JP2006339017A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2006339017A
JP2006339017A JP2005162032A JP2005162032A JP2006339017A JP 2006339017 A JP2006339017 A JP 2006339017A JP 2005162032 A JP2005162032 A JP 2005162032A JP 2005162032 A JP2005162032 A JP 2005162032A JP 2006339017 A JP2006339017 A JP 2006339017A
Authority
JP
Japan
Prior art keywords
secondary battery
heat
thermal runaway
battery
prevention wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005162032A
Other languages
Japanese (ja)
Other versions
JP4958409B2 (en
Inventor
Shoichi Toya
正一 遠矢
Hideyo Morita
秀世 森田
Masaya Nakano
雅也 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005162032A priority Critical patent/JP4958409B2/en
Publication of JP2006339017A publication Critical patent/JP2006339017A/en
Application granted granted Critical
Publication of JP4958409B2 publication Critical patent/JP4958409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack, where the generation of thermal runaway of a secondary battery built in is prevented and inducing the thermal runaway of other secondary battery due to this thermal runaway is prevented effectively. <P>SOLUTION: The battery pack is provided with a thermorunaway preventing wall 3 of plastic formed integrally with a heat conduction cylinder 4 between secondary batteries 1 housed in a case 2. The heat conduction cylinder 4, having a clearance of 0.5 mm or smaller between its inner face and the outer face of the secondary battery 1, has the surface of the secondary battery 1, in contact with the inner face of the thermorunaway preventing wall 3 in surface contact state. The plastic forming the thermorunaway preventing wall 3 has a thermal conductivity of 0.05 W/m K or higher and 3 W/m K or lower. Furthermore, the thermorunaway preventing wall 3 has a thickness of 0.5 mm or larger and 3 mm or smaller. In the battery pack, the radiant heat of an exothermic secondary battery 1A is cut off by the thermorunaway preventing wall 3, and the generated heat of the exothermic secondary battery 1A is thermally conducted to the neighboring secondary battery 1B, and the exothermic secondary battery 1A is heat radiated, and the thermal runaway of the exothermic secondary battery 1A is prevented from being transmitted to the adjacent secondary battery 1B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の二次電池を備える組電池であって、二次電池の熱暴走が他の二次電池の熱暴走を誘発しない組電池に関する。   The present invention relates to an assembled battery including a plurality of secondary batteries, in which a thermal runaway of a secondary battery does not induce a thermal runaway of another secondary battery.

二次電池は、内部ショートや過充電等、種々の原因で熱暴走を起こすことがある。熱暴走すると、電池の温度は急激に上昇して300℃〜400℃以上となることもある。とくに、多数の二次電池を内蔵している組電池は、複数の二次電池が熱暴走を起こすと熱暴走のエネルギーが極めて大きくなって、さらに危険な状態となる。このような弊害を防止するために、二次電池の熱暴走を阻止する技術が開発されている(特許文献1ないし3参照)。   The secondary battery may cause thermal runaway due to various causes such as internal short circuit or overcharge. When thermal runaway occurs, the temperature of the battery rises rapidly and may be 300 ° C. to 400 ° C. or higher. In particular, in a battery pack incorporating a large number of secondary batteries, when a plurality of secondary batteries cause a thermal runaway, the energy of the thermal runaway becomes extremely large, which makes the battery more dangerous. In order to prevent such an adverse effect, a technique for preventing thermal runaway of the secondary battery has been developed (see Patent Documents 1 to 3).

二次電池の熱暴走を阻止する技術として、二次電池自体に設けて熱暴走を防止する技術(特許文献1参照)と、二次電池の外部に設けて熱暴走を防止する技術(特許文献2及び3参照)とが開発されている。   As a technique for preventing thermal runaway of a secondary battery, a technique for preventing thermal runaway by providing it in the secondary battery itself (see Patent Document 1) and a technique for preventing thermal runaway by providing it outside the secondary battery (Patent Document) 2 and 3) have been developed.

特許文献1に記載されるように、二次電池自体に熱暴走を防止する機構を設けるものは、二次電池自体の構成を変更する必要があるので、すでに製造、販売されている二次電池を使用して組電池とすることができない。このため、特別な二次電池を製造する必要があるので実用的でない。   As described in Patent Document 1, since a secondary battery having a mechanism for preventing thermal runaway needs to change the configuration of the secondary battery itself, the secondary battery already manufactured and sold. Cannot be used as a battery pack. For this reason, since it is necessary to manufacture a special secondary battery, it is not practical.

特許文献2に記載される組電池は、電池の配列を変更する。すなわち、隣接する電池の安全弁を異なる側に配置している。この組電池は、ひとつの電池が熱暴走して安全弁から放出される気化した電解液蒸気に着火し難く、安全性を向上できる。ただ、この構造は、電解液蒸気の着火は防止できるが、電池を接近して配設する組電池において、熱暴走した電池の熱で隣の電池が熱暴走を起こすのを防止できない。   The assembled battery described in Patent Document 2 changes the arrangement of the batteries. That is, the safety valves of adjacent batteries are arranged on different sides. In this assembled battery, it is difficult to ignite the vaporized electrolyte vapor released from the safety valve due to a thermal runaway of one battery, and safety can be improved. However, this structure can prevent the ignition of the electrolyte vapor, but in the assembled battery in which the batteries are arranged close to each other, it cannot prevent the adjacent battery from causing the thermal runaway due to the heat of the thermal runaway battery.

特許文献3の二次電池は、内圧が上昇して外装ケースが膨れると、この膨れでスイッチがオンになって短絡電流を流して電池を放電させて熱暴走を防止する機構を設けている。この機構は、熱暴走の状態によっとは効果的に熱暴走を防止できない。たとえば満充電に近い二次電池が内部ショートして内部から発熱する状態となり、内圧が上昇してスイッチがオンになって短絡電流を流す状態になると、内部ショートによる電流と、外部の短絡電流の両方が流れて大きな放電電流が流れる状態となる。このように外部の短絡電流で、さらに放電電流が大きくなるので、二次電池は熱暴走を起こしやすい状態となる。したがって、種々の原因で発生する熱暴走を確実に防止するのが難しい。また、二次電池の外部に外装ケースの膨れで短絡電流を流す機構を設ける必要があるので、多数の二次電池を内蔵する組電池等に採用する場合、構造が複雑で外形が大きくなる欠点がある。   When the internal pressure rises and the outer case swells, the secondary battery of Patent Document 3 is provided with a mechanism that prevents the thermal runaway by turning on the switch and causing a short-circuit current to flow to discharge the battery. This mechanism cannot effectively prevent thermal runaway depending on the state of thermal runaway. For example, when a secondary battery near full charge is short-circuited internally and generates heat from the inside, the internal pressure rises and the switch is turned on and a short-circuit current flows. Both flow and a large discharge current flows. As described above, since the discharge current is further increased by the external short-circuit current, the secondary battery is likely to cause thermal runaway. Therefore, it is difficult to reliably prevent thermal runaway caused by various causes. In addition, since it is necessary to provide a mechanism that allows a short-circuit current to flow outside the secondary battery due to the bulging of the outer case, there is a drawback in that the structure is complicated and the outer shape becomes large when used in a battery pack incorporating a large number of secondary batteries. There is.

複数の二次電池を内蔵する組電池は、二次電池自体が熱暴走を起こし難くすることに加えて、仮にいずれかの二次電池が熱暴走を起こしても、熱暴走が他の二次電池の熱暴走を誘発しないことが大切である。
特開2004−303447号公報 特開2003−303581号公報 特開2004−319463号公報
In addition to making it difficult for the secondary battery itself to cause thermal runaway, an assembled battery containing multiple secondary batteries can cause thermal runaway if any secondary battery causes thermal runaway. It is important not to induce thermal runaway of the battery.
JP 2004-303447 A JP 2003-303581 A JP 2004-319463 A

本発明者等は、種々の実験を繰り返した結果、複数の二次電池を接近して配設する組電池においては、熱暴走で発生する輻射熱と熱伝導とをコントロールすることで、二次電池の熱暴走を起こし難くすると共に、仮にいずれかの二次電池が熱暴走を起こしても、この熱暴走が他の二次電池の熱暴走を誘発しない構造を開発した。したがって、本発明の大切な目的は、内蔵される二次電池の熱暴走の発生を防止し、かつ熱暴走が他の二次電池の熱暴走を誘発するのを効果的に防止できる組電池を提供することにある。   As a result of repeating various experiments, the present inventors, in an assembled battery in which a plurality of secondary batteries are arranged close to each other, can control the radiant heat and heat conduction generated by the thermal runaway, thereby providing a secondary battery. As a result, we have developed a structure that will not cause thermal runaway of other secondary batteries even if any secondary battery causes thermal runaway. Accordingly, an important object of the present invention is to provide an assembled battery that can prevent the occurrence of thermal runaway of a built-in secondary battery and effectively prevent thermal runaway from causing thermal runaway of other secondary batteries. It is to provide.

本発明の組電池は、前述の目的を達成するために以下の構成を備える。
組電池は、複数の二次電池1を平行な姿勢で隣接してケース2に収納している。組電池は、隣接する二次電池1の間に、プラスチック製の熱暴走防止壁3を設けている。この熱暴走防止壁3は、内面の形状を二次電池1の外形に等しい形状に成形している熱伝導筒4に一体的に成形されて、熱暴走防止壁3を熱伝導筒4の一部としている。熱伝導筒4は、その内面と二次電池1の外面とのクリアランスを0.5mm以下として、二次電池1の表面を熱暴走防止壁3の内面に面接触状態で接触させている。さらに、熱暴走防止壁3を成形するプラスチックは、熱伝導率を0.05W/m・K以上であって、3W/m・K以下としている。さらに、熱暴走防止壁3は、その厚さを0.5mm以上であって3mm以下としている。組電池は、二次電池1の間に設けている熱暴走防止壁3でもって、発熱する発熱二次電池1Aの輻射熱を遮断するが、発熱二次電池1Aの発熱を隣の二次電池1Bに熱伝導させて発熱二次電池1Aを放熱し、発熱二次電池1Aの熱暴走が隣の二次電池1Bに伝達されるのを防止する。
The assembled battery of the present invention has the following configuration in order to achieve the above-described object.
The assembled battery houses a plurality of secondary batteries 1 in a case 2 adjacent to each other in a parallel posture. In the assembled battery, a plastic thermal runaway prevention wall 3 is provided between adjacent secondary batteries 1. The thermal runaway prevention wall 3 is integrally formed with a heat conduction cylinder 4 whose inner surface has a shape equal to the outer shape of the secondary battery 1. As a part. The heat conduction cylinder 4 has a clearance between its inner surface and the outer surface of the secondary battery 1 of 0.5 mm or less, and the surface of the secondary battery 1 is brought into contact with the inner surface of the thermal runaway prevention wall 3 in a surface contact state. Further, the plastic for molding the thermal runaway prevention wall 3 has a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less. Furthermore, the thermal runaway prevention wall 3 has a thickness of 0.5 mm or more and 3 mm or less. The assembled battery blocks the radiant heat of the heat generating secondary battery 1A by the thermal runaway prevention wall 3 provided between the secondary batteries 1, but the heat generated by the heat generating secondary battery 1A is adjacent to the secondary battery 1B. The heat generating secondary battery 1A is dissipated to conduct heat, and the thermal runaway of the heat generating secondary battery 1A is prevented from being transmitted to the adjacent secondary battery 1B.

本発明の組電池は、熱伝導筒4を、軸方向の中間で複数に分割することができる。   The assembled battery of the present invention can divide the heat conducting cylinder 4 into a plurality in the middle in the axial direction.

本発明の組電池は、熱伝導筒4の両端にエンドプレート7を連結してなるインナーケース8を備えることができる。このインナーケース8は、熱伝導筒4を軸方向の中間で2分割して、一対のケースユニット8Aに分割し、分割された一対のケースユニット8Aを互いに連結して、複数の二次電池1をインナーケース8に収納することができる。   The assembled battery of the present invention can include an inner case 8 formed by connecting end plates 7 to both ends of the heat conducting cylinder 4. In the inner case 8, the heat conducting cylinder 4 is divided into two in the middle in the axial direction, divided into a pair of case units 8A, and the divided pair of case units 8A are connected to each other. Can be stored in the inner case 8.

熱伝導筒4は、内面をテーパー状に成形して、内面に突出する部分を二次電池1の表面に面接触させることができる。二次電池1は、リチウムイオン二次電池1とすることができる。   The heat conducting cylinder 4 can be formed in a tapered shape on the inner surface, and a portion protruding from the inner surface can be brought into surface contact with the surface of the secondary battery 1. The secondary battery 1 can be a lithium ion secondary battery 1.

本発明の組電池は、熱伝導筒4の一部に開口部5を設けて、この開口部5に温度センサー6を配設して二次電池1の温度を検出することができる。   The assembled battery of the present invention can detect the temperature of the secondary battery 1 by providing an opening 5 in a part of the heat conducting cylinder 4 and disposing a temperature sensor 6 in the opening 5.

本発明の組電池は、二次電池1を円筒型電池として、隣接して配設している二次電池1の谷間に他の二次電池1を配設し、3本の二次電池1の最接近隙間から3本の二次電池1で囲まれる境界領域を、熱暴走防止壁3を成形するプラスチックで隙間なく成形することができる。   In the assembled battery of the present invention, the secondary battery 1 is a cylindrical battery, and another secondary battery 1 is disposed between the valleys of the adjacent secondary batteries 1. The boundary region surrounded by the three secondary batteries 1 from the closest approach gap can be formed without any gap with the plastic forming the thermal runaway prevention wall 3.

本発明の組電池は、内蔵される二次電池の熱暴走の発生を防止しながら、熱暴走が他の二次電池の熱暴走を誘発するのを効果的に防止できる特長がある。それは、本発明の組電池が、隣接する二次電池の間にプラスチック製の熱暴走防止壁を設けており、この熱暴走防止壁でもって、発熱する二次電池の熱の移動を特定の状態に制御して、熱移動をコントロールしているからである。本発明の組電池は、熱暴走防止壁を熱伝導筒に一体的に成形して、二次電池の外面とのクリアランスを0.5mm以下として、二次電池の表面を面接触状態で接触させると共に、熱暴走防止壁を成形するプラスチックの熱伝導率を0.05W/m・K以上、3W/m・K以下とし、さらに、熱暴走防止壁の厚さを0.5mm以上、3mm以下としている。この構造の組電池は、二次電池の間に設けた熱暴走防止壁でもって、発熱する発熱二次電池の輻射熱を遮断するが、発熱二次電池の発熱を隣の二次電池に熱伝導させて発熱二次電池を放熱する。発熱二次電池の放熱量を特定熱量にコントロールすると、発熱二次電池の放熱で隣の二次電池が熱暴走されることがなく、また、発熱二次電池の温度上昇も制限されて最高温度が低くなる。このため、発熱二次電池が過熱されて隣の二次電池を熱暴走させることもない。以上のように、本発明の組電池は、発熱する発熱二次電池の輻射熱と熱伝導とをコントロールして、発熱二次電池の放熱を特定の範囲とすることで、発熱二次電池が隣の二次電池を過熱する熱量を制限し、また最高温度も制限して、隣の二次電池の熱暴走を巧妙に阻止することができる。   The assembled battery of the present invention has a feature that it can effectively prevent the thermal runaway from inducing the thermal runaway of other secondary batteries while preventing the occurrence of thermal runaway of the built-in secondary battery. In the assembled battery of the present invention, a plastic thermal runaway prevention wall is provided between adjacent secondary batteries. With this thermal runaway prevention wall, the heat transfer of the secondary battery that generates heat is in a specific state. This is because the heat transfer is controlled. In the assembled battery of the present invention, the thermal runaway prevention wall is formed integrally with the heat conducting cylinder, the clearance with the outer surface of the secondary battery is set to 0.5 mm or less, and the surface of the secondary battery is brought into contact with the surface in a surface contact state. In addition, the thermal conductivity of the plastic that forms the thermal runaway prevention wall is 0.05 W / m · K or more and 3 W / m · K or less, and the thickness of the thermal runaway prevention wall is 0.5 mm or more and 3 mm or less. Yes. The assembled battery with this structure blocks the radiant heat of the heat generating secondary battery by the thermal runaway prevention wall provided between the secondary batteries, but conducts heat from the heat generating secondary battery to the adjacent secondary battery. The heat generating secondary battery is dissipated. If the heat dissipation amount of the exothermic secondary battery is controlled to a specific amount of heat, the adjacent secondary battery will not be thermally runaway due to the heat dissipation of the exothermic secondary battery, and the temperature rise of the exothermic secondary battery is also limited to the maximum temperature Becomes lower. For this reason, the exothermic secondary battery is not overheated, and the adjacent secondary battery does not run out of heat. As described above, the assembled battery of the present invention controls the radiant heat and heat conduction of the heat generating secondary battery to make the heat dissipation of the heat generating secondary battery within a specific range, so that the heat generating secondary battery is adjacent. By limiting the amount of heat that heats the secondary battery and limiting the maximum temperature, it is possible to skillfully prevent thermal runaway of the adjacent secondary battery.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための組電池を例示するものであって、本発明は組電池を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the example shown below illustrates the assembled battery for embodying the technical idea of the present invention, and the present invention does not specify the assembled battery as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1に示す組電池は、複数の二次電池1を平行な姿勢で隣接してケース2に収納している。この図の組電池は、8本の二次電池1を収納している。本発明の組電池は、ケースに収納する二次電池の個数を8個には特定しない。たとえば、ハイブリッドカーの電源に使用される組電池は、100個以上の二次電池を内蔵している。   The assembled battery shown in FIG. 1 accommodates a plurality of secondary batteries 1 in a case 2 adjacent to each other in a parallel posture. The assembled battery in this figure houses eight secondary batteries 1. The assembled battery of the present invention does not specify the number of secondary batteries housed in the case as eight. For example, an assembled battery used for a power source of a hybrid car includes 100 or more secondary batteries.

組電池は、内部ショート等で二次電池の温度が急激に上昇して熱暴走するのを防止し、あるいは最悪の場合に、いずれかの二次電池が熱暴走を起こしても、熱暴走した二次電池の発熱で隣の二次電池が熱暴走するのを防止するために独特の構成を備えている。このことを実現するために、組電池は、隣接する二次電池間の熱移動を特定の状態に制御する構造としている。すなわち、組電池は、図2の概念図に示すように、発熱する発熱二次電池1Aの熱が輻射熱で隣の二次電池1Bに移動するのを熱暴走防止壁3で遮断し、さらに、この熱暴走防止壁3でもって、特定の伝熱状態にコントロールして、熱伝導によって隣の二次電池1Bに熱を移動させる。   The assembled battery prevented thermal runaway due to a sudden rise in the temperature of the secondary battery due to an internal short circuit, etc., or in the worst case, even if any secondary battery caused thermal runaway, A unique configuration is provided to prevent the adjacent secondary battery from running away due to heat generated by the secondary battery. In order to realize this, the assembled battery has a structure that controls heat transfer between adjacent secondary batteries to a specific state. That is, as shown in the conceptual diagram of FIG. 2, the assembled battery blocks the heat of the exothermic secondary battery 1 </ b> A moving to the adjacent secondary battery 1 </ b> B by radiant heat by the thermal runaway prevention wall 3, With this thermal runaway prevention wall 3, the heat is transferred to the adjacent secondary battery 1 </ b> B by heat conduction by controlling to a specific heat transfer state.

発熱する二次電池からの熱伝導量は、多すぎても少なすぎても二次電池の熱暴走を防止できない。図3は、二次電池間の熱伝導量の多い組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、隣接する二次電池の表面を直接に接触させて、熱暴走する発熱二次電池の熱を、輻射熱と熱伝導の両方で隣の二次電池に移動させる。この図は内部ショートで熱暴走する発熱二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する発熱二次電池の温度が、30秒後に約300℃まで上昇し、隣の二次電池は約70秒後に熱暴走が誘発されて温度が急激に上昇し、100秒後には、熱暴走が誘発された二次電池の温度は500℃にも上昇する。この組電池は、いずれかの二次電池が熱暴走すると、隣の二次電池も熱暴走が誘発されるので、複数の二次電池を内蔵する組電池においては、ひとつの二次電池の熱暴走が全ての二次電池を熱暴走させる。   If the amount of heat conduction from the secondary battery that generates heat is too large or too small, thermal runaway of the secondary battery cannot be prevented. FIG. 3 is a graph showing the temperature rise characteristics of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and a secondary battery adjacent thereto in an assembled battery having a large amount of heat conduction between secondary batteries. In this assembled battery, the surface of an adjacent secondary battery is brought into direct contact, and the heat of the heat-generating secondary battery that is thermally runaway is transferred to the adjacent secondary battery by both radiant heat and heat conduction. In this figure, a temperature rise of a heat generating secondary battery that is thermally runaway due to an internal short circuit is shown by a curve A, and a temperature rise of the adjacent secondary battery is shown by a curve B. In this assembled battery, the temperature of the exothermic secondary battery that causes thermal runaway rises to about 300 ° C. after 30 seconds, and the adjacent secondary battery induces thermal runaway after about 70 seconds, causing the temperature to rise rapidly. After a second, the temperature of the secondary battery in which the thermal runaway is induced rises to 500 ° C. In this assembled battery, if one of the secondary batteries is thermally runaway, the neighboring secondary battery is also triggered by thermal runaway. Therefore, in the assembled battery containing a plurality of secondary batteries, the heat of one secondary battery is Runaway causes all secondary batteries to run away.

さらに、図4は、二次電池間の熱伝導量の少ない組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、隣接する二次電池を1mm離して、熱暴走する二次電池の熱を、熱伝導では移動させず、輻射熱のみで隣の二次電池に移動させる。この図は内部ショートで熱暴走する二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する二次電池の熱移動が少ないので、30秒後の温度が約400℃と極めて高くなり、さらに、高温の二次電池の熱が輻射熱で隣の二次電池に移動して、隣の二次電池は約150秒後に熱暴走が誘発されて温度が急激に上昇し、200秒後には熱暴走が誘発されて二次電池の温度は500℃を越えるまで上昇する。この組電池は、いずれかの二次電池が熱暴走すると、隣の二次電池も熱暴走が誘発されるので、複数の二次電池を内蔵する組電池においては、ひとつの二次電池の熱暴走が全ての二次電池を熱暴走させる。   Further, FIG. 4 is a graph showing the temperature rise characteristics of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and an adjacent secondary battery in an assembled battery with a small amount of heat conduction between the secondary batteries. In this assembled battery, adjacent secondary batteries are separated by 1 mm, and the heat of a secondary battery that is thermally runaway is not transferred by heat conduction, but is transferred to the adjacent secondary battery only by radiant heat. In this figure, the temperature rise of a secondary battery that is thermally runaway due to an internal short is indicated by a curve A, and the temperature rise of a secondary battery adjacent thereto is indicated by a curve B. In this assembled battery, since the heat transfer of the secondary battery that runs out of heat is small, the temperature after 30 seconds becomes extremely high at about 400 ° C. Furthermore, the heat of the high-temperature secondary battery is radiated heat to the adjacent secondary battery. The temperature of the adjacent secondary battery is rapidly increased after about 150 seconds, and the temperature rapidly increases. After 200 seconds, the temperature of the secondary battery is increased to over 500 ° C. . In this assembled battery, if one of the secondary batteries is thermally runaway, the neighboring secondary battery is also triggered by thermal runaway. Therefore, in the assembled battery containing a plurality of secondary batteries, the heat of one secondary battery is Runaway causes all secondary batteries to run away.

図5は、二次電池間の熱伝導を特定の状態に制御する組電池において、内部ショートして熱暴走する発熱二次電池と、その隣の二次電池の温度上昇特性を示すグラフである。この組電池は、二次電池の間に厚さ1mm、熱伝導率を0.2W/m・Kとする熱暴走防止壁を設け、この熱暴走防止壁でもって、熱暴走する発熱二次電池の熱が輻射熱で隣の二次電池に移動するのは遮断し、かつ熱暴走防止壁でもって熱伝導のみで隣の二次電池に特定の熱伝導量の熱を移動させる。この図は内部ショートで熱暴走する発熱二次電池の温度上昇を曲線Aで示し、その隣の二次電池の温度上昇を曲線Bで示している。この組電池は、熱暴走する発熱二次電池の熱が熱伝導で熱暴走防止壁に移動されるので、熱暴走する発熱二次電池の温度上昇が緩やかになり、温度が400℃まで上昇する時間が100秒近くまで延長され、さらに、隣の二次電池の熱暴走を確実に阻止できる優れた特徴が実現される。すなわち、いずれかの二次電池が熱暴走しても、隣の二次電池の熱暴走は誘発されない。したがって、いずれかの二次電池が熱暴走しても、その二次電池のみの熱暴走に終らせることができる。   FIG. 5 is a graph showing a temperature rise characteristic of a heat generating secondary battery in which an internal short circuit causes a thermal runaway and a secondary battery adjacent thereto in an assembled battery that controls heat conduction between the secondary batteries to a specific state. . In this assembled battery, a thermal runaway prevention wall having a thickness of 1 mm and a thermal conductivity of 0.2 W / m · K is provided between the secondary batteries, and the thermal runaway secondary battery that performs thermal runaway with the thermal runaway prevention wall. This heat is blocked from being transferred to the adjacent secondary battery by radiant heat, and a specific amount of heat is transferred to the adjacent secondary battery only by heat conduction with the thermal runaway prevention wall. In this figure, a temperature rise of a heat generating secondary battery that is thermally runaway due to an internal short circuit is shown by a curve A, and a temperature rise of the adjacent secondary battery is shown by a curve B. In this assembled battery, the heat of the exothermic secondary battery that is thermally runaway is transferred to the thermal runaway prevention wall due to heat conduction, so the temperature rise of the exothermic secondary battery that is thermally runaway becomes moderate and the temperature rises to 400 ° C. The time is extended to nearly 100 seconds, and an excellent feature that can reliably prevent thermal runaway of the adjacent secondary battery is realized. That is, even if one of the secondary batteries has a thermal runaway, the thermal runaway of the adjacent secondary battery is not induced. Therefore, even if any secondary battery runs out of heat, it is possible to end up with thermal runaway of only the secondary battery.

図5に示すように、熱暴走した発熱二次電池が隣の二次電池の熱暴走を誘発しないように、図1の組電池は、隣接する二次電池1の間に熱暴走防止壁3を設けている。熱暴走防止壁3は、プラスチック製の熱伝導筒4に一体的に成形されて、熱伝導筒4の一部を構成している。熱伝導筒4は、内面の形状を二次電池1の外形に等しい形状に成形している。さらに、熱伝導筒4は、二次電池1の熱を熱伝導によって熱暴走防止壁3に移動できるように、熱伝導筒4の内面と二次電池1の外面とのクリアランスを0.5mm以下として、二次電池1の表面を熱暴走防止壁3の内面に面接触状態で接触させている。   As shown in FIG. 5, the assembled battery of FIG. 1 has a thermal runaway prevention wall 3 between adjacent secondary batteries 1 so that a heat runaway secondary battery that has caused thermal runaway does not induce thermal runaway of the adjacent secondary battery. Is provided. The thermal runaway prevention wall 3 is integrally formed with a plastic heat conduction cylinder 4 and constitutes a part of the heat conduction cylinder 4. The heat conduction cylinder 4 is formed so that the shape of the inner surface is equal to the outer shape of the secondary battery 1. Furthermore, the heat conduction tube 4 has a clearance of 0.5 mm or less between the inner surface of the heat conduction tube 4 and the outer surface of the secondary battery 1 so that the heat of the secondary battery 1 can be transferred to the thermal runaway prevention wall 3 by heat conduction. The surface of the secondary battery 1 is brought into contact with the inner surface of the thermal runaway prevention wall 3 in a surface contact state.

さらに、熱暴走防止壁3が熱伝導する熱量をコントロールするために、熱暴走防止壁3は、熱伝導率を0.05W/m・K以上であって、3W/m・K以下とするプラスチックで成形している。熱暴走防止壁3と熱伝導筒4を成形するプラスチックは、プラスチックの種類と充填材でコントロールできる。充填材に熱伝導に優れて粉末、たとえば金属粉末を充填して、熱伝導率を大きくできる。熱暴走防止壁の熱伝導率が0.05W/m・Kよりも小さいと、熱暴走防止壁の熱伝導量が少なくなって、熱暴走する発熱二次電池の温度上昇が急峻で最高温度も高くなる。このため、発熱二次電池が熱暴走する時間が短く、また熱暴走して高温になった発熱二次電池が隣の二次電池を加熱して熱暴走を誘発する。反対に、熱暴走防止壁の熱伝導率が3W/m・Kよりも大きいと、熱暴走した発熱二次電池から隣の二次電池に伝導される熱量が大きく、熱暴走した発熱二次電池が隣の二次電池を熱暴走させる。熱伝導率を0.05W/m・K以上であって、3W/m・K以下とする熱暴走防止壁3は、熱暴走して発熱する発熱二次電池1Aから伝導される伝導熱量が最適範囲となり、発熱二次電池1Aを熱伝導で放熱して温度上昇を制限し、さらに、隣の二次電池1Bへの伝導熱量も制限して、隣接する隣の二次電池1Bの熱暴走を有効に防止する。   Furthermore, in order to control the amount of heat conducted by the thermal runaway prevention wall 3, the thermal runaway prevention wall 3 is a plastic having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less. Molded with. The plastic forming the thermal runaway prevention wall 3 and the heat conducting cylinder 4 can be controlled by the type of plastic and the filler. The filler is excellent in heat conduction and filled with a powder, for example, a metal powder, so that the heat conductivity can be increased. If the thermal conductivity of the thermal runaway prevention wall is less than 0.05 W / m · K, the thermal conductivity of the thermal runaway prevention wall will be reduced, and the temperature rise of the exothermic rechargeable battery will be steep and the maximum temperature will also be Get higher. For this reason, the time during which the exothermic secondary battery runs out of heat is short, and the exothermic secondary battery that has become hot due to thermal runaway heats the adjacent secondary battery to induce thermal runaway. Conversely, if the thermal conductivity of the thermal runaway prevention wall is greater than 3 W / m · K, the amount of heat conducted from the thermal runaway secondary battery to the adjacent secondary battery is large, and the thermal runaway secondary battery Makes the next secondary battery run out of heat. The thermal runaway prevention wall 3 having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less is optimal in the amount of heat conducted from the heat generating secondary battery 1A that generates heat due to thermal runaway. The heat generation secondary battery 1A is dissipated by heat conduction to limit the temperature rise, and the amount of conduction heat to the adjacent secondary battery 1B is also limited, so that the adjacent secondary battery 1B can run out of heat. Effectively prevent.

さらに、熱暴走防止壁3は、熱伝導率に加えて、厚さを0.5mm以上であって3mm以下の限られた範囲とする必要がある。二次電池間の熱暴走防止壁が0.5mmよりも薄いと、熱暴走する発熱二次電池から隣の二次電池への熱伝導量が大きくなって、熱暴走した発熱二次電池が隣の二次電池を過熱して熱暴走させる。反対に熱暴走防止壁が3mmよりも厚いと、熱暴走する発熱二次電池から隣の二次電池への熱伝導量が少なすぎて、熱暴走する発熱二次電池の温度が異常に高くなり、加熱された発熱二次電池が隣の二次電池を加熱して熱暴走を誘発する。   Furthermore, in addition to the thermal conductivity, the thermal runaway prevention wall 3 needs to have a thickness within a limited range of 0.5 mm or more and 3 mm or less. If the thermal runaway prevention wall between the secondary batteries is thinner than 0.5mm, the heat conduction from the exothermic secondary battery that causes thermal runaway to the adjacent secondary battery increases, and the exothermic secondary battery that causes thermal runaway is adjacent. The rechargeable battery is overheated and run out of heat. On the other hand, if the thermal runaway prevention wall is thicker than 3 mm, the heat conduction from the heat-generating secondary battery that runs out of heat to the adjacent secondary battery is too small, and the temperature of the heat-running secondary battery that runs out of heat becomes abnormally high. The heated secondary battery heats the adjacent secondary battery to induce thermal runaway.

本発明の組電池は、極めて微妙な範囲に熱移動をコントロールすることで、二次電池の熱暴走を制御する。二次電池は熱暴走で発熱して過熱されるが、二次電池はいつまでも発熱するのではない。二次電池の発熱量は、二次電池の容量で特定される。したがって、二次電池が発熱する状態で、熱の移動を特定の状態に制御して、熱暴走の誘発を防止する。二次電池が熱暴走して発熱するとき、放熱量を大きくして発熱二次電池の温度上昇を少なくできる。ただ、この状態は、放熱される熱が隣の二次電池を過熱して熱暴走を誘発する。反対に熱暴走する発熱二次電池の放熱量を少なくすると、放熱で隣の二次電池の熱暴走は誘発されないが、放熱されない発熱二次電池の温度が異常に高くなり、過熱された発熱二次電池が隣の二次電池の熱暴走を誘発する。ところが、熱暴走する発熱二次電池の放熱量を特定熱量にコントロールすると、熱暴走して温度が上昇する発熱二次電池の放熱で隣の二次電池が熱暴走されず、また、特定の放熱量によって熱暴走する発熱二次電池の温度上昇が制限されて最高温度が低くなる。このため、熱暴走する発熱二次電池が過熱されて隣の二次電池を熱暴走させることもない。熱暴走する発熱二次電池は、発生熱で時間とともに温度が上昇するが、放電量をコントロールして温度上昇を制限すると、一定時間経過すると発熱量が減少して温度は上昇しなくなる。したがって、熱暴走する発熱二次電池の放熱を特定の範囲にコントロールすることで、熱暴走する発熱二次電池が隣の二次電池を過熱する熱量を制限し、また最高温度も制限して、隣の二次電池の熱暴走を巧妙に阻止することができる。   The assembled battery of the present invention controls the thermal runaway of the secondary battery by controlling the heat transfer within a very delicate range. Secondary batteries generate heat due to thermal runaway and are overheated, but secondary batteries do not generate heat indefinitely. The calorific value of the secondary battery is specified by the capacity of the secondary battery. Therefore, in a state where the secondary battery generates heat, the heat transfer is controlled to a specific state to prevent thermal runaway. When the secondary battery generates heat due to thermal runaway, the heat dissipation amount can be increased to reduce the temperature rise of the secondary battery. However, in this state, the heat dissipated overheats the adjacent secondary battery and induces thermal runaway. On the other hand, if the heat dissipation of a heat-generating secondary battery that causes thermal runaway is reduced, heat runaway of the adjacent secondary battery is not induced by heat dissipation, but the temperature of the heat-generating secondary battery that is not dissipated becomes abnormally high and overheated The secondary battery induces thermal runaway of the adjacent secondary battery. However, if the heat dissipation of a heat-generating secondary battery that runs out of heat is controlled to a specific heat amount, the adjacent secondary battery does not run out of heat due to heat dissipation from a heat-generating secondary battery that rises in temperature due to thermal runaway. The temperature rise of the exothermic secondary battery that is thermally runaway is limited by the amount of heat, and the maximum temperature is lowered. For this reason, the exothermic secondary battery that undergoes thermal runaway is not overheated, and the adjacent secondary battery does not run thermal runaway. Although the temperature of a heat generating secondary battery that runs out of heat increases with time due to generated heat, if the temperature rise is limited by controlling the amount of discharge, the amount of heat generation decreases and the temperature does not rise after a certain period of time. Therefore, by controlling the heat dissipation of the heat generating secondary battery that runs out of heat to a specific range, the heat generating secondary battery that runs out of heat limits the amount of heat that overheats the adjacent secondary battery, and also limits the maximum temperature, It can cleverly prevent thermal runaway of the adjacent secondary battery.

したがって、図1の組電池は、二次電池1の間に設けている熱暴走防止壁3でもって、発熱する発熱二次電池1Aの輻射熱を遮断するが、発熱二次電池1Aの発熱を隣の二次電池1Bに熱伝導させて発熱二次電池1Aを放熱し、発熱二次電池1Aの熱暴走が隣の二次電池1Bに伝達されるのを防止する。   Therefore, the assembled battery of FIG. 1 blocks the radiant heat of the heat generating secondary battery 1A by the thermal runaway prevention wall 3 provided between the secondary batteries 1, but the heat generated by the heat generating secondary battery 1A is adjacent to the heat generating secondary battery 1A. The secondary battery 1B is thermally conducted to dissipate the heat generating secondary battery 1A, thereby preventing the thermal runaway of the heat generating secondary battery 1A from being transmitted to the adjacent secondary battery 1B.

図6の熱伝導筒4は、内面をテーパー状に成形して、内面に突出する部分を二次電池1の表面に面接触させている。この熱伝導筒4は、多少は外径に誤差のある二次電池1を挿入して、その表面に面接触できる。この熱伝導筒4は、内面と二次電池1との間の最小のクリアランスを0.5mm以下とする。   The heat conducting cylinder 4 of FIG. 6 has an inner surface formed into a taper shape, and a portion protruding from the inner surface is brought into surface contact with the surface of the secondary battery 1. The heat conducting cylinder 4 can be brought into surface contact with the surface by inserting the secondary battery 1 having a somewhat outside diameter error. The heat conduction cylinder 4 has a minimum clearance of 0.5 mm or less between the inner surface and the secondary battery 1.

組電池の二次電池1は、リチウムイオン二次電池である。リチウムイオン二次電池1は、非水系電解液を使用する。熱暴走してこの電解液が噴出されると、危険な状態となる。このため、リチウムイオン二次電池の組電池は、熱暴走をいかにして効果的に阻止できるかが大切であるから、本発明の組電池は、独特の構成で熱暴走を防止するので、リチウムイオン二次電池に適している。   The secondary battery 1 of the assembled battery is a lithium ion secondary battery. The lithium ion secondary battery 1 uses a non-aqueous electrolyte solution. If this electrolyte is ejected due to thermal runaway, a dangerous state is reached. For this reason, since it is important for the battery pack of a lithium ion secondary battery to effectively prevent thermal runaway, the battery pack of the present invention prevents thermal runaway with a unique configuration. Suitable for ion secondary battery.

熱伝導筒4は、二次電池1の全周をカバーするように成形される。ただ、図1に示すように、熱伝導筒4の一部に開口部5を設け、この開口部5に温度センサー6を配設して二次電池1の温度を検出することもできる。   The heat conducting cylinder 4 is formed so as to cover the entire circumference of the secondary battery 1. However, as shown in FIG. 1, an opening 5 may be provided in a part of the heat conducting cylinder 4, and a temperature sensor 6 may be provided in the opening 5 to detect the temperature of the secondary battery 1.

図の組電池は、二次電池1を円筒型電池とする。さらに、図1の組電池は、隣接して配設している二次電池1の谷間に他の二次電池1を配設し、3本の二次電池1の最接近隙間から3本の二次電池1で囲まれる境界領域を、熱暴走防止壁3を成形するプラスチックで隙間なく成形している。この組電池は、境界領域のプラスチックが熱暴走する発熱二次電池1Aの熱を吸収して、熱暴走する発熱二次電池1Aの温度上昇を緩慢にできる。   In the illustrated assembled battery, the secondary battery 1 is a cylindrical battery. Further, in the assembled battery of FIG. 1, another secondary battery 1 is arranged in the valley of the adjacent secondary batteries 1, and three batteries are arranged from the closest gap between the three secondary batteries 1. The boundary region surrounded by the secondary battery 1 is molded without gaps with the plastic that molds the thermal runaway prevention wall 3. This assembled battery can absorb the heat of the exothermic secondary battery 1A in which the plastic in the boundary region is thermally runaway, and can slow the temperature rise of the exothermic secondary battery 1A that is thermally runaway.

ところで、本明細書において、二次電池1の間の熱暴走防止壁3の厚さとは、円筒型電池においては、もっとも接近する部分の厚さを意味するものとする。この部分の熱移動がもっとも大きく、二次電池1の熱暴走に影響を与えるからである。   By the way, in this specification, the thickness of the thermal runaway prevention wall 3 between the secondary batteries 1 means the thickness of the closest part in a cylindrical battery. This is because the heat transfer in this portion is the largest and affects the thermal runaway of the secondary battery 1.

さらに、熱暴走防止壁3は、二次電池1の間で一部に開口部5を設けることができる。ただし、開口部5は、図7に示すように、隣接する二次電池1の対向面の一方にのみ開口し、あるいは、図8に示すように、隣接する二次電池1の対向面の両方に設けることができる。隣接する二次電池1の対向面の両方に開口部を設ける熱伝導筒4は、隣接する二次電池1の間隔(D)が最小間隔(d)の5倍以上となる部分に設ける。輻射熱による熱の伝導は、距離の自乗に反比例して少なくなるので、二次電池1の間隔が5倍になると、輻射熱による熱の伝導は1/25とほとんど無視できるほど小さくなる。したがって、熱伝導筒4が、最小間隔の5倍以上の部分の対向面に開口部5があっても、この開口部5から隣の二次電池1Bに輻射熱で移動する熱量は少ない。このため、開口部5の輻射熱が原因で隣の二次電池1Bの熱暴走が誘発されることはない。   Furthermore, the thermal runaway prevention wall 3 can be provided with an opening 5 in a part between the secondary batteries 1. However, the opening 5 opens only to one of the opposing surfaces of the adjacent secondary battery 1 as shown in FIG. 7, or both of the opposing surfaces of the adjacent secondary battery 1 as shown in FIG. Can be provided. The heat conducting cylinders 4 having openings on both opposing surfaces of the adjacent secondary batteries 1 are provided in a portion where the distance (D) between the adjacent secondary batteries 1 is five times or more the minimum distance (d). Since the heat conduction due to radiant heat decreases in inverse proportion to the square of the distance, when the interval between the secondary batteries 1 is increased five times, the heat conduction due to the radiant heat becomes 1/25, which is almost negligible. Therefore, even if the heat conducting cylinder 4 has the opening 5 on the opposite surface of the portion of 5 times or more of the minimum interval, the amount of heat transferred from the opening 5 to the adjacent secondary battery 1B by radiant heat is small. For this reason, the thermal runaway of the adjacent secondary battery 1B is not induced due to the radiant heat of the opening 5.

さらに、図9ないし図11に示す組電池は、熱伝導筒4の両端にエンドプレート7を連結してなるインナーケース8を備えており、このインナーケース8に複数の二次電池1を収納している。図のインナーケース8は、熱伝導筒4を軸方向の中間で2分割して、一対のケースユニット8Aに分割している。このケースユニット8Aは、分割された熱伝導筒4の端部にエンドプレート7を連結してなる形状にプラスチックで成形している。このインナーケース8は、熱伝導筒4の分割端である開口部から二次電池1を挿入し、一対のケースユニット8Aを互いに連結して、複数の二次電池1をインナーケース8に収納している。   Further, the assembled battery shown in FIGS. 9 to 11 includes an inner case 8 in which end plates 7 are connected to both ends of the heat conducting cylinder 4, and a plurality of secondary batteries 1 are accommodated in the inner case 8. ing. The illustrated inner case 8 is divided into a pair of case units 8A by dividing the heat conducting cylinder 4 into two in the middle in the axial direction. The case unit 8A is molded of plastic into a shape formed by connecting an end plate 7 to the end of the divided heat conducting cylinder 4. In the inner case 8, the secondary battery 1 is inserted from an opening that is a divided end of the heat conducting cylinder 4, and a pair of case units 8 </ b> A are connected to each other so that a plurality of secondary batteries 1 are accommodated in the inner case 8. ing.

中間で分割される熱伝導筒4は、図示しないが、分割端側からエンドプレート側に向かって次第に内径が小さくなるテーパー状に内面を成形している。この熱伝導筒4は、エンドプレート7側の端部の内面に突出する部分を二次電池1の表面に面接触させる。この熱伝導筒4は、多少は外径に誤差のある二次電池1を挿入して、その表面に面接触できる。この熱伝導筒4も、内面と二次電池1との間の最小のクリアランスを0.5mm以下とする。このように、熱伝導筒4を分割する構造は、プラスチックを成形する金型の設計を簡単にして、プラスチック成形を容易にできる特長がある。   Although not shown in the figure, the heat conduction cylinder 4 divided in the middle has an inner surface formed in a tapered shape in which the inner diameter gradually decreases from the divided end side toward the end plate side. In the heat conducting cylinder 4, a portion protruding from the inner surface of the end portion on the end plate 7 side is brought into surface contact with the surface of the secondary battery 1. The heat conducting cylinder 4 can be brought into surface contact with the surface by inserting the secondary battery 1 having a somewhat outside diameter error. This heat conducting cylinder 4 also has a minimum clearance of 0.5 mm or less between the inner surface and the secondary battery 1. As described above, the structure in which the heat conducting cylinder 4 is divided has a feature that simplifies the design of a mold for molding plastic and facilitates plastic molding.

図の組電池は、熱伝導筒4を軸方向の中間で2分割しているが、熱伝導筒は、3つ以上に分割することもできる。熱伝導筒を3つ以上に分割するインナーケースは、図示しないが、両端の端部ケースユニットと、中間の中間ケースユニットとに分割して、これらのケースユニットを互いに連結して、複数の二次電池を内部に収納する。   In the assembled battery shown in the figure, the heat conducting cylinder 4 is divided into two in the middle in the axial direction, but the heat conducting cylinder can also be divided into three or more. Although not shown, the inner case that divides the heat conducting cylinder into three or more parts is divided into end case units at both ends and an intermediate middle case unit, and these case units are connected to each other to form a plurality of two cases. The secondary battery is stored inside.

複数に分割されたケースユニット8Aは、プラスチックで一体的に成形されたボス9にネジ(図示せず)をねじ込んで互いに連結される。ただ、ケースユニットは、係止構造で連結し、あるいは接着して連結し、あるいはまた、これらを組み合わせて連結することもできる。   The divided case units 8A are connected to each other by screwing screws (not shown) into bosses 9 formed integrally with plastic. However, the case units can be connected by a locking structure, or can be connected by bonding, or they can be connected in combination.

さらに、組電池は、図11に示すように、隣接する二次電池1の間に熱暴走防止壁3を設けている。熱暴走防止壁3は、熱伝導筒4に一体的に成形されて、熱伝導筒4の一部を構成している。熱伝導筒4は、内面の形状を二次電池1の外形に等しい形状に成形している。熱伝導筒4は、二次電池1の熱を熱伝導によって熱暴走防止壁3に移動できるように、熱伝導筒4の内面と二次電池1の外面とのクリアランスを0.5mm以下として、二次電池1の表面を熱暴走防止壁3の内面に面接触状態で接触させている。さらに、熱暴走防止壁3は、熱伝導率を0.05W/m・K以上であって、3W/m・K以下とするプラスチックで成形している。さらに、熱暴走防止壁3は、熱伝導率に加えて、厚さを0.5mm以上であって3mm以下の限られた範囲としている。この組電池も、二次電池1の間に設けている熱暴走防止壁3でもって、発熱する発熱二次電池の輻射熱を遮断するが、発熱二次電池の発熱を隣の二次電池に熱伝導させて発熱二次電池を放熱し、発熱二次電池の熱暴走が隣の二次電池に伝達されるのを防止する。   Furthermore, the assembled battery is provided with a thermal runaway prevention wall 3 between the adjacent secondary batteries 1 as shown in FIG. The thermal runaway prevention wall 3 is integrally formed with the heat conduction cylinder 4 and constitutes a part of the heat conduction cylinder 4. The heat conduction cylinder 4 is formed so that the shape of the inner surface is equal to the outer shape of the secondary battery 1. The heat conduction tube 4 has a clearance of 0.5 mm or less between the inner surface of the heat conduction tube 4 and the outer surface of the secondary battery 1 so that the heat of the secondary battery 1 can be moved to the thermal runaway prevention wall 3 by heat conduction. The surface of the secondary battery 1 is brought into contact with the inner surface of the thermal runaway prevention wall 3 in a surface contact state. Furthermore, the thermal runaway prevention wall 3 is formed of a plastic having a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less. In addition to the thermal conductivity, the thermal runaway prevention wall 3 has a thickness in a limited range of 0.5 mm or more and 3 mm or less. This assembled battery also cuts off the radiant heat of the heat generating secondary battery that generates heat by the thermal runaway prevention wall 3 provided between the secondary batteries 1, but the heat generated by the heat generating secondary battery is heated to the adjacent secondary battery. Conductive heat is dissipated from the heat generating secondary battery, and thermal runaway of the heat generating secondary battery is prevented from being transmitted to the adjacent secondary battery.

さらに、図9と図10に示すインナーケース8は、熱伝導筒4の一部に開口部5を設け、この開口部5に温度センサー6を配設している。この組電池は、温度センサー6で二次電池1の温度を検出できる。図のインナーケース8は、分割された熱伝導筒4の互いに対向する連結部分を切欠して開口部5を設けている。図11の組電池は、左右の2箇所に開口部5を設けて温度センサー6を配置している。   Further, in the inner case 8 shown in FIGS. 9 and 10, an opening 5 is provided in a part of the heat conducting cylinder 4, and a temperature sensor 6 is provided in the opening 5. This assembled battery can detect the temperature of the secondary battery 1 with the temperature sensor 6. The illustrated inner case 8 is provided with an opening 5 by cutting away the connecting portions of the divided heat conducting cylinders 4 facing each other. In the assembled battery of FIG. 11, the temperature sensor 6 is disposed by providing openings 5 at two locations on the left and right.

さらに、図の組電池は、インナーケース8に収納される二次電池1の充放電をコントロールする回路を実装する回路基板10と、出力端子や接続端子を備える端子基板12と、この回路基板10と端子基板12を所定の位置に配置する基板ホルダー11とを備える。回路基板10は、リードを介して二次電池1に接続されており、実装する電圧検出回路で各々の二次電池1の電池電圧を検出して、これらの電池の充放電を制御する。端子基板12は、内蔵する二次電池1の出力用の出力端子や、外部機器との接続端子を装備しており、回路基板10の上側に配置されている。基板ホルダー11は、インナーケース8の上面に固定されており、回路基板10と端子基板12とを互いに平行な姿勢で、所定の位置に配置している。基板ホルダーが固定されたインナーケースが、アウターケース(図示せず)に収納されて組電池となる。   Further, the battery pack shown in the figure includes a circuit board 10 on which a circuit for controlling charge / discharge of the secondary battery 1 housed in the inner case 8 is mounted, a terminal board 12 having output terminals and connection terminals, and the circuit board 10. And a substrate holder 11 for arranging the terminal substrate 12 at a predetermined position. The circuit board 10 is connected to the secondary battery 1 via a lead, and the voltage detection circuit to be mounted detects the battery voltage of each secondary battery 1 and controls charging / discharging of these batteries. The terminal board 12 is equipped with an output terminal for output of the built-in secondary battery 1 and a connection terminal with an external device, and is arranged on the upper side of the circuit board 10. The board holder 11 is fixed to the upper surface of the inner case 8, and the circuit board 10 and the terminal board 12 are arranged in a predetermined position in a mutually parallel posture. The inner case to which the substrate holder is fixed is housed in an outer case (not shown) to form an assembled battery.

本発明の一実施例にかかる組電池の概略構成図である。It is a schematic block diagram of the assembled battery concerning one Example of this invention. 本発明の一実施例にかかる組電池の熱移動を示す概念図である。It is a conceptual diagram which shows the heat transfer of the assembled battery concerning one Example of this invention. 二次電池間の熱伝導量の多い組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery and the adjacent secondary battery in an assembled battery with much heat conduction between secondary batteries. 二次電池間の熱伝導量の少ない組電池における発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery and the adjacent secondary battery in an assembled battery with little heat conduction between secondary batteries. 二次電池間の熱伝導を特定の状態に制御する組電池にける発熱二次電池と隣の二次電池の温度上昇特性を示すグラフである。It is a graph which shows the temperature rise characteristic of the exothermic secondary battery and the adjacent secondary battery in the assembled battery which controls the heat conduction between secondary batteries to a specific state. 本発明の一実施例にかかる組電池の熱伝導筒の縦断面図である。It is a longitudinal cross-sectional view of the heat conductive cylinder of the assembled battery concerning one Example of this invention. 本発明の他の実施例にかかる組電池の要部拡大断面図である。It is a principal part expanded sectional view of the assembled battery concerning the other Example of this invention. 本発明の他の実施例にかかる組電池の要部拡大断面図である。It is a principal part expanded sectional view of the assembled battery concerning the other Example of this invention. 本発明の他の実施例にかかる組電池の斜視図である。It is a perspective view of the assembled battery concerning the other Example of this invention. 図9に示す組電池を上下反転した斜視図である。It is the perspective view which turned the assembled battery shown in FIG. 9 upside down. 図9に示す組電池の垂直断面図である。FIG. 10 is a vertical sectional view of the assembled battery shown in FIG. 9.

符号の説明Explanation of symbols

1…二次電池 1A…発熱二次電池
1B…隣の二次電池
2…ケース
3…熱暴走防止壁
4…熱伝導筒
5…開口部
6…温度センサー
7…エンドプレート
8…インナーケース 8A…ケースユニット
9…ボス
10…回路基板
11…基板ホルダー
12…端子基板
1 ... secondary battery 1A ... exothermic secondary battery
DESCRIPTION OF SYMBOLS 1B ... Secondary battery 2 ... Case 3 ... Thermal runaway prevention wall 4 ... Thermal conduction cylinder 5 ... Opening part 6 ... Temperature sensor 7 ... End plate 8 ... Inner case 8A ... Case unit 9 ... Boss 10 ... Circuit board 11 ... Board holder 12 ... Terminal board

Claims (7)

複数の二次電池(1)を平行な姿勢で隣接してケース(2)に収納してなる組電池において、
隣接する二次電池(1)の間に、プラスチック製の熱暴走防止壁(3)を設けると共に、この熱暴走防止壁(3)は、内面の形状を二次電池(1)の外形に等しい形状に成形している熱伝導筒(4)に一体的に成形されて、熱暴走防止壁(3)を熱伝導筒(4)の一部としており、
熱伝導筒(4)は、その内面と二次電池(1)の外面とのクリアランスを0.5mm以下として、二次電池(1)の表面を熱暴走防止壁(3)の内面に面接触状態で接触させており、
さらに、熱暴走防止壁(3)を成形するプラスチックは、熱伝導率を0.05W/m・K以上であって、3W/m・K以下とし、かつ熱暴走防止壁(3)はその厚さを0.5mm以上であって3mm以下としており、
二次電池(1)の間に設けている熱暴走防止壁(3)でもって、発熱する二次電池(1)の輻射熱を遮断するが、二次電池(1)の発熱を隣の二次電池(1)に熱伝導させて発熱二次電池(1)を放熱し、二次電池(1)の熱暴走が隣の二次電池(1)に伝達されるのを防止するようにしてなる組電池。
In an assembled battery in which a plurality of secondary batteries (1) are accommodated in a case (2) adjacent in parallel orientation
A plastic thermal runaway prevention wall (3) is provided between adjacent secondary batteries (1), and this thermal runaway prevention wall (3) has an inner surface shape equal to the outer shape of the secondary battery (1). It is molded integrally with the heat conduction cylinder (4) molded into a shape, and the thermal runaway prevention wall (3) is part of the heat conduction cylinder (4).
The heat conduction cylinder (4) has a clearance of 0.5 mm or less between its inner surface and the outer surface of the secondary battery (1), and the surface of the secondary battery (1) is in surface contact with the inner surface of the thermal runaway prevention wall (3). In contact with the state,
Furthermore, the plastic forming the thermal runaway prevention wall (3) has a thermal conductivity of 0.05 W / m · K or more and 3 W / m · K or less, and the thermal runaway prevention wall (3) is thick. The thickness is 0.5 mm or more and 3 mm or less,
The thermal runaway prevention wall (3) provided between the secondary batteries (1) blocks the radiant heat of the secondary battery (1) that generates heat, but the secondary battery (1) generates heat from the adjacent secondary battery (1). Conducting heat to the battery (1) to dissipate the heat generated from the secondary battery (1), thereby preventing the thermal runaway of the secondary battery (1) from being transmitted to the adjacent secondary battery (1). Assembled battery.
熱伝導筒(4)を、軸方向の中間で複数に分割してなる請求項1に記載される組電池。   The assembled battery according to claim 1, wherein the heat conducting cylinder (4) is divided into a plurality of parts in the middle in the axial direction. 熱伝導筒(4)の両端にエンドプレート(7)を連結してなるインナーケース(8)を備えており、このインナーケース(8)は、熱伝導筒(4)を軸方向の中間で2分割して、一対のケースユニット(8A)に分割しており、分割された一対のケースユニット(8A)を互いに連結して、複数の二次電池(1)をインナーケース(8)に収納している請求項1に記載される組電池。   An inner case (8) is formed by connecting end plates (7) to both ends of the heat conduction cylinder (4). This inner case (8) has two heat conduction cylinders (4) in the middle of the axial direction. It is divided into a pair of case units (8A), and the pair of divided case units (8A) are connected to each other to store a plurality of secondary batteries (1) in the inner case (8). The assembled battery according to claim 1. 熱伝導筒(4)の内面をテーパー状に成形して、内面に突出する部分を二次電池(1)の表面に面接触させてなる請求項1ないし3のいずれかに記載される組電池。   The assembled battery according to any one of claims 1 to 3, wherein the inner surface of the heat conducting cylinder (4) is formed into a tapered shape, and a portion protruding from the inner surface is brought into surface contact with the surface of the secondary battery (1). . 二次電池(1)がリチウムイオン二次電池である請求項1ないし3のいずれかに記載される組電池。   The assembled battery according to any one of claims 1 to 3, wherein the secondary battery (1) is a lithium ion secondary battery. 熱伝導筒(4)の一部に開口部(5)を設けており、この開口部(5)に温度センサー(6)を配設して二次電池(1)の温度を検出している請求項1ないし3のいずれかに記載される組電池。   An opening (5) is provided in a part of the heat conduction cylinder (4), and a temperature sensor (6) is provided in the opening (5) to detect the temperature of the secondary battery (1). The assembled battery according to any one of claims 1 to 3. 二次電池(1)が円筒型電池で、隣接して配設している二次電池(1)の谷間に他の二次電池(1)を配設し、3本の二次電池(1)の最接近隙間から3本の二次電池(1)で囲まれる境界領域を、熱暴走防止壁(3)を成形するプラスチックで隙間なく成形している請求項1ないし3のいずれかに記載される組電池。
The secondary battery (1) is a cylindrical battery, and another secondary battery (1) is arranged in the valley of the adjacent secondary battery (1), and three secondary batteries (1 4) The boundary region surrounded by the three secondary batteries (1) from the closest approach gap is formed with plastic forming the thermal runaway prevention wall (3) without any gap. Assembled battery.
JP2005162032A 2005-06-01 2005-06-01 Assembled battery Active JP4958409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162032A JP4958409B2 (en) 2005-06-01 2005-06-01 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162032A JP4958409B2 (en) 2005-06-01 2005-06-01 Assembled battery

Publications (2)

Publication Number Publication Date
JP2006339017A true JP2006339017A (en) 2006-12-14
JP4958409B2 JP4958409B2 (en) 2012-06-20

Family

ID=37559400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162032A Active JP4958409B2 (en) 2005-06-01 2005-06-01 Assembled battery

Country Status (1)

Country Link
JP (1) JP4958409B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251471A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Packed battery
JP2010108699A (en) * 2008-10-29 2010-05-13 Gs Yuasa Corporation Electric storage device and method for manufacturing the same
JP2010225336A (en) * 2009-03-21 2010-10-07 Sanyo Electric Co Ltd Battery pack
JP2011049011A (en) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd Battery pack
EP2403050A1 (en) 2010-07-02 2012-01-04 Saft Battery of electrochemical generators including a foam as a filling material between generators
JP2012064357A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
WO2012124273A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Battery block
WO2013029508A1 (en) * 2011-08-31 2013-03-07 华为技术有限公司 Cylindrical battery
US20140045037A1 (en) * 2011-05-30 2014-02-13 Panasonic Corporation Battery block and method for manufacturing same
JP2014110139A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Battery pack and vehicle
US20170141723A1 (en) * 2014-07-25 2017-05-18 Sekisui Chemical Co., Ltd. Power generation device provided with secondary battery
US9667077B2 (en) 2012-11-12 2017-05-30 Samsung Electronics Co., Ltd Cordless charging apparatus
WO2017125985A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Battery module
CN107275712A (en) * 2017-06-28 2017-10-20 江苏银基烯碳能源科技有限公司 Battery pack
WO2018037860A1 (en) * 2016-08-24 2018-03-01 パナソニックIpマネジメント株式会社 Battery module
CN108598625A (en) * 2018-05-30 2018-09-28 公安部天津消防研究所 The baffling device and application method of the extension of battery thermal runaway are prevented for battery system
CN114019263A (en) * 2020-07-16 2022-02-08 哲弗智能系统(上海)有限公司 Battery thermal runaway experimental device
US11417923B2 (en) * 2017-07-24 2022-08-16 Sanyo Electric Co., Ltd. Battery pack and manufacturing method therefor
EP3357107B1 (en) * 2015-10-01 2023-06-07 Gogoro Inc. Frame for portable electrical energy storage cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190403A1 (en) 2019-04-05 2022-06-16 Denka Company Limited Heat insulating material composition, heat insulating material, and method for manufacturing same
JPWO2022270360A1 (en) 2021-06-24 2022-12-29

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108687A (en) * 1998-10-08 2000-04-18 Polymatech Co Ltd Battery storage structure and method for electric vehicle
JP2000164181A (en) * 1998-11-24 2000-06-16 Toshiba Corp Battery pack, casing for battery pack, sticking and supporting member and manufacture thereof
JP2001155702A (en) * 1999-11-30 2001-06-08 Sony Corp Battery device
JP2001210286A (en) * 2000-01-27 2001-08-03 Sanyo Electric Co Ltd Packed battery
JP2002291670A (en) * 2001-03-30 2002-10-08 Toshiba Corp Battery-driven vacuum cleaner and battery pack
JP2002304974A (en) * 2001-04-05 2002-10-18 Hitachi Ltd Battery pack
JP2003077440A (en) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd Battery pack
JP2003229110A (en) * 2002-01-31 2003-08-15 Sanyo Electric Co Ltd Battery device for vehicle
JP2003308812A (en) * 2002-04-16 2003-10-31 Matsushita Electric Ind Co Ltd Battery pack
JP2004146161A (en) * 2002-10-23 2004-05-20 Sony Corp Battery pack
JP2004228047A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Battery pack
JP2005056837A (en) * 2003-07-22 2005-03-03 Polymatech Co Ltd Heat-conductive holder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108687A (en) * 1998-10-08 2000-04-18 Polymatech Co Ltd Battery storage structure and method for electric vehicle
JP2000164181A (en) * 1998-11-24 2000-06-16 Toshiba Corp Battery pack, casing for battery pack, sticking and supporting member and manufacture thereof
JP2001155702A (en) * 1999-11-30 2001-06-08 Sony Corp Battery device
JP2001210286A (en) * 2000-01-27 2001-08-03 Sanyo Electric Co Ltd Packed battery
JP2002291670A (en) * 2001-03-30 2002-10-08 Toshiba Corp Battery-driven vacuum cleaner and battery pack
JP2002304974A (en) * 2001-04-05 2002-10-18 Hitachi Ltd Battery pack
JP2003077440A (en) * 2001-09-03 2003-03-14 Sanyo Electric Co Ltd Battery pack
JP2003229110A (en) * 2002-01-31 2003-08-15 Sanyo Electric Co Ltd Battery device for vehicle
JP2003308812A (en) * 2002-04-16 2003-10-31 Matsushita Electric Ind Co Ltd Battery pack
JP2004146161A (en) * 2002-10-23 2004-05-20 Sony Corp Battery pack
JP2004228047A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Battery pack
JP2005056837A (en) * 2003-07-22 2005-03-03 Polymatech Co Ltd Heat-conductive holder

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251471A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Packed battery
JP2010108699A (en) * 2008-10-29 2010-05-13 Gs Yuasa Corporation Electric storage device and method for manufacturing the same
JP2010225336A (en) * 2009-03-21 2010-10-07 Sanyo Electric Co Ltd Battery pack
JP2011049011A (en) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd Battery pack
CN102005599A (en) * 2009-08-26 2011-04-06 三洋电机株式会社 Battery pack
EP2403050A1 (en) 2010-07-02 2012-01-04 Saft Battery of electrochemical generators including a foam as a filling material between generators
JP2012064357A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
US9548477B2 (en) 2011-03-17 2017-01-17 Panasonic Intellectual Property Management Co., Ltd. Battery block
JP5039245B1 (en) * 2011-03-17 2012-10-03 パナソニック株式会社 Battery block
WO2012124273A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Battery block
KR101346403B1 (en) * 2011-03-17 2014-01-10 파나소닉 주식회사 Battery block
US20140045037A1 (en) * 2011-05-30 2014-02-13 Panasonic Corporation Battery block and method for manufacturing same
US9236585B2 (en) * 2011-05-30 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Battery block and method for manufacturing same
WO2013029508A1 (en) * 2011-08-31 2013-03-07 华为技术有限公司 Cylindrical battery
US9667077B2 (en) 2012-11-12 2017-05-30 Samsung Electronics Co., Ltd Cordless charging apparatus
JP2014110139A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Battery pack and vehicle
US20170141723A1 (en) * 2014-07-25 2017-05-18 Sekisui Chemical Co., Ltd. Power generation device provided with secondary battery
EP3357107B1 (en) * 2015-10-01 2023-06-07 Gogoro Inc. Frame for portable electrical energy storage cells
WO2017125985A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Battery module
CN107925024B (en) * 2016-01-21 2021-05-25 松下知识产权经营株式会社 Battery module
CN107925024A (en) * 2016-01-21 2018-04-17 松下知识产权经营株式会社 Battery module
US10693112B2 (en) 2016-01-21 2020-06-23 Panasonic Intellectual Property Management Co., Ltd. Battery module
JPWO2017125985A1 (en) * 2016-01-21 2018-11-08 パナソニックIpマネジメント株式会社 Battery module
JPWO2018037860A1 (en) * 2016-08-24 2019-06-20 パナソニックIpマネジメント株式会社 Battery module
WO2018037860A1 (en) * 2016-08-24 2018-03-01 パナソニックIpマネジメント株式会社 Battery module
CN107275712A (en) * 2017-06-28 2017-10-20 江苏银基烯碳能源科技有限公司 Battery pack
US11417923B2 (en) * 2017-07-24 2022-08-16 Sanyo Electric Co., Ltd. Battery pack and manufacturing method therefor
CN108598625A (en) * 2018-05-30 2018-09-28 公安部天津消防研究所 The baffling device and application method of the extension of battery thermal runaway are prevented for battery system
CN114019263A (en) * 2020-07-16 2022-02-08 哲弗智能系统(上海)有限公司 Battery thermal runaway experimental device

Also Published As

Publication number Publication date
JP4958409B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958409B2 (en) Assembled battery
JP4849848B2 (en) Assembled battery
JP5857254B2 (en) Battery module
JP4730705B2 (en) Battery pack
JP6043555B2 (en) Battery cooling structure
KR102397774B1 (en) Battery module and battery pack having the same
WO2017130260A1 (en) Battery pack
JP2008523609A (en) Heat dissipation structure for secondary battery module, switching board including the same, and secondary battery module
BRPI0508152B1 (en) SAFETY DEVICE FOR PREVENTING OVERLOAD AND SECONDARY BATTERY USING SUCH DEVICE
JP6536497B2 (en) Battery pack
JP5173346B2 (en) Power supply
US20120282505A1 (en) System for Reducing Thermal Transfer between Cells in a Battery
EP3264519B1 (en) Battery pack
CA3028812A1 (en) Cell carrier comprising phase change material
JP2022535759A (en) battery module
JP2020095777A (en) Battery pack
JP7049548B2 (en) Battery module and battery pack containing it
JP2013149398A (en) Nonaqueous electrolyte secondary battery
WO2017104108A1 (en) Battery pack
WO2018179794A1 (en) Battery pack
KR102377870B1 (en) Battery module and battery pack including the same and vehicle
KR101095342B1 (en) Cellular Phone Containing Peltier Element for Temperature Control of Battery Pack
WO2018179733A1 (en) Battery pack
JP7285814B2 (en) secondary battery
KR102643721B1 (en) Battery module and battery pack including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4958409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350