JP2004196594A - Method for aligning and holding gaseous molecule, and material for holding gaseous molecule - Google Patents

Method for aligning and holding gaseous molecule, and material for holding gaseous molecule Download PDF

Info

Publication number
JP2004196594A
JP2004196594A JP2002367343A JP2002367343A JP2004196594A JP 2004196594 A JP2004196594 A JP 2004196594A JP 2002367343 A JP2002367343 A JP 2002367343A JP 2002367343 A JP2002367343 A JP 2002367343A JP 2004196594 A JP2004196594 A JP 2004196594A
Authority
JP
Japan
Prior art keywords
molecules
pores
organic bridging
bridging ligand
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002367343A
Other languages
Japanese (ja)
Other versions
JP4217776B2 (en
Inventor
Susumu Kitagawa
進 北川
Tatsuo Kobayashi
達生 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2002367343A priority Critical patent/JP4217776B2/en
Publication of JP2004196594A publication Critical patent/JP2004196594A/en
Application granted granted Critical
Publication of JP4217776B2 publication Critical patent/JP4217776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for aligning and holding gaseous molecules by using spaces in pores of a coordination polymer which can house gaseous molecules at normal temperature and normal pressure in the pores and which has a porous three-dimensional structure constituted by transition metal cations and organic crosslinking ligands linking the cations, and to provide a material holding gaseous molecules by the above method. <P>SOLUTION: When gaseous molecules are to be housed in the pores of a coordination polymer which can house gaseous molecules at normal temperature and normal pressure in the pores and which has a porous three-dimensional structure constituted by transition metal cations and organic crosslinking ligands linking the cations, the gaseous molecules are regularly housed and aligned and held by using the spaces in the pores by selecting the species of the organic crosslinking ligands to design the entrance dimension of the pores as desired. The material for holding gaseous molecules is obtained by the above method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、常温常圧(25℃1気圧)で気体の分子の整列保持方法および気体分子保持材料に関する。
【0002】
【従来の技術】
気体分子は、我々の身の回りに無尽蔵にある物質である。最近では、酸素などに圧力を加えて固体にすると超伝導になることなどがわかってきた。この様に、気体という物質は、我々にとって、未踏の新材料である。気体を新材料として実用化するためには何らかの方法で気体分子を整列させて低次元構造化する必要がある。例えば、酸素を考えた場合、−218℃以下にまで冷却すると分子は固体となり一定の配列を持つ構造となるので新材料としての期待が持たれるが、このような温度は実用上あまりにも多くの制約を伴う。また、走査型プローブ顕微鏡(SPM)のような物理的手法を用いて分子を整列させる方法もあるが、この手法では分子を基盤に1個ずつおいていくようなものなので、一時に大量に整列させることができないし、材料としての汎用性に欠ける。また、多数の分子(数千〜数百万個)を1次元に整列させるためには強制力を必要とするため、容易に実現できるものではない。
【0003】
そこで、考えられることは、気体分子が整列保持されるような言わば「器」のようなものを利用して気体分子を整列保持できないかということである。このような器になりえる材料として容易に思いつくことができるのは、ゼオライトなどの無機材料や、活性炭、カーボンナノチューブなどの炭素材料などの多孔性材料である。しかし、これらの多孔性材料は、孔の大きさが、気体分子を整列させて保持するには大きすぎたり不均一であったりするとともに、チャンネル形状(孔の入口の形状)が収容する気体分子に適していなかったりするので、とにかく保持できればよいといった要求には応えることができるが、整列させて保持するという要求には応えることができない。
【0004】
ところで、本発明者らは、ナノメートルの大きさを持つ細孔を規則正しく並べた物質を、あたかもブロックを組むようにデザインし、化学的に合成する研究をこれまで精力的に行ってきた。その研究成果として、遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子の合成に成功している。この配位高分子は、遷移金属カチオンと有機架橋配位子が分子レベルで直接交互に結合した有機・無機の複合物質であり、その特徴としては、常に均一な構造を保つこと、自在に分子レベルから設計し、単に室温、1気圧で混ぜるだけで合成することができること(自己集合)、数グラムでバスケットボールコートからサッカーグラウンドまでの表面積を持つといったことが挙げられ、ガス貯蔵材料として期待されている。
このような配位高分子の一例としては、遷移金属カチオンと第1有機架橋配位子から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子が各層に存在する遷移金属カチオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構造を有するものがあり、その具体例として、遷移金属カチオンとしての銅イオン(2価金属イオン)と第1有機架橋配位子としての2,3−ピラジンジカルボン酸(pzdc)から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子としての4,4’−ビピリジル(bpy)が各層に存在する銅イオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構成を有するCu2(bpy)(pzdc)2がメタンの貯蔵能力に優れることを明らかにしている(下記の特許文献1や非特許文献1を参照)。
【0005】
上記の研究成果は、配位高分子をガス貯蔵材料として利用することを目的として得られたものであり、これまで、ガス貯蔵材料としての配位高分子の設計は、いかに多量のガスを貯蔵させるかという視点に基づいて行われてきた。従って、配位高分子を利用して気体分子を配列させるためにはどのような設計を行えばよいか、意図したように配位高分子を設計できたとしても、気体分子を思い通りに配列させることができるかといった点については未知の領域であった。
【0006】
【特許文献1】
特開平9−227572号公報
【非特許文献1】
北川進,「ナノ金属錯体によるナノサイエンス」,化学工業,第53巻,第11号,2002年,p808−815
【0007】
【発明が解決しようとする課題】
そこで本発明は、遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内の空間を利用して気体分子を整列保持させる方法およびこのようにして気体分子が保持された材料を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは上記の点に鑑みて種々の検討を行った結果、配位高分子を構成する有機架橋配位子の種類を選択して細孔入口寸法を所望する数値に設計し、なおかつその分子が規則正しく繰り返し結合するピッチを決定した場合、気体分子は細孔入口寸法とピッチに応じた配列形態で収容されることを見いだした。
【0009】
本発明は上記の点に知見に基づいてなされたものであり、本発明の気体分子の整列保持方法は、請求項1記載の通り、遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内に気体分子を収容する際、有機架橋配位子の種類を選択して細孔入口寸法を所望する数値に設計することで気体分子を規則性を持って収容し、細孔内の空間を利用して気体分子を整列保持させる方法である。
また、請求項2記載の方法は、請求項1記載の方法において、細孔入口寸法を3〜7Å×3〜7Åに設計するものである。
また、請求項3記載の方法は、請求項1または2記載の方法において、配位高分子が、遷移金属カチオンと第1有機架橋配位子から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子が各層に存在する遷移金属カチオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構造を有するものである。
また、請求項4記載の方法は、請求項3記載の方法において、2座配位可能な第2有機架橋配位子がピラジンまたはその誘導体である。
また、請求項5記載の方法は、請求項4記載の方法において、配位高分子が、遷移金属カチオンとしての銅イオン(2価金属イオン)と第1有機架橋配位子としての2,3−ピラジンジカルボン酸(pzdc)から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子としてのピラジン(pyz)が各層に存在する銅イオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構成を有するCu2(pyz)(pzdc)2である。
また、請求項6記載の方法は、請求項1記載の方法において、気体分子が2原子分子である。
また、請求項7記載の方法は、請求項6記載の方法において、2原子分子が酸素分子である。
また、本発明の気体分子保持材料は、請求項8記載の通り、遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内に気体分子が整列保持されているものである。
また、請求項9記載の気体分子保持材料は、請求項8記載の気体分子保持材料において、酸素分子を縦に1次元整列保持したものである。
【0010】
【発明の実施の形態】
遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子としては、例えば、上記の特許文献1や非特許文献1により公知の遷移金属カチオンと第1有機架橋配位子から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子が各層に存在する遷移金属カチオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構造を有するものが挙げられる。このような配位高分子の細孔入口寸法は、シートとシートの間隔を決定しているピラー配位子としての第2有機架橋配位子の種類に基づき、この細孔入口は気体分子の1次元チャンネル断面として機能する。
細孔入口寸法は、第2有機架橋配位子の分子長が長くなればなるほどシートとシートの間隔が長くなるので大きくなる。従って、第2有機架橋配位子の分子長を長くすることは、多量のガスを貯蔵させるという目的においては有利であるが、こうすると細孔内での気体分子の自由度が増すので気体分子を整列保持させるという目的においては不利である。本発明者らの研究によれば、気体分子を整列保持させるための細孔入口寸法の上限は1nm×1nmであり、この細孔入口寸法は、第2有機架橋配位子としてピラジンを選択することにより設計することができる。ピラジンの側鎖に低級アルキル基などが置換したピラジン誘導体を第2有機架橋配位子として選択すれば、側鎖の嵩高さにより細孔入口寸法をより小さくすることができるので、気体分子はその細孔入口寸法に応じた配列形態で収容される。また、気体分子をさらに密に1次元に配列させるためには、ピラー配位子のピッチを3〜6Åにすることで達成される。
【0011】
細孔内ではその空間寸法が気体分子の寸法に近いこともあり、細孔内に侵入した気体分子は壁(2次元シートおよび第2有機架橋配位子)の存在を強く感じるようになる。このため、ファンデルワールス力のような弱い相互作用であっても、相対する細孔壁のポテンシャルが重なり合い、気体分子はこの強いポテンシャルを感じながら制限された空間にできるだけ多く詰まろうとするため、配位高分子とともに気体を冷却すれば分子は細孔内に容易に侵入し、バルクの状態とは異なる特異的な凝集状態を形成する。
【0012】
常温常圧で気体の分子としては、例えば、酸素分子、一酸化炭素分子、一酸化窒素分子などの2原子分子や、二酸化炭素分子などの3原子分子が挙げられる。このうち、酸素は最小の磁性分子で、電子の授受が容易に行える気体分子でもあるため、配位高分子の細孔内において酸素分子を整列保持させて特異的な凝集状態を形成させた本発明の酸素分子保持材料は、磁性材料や伝導材料として期待される。また、一酸化炭素分子や一酸化窒素分子は双極子モーメントを持っているので、これらを配位高分子の細孔内において1次元整列させれば誘電鎖を形成するので、本発明の一酸化炭素分子保持材料や一酸化窒素分子保持材料は誘電材料として期待される。
【0013】
【実施例】
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。
【0014】
配位高分子としてCu2(pyz)(pzdc)2(M.Kondo et al., Angew Chem., Int. Ed. Engl, 38, 140-143(1999))(以下CPL−1:coordination polymer 1 with pillared layer structure(柱で支持された層構造を有する配位高分子)と称する)を用いて以下の実験を行った。CPL−1の単結晶解析データから決定した3次元構造を図1に示す(水分子は省略)。図1はa軸に沿って下方を見た図であり、銅イオン(図略)と2,3−ピラジンジカルボン酸1から構成される2次元シートが層をなし、ピラジン2が各層に存在する銅イオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構成を有する。a軸に沿ったその細孔寸法入口は4Å×6Åであり、ピラジンのピッチは約5Åである。
【0015】
減圧下にてCPL−1を加熱することで細孔内の水分子を除去した後、冷却しながら80KPaの酸素加圧下で酸素分子を細孔内(ナノチャンネル)に吸蔵させた。合成したCPL−1、80KPaの酸素加圧下で冷却する過程での無水CPL−1、それに続く90Kから300Kへの温度領域でのCPL−1のぞれぞれについて測定したin situ粉末X線回折パターンを図2に示す。パターンの変化は3つの段階に分類できる。即ち、(1)減圧下で加熱して水分子を除去する段階、(2)130Kと150Kの間での冷却段階、(3)90Kから300Kへの再加熱段階である。酸素加圧を行わなかった場合には全温度範囲で何らの変化もなかったが、図2の粉末回折データのLeBailフィッティングは、セル容積の収縮(1)と伸張(2)と再収縮(3)を明らかにした。これは水分子の脱離(1)と酸素分子の吸蔵(2)と酸素分子の脱離(3)に起因したCPL−1の骨組みの柔軟性から引き起こされた構造的ひずみによるものであると思われた。
【0016】
酸素分子を吸蔵していない120Kにおける無水CPL−1の結晶構造を、53.3°(d>0.89Å)までの粉末データのRietveld分析により決定したことで判明した事実は、水分子が除去された多孔性構造は、わずかな構造的ひずみを伴った合成直後のCPL−1と一致するということであった。構造因子に基づく信頼性因子RFが1.6%である無水CPL−1のMEM(マキシマムエントロピー法)電子密度分布図(図3A)から、細孔内には水分子が存在しないことがわかった。
【0017】
90Kにおける80KPaの酸素加圧下で冷却する過程での無水CPL−1の空間群(図2G)は、酸素を吸蔵していないCPL−1と同じ空間群P21/cであった。Rietvelt分析によりセルパラメータをa=4.68759(4)Å、b=20.4373(2)Å、c=10.9484(1)Å、β=96.9480(6)と決定した。MEM/Rietveld分析(財団法人高輝度光科学研究センター保有の大型放射光施設Spring−8を用いたin situ高分解シンクロトンX線粉末回折測定:M. Takata, E. Nishobori, M. Sakata, Z. Kristallogr. 216, 71-86(2001)他)のためのプレRietveld分析おいて、酸素を吸蔵していないCPL−1のために図3Aに相当する構造モデルを初期モデルとして用いた。RwpとRIはそれぞれ18.5%と54.2%であった。しかし、細孔内において酸素密度特徴を示すMEM電子密度が観察された。電子密度に基づく修正を行った後、Rietveldの精密性は劇的に改善され、最終的なRietveldフィッティングにおけるRwpとRIはそれぞれ2.1%と3.9%になった。信頼性因子RFが1.5%であるMEMによって得られた最終的な電子密度は、単結晶データと一致する3次元柱支持層構造を示した。図3Bより、規則正しく並んだ細孔の一つ一つに、酸素分子が一列に並んでいることが世界ではじめて明らかにされた。(図中の符号1は2,3−ピラジンジカルボン酸を示し符号2はピラジンを示し符合3は酸素分子を示す)。
【0018】
酸素分子によるものと考えられるピーナツ型の電子密度を細孔内に明確に認識することができた。MEMの結果に基づいた計算によると、全部で15.8(1)の電子が存在したが、これは事実上、酸素分子の数に相当するものであった。それ故、シートとシートの間に存在するピーナツ型の電子密度は酸素分子を表すこと、1銅原子あたり1酸素分子が吸蔵されていること、その吸蔵においては、酸素分子と酸素分子の間や酸素分子と細孔を形成する壁の間で電子移動がないことを推論した。
【0019】
77Kにおける酸素分子の等温式は、1銅原子あたり1.02の酸素分子の飽和吸蔵量を伴うタイプIの等温式を示した。これは、MEM/Rietveld分析によく合致するものであった。原子変位パラメータ[B4.1(2)Å]が比較的小さな値であることと酸素分子の無秩序さがないことは、細孔内に吸蔵された酸素分子が90Kにおいて、液体状態よりは固体状態に近似していることを示すものであった。これは大気圧下での酸素の凝固点である54.4Kよりもはるかに高温である。この事態は、細孔による強い閉じ込め効果に帰するものである。以上の分析に基づいた全体の結晶構造と酸素分子の幾何図形的配置子を図4(A図はa軸に沿って下方を見た図でありB図とC図はそれぞれb軸とc軸に沿って下方を見た図である:図中の符号は前記と同義)に示す。興味深いことに、2つの酸素分子がa軸に沿って11.8°の斜角を持ってお互い並行に整列しており、分子間距離は3.28(4)Åであり、これはLennard−Jonesポテンシャルの最小値Re3.9Åよりもはるかに小さい値であった。この分子間距離は24Kよりも低い温度において安定である個体α−酸素における隣接距離に似通った値である。この結果は、細孔内に吸蔵された酸素分子は、ファンデルワールス2量体(O22を形成しており、この見事な構造特性を以下に説明する。各々のダイマーは、a軸に沿って整列し、1次元はしご状構造を形成している。吸蔵された酸素分子の酸素原子間の距離は1.245(50)Åであることがわかった。
【0020】
吸蔵され酸素分子の特性を調べるために、温度に依存した磁化率とラマン分光の測定を行った。酸素を吸蔵していないCPL−1の磁化率(A)と酸素を吸蔵したCPL−1の磁化率(B)の相違(C)は、温度が低くなるにつれてゼロに近づき、非磁性の基底状態を示した(図5)。これに対応して、強磁場磁化過程において、酸素を吸蔵していないCPL−1(A)と酸素を吸蔵したCPL−1(B)とでは、50Tより強磁場でその違いを観察することができた(図5における挿入図)。CPL−1の磁化過程は、通常の常磁性銅イオンが与える銅原子1ヶにつき1μBの飽和モーメントを伴う磁化曲線を示した。酸素を吸蔵したCPL−1は低磁場領域では小さな違いしか示さなかったが、50Tを超えると急激な増加を示した。これは酸素を吸蔵したCPL−1が非磁性状態から磁性状態に磁気相転移したことを示すものであった。この磁化過程は、反強磁性的2量体または結合交替を伴う1次元反強磁性的鎖の振る舞いによるものとして理解することができる。CPL−1に吸蔵されている酸素分子の構造情報に基づけば、非磁性の基底状態は反強磁性的2量体を支持するものである。反強磁性的相互作用は、J/kBが約〜−50Kと見積もることができた。この値はα相のJ/kB〜−30Kよりも大きなものである。酸素を吸蔵したCPL−1と酸素を吸蔵していないCPL−1についての90K付近でのラマンスペクトルを図6に示す。酸素を吸蔵したCPL−1のスペクトル(B)においては、酸素を吸蔵していないCPL−1のスペクトル(A)には存在しない吸蔵された酸素分子の伸縮運動による鋭いピークが1561cm-1に観察された。これは周囲から圧力を受けている液体酸素や固体酸素のピークよりも僅かに高いポイントである。これは、2GPaの圧力を受けているα相の伸縮運動と同程度の圧力下にあることを示す。
【0021】
【発明の効果】
本発明によれば、遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内の空間を利用して気体分子を整列保持させる方法およびこのようにして気体分子が保持された材料が提供される。本発明によれば、ボトムアップ手法による配位高分子の細孔のデザイン(チャンネル形状やピッチの設計)を行うことで、大量の気体分子を固体中に瞬時に整列保持させることができることから、これまでにないまったく新しい概念の機能材料として作り上げられた本発明の気体分子保持材料は、次世代のエネルギーや環境科学のフロンティア物質として期待される。
【図面の簡単な説明】
【図1】実施例で使用したCPL−1の構造図。
【図2】実施例におけるin situ粉末X線回折パターンを示す図。
【図3】同、MEM電子密度を示す図。
【図4】同、90Kにおける酸素を吸蔵したCPL−1の模式表示図。
【図5】同、磁化率を示す図。
【図6】同、ラマンスペクトルを示す図。
【符号の説明】
1 2,3−ピラジンジカルボン酸
2 ピラジン
3 酸素分子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for holding alignment of gas molecules at normal temperature and normal pressure (25 ° C. and 1 atm).
[0002]
[Prior art]
Gas molecules are inexhaustible substances around us. Recently, it has been found that superconductivity can be obtained by applying pressure to oxygen or the like to make it solid. Thus, the substance of gas is an unexplored new material for us. In order to put gas into practical use as a new material, it is necessary to arrange gas molecules in some way to form a low-dimensional structure. For example, considering oxygen, when cooled to -218 ° C. or lower, the molecules become solid and have a structure having a certain arrangement, so that the material is expected to be a new material. However, such a temperature is too high for practical use. With restrictions. In addition, there is a method of aligning molecules using a physical method such as a scanning probe microscope (SPM). However, since this method involves placing molecules one by one on a base, a large number of molecules are aligned at one time. And it lacks versatility as a material. In addition, since a large number of molecules (thousands to millions) are required to be aligned one-dimensionally, it is not easy to realize.
[0003]
Therefore, what can be considered is whether or not the gas molecules can be aligned and held by using something like a "vessel" in which the gas molecules are aligned and held. Materials that can be easily conceived as such a vessel include inorganic materials such as zeolite and porous materials such as activated carbon and carbon materials such as carbon nanotubes. However, these porous materials have pore sizes that are too large or non-uniform to align and hold gas molecules, and that the channel shape (shape of the hole entrance) contains gas molecules. However, it is not possible to meet the requirement that it should be able to hold anyway, but it is not possible to meet the requirement that it be aligned and held.
[0004]
By the way, the present inventors have energetically conducted research on chemically synthesizing a substance in which pores having a size of nanometers are regularly arranged as if they were formed into a block and chemically synthesized. As a result of this research, a transition metal cation and an organic bridging ligand linking it form a porous three-dimensional structure, and a coordination height capable of accommodating gas molecules in pores at normal temperature and normal pressure. Successfully synthesized molecules. This coordination polymer is an organic-inorganic composite material in which transition metal cations and organic cross-linking ligands are directly and alternately bonded at the molecular level. Designed from the level, it can be synthesized simply by mixing at room temperature and 1 atm (self-assembly), and it has a surface area from a basketball court to a soccer field in a few grams, and is expected as a gas storage material I have.
As an example of such a coordination polymer, a two-dimensional sheet composed of a transition metal cation and a first organic bridging ligand forms a layer, and a second organic bridging ligand capable of bidentate coordination is formed in each layer. There is a structure having a structure in which adjacent sheets are linked by coordinating with a transition metal cation present in the polymer, and pores are formed therebetween. As a specific example, a copper ion as a transition metal cation ( A two-dimensional sheet composed of a bivalent metal ion) and 2,3-pyrazinedicarboxylic acid (pzdc) as a first organic bridging ligand forms a layer and is capable of bidentate coordination. Cu 2 (bpy) having a configuration in which 4,4′-bipyridyl (bpy) is linked to copper ions present in each layer to connect adjacent sheets and form pores therebetween (pzdc) 2 turtles It has revealed that excellent emission of storage capacity (refer to Patent Document 1 and Non-Patent Document 1 below).
[0005]
The above research results were obtained with the aim of utilizing the coordination polymer as a gas storage material.However, until now, the design of the coordination polymer as a gas storage material has been It has been done based on the viewpoint of whether to let. Therefore, what kind of design should be performed to arrange gas molecules using a coordination polymer? Even if a coordination polymer can be designed as intended, arrange gas molecules as desired. It was an unknown area as to whether it could be done.
[0006]
[Patent Document 1]
JP-A-9-227572 [Non-patent document 1]
Susumu Kitagawa, "Nanoscience by Nanometal Complex," Chemical Industry, Vol. 53, No. 11, 2002, p808-815
[0007]
[Problems to be solved by the invention]
Accordingly, the present invention provides a three-dimensional porous structure composed of a transition metal cation and an organic bridging ligand connecting the transition metal cation to form a coordination height capable of accommodating gas molecules in pores at normal temperature and normal pressure. It is an object of the present invention to provide a method for aligning and holding gas molecules by utilizing a space in the pores of the molecules and a material holding the gas molecules in this way.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies in view of the above points, and as a result, selected the type of organic cross-linking ligand constituting the coordination polymer, designed the pore entrance size to a desired value, and When the pitch at which the molecules are regularly and repeatedly bonded was determined, it was found that the gas molecules were accommodated in an arrangement form corresponding to the pore entrance size and the pitch.
[0009]
The present invention has been made based on the above-described findings, and the method for maintaining alignment of gas molecules according to the present invention is based on the method of claim 1, wherein a transition metal cation and an organic bridging ligand connecting the transition metal cation are used. When a gas molecule is accommodated in a pore of a coordination polymer capable of accommodating a gas molecule at room temperature and normal pressure in a pore by forming a neutral three-dimensional structure, an organic crosslinking ligand In this method, gas molecules are accommodated with regularity by selecting the type and the pore entrance dimension is designed to a desired value, and the gas molecules are aligned and held by utilizing the space in the pores.
A method according to a second aspect of the present invention is the method according to the first aspect, wherein the pore entrance dimension is designed to be 3 to 7 mm x 3 to 7 mm.
The method according to claim 3 is the method according to claim 1 or 2, wherein the coordination polymer is a two-dimensional sheet composed of a transition metal cation and a first organic bridging ligand. The second organic bridging ligand capable of coordination coordinates a transition metal cation present in each layer to connect adjacent sheets to each other, and has a structure in which pores are formed therebetween. .
According to a fourth aspect of the present invention, in the method of the third aspect, the second organic bridging ligand capable of bidentate coordination is pyrazine or a derivative thereof.
According to a fifth aspect of the present invention, in the method of the fourth aspect, the coordinating polymer comprises a copper ion (a divalent metal ion) as a transition metal cation and 2,3 as a first organic bridging ligand. A two-dimensional sheet composed of pyrazinedicarboxylic acid (pzdc) forms a layer, and pyrazine (pyz) as a second organic bridging ligand capable of bidentate coordination with copper ions present in each layer. Is Cu 2 (pyz) (pzdc) 2 having a configuration in which adjacent sheets are connected with each other and pores are formed therebetween.
According to a sixth aspect of the present invention, in the method of the first aspect, the gas molecules are diatomic molecules.
Further, in the method according to claim 7, in the method according to claim 6, the diatomic molecule is an oxygen molecule.
Further, the gas molecule holding material of the present invention comprises a transition metal cation and an organic bridging ligand connecting the transition metal cation to form a porous three-dimensional structure in the pore at normal temperature and normal pressure. Gas molecules are aligned and held in the pores of a coordination polymer capable of accommodating gas molecules.
A gas molecule holding material according to a ninth aspect is the gas molecule holding material according to the eighth aspect, in which oxygen molecules are vertically and one-dimensionally aligned and held.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of coordination polymers that can form a porous three-dimensional structure with a transition metal cation and an organic bridging ligand connecting the same and accommodate gas molecules at normal temperature and normal pressure in pores include, for example, A two-dimensional sheet composed of a transition metal cation and a first organic bridging ligand known from Patent Document 1 and Non-patent Document 1 described above forms a layer, and a second organic bridging ligand capable of bidentate coordination. Has a structure in which adjacent sheets are linked by coordinating with transition metal cations present in each layer, and pores are formed therebetween. The pore entrance dimension of such a coordination polymer is based on the type of the second organic bridging ligand as a pillar ligand that determines the distance between sheets, and the pore entrance is a gas molecule. Functions as a one-dimensional channel cross section.
The pore entrance dimension increases as the molecular length of the second organic bridging ligand increases, because the distance between the sheets increases. Therefore, increasing the molecular length of the second organic bridging ligand is advantageous for the purpose of storing a large amount of gas. However, this increases the degree of freedom of the gas molecules in the pores, so that the gas molecules are increased. This is disadvantageous for the purpose of keeping the alignment. According to the study of the present inventors, the upper limit of the pore entrance size for keeping the gas molecules aligned is 1 nm × 1 nm, and this pore entrance size selects pyrazine as the second organic bridging ligand. Can be designed. If a pyrazine derivative in which a lower alkyl group or the like is substituted on the side chain of pyrazine is selected as the second organic bridging ligand, the size of the pore entrance can be made smaller due to the bulk of the side chain, so that the gas molecule is It is accommodated in an array form corresponding to the pore entrance size. Further, in order to arrange gas molecules more densely in one dimension, the pitch of the pillar ligand is set to 3 to 6 °.
[0011]
In the pores, the spatial dimensions may be close to the dimensions of the gas molecules, and the gas molecules that have entered the pores will strongly feel the presence of the walls (two-dimensional sheet and second organic bridging ligand). Therefore, even in the case of a weak interaction such as van der Waals force, the potentials of the opposing pore walls overlap, and gas molecules try to pack as much as possible into the limited space while feeling this strong potential. When the gas is cooled together with the polymer, the molecules easily penetrate into the pores and form a specific aggregated state different from the bulk state.
[0012]
Examples of gas molecules at normal temperature and normal pressure include diatomic molecules such as oxygen molecules, carbon monoxide molecules, and nitric oxide molecules, and triatomic molecules such as carbon dioxide molecules. Of these, oxygen is the smallest magnetic molecule and is also a gas molecule that can easily transfer electrons, so this book forms a specific aggregation state by aligning and holding oxygen molecules in the pores of the coordination polymer. The oxygen molecule holding material of the present invention is expected as a magnetic material or a conductive material. In addition, since carbon monoxide molecules and nitric oxide molecules have a dipole moment, if they are one-dimensionally aligned in the pores of the coordination polymer, a dielectric chain is formed. Materials holding carbon molecules and materials holding nitric oxide molecules are expected as dielectric materials.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention should not be construed as being limited thereto.
[0014]
Cu 2 (pyz) (pzdc) 2 (M. Kondo et al., Angew Chem., Int. Ed. Engl, 38, 140-143 (1999)) as a coordination polymer (hereinafter CPL-1: coordination polymer 1) The following experiment was performed using with pillared layer structure (referred to as a coordination polymer having a layer structure supported by pillars). FIG. 1 shows a three-dimensional structure determined from single crystal analysis data of CPL-1 (water molecules are omitted). FIG. 1 is a view looking down along the a-axis. A two-dimensional sheet composed of copper ions (not shown) and 2,3-pyrazinedicarboxylic acid 1 forms a layer, and pyrazine 2 exists in each layer. It has a configuration in which adjacent sheets are connected by coordinating with copper ions, and pores are formed therebetween. Its pore size inlet along the a-axis is 4 ° × 6 ° and the pitch of the pyrazine is about 5 °.
[0015]
After heating the CPL-1 under reduced pressure to remove water molecules in the pores, oxygen molecules were absorbed into the pores (nanochannels) under oxygen pressure of 80 KPa while cooling. In situ powder X-ray diffraction measurements of the synthesized CPL-1, anhydrous CPL-1 in the process of cooling under oxygen pressure of 80 KPa, followed by CPL-1 in the temperature range from 90 K to 300 K The pattern is shown in FIG. Pattern changes can be classified into three stages. That is, (1) heating under reduced pressure to remove water molecules, (2) cooling between 130K and 150K, and (3) reheating from 90K to 300K. When no oxygen pressurization was performed, there was no change over the entire temperature range. However, the LeBail fitting of the powder diffraction data in FIG. 2 shows that the cell volume contraction (1), expansion (2), and re-contraction (3) ) Revealed. This is due to the structural strain caused by the flexibility of the CPL-1 skeleton caused by desorption of water molecules (1), occlusion of oxygen molecules (2), and desorption of oxygen molecules (3). I thought.
[0016]
The fact that the crystal structure of anhydrous CPL-1 at 120 K, which does not store oxygen molecules, was determined by Rietveld analysis of powder data up to 53.3 ° (d> 0.89 °) revealed that water molecules were removed. The resulting porous structure was consistent with as-synthesized CPL-1 with slight structural strain. From the MEM (maximum entropy method) electron density distribution diagram of anhydrous CPL-1 having a reliability factor R F of 1.6% based on the structure factor (FIG. 3A), it was found that no water molecules were present in the pores. Was.
[0017]
The space group of anhydrous CPL-1 (FIG. 2G) in the process of cooling under an oxygen pressure of 80 KPa at 90 K was the same space group P2 1 / c as CPL-1 not storing oxygen. The cell parameters were determined by Rietveld analysis as a = 4.68759 (4) Å, b = 20.4373 (2) Å, c = 10.9484 (1) Å, and β = 96.9480 (6). MEM / Rietveld analysis (in situ high-resolution synchrotron X-ray powder diffraction measurement using a large synchrotron radiation facility Spring-8 owned by the Japan Synchrotron Radiation Research Institute: M. Takata, E. Nishobori, M. Sakata, Z In a pre-Rietveld analysis for Kristallogr. 216, 71-86 (2001) et al., The structural model corresponding to FIG. 3A was used as the initial model for CPL-1 without oxygen storage. R wp and R I were 18.5% and 54.2%, respectively. However, MEM electron densities showing oxygen density characteristics were observed in the pores. After correction based on the electron density, precision of the Rietveld is dramatically improved, R wp and R I in the final Rietveld fitting became respectively 2.1% and 3.9%. The final electron density obtained by MEM with a reliability factor R F of 1.5% showed a three-dimensional column support structure consistent with the single crystal data. FIG. 3B shows for the first time in the world that oxygen molecules are arranged in a line in each of the regularly arranged pores. (Reference numeral 1 in the figure indicates 2,3-pyrazinedicarboxylic acid, reference numeral 2 indicates pyrazine, and reference numeral 3 indicates an oxygen molecule).
[0018]
The peanut-type electron density, which is thought to be due to oxygen molecules, was clearly recognized in the pores. According to calculations based on the MEM results, there were a total of 15.8 (1) electrons, which corresponded virtually to the number of oxygen molecules. Therefore, the peanut-type electron density existing between the sheets represents oxygen molecules, that one oxygen molecule is occluded per copper atom, and that between the oxygen molecules and the oxygen molecules, It was inferred that there was no electron transfer between the oxygen molecules and the walls forming the pores.
[0019]
The oxygen molecule isotherm at 77 K was a Type I isotherm with a saturated storage of 1.02 oxygen molecules per copper atom. This was in good agreement with the MEM / Rietveld analysis. The relatively small value of the atomic displacement parameter [B4.1 (2) Å] and the absence of disorder of oxygen molecules indicate that the oxygen molecules occluded in the pores are in a solid state rather than a liquid state at 90K. Was shown to be close to This is much higher than the freezing point of oxygen at atmospheric pressure, 54.4K. This situation is attributable to the strong confinement effect of the pores. FIG. 4 shows the overall crystal structure and the geometrical arrangement of oxygen molecules based on the above analysis (FIG. 4A is a view looking downward along the a-axis, and FIGS. 4B and 4C show the b-axis and c-axis, respectively). FIG. 2 is a view looking downward along the line: the symbols in the figure are as defined above. Interestingly, the two oxygen molecules are aligned parallel to each other with an oblique angle of 11.8 ° along the a-axis, and the intermolecular distance is 3.28 (4) Å, which is the Lennard- It was much smaller than the minimum value R e 3.9 Å of Jones potential. This intermolecular distance is similar to the adjacent distance in solid α-oxygen that is stable at temperatures lower than 24K. This result indicates that the oxygen molecules occluded in the pores form van der Waals dimer (O 2 ) 2 , and this superb structural property will be described below. Each dimer is aligned along the a-axis, forming a one-dimensional ladder-like structure. It was found that the distance between the stored oxygen molecules between oxygen atoms was 1.245 (50) °.
[0020]
In order to investigate the properties of occluded oxygen molecules, we measured temperature-dependent magnetic susceptibility and Raman spectroscopy. The difference (C) between the magnetic susceptibility (A) of CPL-1 not storing oxygen and the magnetic susceptibility (B) of CPL-1 storing oxygen approaches zero as the temperature decreases, and the nonmagnetic ground state (FIG. 5). Correspondingly, in the strong magnetic field magnetization process, the difference between CPL-1 (A) not storing oxygen and CPL-1 (B) storing oxygen can be observed at a magnetic field higher than 50T. It was completed (inset in FIG. 5). Magnetization Process of CPL-1 showed magnetization curves with saturation moment of 1 [mu] B per copper atom 1 month to give the usual paramagnetic copper ions. CPL-1 containing oxygen showed only a small difference in the low magnetic field region, but showed a sharp increase after 50 T. This indicated that the CPL-1 having absorbed oxygen had a magnetic phase transition from a non-magnetic state to a magnetic state. This magnetization process can be understood as being due to the behavior of an antiferromagnetic dimer or a one-dimensional antiferromagnetic chain with coupling alternation. Based on the structural information of oxygen molecules occluded in CPL-1, the non-magnetic ground state supports an antiferromagnetic dimer. The antiferromagnetic interaction could be estimated at J / kB of about -50K. This value is larger than J / kB to -30 K of the α phase. FIG. 6 shows Raman spectra of CPL-1 storing oxygen and CPL-1 not storing oxygen at around 90K. In the spectrum (B) of CPL-1 storing oxygen, a sharp peak due to the stretching motion of the stored oxygen molecules, which is not present in the spectrum (A) of CPL-1 not storing oxygen, is observed at 1561 cm -1 . Was done. This is a point slightly higher than the peak of liquid oxygen or solid oxygen under pressure from the surroundings. This indicates that the pressure is about the same as the expansion and contraction movement of the α phase receiving the pressure of 2 GPa.
[0021]
【The invention's effect】
According to the present invention, a transition metal cation and an organic bridging ligand connecting the transition metal cation constitute a porous three-dimensional structure, and a coordination capable of accommodating gas molecules at normal temperature and normal pressure in pores. There is provided a method for aligning and holding gas molecules by utilizing the space in the pores of a polymer, and a material holding gas molecules in this manner. According to the present invention, a large amount of gas molecules can be instantly aligned and held in a solid by designing the pores of the coordination polymer (designing the channel shape and pitch) by the bottom-up method. The gas molecule-holding material of the present invention, which has been created as a functional material having a completely new concept, is expected as a frontier in next-generation energy and environmental science.
[Brief description of the drawings]
FIG. 1 is a structural diagram of CPL-1 used in Examples.
FIG. 2 is a view showing an in situ powder X-ray diffraction pattern in an example.
FIG. 3 is a diagram showing MEM electron density in the same.
FIG. 4 is a schematic diagram showing CPL-1 which stores oxygen at 90K.
FIG. 5 is a diagram showing magnetic susceptibility.
FIG. 6 is a diagram showing a Raman spectrum.
[Explanation of symbols]
1 2,3-pyrazinedicarboxylic acid 2 pyrazine 3 oxygen molecule

Claims (9)

遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内に気体分子を収容する際、有機架橋配位子の種類を選択して細孔入口寸法を所望する数値に設計することで気体分子を規則性を持って収容し、細孔内の空間を利用して気体分子を整列保持させる方法。A pore of a coordination polymer that can accommodate gas molecules at normal temperature and pressure in a pore by forming a porous three-dimensional structure with a transition metal cation and an organic bridging ligand connecting it. When accommodating gas molecules inside, the type of organic bridging ligand is selected and the pore entrance dimension is designed to a desired value, thereby accommodating gas molecules with regularity and increasing the space inside the pores. A method of aligning and holding gas molecules by utilizing. 細孔入口寸法を3〜7Å×3〜7Åに設計する請求項1記載の方法。2. The method according to claim 1, wherein the pore entrance size is designed to be 3-7.times.3-7. 配位高分子が、遷移金属カチオンと第1有機架橋配位子から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子が各層に存在する遷移金属カチオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構造を有するものである請求項1または2記載の方法。Transition metal cation in which a two-dimensional sheet in which the coordination polymer is composed of a transition metal cation and a first organic bridging ligand forms a layer and a second organic bridging ligand capable of bidentate coordination is present in each layer 3. The method according to claim 1, wherein the sheet has a structure in which adjacent sheets are connected by coordination with each other, and pores are formed therebetween. 2座配位可能な第2有機架橋配位子がピラジンまたはその誘導体である請求項3記載の方法。The method according to claim 3, wherein the second organic bridging ligand capable of bidentate coordination is pyrazine or a derivative thereof. 配位高分子が、遷移金属カチオンとしての銅イオン(2価金属イオン)と第1有機架橋配位子としての2,3−ピラジンジカルボン酸(pzdc)から構成される2次元シートが層をなし、2座配位可能な第2有機架橋配位子としてのピラジン(pyz)が各層に存在する銅イオンに配位することで隣接するシートとシートを連結させ、その間に細孔が形成されている構成を有するCu2(pyz)(pzdc)2である請求項4記載の方法。A two-dimensional sheet in which the coordination polymer is composed of a copper ion (divalent metal ion) as a transition metal cation and 2,3-pyrazinedicarboxylic acid (pzdc) as a first organic bridging ligand forms a layer. When pyrazine (pyz) as a second organic bridging ligand capable of bidentate coordination to copper ions present in each layer, adjacent sheets are connected to each other, and pores are formed therebetween. 5. The method according to claim 4, wherein Cu 2 (pyz) (pzdc) 2 has a configuration. 気体分子が2原子分子である請求項1記載の方法。The method of claim 1, wherein the gas molecule is a diatomic molecule. 2原子分子が酸素分子である請求項6記載の方法。7. The method according to claim 6, wherein the diatomic molecule is an oxygen molecule. 遷移金属カチオンとそれを連結する有機架橋配位子によって多孔性3次元構造を構成して細孔内に、常温常圧で気体の分子を、収容することができる配位高分子のその細孔内に気体分子が整列保持されている気体分子保持材料。A pore of a coordination polymer that can accommodate gas molecules at normal temperature and pressure in a pore by forming a porous three-dimensional structure with a transition metal cation and an organic bridging ligand connecting it. A gas molecule holding material in which gas molecules are aligned and held. 酸素分子を縦に1次元整列保持した請求項8記載の気体分子保持材料。9. The gas molecule holding material according to claim 8, wherein oxygen molecules are vertically and one-dimensionally held.
JP2002367343A 2002-12-18 2002-12-18 Method for maintaining alignment of gas molecules Expired - Lifetime JP4217776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367343A JP4217776B2 (en) 2002-12-18 2002-12-18 Method for maintaining alignment of gas molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367343A JP4217776B2 (en) 2002-12-18 2002-12-18 Method for maintaining alignment of gas molecules

Publications (2)

Publication Number Publication Date
JP2004196594A true JP2004196594A (en) 2004-07-15
JP4217776B2 JP4217776B2 (en) 2009-02-04

Family

ID=32764272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367343A Expired - Lifetime JP4217776B2 (en) 2002-12-18 2002-12-18 Method for maintaining alignment of gas molecules

Country Status (1)

Country Link
JP (1) JP4217776B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225579A (en) * 2005-02-21 2006-08-31 Sumitomo Chemical Co Ltd Process for polymerization within pore of porous metal complex
JP2006248989A (en) * 2005-03-10 2006-09-21 Kyoto Univ Porous coordination polymer and catalyst comprising the same
WO2006132049A1 (en) * 2005-06-09 2006-12-14 Yokohama City University Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
JP2006342249A (en) * 2005-06-09 2006-12-21 Yokohama City Univ New carboxylic acid metal complex and gas-occluding agent composed of the same
JP2006342100A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Single crystal of organic carboxylic acid metal complex and its manufacturing method
JP2006341188A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Volatile organic compound adsorbent and hydrogen occlusion material
JP2007003375A (en) * 2005-06-24 2007-01-11 Japan Synchrotron Radiation Research Inst Method of finding experimentally electrostatic potential by mem structural analysis of x-ray diffraction data of crystal substance
JP2007063448A (en) * 2005-08-31 2007-03-15 Kyoto Univ Ion conductive material using carboxy group-containing coordination polymer
JP2008184480A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Coordinated polymer-metal complex compound containing water molecule
JP2008184509A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Coordinated polymer metal complex compound containing water molecule
KR101310883B1 (en) * 2006-03-29 2013-09-25 삼성에스디아이 주식회사 Porous metal oxide and process for preparing the same
WO2014103778A1 (en) * 2012-12-26 2014-07-03 昭和電工株式会社 Gas separation material using metal complex and gas separation method
US9309264B2 (en) 2013-09-12 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Method for adsorbing carbon dioxide onto porous metal-organic framework materials, method for cooling porous metal-organic framework materials, method for obtaining aldehyde using porous metal-organic framework materials, and method for warming porous metal-organic framework materials
KR101937750B1 (en) 2017-02-20 2019-01-11 한국에너지기술연구원 Supermolecular catalyst for enhancement of carbonylation reactivity

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225579A (en) * 2005-02-21 2006-08-31 Sumitomo Chemical Co Ltd Process for polymerization within pore of porous metal complex
US7109279B2 (en) 2005-02-21 2006-09-19 Sumitomo Chemical Company, Limited Polymerization method in pores of porous metal complex
JP4496986B2 (en) * 2005-02-21 2010-07-07 住友化学株式会社 Polymerization method in pores of porous metal complexes
JP2006248989A (en) * 2005-03-10 2006-09-21 Kyoto Univ Porous coordination polymer and catalyst comprising the same
JP2006341188A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Volatile organic compound adsorbent and hydrogen occlusion material
JP2006342100A (en) * 2005-06-09 2006-12-21 Yokohama City Univ Single crystal of organic carboxylic acid metal complex and its manufacturing method
JP2006342249A (en) * 2005-06-09 2006-12-21 Yokohama City Univ New carboxylic acid metal complex and gas-occluding agent composed of the same
WO2006132049A1 (en) * 2005-06-09 2006-12-14 Yokohama City University Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
US8034165B2 (en) 2005-06-09 2011-10-11 Yokohama City University Single-crystalline organic carboxylic acid metal complex, process for producing the same, and use thereof
JP2007003375A (en) * 2005-06-24 2007-01-11 Japan Synchrotron Radiation Research Inst Method of finding experimentally electrostatic potential by mem structural analysis of x-ray diffraction data of crystal substance
JP2007063448A (en) * 2005-08-31 2007-03-15 Kyoto Univ Ion conductive material using carboxy group-containing coordination polymer
US8617510B2 (en) 2006-03-29 2013-12-31 Samsung Sdi Co., Ltd. Porous metal oxide and method of preparing the same
KR101310883B1 (en) * 2006-03-29 2013-09-25 삼성에스디아이 주식회사 Porous metal oxide and process for preparing the same
JP2008184480A (en) * 2007-01-26 2008-08-14 Toyota Motor Corp Coordinated polymer-metal complex compound containing water molecule
JP2008184509A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Coordinated polymer metal complex compound containing water molecule
WO2014103778A1 (en) * 2012-12-26 2014-07-03 昭和電工株式会社 Gas separation material using metal complex and gas separation method
JPWO2014103778A1 (en) * 2012-12-26 2017-01-12 昭和電工株式会社 Gas separation material and gas separation method using metal complex
US9580446B2 (en) 2012-12-26 2017-02-28 Showa Denko K.K. Gas separation material using metal complex and gas separation method
US9309264B2 (en) 2013-09-12 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Method for adsorbing carbon dioxide onto porous metal-organic framework materials, method for cooling porous metal-organic framework materials, method for obtaining aldehyde using porous metal-organic framework materials, and method for warming porous metal-organic framework materials
KR101937750B1 (en) 2017-02-20 2019-01-11 한국에너지기술연구원 Supermolecular catalyst for enhancement of carbonylation reactivity

Also Published As

Publication number Publication date
JP4217776B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
Dul et al. Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials
Qiu et al. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties
Behera et al. The chemistry and applications of flexible porous coordination polymers
Kitagawa et al. Chemistry of coordination space of porous coordination polymers
Song et al. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2
Kolbe et al. High-pressure in situ 129Xe NMR spectroscopy: insights into switching mechanisms of flexible metal–organic frameworks isoreticular to DUT-49
JP2004196594A (en) Method for aligning and holding gaseous molecule, and material for holding gaseous molecule
Huang et al. Ab-initio XRPD crystal structure and giant hysteretic effect (H c= 5.9 T) of a new hybrid terephthalate-based cobalt (II) magnet
Springuel-Huet et al. 129Xe NMR study of the framework flexibility of the porous hybrid MIL-53 (Al)
Comotti et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer
Tang et al. A multifunctional lanthanide carbonate cluster based metal–organic framework exhibits high proton transport and magnetic entropy change
Feng et al. Steering metallofullerene electron spin in porous metal–organic framework
Wang et al. A family of porous magnets,[M3 (HCOO) 6](M= Mn, Fe, Co and Ni)
Krause et al. Impact of defects and crystal size on negative gas adsorption in DUT-49 analyzed by in situ 129Xe NMR spectroscopy
Colwell et al. Buffered coordination modulation as a means of controlling crystal morphology and molecular diffusion in an anisotropic metal–organic framework
Angeli et al. Reticular chemistry and the discovery of a new family of rare earth (4, 8)-connected metal-organic frameworks with csq topology based on RE4 (μ3-O) 2 (COO) 8 clusters
López-Cabrelles et al. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs)
Moharreri et al. Comprehensive magnetic study of nanostructured mesoporous manganese oxide materials and implications for catalytic behavior
Bichoutskaia et al. Methane adsorption in metal–organic frameworks containing nanographene linkers: a computational study
Maspoch et al. Coexistence of ferro-and antiferromagnetic interactions in a metal–organic radical-based (6, 3)-helical network with large channels
Li et al. Heterometallic Hexanuclear [Ln4Cr2] Cluster-Based Three-Dimensional Sulfate Frameworks as a Magnetic Refrigerant and Single Molecular Magnet
Sobczak et al. Environment-Controlled Postsynthetic Modifications of Iron Formate Frameworks
Rossin et al. Hydrogen uptake by {H [Mg (HCOO) 3]⊃ NHMe2}∞ and determination of its H2 adsorption sites through monte carlo simulations
Yang et al. Enantiopure Magnetic Heterometallic Coordination Cubic Cages [MII8CuII6](M= Ni, Co)
San Sebastian et al. Enantiospecific response in cross-polarization solid-state nuclear magnetic resonance of optically active metal organic frameworks

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4217776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term