JP2006340514A - Power generation controller of internal combustion engine - Google Patents

Power generation controller of internal combustion engine Download PDF

Info

Publication number
JP2006340514A
JP2006340514A JP2005162651A JP2005162651A JP2006340514A JP 2006340514 A JP2006340514 A JP 2006340514A JP 2005162651 A JP2005162651 A JP 2005162651A JP 2005162651 A JP2005162651 A JP 2005162651A JP 2006340514 A JP2006340514 A JP 2006340514A
Authority
JP
Japan
Prior art keywords
power generation
fuel consumption
charge
target
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005162651A
Other languages
Japanese (ja)
Other versions
JP4435027B2 (en
Inventor
Yukihiro Yamashita
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005162651A priority Critical patent/JP4435027B2/en
Priority to US11/443,374 priority patent/US7355292B2/en
Priority to DE102006000265A priority patent/DE102006000265A1/en
Publication of JP2006340514A publication Critical patent/JP2006340514A/en
Application granted granted Critical
Publication of JP4435027B2 publication Critical patent/JP4435027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce increment in fuel consumption due to power generation surely while ensuring required amount of power generation in the power generation controller of an internal combustion engine. <P>SOLUTION: An increment in specific fuel consumption due to power generation is determined from the difference of specific fuel consumption when power generation of a generator is performed and specific fuel consumption when power generation of the generator is stopped, and then electric cost (increment in fuel consumption per amount of unit power generation) is determined by dividing the specific fuel consumption due to power generation by the amount of power generation of the generator. During traveling, use frequency is determined for each class of electric cost, possible amount of power generation and average power consumption are calculated for each class, a target electric cost is set such that the balance of charge/discharge of a battery becomes 0 based on the use frequency, the possible amount of power generation and the average power consumption. Subsequently, the target electric cost is corrected depending on the difference between SOC (battery charging rate) and a target SOC and then a decision is made whether power generation of the generator 16 is performed or not by comparing the final target electric cost thus corrected with a current electric cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発電機の発電による燃料消費量増加分を考慮して発電機を制御する機能を備えた内燃機関の発電制御装置に関する発明である。   The present invention relates to a power generation control device for an internal combustion engine having a function of controlling a power generator in consideration of an increase in fuel consumption due to power generation by the power generator.

車両に搭載された発電機(オルタネータ)の制御は、バッテリの充電状態を監視して、バッテリが充電不足とならないように発電機の制御電流(界磁電流)を制御して発電量を制御するようにしたものが多い(特許文献1,2参照)。   Control of the generator (alternator) mounted on the vehicle monitors the charge state of the battery, and controls the generator control current (field current) to prevent the battery from being insufficiently charged, thereby controlling the amount of power generation. There are many cases (see Patent Documents 1 and 2).

この発電機は、内燃機関(エンジン)の動力で駆動されて行うため、発電時には、発電機を駆動する負荷に応じて燃料が余分に消費されることになる。そこで、発電時の燃料消費量が少なくなる領域でのみ、発電機の発電を行うようにしたものがある(特許文献3,4参照)。
特開2000−4502号公報 特開2001−78365号公報 特表平6−505619号公報 特開2005−12971号公報
Since this power generator is driven by the power of the internal combustion engine (engine), extra fuel is consumed according to the load for driving the power generator during power generation. Therefore, there is one in which the generator generates power only in a region where the amount of fuel consumed during power generation is reduced (see Patent Documents 3 and 4).
JP 2000-4502 A JP 2001-78365 A Japanese National Patent Publication No. 6-505619 JP 2005-12971 A

上記特許文献3,4の技術は、いずれも発電による燃料消費量増加分を低減する技術であるが、発電を実行する運転条件を予め設定されたマップで決定するため、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきによって燃費節減効果が左右されやすく、必ずしも十分な燃費節減効果が得られるとは限らない。   The techniques of Patent Documents 3 and 4 are techniques for reducing the increase in fuel consumption due to power generation. However, since the driving conditions for executing power generation are determined by a preset map, the accuracy of the map and the vehicle The fuel consumption saving effect is likely to be affected by the environment of use (differences in driving road conditions, differences in vehicle speed / acceleration / deceleration by the driver) and variations in vehicle characteristics, and a sufficient fuel consumption saving effect is not always obtained.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができる内燃機関の発電制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to generate electric power from an internal combustion engine that can reliably reduce the increase in fuel consumption due to electric power generation while securing the necessary electric power generation amount. It is to provide a control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備えた内燃機関の発電制御装置において、前記バッテリの充電状態を検出するバッテリ充電状態検出手段と、前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、前記単位発電量当たりの燃料消費量増加分と目標の燃料消費量増加分とを比較して前記発電機の発電を制御する発電制御手段と、前記バッテリ充電状態検出手段で検出したバッテリの充電状態に基づいて前記目標の燃料消費量増加分を補正する目標値補正手段とを備えた構成としたものである。このように、単位発電量当たりの燃料消費量増加分を、バッテリの充電状態に応じて補正された目標の燃料消費量増加分と比較して発電機の発電を制御するようにすれば、発電を実行する運転条件を予め設定されたマップで決定する従来の発電制御方式と比較して、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきの影響が少なくなり、実際のバッテリの充電状態に応じて必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができる。   In order to achieve the above object, an invention according to claim 1 is a power generation control device for an internal combustion engine, comprising: a generator driven by the power of the internal combustion engine; and a battery charged with electric power generated by the generator. The battery charge state detecting means for detecting the state of charge of the battery, and the fuel consumption for calculating the fuel consumption increase per unit power generation based on the fuel consumption increase due to the power generation of the generator and the power generation Detected by an amount calculation means, a power generation control means for controlling the power generation of the generator by comparing a fuel consumption increase per unit power generation amount with a target fuel consumption increase, and the battery charge state detection means And target value correcting means for correcting the target fuel consumption increase based on the charged state of the battery. In this way, by controlling the power generation of the generator by comparing the increase in fuel consumption per unit power generation with the target increase in fuel consumption corrected according to the state of charge of the battery, Compared with the conventional power generation control method that determines the driving conditions for executing the vehicle with a preset map, the accuracy of the map and the environment of use of the vehicle (differences in driving road conditions, differences in vehicle speed and acceleration / deceleration by the driver, etc.) In addition, the influence of variations in vehicle characteristics is reduced, and an increase in fuel consumption due to power generation can be reliably reduced while securing a required power generation amount according to the actual state of charge of the battery.

この場合、請求項2のように、バッテリの充電量と放電量の収支(以下「充放電収支」という)をバランスさせるように目標の燃料消費量増加分を設定すると良い。これにより、必要最小限の発電量でバッテリを過不足なく充電することができ、燃費低減と充放電収支の両立が可能となる。   In this case, the target fuel consumption increase may be set so as to balance the balance between the charge amount and the discharge amount of the battery (hereinafter referred to as “charge / discharge balance”). As a result, the battery can be charged without excess or deficiency with the minimum required amount of power generation, and both reduction in fuel consumption and charge / discharge balance can be achieved.

また、請求項3のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度に基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきに合わせて目標の燃料消費量増加分を自動的に精度良く設定することができる。ここで、「クラス」とは、単位発電量当たりの燃料消費量増加分の最小値(0)から最大値までの範囲を所定数に分割した所定範囲を意味する。   Further, as described in claim 3, the target increase in fuel consumption may be set based on the usage frequency for each class of the increase in fuel consumption per unit power generation in the past travel history. In this way, the target fuel consumption increase is automatically and accurately set according to the vehicle usage environment (differences in driving road conditions, differences in vehicle speed and acceleration / deceleration by the driver, etc.) and vehicle characteristics. can do. Here, “class” means a predetermined range obtained by dividing a range from the minimum value (0) to the maximum value of the increase in fuel consumption per unit power generation amount into a predetermined number.

更に、請求項4のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度と発電可能量とに基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、クラス毎の発電可能量も考慮して、より正確に目標の燃料消費量増加分を設定することができる。   Further, as described in claim 4, the target fuel consumption increase is set based on the usage frequency and the power generation possible amount for each class of the fuel consumption increase per unit power generation in the past travel history. May be. In this way, the target fuel consumption increase can be set more accurately in consideration of the power generation possible amount for each class.

更に、請求項5のように、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度と発電可能量と平均消費電力とに基づいて目標の燃料消費量増加分を設定するようにしても良い。このようにすれば、クラス毎の発電可能量と平均消費電力も考慮して、より正確に目標の燃料消費量増加分を設定することができる。   Further, as in claim 5, the target increase in fuel consumption is determined based on the usage frequency for each class of the increase in fuel consumption per unit power generation in the past travel history, the power generation possible amount, and the average power consumption. You may make it set. In this way, the target increase in fuel consumption can be set more accurately in consideration of the power generation possible amount and average power consumption for each class.

また、請求項6のように、バッテリ充電状態検出手段によってバッテリの充電割合を算出し、このバッテリの充電割合に基づいて目標の燃料消費量増加分を補正するようにしても良い。このようにすれば、バッテリの充電状態に応じた目標の燃料消費量増加分の補正をより正確に行うことができる。   According to another aspect of the present invention, the battery charge state detection means may calculate the battery charge rate, and the target fuel consumption increase may be corrected based on the battery charge rate. In this way, it is possible to more accurately correct the target fuel consumption increase corresponding to the state of charge of the battery.

この場合、請求項7のように、バッテリの充電割合と目標充電割合との偏差を小さくするように目標の燃料消費量増加分をフィードバック補正するようにしても良い。これにより、低燃費の要求を満たしつつ、バッテリの充電割合を目標充電割合に収束させるように制御することができる。   In this case, as in claim 7, the target fuel consumption increase may be feedback-corrected so as to reduce the deviation between the battery charge ratio and the target charge ratio. Thereby, it is possible to control the battery charging rate to converge to the target charging rate while satisfying the demand for low fuel consumption.

また、請求項8のように、バッテリの充電割合を目標充電割合に一致させるのに必要な充放電量を算出し、算出した充放電量に基づいて前記バッテリの充放電収支の基準点を補正することで目標の燃料消費量増加分を補正するようにしても良い。このようにすれば、低燃費の要求を満たしつつ、バッテリの目標充電割合への収束性を高めることができる。   According to another aspect of the present invention, the charge / discharge amount required to make the battery charge rate coincide with the target charge rate is calculated, and the reference point of the battery charge / discharge balance is corrected based on the calculated charge / discharge amount. By doing so, the target increase in fuel consumption may be corrected. If it does in this way, the convergence property to the target charge ratio of a battery can be improved, satisfy | filling the request | requirement of low fuel consumption.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図8に基づいて説明する。
図1に示す制御装置11は、バッテリ12からキースイッチ13を介して電源が供給され、エンジン運転中に点火装置14と噴射装置15の動作を制御すると共に、発電機16(オルタネータ)の発電を制御する発電制御手段として機能する。
A first embodiment of the present invention will be described with reference to FIGS.
A control device 11 shown in FIG. 1 is supplied with power from a battery 12 via a key switch 13, controls the operation of the ignition device 14 and the injection device 15 during engine operation, and generates power from a generator 16 (alternator). It functions as power generation control means for controlling.

この制御装置11は、電流センサ17(電流検出手段)で検出したバッテリ12の充放電電流及び/又は電圧センサ18(電圧検出手段)で検出したバッテリ12の開放端子電圧に基づいてバッテリ12の充電割合SOCを算出する。例えば、バッテリ12の充放電電流を電流センサ17(電流検出手段)で検出して、その検出値を積算していく。この際、バッテリ12の充電電流をプラス値とし、バッテリ12の放電電流をマイナス値とすることで、充放電電流積算値をバッテリ12の充電割合SOCに応じて増減させる。これにより、充放電電流積算値をバッテリ充電割合SOCの検出データとして用いることが可能となる。或は、バッテリ12の開放端子電圧と充電割合SOCとの関係を表すマップを参照して、現在のバッテリ12の開放端子電圧に応じた充電割合SOCを算出するようにしても良い。勿論、バッテリ12の充放電電流積算値と開放端子電圧の両方に基づいてバッテリ12の充電割合SOCを算出するようにしても良い。   The control device 11 charges the battery 12 based on the charge / discharge current of the battery 12 detected by the current sensor 17 (current detection means) and / or the open terminal voltage of the battery 12 detected by the voltage sensor 18 (voltage detection means). The ratio SOC is calculated. For example, the charge / discharge current of the battery 12 is detected by the current sensor 17 (current detection means), and the detected values are integrated. At this time, the charging current of the battery 12 is set to a positive value, and the discharging current of the battery 12 is set to a negative value, so that the integrated charging / discharging current value is increased or decreased according to the charging rate SOC of the battery 12. As a result, the charge / discharge current integrated value can be used as detection data for the battery charge rate SOC. Alternatively, the charging ratio SOC according to the current open terminal voltage of the battery 12 may be calculated with reference to a map representing the relationship between the open terminal voltage of the battery 12 and the charging ratio SOC. Of course, the charging rate SOC of the battery 12 may be calculated based on both the charge / discharge current integrated value of the battery 12 and the open terminal voltage.

次に、本実施例1の発電制御について説明する。
図2は、単位時間当たりの燃料消費量である燃料消費率とエンジン運転条件との関係を示す図である。図2に示すように、燃料消費率は、エンジン回転速度とエンジントルクによって変化する。燃料消費率は、エンジントルクに応じて曲線的に変化するため、エンジン回転速度が一定の場合は、エンジントルクの増加量に対して、燃料消費率の増加量が大きい条件と小さい条件がある。例えば、発電機16で一定量の発電を実施した場合、発電によりエンジントルクに発電機16によるトルクが付加され、エンジンの動作点が変わる。このため、燃料消費率は、発電量により変化する。この時、燃料消費率が少ない条件のみ選択して、発電を実施すれば、燃料消費率を低減することが可能となる。
Next, power generation control according to the first embodiment will be described.
FIG. 2 is a diagram showing the relationship between the fuel consumption rate, which is the fuel consumption per unit time, and the engine operating conditions. As shown in FIG. 2, the fuel consumption rate changes depending on the engine speed and the engine torque. Since the fuel consumption rate changes in a curve according to the engine torque, when the engine rotational speed is constant, there are a condition where the increase amount of the fuel consumption rate is large and a condition where the increase amount is small. For example, when a certain amount of power is generated by the power generator 16, the torque generated by the power generator 16 is added to the engine torque by power generation, and the operating point of the engine changes. For this reason, a fuel consumption rate changes with electric power generation amounts. At this time, if only a condition with a low fuel consumption rate is selected and power generation is performed, the fuel consumption rate can be reduced.

そこで、本実施例1では、発電制御のパラメータとして、単位発電量当たりの燃料消費率増加分(以下「電費」という)を用いる。この電費は、次のようにして算出される。まず、エンジン運転中(走行中)に、発電機16の発電を実行した場合の燃料消費率(発電時燃料消費率)と発電機16の発電を停止した場合の燃料消費率(非発電時燃料消費率)との差分から発電による燃料消費率増加分を求め、この発電による燃料消費率増加分を発電機16の発電量で割り算して電費(単位発電量当たりの燃料消費量増加分)を求める。
電費(g/skW) =(発電時燃料消費率−非発電時燃料消費率)/発電量
Therefore, in the first embodiment, an increase in fuel consumption rate per unit power generation amount (hereinafter referred to as “electricity cost”) is used as a parameter for power generation control. This electricity cost is calculated as follows. First, while the engine is running (running), the fuel consumption rate when the generator 16 generates power (fuel consumption rate during power generation) and the fuel consumption rate when the generator 16 stops power generation (non-power generation fuel) The fuel consumption rate increase due to power generation is calculated from the difference from the consumption rate), and the fuel consumption rate increase due to power generation is divided by the power generation amount of the generator 16 to calculate the power consumption (the fuel consumption increase per unit power generation amount). Ask.
Electricity cost (g / skW) = (Fuel consumption rate during power generation-Fuel consumption rate during non-power generation) / Power generation amount

更に、本実施例1では、走行中に、電費のクラス毎の使用頻度を求めると共に、クラス毎の発電可能量と平均消費電力を算出し、クラス毎の使用頻度と発電可能量と平均消費電力とに基づいてバッテリ12の充放電収支が0となる(充電量と放電量がバランスする)ように目標電費を設定すると共に、現在のバッテリ充電割合SOCと目標充電割合との偏差を小さくするように目標電費をPI制御によりフィードバック補正し、現在の電費を補正後の目標電費(最終目標電費)と比較して発電機16の発電を実行するか否かを判定する。ここで、「クラス」とは、電費の最小値(0)から最大値までの範囲を所定数に分割した所定範囲を意味する。   Further, in the first embodiment, during use, the frequency of use of electricity consumption for each class is obtained, the power generation amount and average power consumption for each class are calculated, and the frequency of use, power generation possible amount and average power consumption for each class are calculated. Based on the above, the target power consumption is set so that the charge / discharge balance of the battery 12 becomes 0 (the charge amount and the discharge amount are balanced), and the deviation between the current battery charge rate SOC and the target charge rate is reduced. Then, the target power consumption is feedback-corrected by PI control, and the current power consumption is compared with the corrected target power consumption (final target power consumption) to determine whether or not to generate power by the generator 16. Here, the “class” means a predetermined range obtained by dividing a range from the minimum value (0) to the maximum value of the power consumption into a predetermined number.

以上説明した本実施例1の発電制御は、制御装置11によって図3乃至図8の各ルーチンによって実行される。以下、これら各ルーチンの処理内容を説明する。   The power generation control according to the first embodiment described above is executed by the control device 11 according to the routines shown in FIGS. The processing contents of these routines will be described below.

[電費算出ルーチン]
図3の電費算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、特許請求の範囲でいう燃料消費量算出手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、現在の運転条件(例えばエンジン回転速度、吸入空気量、要求発電量等)を読み込む。ここで、要求発電量は、予め発電機16の最大発電可能量、発電機16の発電効率等から定めておく。
[Electricity calculation routine]
The power consumption calculation routine of FIG. 3 is executed at a predetermined cycle (for example, a cycle of 8 ms) during engine operation, and serves as fuel consumption calculation means in the claims. When this routine is started, first, in step 101, the current operating conditions (for example, engine speed, intake air amount, required power generation amount, etc.) are read. Here, the required power generation amount is determined in advance from the maximum power generation possible amount of the generator 16, the power generation efficiency of the generator 16, and the like.

この後、ステップ102に進み、現在の運転条件から現在のエンジントルクを算出した後、ステップ103に進み、要求発電量をトルクに換算し(つまり要求発電量分の発電を行うのに必要なトルクを算出し)、これを要求発電量トルクとして制御装置11のRAMに記憶する。   After that, the process proceeds to step 102, the current engine torque is calculated from the current operating conditions, and then the process proceeds to step 103, where the required power generation amount is converted into torque (that is, the torque necessary for generating the required power generation amount). And this is stored in the RAM of the control device 11 as the required power generation amount torque.

そして、次のステップ104で、発電機16が発電中であるか否かを判定し、発電中であれば、ステップ105に進み、現在の発電量をトルクに換算して、これを現在の発電量トルクとして制御装置11のRAMに記憶し、次のステップ106で、上記ステップ102で算出した現在のエンジントルクから上記ステップ105で算出した現在の発電量トルクを差し引いて非発電時トルクを求める。この非発電時トルクは、発電機16の発電を停止した場合のエンジントルクに相当する。一方、上記ステップ104で、発電中でないと判定されれば、ステップ107に進み、現在のエンジントルクをそのまま非発電時トルクとする。   Then, in the next step 104, it is determined whether or not the generator 16 is generating power. If it is generating power, the process proceeds to step 105, the current power generation amount is converted into torque, and this is converted into the current power generation. The amount torque is stored in the RAM of the control device 11, and in the next step 106, the current power generation torque calculated in step 105 is subtracted from the current engine torque calculated in step 102 to obtain a non-power generation torque. This non-power generation torque corresponds to the engine torque when power generation by the generator 16 is stopped. On the other hand, if it is determined in step 104 that power generation is not being performed, the process proceeds to step 107, where the current engine torque is directly used as the non-power generation torque.

以上のようにして非発電時トルクを算出した後、ステップ108に進み、上記ステップ102で算出した現在のエンジントルクに上記ステップ103で算出した要求発電量トルクを加算して発電時トルクを求める。この発電時トルクは、発電機16の発電を実行した場合のエンジントルクに相当する。   After calculating the non-power generation torque as described above, the routine proceeds to step 108, where the required power generation amount torque calculated in step 103 is added to the current engine torque calculated in step 102 to determine the power generation torque. This power generation torque corresponds to the engine torque when the generator 16 generates power.

この後、ステップ109に進み、現在のエンジン回転速度と非発電時トルクに応じた非発電時燃料消費率(g/s) を図2と同様の燃料消費率算出マップにより算出する。この非発電時燃料消費率は、発電機16の発電を停止した場合の燃料消費率に相当する。燃料消費率の算出マップは、定常運転条件における燃料消費率を予め計測し、設定しておく。   Thereafter, the routine proceeds to step 109, where the non-power generation fuel consumption rate (g / s) corresponding to the current engine speed and non-power generation torque is calculated by the fuel consumption rate calculation map similar to FIG. This non-power generation fuel consumption rate corresponds to the fuel consumption rate when power generation by the generator 16 is stopped. The fuel consumption rate calculation map is set in advance by measuring the fuel consumption rate under steady operation conditions.

この後、ステップ110に進み、現在のエンジン回転速度と発電時トルクに応じた発電時燃料消費率(g/s) を図2と同様の燃料消費率算出マップにより算出する。この発電時燃料消費率は、発電機16の発電を実行した場合の燃料消費率に相当する。   Thereafter, the routine proceeds to step 110, where the fuel consumption rate (g / s) during power generation corresponding to the current engine speed and torque during power generation is calculated using the same fuel consumption rate calculation map as in FIG. This fuel consumption rate during power generation corresponds to the fuel consumption rate when power generation by the generator 16 is executed.

この後、ステップ111に進み、発電時燃料消費率(g/s) と非発電時燃料消費率(g/s) との差分を現在の発電量(kW)で割り算して、単位発電量当たりの燃料消費率である電費CFC(g/skW) を求める。
CFC(g/kWs) =(発電時燃料消費率−非発電時燃料消費率)/発電量
Then, proceed to step 111, and divide the difference between the fuel consumption rate during power generation (g / s) and the fuel consumption rate during non-power generation (g / s) by the current power generation amount (kW) The electricity consumption CFC (g / skW), which is the fuel consumption rate, is calculated.
CFC (g / kWs) = (Fuel consumption rate during power generation-Fuel consumption rate during non-power generation) / Power generation amount

[電費クラスデータ蓄積ルーチン]
図4の電費クラスデータ蓄積ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、過去の走行履歴における電費CFCのクラス毎の使用頻度、電費平均値、発電可能量平均値を次のようにして算出して、それらのデータを制御装置11のRAMに蓄積する。
[Electricity class data storage routine]
The power consumption class data accumulation routine of FIG. 4 is executed at a predetermined cycle (for example, a cycle of 8 ms) during engine operation, and the usage frequency, the power consumption average value, and the power generation possible average value for each class of the power consumption CFC in the past travel history are shown below. Thus, the data is stored in the RAM of the control device 11.

本ルーチンが起動されると、まずステップ201で、エンジン回転速度と発電機16の発電特性との関係を表すマップ等から現在のエンジン回転速度に応じた発電可能量GPを算出する。この後、ステップ202に進み、現在までの合計サンプル数NFCtotal のカウント値をカウントアップして、ステップ203aに進み、今回の電費CFCが最小のクラスであるクラスAに含まれるか否か(電費CFC<Aか否か)を判定し、今回の電費CFCがクラスAに含まれれば、クラスAのデータを次のようにして更新する。   When this routine is started, first, in step 201, a power generation possible amount GP corresponding to the current engine rotation speed is calculated from a map or the like representing the relationship between the engine rotation speed and the power generation characteristics of the generator 16. Thereafter, the process proceeds to step 202, where the count value of the total number of samples NFCtotal up to the present time is counted up, and then the process proceeds to step 203a to determine whether or not the current power consumption CFC is included in the class A which is the smallest class (electricity cost CFC). <A or not> is determined, and if the current power consumption CFC is included in class A, the data of class A is updated as follows.

まず、ステップ204aで、クラスAのサンプル数NFC(A) のカウント値をカウントアップした後、ステップ205aに進み、クラスAの前回の電費平均値 oldCFCave(A)とサンプル数NFC(A) と今回の電費CFCから、クラスAの電費平均値CFCave(A)を次式により算出する。
CFCave(A)=[ oldCFCave(A)×{NFC(A) −1}+CFC]/NFC(A)
First, in step 204a, the count value of the class A sample number NFC (A) is counted up, and then the process proceeds to step 205a. The class A previous power consumption average oldCFCave (A), the sample number NFC (A) and the current time The average power consumption CFCave (A) of class A is calculated from the following power consumption CFC.
CFCave (A) = [oldCFCave (A) × {NFC (A) −1} + CFC] / NFC (A)

この後、ステップ206aに進み、クラスAの前回の発電可能量 oldGPave(A)とサンプル数NFC(A) と今回の発電可能量GPから、クラスAの発電可能量平均値GPave(A)を次式により算出する。
GPave(A)=[ oldGPave(A)×{NFC(A) −1}+GP]/NFC(A)
Thereafter, the process proceeds to step 206a, and the class A power generation capacity average value GPave (A) is calculated from the class A previous power generation capacity oldGPave (A), the number of samples NFC (A), and the current power generation capacity GP. Calculate by the formula.
GPave (A) = [oldGPave (A) × {NFC (A) −1} + GP] / NFC (A)

この後、ステップ207aに進み、クラスAのサンプル数NFC(A) を全クラスA〜Zの合計サンプル数NFCtotal で割り算してクラスAの使用頻度R(A) を求める。
R(A) =NFC(A) /NFCtotal
Thereafter, the process proceeds to step 207a, where the class A use frequency R (A) is obtained by dividing the class A sample number NFC (A) by the total sample number NFCtotal of all classes A to Z.
R (A) = NFC (A) / NFCtotal

一方、前記ステップ203bで、今回の電費CFCがクラスAに含まれていないと判定されれば、ステップ203bに進み、今回の電費CFCがクラスAの次に大きいクラスBに含まれるか否か(A≦電費CFC<Bか否か)を判定し、今回の電費CFCがクラスBに含まれれば、ステップ204b〜207bの処理を実行して、上記と同様の方法で、クラスBのサンプル数NFC(B) 、電費平均値CFCave(B)、発電可能量平均値GPave(B)、使用頻度R(B) を算出して、それらの記憶データを更新する。   On the other hand, if it is determined in step 203b that the current power consumption CFC is not included in class A, the process proceeds to step 203b, and whether or not the current power consumption CFC is included in class B, which is the next larger than class A ( A ≦ power consumption CFC <B or not), and if the current power consumption CFC is included in the class B, the processing of steps 204b to 207b is executed, and the number of samples NFC of the class B in the same manner as described above (B) The power consumption average value CFCave (B), the power generation possible amount average value GPave (B), and the usage frequency R (B) are calculated, and the stored data is updated.

以下、走行中に、同様の方法で、クラスC、クラスD、……クラスY、クラスZの電費平均値CFCave(C)〜CFCave(Z)、発電可能量平均値GPave(C)〜GPave(Z)、使用頻度R(C) 〜R(Z) を算出して、これらのデータを更新する。   In the following, while traveling, the average power consumption values CFCave (C) to CFCave (Z), average power generation values GPave (C) to GPave () for class C, class D,. Z), usage frequencies R (C) to R (Z) are calculated, and these data are updated.

[平均消費電力算出ルーチン]
図5の平均消費電力算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、まずステップ301で、車両で消費される演算周期当たりの消費電力CPを算出する。この後、ステップ302に進み、前回の平均消費電力 oldCPave と合計サンプル数NFCtotal と今回の消費電力CPから、平均消費電力CPave を次式により算出する。
CPave ={ oldCPave ×(NFCtotal −1)+CP}/NFCtotal
[Average power consumption calculation routine]
The average power consumption calculation routine of FIG. 5 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, first, at step 301, the power consumption CP per calculation period consumed by the vehicle is calculated. Thereafter, the process proceeds to step 302, where the average power consumption CPave is calculated from the previous average power consumption oldCPave, the total number of samples NFCtotal, and the current power consumption CP by the following equation.
CPave = {oldCPave × (NFCtotal −1) + CP} / NFCtotal

[目標電費算出ルーチン]
図6の目標電費算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、次のようにして目標電費TCFCを算出する。本ルーチンが起動されると、まずステップ401で、各クラスA〜Zの発電可能量平均値GPave(A)〜GPave(Z)にそれぞれ使用頻度R(A) 〜R(Z) を乗算して各クラスA〜Zの発電可能量GP(A) 〜GP(Z) を求める。
[Target electricity cost calculation routine]
The target power consumption calculation routine of FIG. 6 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation, and calculates the target power consumption TCFC as follows. When this routine is started, first, in step 401, the average power generation amount values GPave (A) to GPave (Z) of the classes A to Z are multiplied by the usage frequencies R (A) to R (Z), respectively. The power generation possible amounts GP (A) to GP (Z) of the respective classes A to Z are obtained.

GP(A) =GPave(A)×R(A)
GP(B) =GPave(B)×R(B)
・・・・・・・・・・・・・
GP(Z) =GPave(Z)×R(Z)
GP (A) = GPave (A) x R (A)
GP (B) = GPave (B) x R (B)
...
GP (Z) = GPave (Z) x R (Z)

この後、ステップ402に進み、クラスAでの充放電収支BAL(A) を、クラスAの発電可能量GP(A) から平均消費電力CPave を差し引いて求める。
BAL(A) =GP(A) −CPave
Thereafter, the routine proceeds to step 402, where the charge / discharge balance BAL (A) in class A is obtained by subtracting the average power consumption CPave from the class A power generation possible amount GP (A).
BAL (A) = GP (A) -CPave

この後、ステップ402に進み、クラスAからクラスBまでの充放電収支BAL(B) をクラスAでの充放電収支BAL(A) にクラスBの発電可能量GP(B) を足し合わせて求める。
BAL(B) =BAL(A) +GP(B)
Thereafter, the process proceeds to step 402, where the charge / discharge balance BAL (B) from class A to class B is obtained by adding the class B chargeable / discharge balance BAL (A) to the class B power generation amount GP (B). .
BAL (B) = BAL (A) + GP (B)

以下、同様の処理を各クラスC〜Z毎に繰り返すことで、クラスAから各クラスC〜Zまでの充放電収支BAL(C) 〜BAL(Z) を算出する(ステップ404)。
BAL(C) =BAL(B) +GP(C)
・・・・・・・・・・・・・・・
BAL(Z) =BAL(Y) +GP(Z)
Thereafter, the same processing is repeated for each class C to Z to calculate the charge / discharge balance BAL (C) to BAL (Z) from class A to class C to Z (step 404).
BAL (C) = BAL (B) + GP (C)
...
BAL (Z) = BAL (Y) + GP (Z)

この後、ステップ405aに進み、クラスAでの充放電収支BAL(A) が0より大きいか否か(プラス値であるか否か)を判定する。その結果、クラスAでの充放電収支BAL(A) が0より大きい(プラス値)と判定されれば、クラスAのみの発電で充放電収支が取れる(クラスAの範囲内で目標電費TCFCを設定すれば良い)と判断して、ステップ406aに進み、クラスAの上限値[A]、充放電収支BAL(A) 、発電可能量GP(A) を用いて、目標電費TCFCを次式により算出する。
TCFC=A−(A−0)×BAL(A) /GP(A)
これにより、クラスAの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする。
Thereafter, the process proceeds to step 405a, and it is determined whether the charge / discharge balance BAL (A) in class A is greater than 0 (whether it is a positive value). As a result, if it is determined that the charge / discharge balance BAL (A) in class A is greater than 0 (plus value), the charge / discharge balance can be obtained by power generation only in class A (the target power consumption TCFC is within the range of class A). The process proceeds to step 406a, and the target power consumption TCFC is calculated by the following equation using the upper limit value [A] of class A, the charge / discharge balance BAL (A), and the power generation possible amount GP (A). calculate.
TCFC = A- (A-0) x BAL (A) / GP (A)
As a result, the power cost at which the charge / discharge balance is 0 within the class A range is calculated, and this power cost is set as the target power cost TCFC.

一方、上記ステップ405aで、クラスAでの充放電収支BAL(A) が0以下(マイナス値)と判定されれば、ステップ405bに進み、クラスAからクラスBまでの充放電収支BAL(B) が0より大きいか否か(プラス値であるか否か)を判定する。その結果、クラスAからクラスBまでの充放電収支BAL(B) が0より大きい(プラス値)と判定されれば、クラスAからクラスBまでの発電で充放電収支が取れる(クラスBの範囲内で目標電費TCFCを設定すれば良い)と判断して、ステップ406bに進み、クラスBの上限値[B]、充放電収支BAL(B) 、発電可能量GP(B) を用いて、目標電費TCFCを次式により算出する。
TCFC=B−(B−A)×BAL(B) /GP(B)
これにより、クラスBの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする。
On the other hand, if it is determined in step 405a that the charge / discharge balance BAL (A) in class A is 0 or less (minus value), the process proceeds to step 405b and the charge / discharge balance BAL (B) from class A to class B is reached. Is greater than 0 (whether it is a positive value). As a result, if it is determined that the charge / discharge balance BAL (B) from class A to class B is greater than 0 (plus value), the charge / discharge balance can be obtained by power generation from class A to class B (range of class B). The target power consumption TCFC may be set within the range), and the process proceeds to step 406b, where the target is calculated using the upper limit [B] of class B, the charge / discharge balance BAL (B), and the power generation possible amount GP (B). The electricity cost TCFC is calculated by the following formula.
TCFC = B- (BA) x BAL (B) / GP (B)
As a result, the power cost at which the charge / discharge balance is 0 within the class B range is calculated, and this power cost is set as the target power cost TCFC.

以下、同様の処理を各クラスC〜Y毎に繰り返すことで、充放電収支が0以上となる最小のクラスを探索して、充放電収支が0以上となる最小のクラスの範囲内で充放電収支が0となる電費を算出して、この電費を目標電費TCFCとする(ステップ405y、406y)。
TCFC=C−(C−B)×BAL(C) /GP(C)
・・・・・・・・・・・・・・・・・・・・・・
TCFC=Y−(Y−X)×BAL(Y) /GP(Y)
Hereinafter, by repeating the same process for each class C to Y, the minimum class in which the charge / discharge balance is 0 or more is searched, and the charge / discharge is performed within the range of the minimum class in which the charge / discharge balance is 0 or more. The power cost at which the balance is 0 is calculated, and this power cost is set as the target power cost TCFC (steps 405y and 406y).
TCFC = C- (CB) x BAL (C) / GP (C)
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
TCFC = Y− (Y−X) × BAL (Y) / GP (Y)

クラスAからクラスYまでの充放電収支BAL(Y) が0以下(マイナス値)となる場合は、クラスAからクラスYまでの範囲を使用して発電しても、充放電収支が取れないことを意味するため、ステップ406zに進み、目標電費TCFCを許容される最大の電費であるクラスZの上限値[Z]に設定する。
TCFC=Z
If the charge / discharge balance BAL (Y) from class A to class Y is 0 or less (negative value), the charge / discharge balance cannot be obtained even if power is generated using the range from class A to class Y. In step 406z, the target power consumption TCFC is set to the upper limit value [Z] of the class Z that is the maximum allowable power consumption.
TCFC = Z

[目標電費補正量算出ルーチン]
図7の目標電費補正量算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行され、次のようにして目標電費補正量TCFCcmp を算出する。本ルーチンが起動されると、まずステップ501で、現在のSOC(バッテリ充電割合)と目標SOCとの偏差を小さくするように目標電費TCFCをフィードバック補正するためのI項(積分項)補正量Icmp(i)を次式により算出する。
Icmp(i)=Icmp(i-1)+(SOC−目標SOC)×KI
ここで、Icmp(i-1)は前回のI項補正量、KIはI項ゲインである。
[Target electric cost correction amount calculation routine]
The target power cost correction amount calculation routine of FIG. 7 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation, and calculates the target power cost correction amount TCFCcmp as follows. When this routine is started, first, in step 501, an I-term (integral term) correction amount Icmp for feedback-correcting the target electricity consumption TCFC so as to reduce the deviation between the current SOC (battery charge ratio) and the target SOC. (i) is calculated by the following equation.
Icmp (i) = Icmp (i-1) + (SOC−target SOC) × KI
Here, Icmp (i-1) is the previous I term correction amount, and KI is the I term gain.

この後、ステップ502に進み、目標電費TCFCをPI制御(比例積分制御)によりフィードバック補正するための目標電費補正量TCFCcmp を、P項(比例項)補正量Pcmp(i)とI項補正量Icmp(i)とを加算して求める。
TCFCcmp =Pcmp(i)+Icmp(i)
=(SOC−目標SOC)×KP+Icmp(i)
ここで、KPはP項ゲインである。
Thereafter, the process proceeds to step 502, where target power consumption correction amount TCFCcmp for feedback correction of target power consumption TCFC by PI control (proportional integral control) is set as P term (proportional term) correction amount Pcmp (i) and I term correction amount Icmp. Calculate by adding (i).
TCFCcmp = Pcmp (i) + Icmp (i)
= (SOC-target SOC) x KP + Icmp (i)
Here, KP is a P-term gain.

[発電実行判定ルーチン]
図8の発電実行判定ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、まずステップ601で、前記図6の目標電費算出ルーチンで算出した目標電費TCFCに上記目標電費補正量TCFCcmp を加算することで、目標電費TCFCを目標電費補正量TCFCcmp で補正して最終目標電費TCFCfを求める。
TCFCf=TCFC+TCFCcmp
このステップ601の処理が図7の目標電費補正量算出ルーチンと共に特許請求の範囲でいう目標値補正手段としての役割を果たす。
[Power generation execution determination routine]
The power generation execution determination routine of FIG. 8 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, first, in step 601, the target electricity cost TCFC is set to the target electricity cost correction amount TCFCcmp by adding the target electricity cost correction amount TCFCcmp to the target electricity cost TCFC calculated in the target electricity cost calculation routine of FIG. The final target electricity cost TCFCf is obtained by correcting.
TCFCf = TCFC + TCFCcmp
The processing in step 601 serves as target value correction means in the claims together with the target power consumption correction amount calculation routine of FIG.

この後、ステップ602に進み、現在の電費CFCが最終目標電費TCFCfよりも大きいか否かを判定し、現在の電費CFCが最終目標電費TCFCfよりも大きければ、ステップ603に進み、発電指令値を0にセットして、発電機16の発電を停止させる。これにより、バッテリ12の過充電を防止する。   Thereafter, the process proceeds to step 602, where it is determined whether or not the current power cost CFC is greater than the final target power cost TCFCf. If the current power cost CFC is greater than the final target power cost TCFCf, the process proceeds to step 603 and the power generation command value is set. Set to 0 to stop power generation by the generator 16. Thereby, overcharging of the battery 12 is prevented.

一方、現在の電費CFCが最終目標電費TCFCf以下であれば、ステップ604に進み、発電指令値を要求発電量にセットする。これにより、走行中(エンジン運転中)に、発電機16の界磁コイルに発電指令値に応じた制御電流を流して、要求発電量に応じた電力を発電させることで、電費CFCを最終目標電費TCFCfに制御して、SOC(バッテリ充電割合)を目標SOCに収束させる。ここで、要求発電量は、現在のエンジン回転速度に応じてマップ等により算出される。   On the other hand, if the current power consumption CFC is less than or equal to the final target power consumption TCFCf, the process proceeds to step 604, and the power generation command value is set to the required power generation amount. As a result, while driving (engine operation), a control current corresponding to the power generation command value is supplied to the field coil of the generator 16 to generate power corresponding to the required power generation amount, thereby reducing the power consumption CFC to the final target. The power consumption TCFCf is controlled to converge the SOC (battery charge ratio) to the target SOC. Here, the required power generation amount is calculated by a map or the like according to the current engine speed.

以上説明した本実施例1では、単位発電量当たりの燃料消費量増加分である電費CFCをバッテリ12の充電割合(SOC)に応じて補正された最終目標電費TCFCfと比較して発電機16の発電を制御するようにしたので、発電を実行する運転条件を予め設定されたマップで決定する従来の発電制御方式と比較して、マップの精度や車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきの影響が少なくなり、実際のバッテリ12の充電割合(SOC)に応じて必要な発電量を確保しつつ、発電による燃料消費量増加分を確実に低減することができ、燃費低減と充放電収支の両立が可能となる。   In the first embodiment described above, the power consumption CFC, which is an increase in fuel consumption per unit power generation, is compared with the final target power consumption TCFCf corrected according to the charging rate (SOC) of the battery 12, and the generator 16 Since power generation is controlled, compared to conventional power generation control methods that determine the operating conditions for power generation using a preset map, the accuracy of the map and the environment in which the vehicle is used (difference in driving road conditions, driving The difference in vehicle speed and acceleration / deceleration by the user) and variations in vehicle characteristics are reduced, and an increase in fuel consumption due to power generation is ensured while securing a necessary power generation amount according to the actual charging rate (SOC) of the battery 12 Therefore, it is possible to reduce fuel consumption and charge / discharge balance.

しかも、本実施例1では、バッテリ12の充放電収支が0となるように目標費TCFCを設定するようにしたので、必要最小限の発電量でバッテリ12を過不足なく充電することができる。   In addition, in the first embodiment, the target cost TCFC is set so that the charge / discharge balance of the battery 12 becomes zero, so that the battery 12 can be charged without excess or deficiency with the minimum necessary power generation amount.

更に、本実施例1では、過去の走行履歴における電費CFCのクラス毎の使用頻度と発電可能量と平均消費電力とに基づいて目標電費TCFCを設定するようにしたので、車両の使用環境(走行道路状況の相違、運転者による車速・加減速の相違等)や車両特性のばらつきに合わせて目標電費TCFCを自動的に精度良く設定することができる。   Furthermore, in the first embodiment, the target power consumption TCFC is set based on the frequency of use of the power consumption CFC for each class in the past travel history, the power generation possible amount, and the average power consumption. The target electricity cost TCFC can be automatically set with high accuracy in accordance with differences in road conditions, differences in vehicle speed and acceleration / deceleration by the driver, and variations in vehicle characteristics.

この場合、過去の走行履歴における電費CFCのクラス毎の使用頻度のみに基づいて目標電費TCFCを設定したり、電費CFCのクラス毎の使用頻度と発電可能量とに基づいて目標電費TCFCを設定しても良い。   In this case, the target electricity consumption TCFC is set based only on the usage frequency for each class of the electricity consumption CFC in the past travel history, or the target electricity consumption TCFC is set based on the usage frequency for each class of the electricity consumption CFC and the power generation possible amount. May be.

上記実施例1では、バッテリ12の充放電収支の基準点を“0”としたが、図9乃至図11に示す本発明の実施例2では、バッテリ12のSOCを目標SOCに一致させるのに必要な充放電量に応じてバッテリ12の充放電収支の基準点を補正するようにしている。以下、本実施例2で実行する図9乃至図11の各ルーチンの処理内容を説明する。   In the first embodiment, the reference point of the charge / discharge balance of the battery 12 is set to “0”. However, in the second embodiment of the present invention shown in FIGS. 9 to 11, the SOC of the battery 12 is matched with the target SOC. The reference point of the charge / discharge balance of the battery 12 is corrected according to the required charge / discharge amount. The processing contents of the routines shown in FIGS. 9 to 11 executed in the second embodiment will be described below.

図9の充放電収支基準点補正量算出ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、ステップ701で、目標SOCと現在のSOCとの偏差に満充電量とバッテリ電圧を乗算して、バッテリ12のSOCを目標SOCに一致させるのに必要な充放電量を算出し、この充放電量に補正ゲインKGを乗算して充放電収支基準点補正量BALcmp を求める。
BALcmp =(目標SOC−SOC)×満充電量×バッテリ電圧×KG
The charge / discharge balance reference point correction amount calculation routine of FIG. 9 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, in step 701, the charge / discharge amount required to make the SOC of the battery 12 coincide with the target SOC by multiplying the deviation between the target SOC and the current SOC by the full charge amount and the battery voltage. And charge / discharge balance reference point correction amount BALcmp is obtained by multiplying the charge / discharge amount by correction gain KG.
BALcmp = (target SOC-SOC) x full charge x battery voltage x KG

前述した実施例1で実行する図6の目標電費算出ルーチンでは、ステップ405a〜405yにおいて、各クラスA〜Yの充放電収支BAL(A) 〜BAL(Y) の基準点を“0”に設定して、各クラスA〜Yの充放電収支BAL(A) 〜BAL(Y) が“0”よりも大きいか否かで、バッテリ12の充放電収支がバランスする最小のクラスを探索するようにしたが、本実施例2で実行する図10の目標電費算出ルーチンでは、ステップ405a’〜405y’において、各クラスA〜Yの充放電収支BAL(A) 〜BAL(Y) の基準点として、図9の充放電収支基準点補正量算出ルーチンで算出した充放電収支基準点補正量BALcmp を用い、各クラスA〜Yの充放電収支BAL(A) 〜BAL(Y) が充放電収支基準点補正量BALcmp よりも大きいか否かで、バッテリ12の充放電収支が充放電収支基準点補正量BALcmp 以上となる最小のクラスを探索する。そして、この最小のクラスの範囲内で充放電収支が充放電収支基準点補正量BALcmp と一致する電費を算出して、この電費を目標電費TCFCとする(ステップ406a’〜406y’)。   In the target electricity cost calculation routine of FIG. 6 executed in the first embodiment described above, the reference points of the charge / discharge balances BAL (A) to BAL (Y) of the classes A to Y are set to “0” in steps 405a to 405y. Thus, a search is made for a minimum class in which the charge / discharge balance of the battery 12 is balanced depending on whether the charge / discharge balance BAL (A) to BAL (Y) of each class A to Y is greater than “0”. However, in the target electricity cost calculation routine of FIG. 10 executed in the second embodiment, in steps 405a ′ to 405y ′, as the reference points of the charge / discharge balances BAL (A) to BAL (Y) of the classes A to Y, Using the charge / discharge balance reference point correction amount BALcmp calculated by the charge / discharge balance reference point correction amount calculation routine of FIG. 9, the charge / discharge balance BAL (A) to BAL (Y) of each class A to Y is the charge / discharge balance reference point. Whether the battery is larger than the correction amount BALcmp The minimum class in which the charge / discharge balance of the battery 12 is equal to or greater than the charge / discharge balance reference point correction amount BALcmp is searched. Then, a power cost in which the charge / discharge balance matches the charge / discharge balance reference point correction amount BALcmp within the range of the minimum class is calculated, and this power cost is set as the target power cost TCFC (steps 406a 'to 406y').

TCFC=A−(A−0)×{BAL(A) −BALcmp }/GP(A)
TCFC=B−(B−A)×{BAL(B) −BALcmp }/GP(B)
TCFC=C−(C−B)×{BAL(C) −BALcmp }/GP(C)
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
TCFC=Y−(Y−X)×{BAL(Y) −BALcmp }/GP(Y)
TCFC = A− (A−0) × {BAL (A) −BALcmp} / GP (A)
TCFC = B− (BA) × {BAL (B) −BALcmp} / GP (B)
TCFC = C− (CB) × {BAL (C) −BALcmp} / GP (C)
...
TCFC = Y− (Y−X) × {BAL (Y) −BALcmp} / GP (Y)

図10の目標電費算出ルーチンは、ステップ405a’〜405y’、406a’〜406y’を除いて、前述した図6の目標電費算出ルーチンの各ステップの処理と同じである。   The target electricity consumption calculation routine of FIG. 10 is the same as the processing of each step of the above-described target electricity consumption calculation routine of FIG. 6 except for steps 405a 'to 405y' and 406a 'to 406y'.

図11の発電実行判定ルーチンは、エンジン運転中に所定周期(例えば8ms周期)で実行される。本ルーチンが起動されると、まずステップ801で、現在の電費CFCが目標電費TCFCよりも大きいか否かを判定し、現在の電費CFCが目標電費TCFCよりも大きければ、ステップ802に進み、発電指令値を0にセットして、発電機16の発電を停止させる。これにより、バッテリ12の過充電を防止する。一方、現在の電費CFCが目標電費TCFC以下であれば、ステップ803に進み、発電指令値を要求発電量にセットする。これにより、走行中(エンジン運転中)に、発電機16の界磁コイルに発電指令値に応じた制御電流を流して、要求発電量に応じた電力を発電させることで、電費CFCを目標電費TCFCに制御して、バッテリ12のSOCを目標SOCに収束させる。ここで、要求発電量は、現在のエンジン回転速度等に基づいて算出される。   The power generation execution determination routine of FIG. 11 is executed at a predetermined cycle (for example, 8 ms cycle) during engine operation. When this routine is started, first, in step 801, it is determined whether or not the current electricity cost CFC is larger than the target electricity cost TCFC. If the current electricity cost CFC is larger than the target electricity cost TCFC, the process proceeds to step 802. The command value is set to 0, and the power generation of the generator 16 is stopped. Thereby, overcharging of the battery 12 is prevented. On the other hand, if the current power consumption CFC is less than or equal to the target power consumption TCFC, the process proceeds to step 803, where the power generation command value is set to the required power generation amount. As a result, during traveling (engine operation), a control current corresponding to the power generation command value is supplied to the field coil of the generator 16 to generate power corresponding to the required power generation amount, thereby reducing the power consumption CFC to the target power consumption. By controlling to TCFC, the SOC of the battery 12 is converged to the target SOC. Here, the required power generation amount is calculated based on the current engine speed and the like.

以上説明した本実施例2では、バッテリ12のSOCを目標SOCに一致させるのに必要な充放電量に応じて充放電収支基準点補正量BALcmp を算出し、各クラスA〜Yの充放電収支BAL(A) 〜BAL(Y) が充放電収支基準点補正量BALcmp 以上となる最小のクラスを探索して、この最小のクラスの範囲内で充放電収支が充放電収支基準点補正量BALcmp と一致する電費を算出して、この電費を目標電費TCFCとするようにしたので、低燃費の要求を満たしつつ、バッテリ12の目標SOCへの収束性を高めることができる。   In the second embodiment described above, the charge / discharge balance reference point correction amount BALcmp is calculated according to the charge / discharge amount necessary to make the SOC of the battery 12 coincide with the target SOC, and the charge / discharge balance of each class A to Y is calculated. BAL (A) to BAL (Y) are searched for the minimum class in which the charge / discharge balance reference point correction amount BALcmp is greater than or equal to, and the charge / discharge balance is within the range of the minimum class and the charge / discharge balance reference point correction amount BALcmp Since the matching power costs are calculated and the power costs are set as the target power costs TCFC, the convergence of the battery 12 to the target SOC can be improved while satisfying the demand for low fuel consumption.

本発明の実施例1のシステム構成を説明するブロック図である。It is a block diagram explaining the system configuration | structure of Example 1 of this invention. 燃料消費率とエンジン運転条件との関係を示す図である。It is a figure which shows the relationship between a fuel consumption rate and an engine driving | running condition. 実施例1の電費算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the electricity consumption calculation routine of Example 1. FIG. 実施例1の電費クラスデータ蓄積ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the electricity consumption class data storage routine of Example 1. FIG. 実施例1の平均消費電力算出ルーチンの処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of processing of an average power consumption calculation routine according to the first embodiment. 実施例1の目標電費算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the target electricity consumption calculation routine of Example 1. 実施例1の目標電費補正量算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the target electricity cost correction amount calculation routine of Example 1. 実施例1の発電実行判定ルーチンの処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of processing of a power generation execution determination routine according to the first embodiment. 実施例2の充放電収支基準点補正量算出ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a processing flow of a charge / discharge balance reference point correction amount calculation routine according to the second embodiment. 実施例2の目標電費算出ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the target electricity consumption calculation routine of Example 2. 実施例2の発電実行判定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a power generation execution determination routine according to the second embodiment.

符号の説明Explanation of symbols

11…制御装置(充電状態検出手段,発電制御手段,燃料消費量算出手段,目標値補正手段)、12…バッテリ、13…キースイッチ、16…発電機、17…電流センサ、18…電圧センサ   DESCRIPTION OF SYMBOLS 11 ... Control apparatus (charging condition detection means, power generation control means, fuel consumption calculation means, target value correction means), 12 ... battery, 13 ... key switch, 16 ... generator, 17 ... current sensor, 18 ... voltage sensor

Claims (8)

内燃機関の動力で駆動される発電機と、前記発電機で発電した電力が充電されるバッテリとを備えた内燃機関の発電制御装置において、
前記バッテリの充電状態を検出するバッテリ充電状態検出手段と、
前記発電機の発電による燃料消費量増加分と発電量とに基づいて単位発電量当たりの燃料消費量増加分を算出する燃料消費量算出手段と、
前記単位発電量当たりの燃料消費量増加分と目標の燃料消費量増加分とを比較して前記発電機の発電を制御する発電制御手段と、
前記バッテリ充電状態検出手段で検出したバッテリの充電状態に基づいて前記目標の燃料消費量増加分を補正する目標値補正手段と
を備えていることを特徴とする内燃機関の発電制御装置。
In a power generation control device for an internal combustion engine comprising: a generator driven by the power of the internal combustion engine; and a battery charged with electric power generated by the generator,
Battery charge state detection means for detecting the charge state of the battery;
Fuel consumption calculation means for calculating a fuel consumption increase per unit power generation based on a fuel consumption increase and power generation by power generation of the generator;
Power generation control means for controlling the power generation of the generator by comparing the fuel consumption increase per unit power generation with the target fuel consumption increase;
A power generation control device for an internal combustion engine, comprising: target value correction means for correcting the target fuel consumption increase based on the state of charge of the battery detected by the battery charge state detection means.
前記発電制御手段は、前記バッテリの充電量と放電量の収支(以下「充放電収支」という)をバランスさせるように前記目標の燃料消費量増加分を設定することを特徴とする請求項1に記載の内燃機関の発電制御装置。   The power generation control means sets the target fuel consumption increase so as to balance a balance between a charge amount and a discharge amount of the battery (hereinafter referred to as a “charge / discharge balance”). A power generation control device for an internal combustion engine as described. 前記発電制御手段は、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度に基づいて前記目標の燃料消費量増加分を設定することを特徴とする請求項1又は2に記載の内燃機関の発電制御装置。   The power generation control means sets the target fuel consumption increase based on the usage frequency for each class of the fuel consumption increase per unit power generation in the past travel history. 3. A power generation control device for an internal combustion engine according to 2. 前記発電制御手段は、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度と発電可能量とに基づいて前記目標の燃料消費量増加分を設定することを特徴とする請求項1又は2に記載の内燃機関の発電制御装置。   The power generation control means sets the target fuel consumption increase based on the usage frequency and the power generation possible amount for each class of the fuel consumption increase per unit power generation in the past travel history, The power generation control device for an internal combustion engine according to claim 1 or 2. 前記発電制御手段は、過去の走行履歴における単位発電量当たりの燃料消費量増加分のクラス毎の使用頻度と発電可能量と平均消費電力とに基づいて前記目標の燃料消費量増加分を設定することを特徴とする請求項1又は2に記載の内燃機関の発電制御装置。   The power generation control means sets the target fuel consumption increase based on the usage frequency for each class of the fuel consumption increase per unit power generation in the past travel history, the power generation possible amount, and the average power consumption. The power generation control device for an internal combustion engine according to claim 1 or 2. 前記バッテリ充電状態検出手段は、前記バッテリの充電割合を算出し、
前記目標値補正手段は、前記バッテリの充電割合に基づいて前記目標の燃料消費量増加分を補正することを特徴とする請求項1乃至5のいれかに記載の内燃機関の発電制御装置。
The battery charge state detection means calculates a charge rate of the battery,
6. The power generation control device for an internal combustion engine according to claim 1, wherein the target value correcting means corrects the target fuel consumption increase based on a charging rate of the battery.
前記目標値補正手段は、前記バッテリの充電割合と目標充電割合との偏差を小さくするように前記目標の燃料消費量増加分をフィードバック補正することを特徴とする請求項6に記載の内燃機関の発電制御装置。   7. The internal combustion engine according to claim 6, wherein the target value correcting unit feedback corrects an increase in the target fuel consumption so as to reduce a deviation between the charging rate of the battery and the target charging rate. Power generation control device. 前記目標値補正手段は、前記バッテリの充電割合を目標充電割合に一致させるのに必要な充放電量を算出し、算出した充放電量に基づいて前記バッテリの充放電収支の基準点を補正することで前記目標の燃料消費量増加分を補正することを特徴とする請求項2に記載の内燃機関の発電制御装置。   The target value correcting means calculates a charge / discharge amount necessary for making the charge rate of the battery coincide with the target charge rate, and corrects a reference point of the charge / discharge balance of the battery based on the calculated charge / discharge amount. The power generation control device for an internal combustion engine according to claim 2, wherein the target fuel consumption increase is corrected.
JP2005162651A 2005-06-02 2005-06-02 Power generation control device for internal combustion engine Expired - Fee Related JP4435027B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005162651A JP4435027B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine
US11/443,374 US7355292B2 (en) 2005-06-02 2006-05-31 Power generation control apparatus for internal combustion engine
DE102006000265A DE102006000265A1 (en) 2005-06-02 2006-06-01 Power generation control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162651A JP4435027B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006340514A true JP2006340514A (en) 2006-12-14
JP4435027B2 JP4435027B2 (en) 2010-03-17

Family

ID=37560566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162651A Expired - Fee Related JP4435027B2 (en) 2005-06-02 2005-06-02 Power generation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4435027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167559A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Controller of vehicle
JP2016124481A (en) * 2015-01-07 2016-07-11 スズキ株式会社 Vehicle power control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167559A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Controller of vehicle
JP2016124481A (en) * 2015-01-07 2016-07-11 スズキ株式会社 Vehicle power control device

Also Published As

Publication number Publication date
JP4435027B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
US7906864B2 (en) Apparatus and method of controlling generation of electric power in vehicle
JP4375458B2 (en) Secondary battery charge state estimation device and charge control system
JP2016028543A (en) Power supply device
JP4435026B2 (en) Power generation control device for internal combustion engine
JP4407826B2 (en) Power generation control device for internal combustion engine
JP2009171789A (en) Electronic controller
JP6468104B2 (en) Power system
JP2010273523A (en) Charge control device
JP4435027B2 (en) Power generation control device for internal combustion engine
US20230075768A1 (en) Drive control device, drive control method for electric vehicle, and non-transitory computer readable storage medium storing program
JP2004263619A (en) Power source control device for vehicle
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
JP4432856B2 (en) Power generation control device for internal combustion engine
JP2007049779A (en) Power generation controller of internal combustion engine
CN112350417B (en) Voltage control method and device of motor
JP2006038593A (en) Battery capacity detection device, and generating set equipped therewith
JP4635961B2 (en) Battery charge state control device
JP4432860B2 (en) Power generation control device for internal combustion engine
JP5953857B2 (en) Vehicle control device and power generation control method
JP2001268710A (en) Hybrid vehicle control device
JP6172321B2 (en) Vehicle control device and power generation control method
JP2007037260A (en) Power generation controller for internal combustion engine
CN100486031C (en) Hybrid fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees