown in Table 6 below.

Figure 2006341188
Figure 2006341188

本発明の実施例1で製造した有機カルボン酸金属錯体の等温蒸気吸着曲線を示す。The isothermal vapor | steam adsorption curve of the organic carboxylic acid metal complex manufactured in Example 1 of this invention is shown. 本発明の実施例7で製造した有機カルボン酸金属錯体の等温蒸気吸着曲線を示す。The isothermal vapor | steam adsorption curve of the organic carboxylic acid metal complex manufactured in Example 7 of this invention is shown. 本発明の実施例1、実施例7、実施例2及び実施例8で製造した有機カルボン酸金属錯体に水素ガスを吸蔵させた際の水素吸着曲線を示す。The hydrogen adsorption curve at the time of making the organic carboxylic acid metal complex manufactured in Example 1, Example 7, Example 2, and Example 8 of this invention occlude hydrogen gas is shown. 実施例7で製造した安息香酸ロジウムピラジンに水素を吸着させた状態の結晶体の結晶構造を模式的に示す図である。It is a figure which shows typically the crystal structure of the crystal body of the state which made hydrogen adsorb | suck to the rhodium benzoate pyrazine manufactured in Example 7. FIG. 実施例7で製造した安息香酸ロジウムピラジン単結晶に水銀蒸気を吸着させた状態の結晶構造を模式的に示す図である。It is a figure which shows typically the crystal structure of the state which made the mercury vapor | steam adsorb | suck to the rhodium benzoate pyrazine single crystal manufactured in Example 7. FIG.

Claims (13)

一般式[I]で示される繰返し単位から構成された有機カルボン酸金属錯体から成る揮発性有機化合物吸着剤。
Figure 2006341188
(ただし、M1及びM2は互いに独立して2価をとり得る金属、R1a、R1b、R1c及びR1dは互いに独立して、共役系を含む有機基、R2、R3、R4及びR5は互いに独立して水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルケニル基を示す。)
A volatile organic compound adsorbent comprising an organic carboxylate metal complex composed of a repeating unit represented by the general formula [I].
Figure 2006341188
(However, M 1 and M 2 are independently divalent metals, R 1a , R 1b , R 1c and R 1d are independently of each other an organic group containing a conjugated system, R 2 , R 3 , R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkenyl group having 1 to 4 carbon atoms.
前記R1a、R1b、R1c及びR1d が互いに独立して置換されていてもよいフェニル基である請求項1記載の揮発性有機化合物吸着剤。 The volatile organic compound adsorbent according to claim 1 , wherein R 1a , R 1b , R 1c and R 1d are independently substituted phenyl groups. 前記M1及びM2が互いに独立してマンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、クロム、モリブデン、パラジウム及びタングステンから成る群より選ばれる少なくとも1種である請求項1又は2記載の揮発性有機化合物吸着剤。 The M 1 and M 2 are each independently at least one selected from the group consisting of manganese, iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, chromium, molybdenum, palladium and tungsten. The volatile organic compound adsorbent described. 前記M1及びM2が同一種類の金属であり、前記R1a、R1b、R1c及びR1d が同一種類の有機基である請求項1ないし3のいずれか1項に記載の有機カルボン酸金属錯体。 The organic carboxylic acid according to any one of claims 1 to 3, wherein M 1 and M 2 are the same type of metal, and R 1a , R 1b , R 1c and R 1d are the same type of organic group. Metal complex. 前記R1a、R1b、R1c及びR1d がフェニル基、前記R2、R3、R4及びR5が互いに独立して水素原子又は炭素数1〜4のアルキル基、前記M1及びM2が銅又はロジウムである請求項1記載の揮発性有機化合物吸着剤。 R 1a , R 1b , R 1c and R 1d are phenyl groups, R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, M 1 and M The volatile organic compound adsorbent according to claim 1, wherein 2 is copper or rhodium. 前記有機カルボン酸金属錯体が単結晶の形態にある請求項1ないし5のいずれか1項に記載の揮発性有機化合物吸着剤。   The volatile organic compound adsorbent according to any one of claims 1 to 5, wherein the organic carboxylic acid metal complex is in a single crystal form. 前記揮発性有機化合物が、有機溶剤の蒸気又はアルデヒド類である請求項1ないし6のいずれか1項に記載の揮発性有機化合物吸着剤。   The volatile organic compound adsorbent according to any one of claims 1 to 6, wherein the volatile organic compound is an organic solvent vapor or aldehydes. 前記揮発性有機化合物が、脂肪族又は芳香族有機溶剤の蒸気である請求項7記載の揮発性有機化合物吸着剤。   The volatile organic compound adsorbent according to claim 7, wherein the volatile organic compound is a vapor of an aliphatic or aromatic organic solvent. 請求項1ないし6のいずれか1項に記載の有機カルボン酸金属錯体から成る、空気中の揮発性有機化合物の濃度を所定値以下に維持する揮発性有機化合物濃度維持剤。   The volatile organic compound density | concentration maintenance agent which maintains the density | concentration of the volatile organic compound in the air below the predetermined value which consists of an organic carboxylic acid metal complex of any one of Claim 1 thru | or 6. 請求項1ないし6のいずれか1項に記載の揮発性有機化合物吸着剤を空気中に置いておくことにより該空気中の有機溶剤蒸気の濃度を所定値以下に維持する方法。   A method for maintaining the concentration of the organic solvent vapor in the air below a predetermined value by placing the volatile organic compound adsorbent according to any one of claims 1 to 6 in the air. 請求項1ないし6のいずれか1項に記載の有機カルボン酸金属錯体から成る水素吸蔵材。   A hydrogen storage material comprising the organic carboxylic acid metal complex according to any one of claims 1 to 6. 請求項1ないし6のいずれか1項に記載の有機カルボン酸金属錯体に金属蒸気を吸着させることにより金属原子を1原子ずつ一次元的に配列させる方法。   A method of arranging metal atoms one-dimensionally one by one by adsorbing a metal vapor to the organic carboxylic acid metal complex according to claim 1. 請求項12記載の方法により製造された、チャンネル構造内にゲストとしての金属原子が1原子ずつ一次元的に配列された有機カルボン酸金属錯体。




An organic carboxylic acid metal complex produced by the method according to claim 12, wherein metal atoms as guests are one-dimensionally arranged in the channel structure one by one.




JP2005169087A 2005-06-09 2005-06-09 Volatile organic compound adsorbent and hydrogen storage material Expired - Fee Related JP5099615B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005169087A JP5099615B2 (en) 2005-06-09 2005-06-09 Volatile organic compound adsorbent and hydrogen storage material
EP06746239A EP1914263B1 (en) 2005-06-09 2006-05-10 Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
PCT/JP2006/309429 WO2006132049A1 (en) 2005-06-09 2006-05-10 Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
US11/921,681 US8034165B2 (en) 2005-06-09 2006-05-10 Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169087A JP5099615B2 (en) 2005-06-09 2005-06-09 Volatile organic compound adsorbent and hydrogen storage material

Publications (2)

Publication Number Publication Date
JP2006341188A true JP2006341188A (en) 2006-12-21
JP5099615B2 JP5099615B2 (en) 2012-12-19

Family

ID=37638545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169087A Expired - Fee Related JP5099615B2 (en) 2005-06-09 2005-06-09 Volatile organic compound adsorbent and hydrogen storage material

Country Status (1)

Country Link
JP (1) JP5099615B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2012006854A (en) * 2010-06-23 2012-01-12 Jx Nippon Oil & Energy Corp Porous metal complex, method for producing the same, gas adsorption method, and gas separation method
CN106544737A (en) * 2016-10-26 2017-03-29 辽宁石油化工大学 A kind of preparation method of U-shaped asymmetric nonlinear optics Inorganic-organic Hybrid Material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2000309592A (en) * 1999-04-28 2000-11-07 Osaka Gas Co Ltd Gas adsorbent using organometal complex
JP2004196594A (en) * 2002-12-18 2004-07-15 Univ Kyoto Method for aligning and holding gaseous molecule, and material for holding gaseous molecule
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2005255651A (en) * 2004-03-15 2005-09-22 Kyoto Univ Organometallic complex structure, method for producing the same, functional membrane using the organometallic complex structure, functional composite material, functional structure and absorption and desorption sensor
JP2006342100A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Single crystal of organic carboxylic acid metal complex and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109485A (en) * 1998-10-05 2000-04-18 Osaka Gas Co Ltd New three-dimensional type organometallic complex and gas-adsorptive material
JP2000309592A (en) * 1999-04-28 2000-11-07 Osaka Gas Co Ltd Gas adsorbent using organometal complex
JP2004196594A (en) * 2002-12-18 2004-07-15 Univ Kyoto Method for aligning and holding gaseous molecule, and material for holding gaseous molecule
JP2005232109A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Method for producing polycarboxylic acid metal complex
JP2005255651A (en) * 2004-03-15 2005-09-22 Kyoto Univ Organometallic complex structure, method for producing the same, functional membrane using the organometallic complex structure, functional composite material, functional structure and absorption and desorption sensor
JP2006342100A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Single crystal of organic carboxylic acid metal complex and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
JP2012006854A (en) * 2010-06-23 2012-01-12 Jx Nippon Oil & Energy Corp Porous metal complex, method for producing the same, gas adsorption method, and gas separation method
US8915989B2 (en) 2010-06-23 2014-12-23 Jx Nippon Oil & Energy Corporation Porous coordination polymer, process for producing same, gas storage method, and gas separation method
CN106544737A (en) * 2016-10-26 2017-03-29 辽宁石油化工大学 A kind of preparation method of U-shaped asymmetric nonlinear optics Inorganic-organic Hybrid Material

Also Published As

Publication number Publication date
JP5099615B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
Xue et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction
He et al. Exceptional hydrophobicity of a large-pore metal–organic zeolite
Wang et al. Hysteretic gas and vapor sorption in flexible interpenetrated lanthanide-based metal–organic frameworks with coordinated molecular gating via reversible single-crystal-to-single-crystal transformation for enhanced selectivity
ES2856694T3 (en) Organometallic structure, production and use of it
Luo et al. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies
Prasad et al. Control of interpenetration and gas‐sorption properties of metal–organic frameworks by a simple change in ligand design
Xue et al. Robust metal− organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density
Schneemann et al. Targeted manipulation of metal–organic frameworks to direct sorption properties
JP5496676B2 (en) Metal complex and method for producing the same
US8262775B2 (en) Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
JP6270720B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
US9120080B2 (en) Acetylene storage using metal-organic frameworks with open metal sites
JP2011068631A (en) Metal complex, and material for separation comprising the same
Li et al. Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation
JP5099615B2 (en) Volatile organic compound adsorbent and hydrogen storage material
JP2000210559A (en) Gas storable organic metal complex, manufacture thereof and gas storage device
US9662632B1 (en) Metal-organic frameworks for adsorption and separation of noble gases
EP1914263B1 (en) Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
JP4058579B2 (en) Gas adsorbents using organometallic complexes
KR20180120398A (en) Organic-inorganic Hybrid Porous Adsorbent And Method For Preparing The Same
JPWO2017130833A1 (en) Liquid having oxygen absorbing ability, method for producing the same, and complex solution containing the same
Huang et al. A highly stable multifunctional three-dimensional microporous framework: excellent selective sorption and visible photoluminescence
JP6833312B2 (en) Porous metal complex composition
JP5099614B2 (en) Novel metal carboxylate complex and gas storage agent comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees