WO2017130260A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2017130260A1
WO2017130260A1 PCT/JP2016/005174 JP2016005174W WO2017130260A1 WO 2017130260 A1 WO2017130260 A1 WO 2017130260A1 JP 2016005174 W JP2016005174 W JP 2016005174W WO 2017130260 A1 WO2017130260 A1 WO 2017130260A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cylindrical
battery pack
holder
air layer
Prior art date
Application number
PCT/JP2016/005174
Other languages
French (fr)
Japanese (ja)
Inventor
中野 雅也
米田 晴彦
稲岡 修
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2017130260A1 publication Critical patent/WO2017130260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention effectively prevents thermal runaway from being triggered in a cylindrical battery, while effectively suppressing the negative effects of a rupture in an outer canister. This battery pack comprises a plurality of cylindrical batteries (1) and a battery holder (2) in which the plurality of cylindrical batteries (1) are positioned in a parallel arrangement. The battery holder (2) is provided with a battery storage section (3) that has a plurality of insertion sections (4) in which the plurality of cylindrical batteries (1) are stored. In the battery storage section (3), partitioning walls (5) that form the insertion sections (4) are positioned between neighboring cylindrical batteries (1), lengthwise grooves (6) that extend in the lengthwise direction of the cylindrical batteries (1) are provided to the inner surfaces of the insertion sections (4), air layers (7) are formed between the lengthwise grooves (6) and the outer circumferential surfaces of the cylindrical batteries (1), and an air layer (7) is positioned between facing surfaces of neighboring cylindrical batteries (1).

Description

電池パックBattery pack
 本発明は、複数の円筒形電池を備える電池パックであって、1つの円筒形電池の熱暴走が近接する他の円筒形電池の熱暴走を誘発するのを確実に防止しながら、円筒形電池が側面から破裂する異常な状態においても類焼を確実に防止できる電池パックに関する。 The present invention relates to a battery pack including a plurality of cylindrical batteries, which can reliably prevent thermal runaway of one cylindrical battery from inducing thermal runaway of other cylindrical batteries in proximity. The present invention relates to a battery pack that can surely prevent similar burning even in an abnormal state in which the battery bursts from the side.
 二次電池は、内部ショートや過充電等、種々の原因で熱暴走を起こすことがある。例えば、リチウムイオン二次電池が熱暴走すると、電池温度は急激に上昇して300℃~400℃以上となることもある。複数の二次電池を備える電池パックの場合、何れかの二次電池が熱暴走して、隣の二次電池の熱暴走を誘発すると、多数の二次電池が熱暴走して熱暴走のエネルギが極めて大きくなる弊害がある。この弊害は、二次電池の周囲に樹脂などで成形された隔壁を配置し、あるいは二次電池の周囲に空気の層を設けることで隣接する二次電池への熱暴走を防止している。 Secondary batteries may cause thermal runaway due to various causes such as internal short circuit or overcharge. For example, when a lithium ion secondary battery runs out of heat, the battery temperature may rapidly increase to 300 ° C. to 400 ° C. or higher. In the case of a battery pack including a plurality of secondary batteries, if one of the secondary batteries causes a thermal runaway and induces a thermal runaway of the adjacent secondary battery, the energy of the thermal runaway occurs due to the thermal runaway of many secondary batteries. There is a harmful effect that becomes extremely large. This adverse effect prevents thermal runaway to adjacent secondary batteries by arranging partition walls made of resin or the like around the secondary battery or providing an air layer around the secondary battery.
 ここで、いずれかの二次電池が異常に発熱した際における、隣接する二次電池への熱の影響については、熱伝導の観点からみると空気の層を設ける構造が断熱性が高く有利である。しかしながら、二次電池が過熱されて異常な状態になると、外装缶の側面が裂けて直接火炎が発生するような異常な状態となることも有り、このような状態に対しては、樹脂などの遮断物を設けることの方が有効である。 Here, regarding the influence of heat on adjacent secondary batteries when one of the secondary batteries generates abnormal heat, the structure in which an air layer is provided is advantageous in that it has high heat insulation from the viewpoint of heat conduction. is there. However, if the secondary battery is overheated and becomes in an abnormal state, the side surface of the outer can may be torn and an abnormal state may occur in which a direct flame is generated. It is more effective to provide an obstruction.
特開2011-40382号公報JP2011-40382A 特開2011-18640号公報JP 2011-18640 A
 本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、円筒形電池の熱暴走の誘発を効果的に防止しながら、外装缶の破裂による悪影響を効果的に抑制できる電池パックを提供することにある。 The present invention was developed for the purpose of solving the above drawbacks. An important object of the present invention is to provide a battery pack that can effectively suppress the adverse effects caused by the rupture of the outer can while effectively preventing induction of thermal runaway of the cylindrical battery.
 本発明の電池パックは、複数の円筒形電池1と、複数の円筒形電池1を平行な姿勢で配置する電池ホルダ2とを備えている。電池ホルダ2は、複数の円筒形電池1を収納する複数の挿入部4を有する電池収納部3を備え、電池収納部3は、隣接する円筒形電池1の間に挿入部4を形成する隔壁5を配置すると共に、挿入部4の内面に円筒形電池1の長手方向に延びる縦溝6を設けて、縦溝6と円筒形電池1の外周面との間に空気層7を形成しており、互いに隣接する円筒形電池1の対向面の間に空気層7を配置している。 The battery pack of the present invention includes a plurality of cylindrical batteries 1 and a battery holder 2 for arranging the plurality of cylindrical batteries 1 in a parallel posture. The battery holder 2 includes a battery storage portion 3 having a plurality of insertion portions 4 for storing a plurality of cylindrical batteries 1, and the battery storage portion 3 is a partition wall that forms the insertion portions 4 between adjacent cylindrical batteries 1. 5, a longitudinal groove 6 extending in the longitudinal direction of the cylindrical battery 1 is provided on the inner surface of the insertion portion 4, and an air layer 7 is formed between the longitudinal groove 6 and the outer peripheral surface of the cylindrical battery 1. In addition, an air layer 7 is disposed between the opposing surfaces of the cylindrical batteries 1 adjacent to each other.
 上記構成により、電池パックは、複数の円筒形電池を電池ホルダの挿入孔に収納して、互いに隣接する円筒形電池の間に、挿入部を形成する隔壁と、円筒形電池の表面に沿って形成された空気層とを備えるので、過熱された円筒形電池の熱の移動を空気層で効果的に遮断して、隣接する円筒形電池間の熱伝導を抑制しながら、いずれかの円筒形電池が異常な状態となって円筒形電池の側面が破裂等を起こす状態では、隣接する円筒形電池の間に設けた隔壁により、隣接する円筒形電池に類焼等の悪影響を及ぼすのを抑制できる。 With the above configuration, the battery pack accommodates a plurality of cylindrical batteries in the insertion holes of the battery holder, and forms partition walls between adjacent cylindrical batteries, along the surface of the cylindrical battery. Any cylindrical shape while effectively blocking the heat transfer of the overheated cylindrical battery by the air layer and suppressing heat conduction between adjacent cylindrical batteries. When the battery is in an abnormal state and the side surface of the cylindrical battery is ruptured, the partition provided between the adjacent cylindrical batteries can suppress adverse effects such as similar firing on the adjacent cylindrical battery. .
 本発明の電池パックは、空気層7を、隣接する円筒形電池1の中心間に配置することができる。上記構成により、隣接する円筒形電池間で最短距離における熱伝導を回避して熱伝導の距離を稼ぐことで熱暴走を抑制できる。 In the battery pack of the present invention, the air layer 7 can be disposed between the centers of the adjacent cylindrical batteries 1. With the above configuration, thermal runaway can be suppressed by avoiding heat conduction at the shortest distance between adjacent cylindrical batteries to increase the heat conduction distance.
 本発明の電池パックは、電池ホルダ2が、互いに隣接する円筒形電池1の対向面の間に、各々の円筒形電池1の表面に沿って形成された空気層7を対向する姿勢で配置することができる。上記構成により、互いに隣接する円筒形電池の各々の表面に形成された空気層を対向姿勢で配置することで、隣接する円筒形電池間の熱伝導を効果的に抑制できる。 In the battery pack of the present invention, the battery holder 2 is arranged in such a manner that the air layer 7 formed along the surface of each cylindrical battery 1 is opposed between the opposed surfaces of the adjacent cylindrical batteries 1. be able to. With the above-described configuration, the heat conduction between the adjacent cylindrical batteries can be effectively suppressed by arranging the air layers formed on the surfaces of the adjacent cylindrical batteries in an opposing posture.
 本発明の電池パックは、対向する空気層7を、円筒形電池1の外周方向に位置ずれされた状態で配置することができる。上記構成により、対向する円筒形電池の間の広い領域を2つの空気層で効率よくカバーして熱伝導を抑制できる。 In the battery pack of the present invention, the opposing air layer 7 can be arranged in a state of being displaced in the outer peripheral direction of the cylindrical battery 1. With the above configuration, it is possible to efficiently cover a wide area between the opposed cylindrical batteries with two air layers and suppress heat conduction.
 本発明の電池パックは、互いに隣接する円筒形電池1の対向面の間に、各々の円筒形電池1の表面に沿って形成された空気層7をオーバーラップされた状態で配置することができる。上記構成により、隣接する円筒形電池間で最短距離における熱伝導を回避して、熱伝導の経路を非直線状とし、隣接する円筒形電池間での熱伝導を効果的に抑制できる。 In the battery pack of the present invention, the air layer 7 formed along the surface of each cylindrical battery 1 can be disposed between the opposing surfaces of the cylindrical batteries 1 adjacent to each other in an overlapping state. . With the above configuration, heat conduction at the shortest distance between adjacent cylindrical batteries can be avoided, the heat conduction path can be made non-linear, and heat conduction between adjacent cylindrical batteries can be effectively suppressed.
 本発明の電池パックは、電池ホルダ2の横断面視において、空気層7を円筒形電池1の外周に沿って複数設けることができる。 The battery pack of the present invention can be provided with a plurality of air layers 7 along the outer periphery of the cylindrical battery 1 in a cross-sectional view of the battery holder 2.
 本発明の電池パックは、電池ホルダ2は、挿入部4の内側に円筒形電池1の外周面に沿う挿入孔8を備えて、挿入孔8に円筒形電池1を収納することができる。 In the battery pack of the present invention, the battery holder 2 includes the insertion hole 8 along the outer peripheral surface of the cylindrical battery 1 inside the insertion portion 4, and the cylindrical battery 1 can be accommodated in the insertion hole 8.
 本発明の電池パックは、電池ホルダ42は、複数の挿入部4を多段多列に配置して、上下左右に配置される4つの挿入部4の間に空隙18を形成することができる。 In the battery pack of the present invention, the battery holder 42 has a plurality of insertion portions 4 arranged in multiple rows and columns, and the gap 18 can be formed between the four insertion portions 4 arranged in the vertical and horizontal directions.
 本発明の電池パックは、電池ホルダ62は、挿入部64の内側に円筒形電池1の外周面に沿う保持溝68を備えて、保持溝68に円筒形電池1を収納することができる。 In the battery pack of the present invention, the battery holder 62 includes a holding groove 68 along the outer peripheral surface of the cylindrical battery 1 inside the insertion portion 64, and the cylindrical battery 1 can be stored in the holding groove 68.
 本発明の電池パックは、電池ホルダ2は、隣接する挿入部4の間に谷間14を形成して、谷間14の一部を隣接する円筒形電池1の対向面の間に配置することができる。上記構成により、隣接する円筒形電池の間に谷間を浸入させることで、この部分における円筒形電池間の熱伝導を抑制できる特徴がある。 In the battery pack of the present invention, the battery holder 2 can form a valley 14 between the adjacent insertion portions 4, and a part of the valley 14 can be disposed between the opposing surfaces of the adjacent cylindrical batteries 1. . The above configuration has a feature that heat conduction between the cylindrical batteries in this portion can be suppressed by allowing a valley to enter between adjacent cylindrical batteries.
 本発明の電池パックは、円筒形電池1が、円筒状で有底の外装缶11の開口部を封口板12で閉塞して、挿入部4が、円筒形電池1の封口板12側の端部と対向する領域に空気層7を形成することができる。 In the battery pack of the present invention, the cylindrical battery 1 closes the opening portion of the cylindrical and bottomed outer can 11 with the sealing plate 12, and the insertion portion 4 is the end of the cylindrical battery 1 on the sealing plate 12 side. The air layer 7 can be formed in a region facing the part.
 本発明の電池パックは、円筒形電池1の外周面に沿って形成される空気層7の開口幅を円筒形電池1の外周全体の1/20~1/3とすることができる。 In the battery pack of the present invention, the opening width of the air layer 7 formed along the outer peripheral surface of the cylindrical battery 1 can be set to 1/20 to 1/3 of the entire outer periphery of the cylindrical battery 1.
 本発明の電池パックは、電池ホルダ2が、空気層7の全長を、円筒形電池1の全長の30%以上とすることができる。 In the battery pack of the present invention, the battery holder 2 allows the total length of the air layer 7 to be 30% or more of the total length of the cylindrical battery 1.
 本発明の電池パックは、電池ホルダ2が、空気層7の両端を挿入部4の両端面に開口することができる。 In the battery pack of the present invention, the battery holder 2 can open both ends of the air layer 7 to both end surfaces of the insertion portion 4.
本発明の一実施例にかかる電池パックの概略分解斜視図である。1 is a schematic exploded perspective view of a battery pack according to an embodiment of the present invention. 図1に示す電池パックの電池ホルダの垂直横断面図である。It is a vertical cross-sectional view of the battery holder of the battery pack shown in FIG. 図2に示す電池ホルダのIII-III線断面図である。FIG. 3 is a cross-sectional view of the battery holder shown in FIG. 2 taken along the line III-III. 本発明の他の実施例にかかる電池パックの電池ホルダを示す水平断面図である。It is a horizontal sectional view which shows the battery holder of the battery pack concerning the other Example of this invention. 図4に示す電池ホルダのV-V線断面図である。FIG. 5 is a cross-sectional view taken along line VV of the battery holder shown in FIG. 図4に示す電池ホルダのVI-VI線断面図である。FIG. 5 is a cross-sectional view of the battery holder shown in FIG. 4 taken along the line VI-VI. 本発明の他の実施例にかかる電池パックの電池ホルダを示す分解水平断面図である。It is a decomposition | disassembly horizontal sectional view which shows the battery holder of the battery pack concerning the other Example of this invention. 図7に示す電池パックのVIII-VIII線断面図である。FIG. 8 is a cross-sectional view of the battery pack shown in FIG. 7 taken along line VIII-VIII. 本発明の他の実施例にかかる電池パックの電池ホルダを示す垂直横断面図である。It is a vertical cross-sectional view which shows the battery holder of the battery pack concerning the other Example of this invention. 本発明の他の実施例にかかる電池パックの電池ホルダを示す垂直横断面図である。It is a vertical cross-sectional view which shows the battery holder of the battery pack concerning the other Example of this invention. 本発明の他の実施例にかかる電池パックの電池ホルダを示す垂直横断面図である。It is a vertical cross-sectional view which shows the battery holder of the battery pack concerning the other Example of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための電池パックを例示するものであって、本発明は電池パックを以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一若しくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a battery pack for embodying the technical idea of the present invention, and the present invention does not specify the battery pack as follows. Moreover, this specification does not specify the member shown by the claim as the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member. It can also be realized by sharing.
 本発明の電池パックは、主として動力用の電源として使用される。この電池パックは、例えば、電動工具、電動アシスト自転車、電動バイク、電動車椅子、電動三輪車、電動カート等のモータで駆動される電動機器の電源として使用される。ただし、本発明は、電池パックの用途を特定するものではなく、電動機器以外の電気機器、例えば、クリーナーや無線機、照明装置、デジタルカメラ、ビデオカメラ等の屋内外で使用される種々の電気機器用の電源として使用することができる。 The battery pack of the present invention is mainly used as a power source for power. This battery pack is used as a power source for an electric device driven by a motor such as an electric tool, an electric assist bicycle, an electric motorcycle, an electric wheelchair, an electric tricycle, and an electric cart. However, the present invention does not specify the use of the battery pack, and various electric devices used indoors and outdoors such as electric devices other than electric devices such as cleaners, wireless devices, lighting devices, digital cameras, and video cameras. It can be used as a power source for equipment.
 図1~図3に、本発明の実施例1に係る電池パックを示している。これらの図において、図1は電池パックの斜視図、図2は電池ホルダに円筒形電池を収納した横断面図、図3は図2の電池ホルダの水平断面図をそれぞれ示している。なお、これ等の図において、電池ホルダ2は、その形状及び構成をわかりやすくするために、厚さを誇張して示している。すなわち、実際の電池パックにおいては、円筒形電池の半径に対する電池ホルダの厚みの比率は、これ等の図に示す比率よりも小さくなる。 1 to 3 show a battery pack according to Embodiment 1 of the present invention. In these drawings, FIG. 1 is a perspective view of a battery pack, FIG. 2 is a transverse sectional view in which a cylindrical battery is accommodated in the battery holder, and FIG. 3 is a horizontal sectional view of the battery holder in FIG. In these drawings, the thickness of the battery holder 2 is exaggerated in order to make the shape and configuration easy to understand. That is, in an actual battery pack, the ratio of the thickness of the battery holder to the radius of the cylindrical battery is smaller than the ratio shown in these drawings.
 図1~図3に示す電池パックは、複数の円筒形電池1と、複数の円筒形電池1を互いに平行な姿勢で定位置に保持する電池ホルダ2とを備えている。さらに、図1に示す電池パックは、電池ホルダ2で保持された複数の円筒形電池1を外装ケース10に収納している。 The battery pack shown in FIGS. 1 to 3 includes a plurality of cylindrical batteries 1 and a battery holder 2 that holds the plurality of cylindrical batteries 1 in a fixed position in parallel with each other. Further, the battery pack shown in FIG. 1 stores a plurality of cylindrical batteries 1 held by a battery holder 2 in an outer case 10.
(円筒形電池1)
 円筒形電池1は、円筒状で有底の外装缶11に電極体を収納すると共に、電解液を充填して外装缶11の開口部を封口板12で閉塞している。円筒形電池1は、両端面である外装缶11の底面と、封口板12の中央部に設けた凸部電極とを正負の電極端子としている。円筒形電池1は、充放電できるリチウムイオン二次電池である。ただ、円筒形電池は、リチウムイオン二次電池に限定されず、ニッケル水素電池やニッケルカドミウム電池等の充放電できる電池とすることもできる。
(Cylindrical battery 1)
In the cylindrical battery 1, an electrode body is accommodated in a cylindrical and bottomed outer can 11, and an electrolyte is filled to close an opening of the outer can 11 with a sealing plate 12. The cylindrical battery 1 uses positive and negative electrode terminals for the bottom surface of the outer can 11 that is both end surfaces and the convex electrode provided at the center of the sealing plate 12. The cylindrical battery 1 is a lithium ion secondary battery that can be charged and discharged. However, the cylindrical battery is not limited to a lithium ion secondary battery, and may be a battery that can be charged and discharged, such as a nickel metal hydride battery or a nickel cadmium battery.
(電池ホルダ2)
 電池ホルダ2は、絶縁材料である熱可塑性樹脂等の樹脂によって所定の形状に成形されている。電池ホルダ2は、好ましくは難燃性に優れた樹脂製とすることができる。このような樹脂として、例えば、PC(ポリカーボネート)やPP(ポリプロピレン)が使用できる。
(Battery holder 2)
The battery holder 2 is formed into a predetermined shape by a resin such as a thermoplastic resin which is an insulating material. The battery holder 2 can be preferably made of a resin excellent in flame retardancy. As such a resin, for example, PC (polycarbonate) or PP (polypropylene) can be used.
 電池ホルダ2は、図1~図3に示すように、複数の円筒形電池1を平行な姿勢で配置する構造としている。電池ホルダ2は、円筒形電池1を収納する複数の挿入部4を有する電池収納部3を備えている。図に示す挿入部4は、内側に円筒形電池1を挿通させる挿入孔8を電池収納部3の両面に貫通して開口している。挿入孔8は、円筒形電池1の外周面に沿う内形としている。 The battery holder 2 has a structure in which a plurality of cylindrical batteries 1 are arranged in a parallel posture as shown in FIGS. The battery holder 2 includes a battery housing part 3 having a plurality of insertion parts 4 for housing the cylindrical battery 1. The insertion portion 4 shown in the drawing has an insertion hole 8 through which the cylindrical battery 1 is inserted inside and is opened through both surfaces of the battery storage portion 3. The insertion hole 8 has an inner shape along the outer peripheral surface of the cylindrical battery 1.
 図1~図3に示す電池ホルダ2は、2本の円筒形電池1を収納できるように、2つの挿入部4を平行な姿勢で横に並べた形状としている。図に示す電池ホルダ2は、挿入部4を円筒状としており、2本の円筒を連結して、横断面視が略8の字状となる形状に形成している。各挿入部4は、電池ホルダ2の外周面を構成する外周壁9と、隣接する円筒形電池1の間に配置される隔壁5とで形成されている。すなわち、この電池ホルダ2は、外周壁9と隔壁5とを一体成形して挿入部4を形成して、隣接して配置される2本の円筒形電池1の間に隔壁5を配置している。図2に示す電池ホルダ2は、外周壁9と隔壁5とをほぼ等しい厚さに成形している。ただし、挿入部4の連結部分においては、隔壁5の両側(図2においては隔壁5の上下の両端部)の厚さが他の部分よりも厚くなるように成形している。これにより、複数の挿入部4の連結強度を高めている。 The battery holder 2 shown in FIGS. 1 to 3 has a shape in which two insertion portions 4 are arranged side by side in a parallel posture so that two cylindrical batteries 1 can be accommodated. The battery holder 2 shown in the drawing has a cylindrical shape in the insertion portion 4, and is formed in a shape having a shape of approximately 8 in cross-sectional view by connecting two cylinders. Each insertion portion 4 is formed by an outer peripheral wall 9 constituting an outer peripheral surface of the battery holder 2 and a partition wall 5 disposed between the adjacent cylindrical batteries 1. That is, in this battery holder 2, the outer peripheral wall 9 and the partition wall 5 are integrally formed to form the insertion portion 4, and the partition wall 5 is disposed between two cylindrical batteries 1 disposed adjacent to each other. Yes. In the battery holder 2 shown in FIG. 2, the outer peripheral wall 9 and the partition wall 5 are formed to have substantially the same thickness. However, in the connection part of the insertion part 4, it shape | molds so that the thickness of the both sides of the partition 5 (in FIG. 2, the both upper and lower ends of the partition 5) may become thicker than another part. Thereby, the connection intensity | strength of the some insertion part 4 is raised.
 図2に示す電池ホルダ2は、隣接する挿入部4の間に谷間14を形成しており、この谷間14が隔壁5に切り込むように設けている。この構造は、谷間部分の樹脂を節約することで、使用する樹脂の量を少なくして製造コストを低減できる。また、隣接する円筒形電池1の間に谷間14を浸入させることで、この部分における熱伝導を抑制できる特徴がある。ただ、電池ホルダは、隣接する挿入部の間に形成する谷間を浅くして、隣接する円筒形電池の間に谷間が浸入しない形状とすることもできる。さらに、電池ホルダは、隣接する挿入部の間に谷間を形成することなく、挿入部の間に対向する外周面を略平面状とすることもできる。この場合、隣接する挿入部の間に貫通孔を設けて、この部分における熱伝導を抑制することもできる The battery holder 2 shown in FIG. 2 has a valley 14 formed between adjacent insertion portions 4, and the valley 14 is provided so as to cut into the partition wall 5. This structure saves the resin in the valleys, thereby reducing the amount of resin used and reducing the manufacturing cost. In addition, there is a feature that heat conduction in this portion can be suppressed by allowing the valley 14 to enter between the adjacent cylindrical batteries 1. However, the battery holder can be formed in such a shape that the valley formed between the adjacent insertion portions is shallow so that the valley does not enter between the adjacent cylindrical batteries. Furthermore, the battery holder can also make the outer peripheral surface which opposes between insertion parts into substantially planar shape, without forming a valley between adjacent insertion parts. In this case, a through-hole can be provided between adjacent insertion portions to suppress heat conduction in this portion.
(縦溝6、空気層7)
 さらに、図1~図3に示す電池ホルダ2は、挿入部4の内面に円筒形電池1の長手方向に延びる縦溝6を形成している。この電池ホルダ2は、図2と図3に示すように、挿入部4の内面に形成された縦溝6と円筒形電池1の外周面との間に空気層7を形成している。図1と図2に示す電池ホルダ2は、各挿入部4に4本の縦溝6を等間隔で設けている。各々の縦溝6は、図2に示すように、円筒形電池1の外周面の円弧に沿って形成されており、縦溝6の底面を円筒形電池1の外周面に沿う湾曲面としている。
(Vertical groove 6, air layer 7)
Furthermore, the battery holder 2 shown in FIGS. 1 to 3 has a longitudinal groove 6 extending in the longitudinal direction of the cylindrical battery 1 on the inner surface of the insertion portion 4. As shown in FIGS. 2 and 3, the battery holder 2 forms an air layer 7 between the longitudinal groove 6 formed on the inner surface of the insertion portion 4 and the outer peripheral surface of the cylindrical battery 1. The battery holder 2 shown in FIGS. 1 and 2 is provided with four longitudinal grooves 6 at equal intervals in each insertion portion 4. As shown in FIG. 2, each vertical groove 6 is formed along an arc of the outer peripheral surface of the cylindrical battery 1, and the bottom surface of the vertical groove 6 is a curved surface along the outer peripheral surface of the cylindrical battery 1. .
 さらに、電池ホルダ2は、互いに隣接する円筒形電池1の対向面の間に位置して、少なくとも1つの空気層7を配置している。本明細書において、「互いに隣接する円筒形電池1の対向面」とは、横断面視において隣接する2本の円筒形電池1の中心を結ぶ中心線と平行な2本の共通接線の間において対向する湾曲面であって、半円柱状の湾曲面を意味するものとする。図2に示す電池ホルダ2は、隣接する円筒形電池1の対向面の間に、各々の円筒形電池1の表面に沿って形成された空気層7を対向して配置している。図の電池ホルダ2は、対向する空気層7を円筒形電池1の外周に沿って位置ずれさせた状態で配置しており、対向する円筒形電池1の間の広い領域を2つの空気層7でカバーする構造としている。 Furthermore, the battery holder 2 is located between the opposing surfaces of the cylindrical batteries 1 adjacent to each other, and at least one air layer 7 is disposed. In the present specification, “the facing surfaces of the cylindrical batteries 1 adjacent to each other” means between two common tangents parallel to the center line connecting the centers of the two cylindrical batteries 1 adjacent to each other in a cross-sectional view. It is an opposing curved surface, and means a semi-cylindrical curved surface. In the battery holder 2 shown in FIG. 2, an air layer 7 formed along the surface of each cylindrical battery 1 is disposed between the opposed surfaces of adjacent cylindrical batteries 1. The battery holder 2 shown in the drawing is arranged in a state where the opposed air layers 7 are displaced along the outer periphery of the cylindrical battery 1, and a wide area between the opposed cylindrical batteries 1 is arranged in the two air layers 7. The structure is covered with
 さらに、対向する2つの空気層7は、隣接する円筒形電池1の中心を結ぶ線上において、互いにオーバーラップさせる状態で配置している。これにより、隣接する円筒形電池1間で最短距離における熱伝導を回避して、図2の矢印で示すように、熱伝導の経路が非直線状となるようにしている。互いに隣接する円筒形電池1の間に配置される隔壁5は、いずれか一方の円筒形電池1が過熱されて熱暴走した際に、熱伝導の経路となる。図2の矢印は、向かって左側の円筒形電池1が過熱されたときの熱伝導の経路を示している。この図に示すように、隔壁5の中央部分を通過する経路では、対向する空気層7の間を縫うように熱伝導させることで、熱伝導の方向を非直線状として熱伝導の距離を稼ぐことができる。同様に、隔壁5の上部または下部を通過する経路では、対向する空気層7を避けるように熱伝導させることで熱伝導の方向を非直線状として熱伝導の距離を稼ぐことができる。したがって、以上のように、対向する空気層7を円筒形電池1の外周に沿って位置ずれさせると共に、隣接する円筒形電池1の中心を結ぶ線上で互いにオーバーラップさせる構造は、直線的な熱伝導を回避して、隣接する円筒形電池1間での熱伝導を効果的に抑制できる。 Furthermore, the two air layers 7 facing each other are arranged in a state of overlapping each other on a line connecting the centers of the adjacent cylindrical batteries 1. This avoids heat conduction at the shortest distance between the adjacent cylindrical batteries 1 so that the heat conduction path is non-linear as shown by the arrow in FIG. The partition walls 5 arranged between the cylindrical batteries 1 adjacent to each other serve as a heat conduction path when any one of the cylindrical batteries 1 is overheated and undergoes thermal runaway. The arrows in FIG. 2 indicate the heat conduction paths when the left cylindrical battery 1 is overheated. As shown in this figure, in the path passing through the central portion of the partition wall 5, heat conduction is performed so as to sew between the opposing air layers 7, thereby making the heat conduction direction non-linear and increasing the heat conduction distance. be able to. Similarly, in the path passing through the upper part or the lower part of the partition wall 5, the heat conduction direction can be made non-linear by increasing the heat conduction distance by conducting heat conduction so as to avoid the facing air layer 7. Therefore, as described above, the structure in which the opposing air layers 7 are displaced along the outer periphery of the cylindrical battery 1 and overlaps each other on the line connecting the centers of the adjacent cylindrical batteries 1 is linear heat. By avoiding conduction, heat conduction between the adjacent cylindrical batteries 1 can be effectively suppressed.
 図に示す電池ホルダは、各々の挿入部4に形成された4列の空気層7を、隣接する円筒形電池1の中心を結ぶ線分の中点を対称の中心とする点対称な配置としている。これにより、隣接する円筒形電池1の対向面の間に配置される2つの空気層7をバランスよく配置できる。また、外周壁9に対向して形成される他の空気層7についても、均等に配置できる。 In the battery holder shown in the figure, four rows of air layers 7 formed in each insertion portion 4 are arranged in a point-symmetric manner with the midpoint of a line segment connecting the centers of adjacent cylindrical batteries 1 as the center of symmetry. Yes. Thereby, the two air layers 7 arrange | positioned between the opposing surfaces of the adjacent cylindrical batteries 1 can be arrange | positioned with sufficient balance. Further, the other air layers 7 formed so as to face the outer peripheral wall 9 can be equally arranged.
 図2に示す電池ホルダ2は、縦溝6の開口幅を円筒形電池1の外周の約1/8としている。この電池ホルダ2は、挿入部4の内面に4本の縦溝6を設けることで、円筒形電池1の外周に沿って形成される空気層7の領域を円筒形電池1の外周面の約1/2としている。このように、挿入部4の内面に形成される空気層7の割合を高くする構造は、隣接する円筒形電池1間における熱伝導を抑制して、円筒形電池1の発熱時における熱伝導を有効に防止できる。また、図に示すように、円筒形電池1の周囲に均等に空気層7を設けることで、発熱時の放熱バランスを均等にできる特徴がある。 In the battery holder 2 shown in FIG. 2, the opening width of the longitudinal groove 6 is set to about 1/8 of the outer periphery of the cylindrical battery 1. In the battery holder 2, four vertical grooves 6 are provided on the inner surface of the insertion portion 4, so that the region of the air layer 7 formed along the outer periphery of the cylindrical battery 1 can be reduced to about the outer peripheral surface of the cylindrical battery 1. 1/2. Thus, the structure in which the ratio of the air layer 7 formed on the inner surface of the insertion portion 4 is increased suppresses the heat conduction between the adjacent cylindrical batteries 1, and the heat conduction of the cylindrical battery 1 during heat generation is suppressed. It can be effectively prevented. Moreover, as shown in the figure, by providing the air layer 7 uniformly around the cylindrical battery 1, there is a feature that the heat radiation balance during heat generation can be made uniform.
 ただ、円筒形電池1の外周に沿って形成される空気層7の幅、すなわち縦溝6の開口幅は、円筒形電池1の外周の1/8よりも小さくすることも、大きくすることもできる。ここで、空気層7の開口幅、すなわち、縦溝6の開口幅は、挿入部4の内面に形成される空気層7の数や、隣接する円筒形電池1の間に対向して配置される空気層7の有無や配置によっても変更されるが、円筒形電池1の外周の1/20~1/3、好ましくは、1/12~1/4とすることができる。例えば、対向する2つ空気層7で円筒形電池1間の広い領域をカバーする場合には、各空気層2の開口幅を、円筒形電池1の外周の1/20~1/6とすることができる。後述するが、隣接する円筒形電池1の間を単一の空気層7でカバーする場合には、空気層2の開口幅を、円筒形電池1の外周の1/8~1/3、好ましくは、1/6~1/4とすることができる。 However, the width of the air layer 7 formed along the outer periphery of the cylindrical battery 1, that is, the opening width of the longitudinal groove 6, can be made smaller or larger than 1/8 of the outer periphery of the cylindrical battery 1. it can. Here, the opening width of the air layer 7, that is, the opening width of the longitudinal groove 6, is disposed so as to face the number of the air layers 7 formed on the inner surface of the insertion portion 4 or between the adjacent cylindrical batteries 1. Depending on the presence / absence and arrangement of the air layer 7, it can be changed to 1/20 to 1/3, preferably 1/12 to 1/4 of the outer circumference of the cylindrical battery 1. For example, when covering a wide area between the cylindrical batteries 1 with the two air layers 7 facing each other, the opening width of each air layer 2 is set to 1/20 to 1/6 of the outer periphery of the cylindrical battery 1. be able to. As will be described later, when the space between adjacent cylindrical batteries 1 is covered with a single air layer 7, the opening width of the air layer 2 is preferably 1/8 to 1/3 of the outer periphery of the cylindrical battery 1, preferably Can be from 1/6 to 1/4.
 さらに、電池ホルダ2は、隣接する円筒形電池1の対向面の間に配置される隔壁5の厚さ及び縦溝6の深さを、縦溝6(空気層7)の個数や配置、間隔、さらには使用される円筒形電池1の種類や容量、さらにまた、使用される樹脂の材料等を考慮して最適な値となるように決定する。例えば、円筒形電池1として容量を4Ahとするリチウムイオン二次電池を使用し、電池ホルダ2をポリカーボネートで成形すると共に、図2に示すように、隣接する円筒形電池1の間に配置される隔壁5の両面に開口幅を円筒形電池1の外周の約1/8とする空気層7をオーバーラップさせる配置で設けてなる電池ホルダ2においては、隔壁5全体の厚さを2mmとし、縦溝6の深さを0.5mmとして、理想的な状態で熱伝導を抑制できる。ただし、電池ホルダは、隔壁の厚さを0.5~3.5mmとし、縦溝の深さを0.1~1.3mmとすることもできる。 Further, the battery holder 2 is configured so that the thickness of the partition wall 5 and the depth of the vertical groove 6 disposed between the opposing surfaces of the adjacent cylindrical batteries 1 are the same as the number, arrangement, and interval of the vertical grooves 6 (air layer 7). Further, it is determined so as to be an optimum value in consideration of the type and capacity of the cylindrical battery 1 to be used and the material of the resin to be used. For example, a lithium ion secondary battery having a capacity of 4 Ah is used as the cylindrical battery 1, and the battery holder 2 is formed of polycarbonate, and is disposed between adjacent cylindrical batteries 1 as shown in FIG. In the battery holder 2 in which the air layer 7 having an opening width of about 1/8 of the outer periphery of the cylindrical battery 1 is provided on both surfaces of the partition wall 5 so as to overlap, the entire partition wall 5 has a thickness of 2 mm, By setting the depth of the groove 6 to 0.5 mm, heat conduction can be suppressed in an ideal state. However, the battery holder may have a partition wall thickness of 0.5 to 3.5 mm and a vertical groove depth of 0.1 to 1.3 mm.
 さらに、図1と図3に示す電池ホルダ2は、4本の縦溝6を、挿入部4の両端まで延長して開口している。この構造は、円筒形電池1の全体にわたって熱伝導を抑制できる。ただ、縦溝6は、詳細には後述するが、挿入部4の長手方向において、部分的に設けることもできる。また、縦溝は、複数に分割して設けることもできる。ここで、電池ホルダ2の挿入部4に形成される縦溝の長手方向における全長は、円筒形電池1の全長の30%以上、好ましくは50%以上とすることができる。 Further, the battery holder 2 shown in FIGS. 1 and 3 has four longitudinal grooves 6 extending to both ends of the insertion portion 4 and opened. This structure can suppress heat conduction throughout the cylindrical battery 1. However, the longitudinal grooves 6 can be partially provided in the longitudinal direction of the insertion portion 4, as will be described later in detail. Further, the vertical groove can be divided into a plurality of pieces. Here, the total length of the longitudinal grooves formed in the insertion portion 4 of the battery holder 2 in the longitudinal direction can be 30% or more, preferably 50% or more of the total length of the cylindrical battery 1.
 以上の電池ホルダ2は、電池収納部3である2つの挿入部4に、2本の円筒形電池1を逆向きに挿入している。逆向きに挿通される2本の円筒形電池1は、リード板15を介して直列に接続される。さらに、直列に接続された2本の円筒形電池1の両端には、出力用のリード板15Aが接続される。電池収納部3に収納された円筒形電池1がリード板15で接続された電池ホルダ2は、外装ケース10に収納されて電池パックとなる。 In the battery holder 2 described above, two cylindrical batteries 1 are inserted in the opposite directions into the two insertion portions 4 which are the battery storage portions 3. Two cylindrical batteries 1 inserted in opposite directions are connected in series via a lead plate 15. Further, output lead plates 15A are connected to both ends of the two cylindrical batteries 1 connected in series. The battery holder 2 to which the cylindrical battery 1 stored in the battery storage unit 3 is connected by the lead plate 15 is stored in the outer case 10 to form a battery pack.
(外装ケース10)
 図1に示す外装ケース10は、複数の円筒形電池1を定位置に配置してなる電池ホルダ2を収納している。図に示す外装ケース10は、本体ケース10Aと蓋ケース10Bに分割されており、内部には電池ホルダ2を収納する収納部を形成している。図1に示す本体ケース10Aは、電池ホルダ2のほぼ全体を収納可能な深さを有する箱形としている。この外装ケース10は、本体ケース10Aと蓋ケース10Bに設けている周壁の端面を超音波溶着し、あるいは接着して連結される。図示しないが、本体ケースと蓋ケースは、一方のケースを貫通する止ネジをして、他方のケースに設けたボスにねじ込んで連結することもできる。
(Exterior case 10)
An exterior case 10 shown in FIG. 1 houses a battery holder 2 in which a plurality of cylindrical batteries 1 are arranged at fixed positions. The exterior case 10 shown in the drawing is divided into a main body case 10A and a lid case 10B, and a storage portion for storing the battery holder 2 is formed inside. A main body case 10 </ b> A shown in FIG. 1 has a box shape having a depth that can accommodate almost the entire battery holder 2. The outer case 10 is connected by ultrasonic welding or bonding the end surfaces of the peripheral walls provided in the main body case 10A and the lid case 10B. Although not shown, the main body case and the lid case can be connected by screwing into a boss provided in the other case with a set screw penetrating the one case.
 さらに、外装ケースは、電池ホルダ2に加えて回路基板を収納することもできる。回路基板は保護回路などの電子部品を実装することができる。保護回路は、各々の円筒形電池の電圧、残容量、温度などを検出する検出回路と、この検出回路で検出される電池データでオンオフにスイッチングされるスイッチング素子を備えることができる。また、回路基板を収納してなる電池パックは、回路基板に接続している出力コネクタを外装ケースに固定することもできる。出力コネクタは出力端子と信号端子とを有し、出力端子を介して充放電され、信号端子を介してセットされる機器と通信することができる。ただ、電池パックは、出力コネクタを設けることなく、出力端子と信号端子からなる接続端子を回路基板に固定し、これらの接続端子を底ケースから表出させて、外部接続する構造とすることもできる。 Furthermore, the exterior case can store a circuit board in addition to the battery holder 2. An electronic component such as a protection circuit can be mounted on the circuit board. The protection circuit can include a detection circuit that detects the voltage, remaining capacity, temperature, and the like of each cylindrical battery, and a switching element that is switched on and off by battery data detected by the detection circuit. Moreover, the battery pack which accommodates a circuit board can also fix the output connector connected to the circuit board to an exterior case. The output connector has an output terminal and a signal terminal, is charged / discharged through the output terminal, and can communicate with a device set through the signal terminal. However, the battery pack may have a structure in which connection terminals made up of output terminals and signal terminals are fixed to a circuit board without providing an output connector, and these connection terminals are exposed from the bottom case to be externally connected. it can.
 以上の実施例の電池パックは、電池収納部3を形成する挿入部4の内面に4列の縦溝6を設けて、各円筒形電池1の表面には4本の空気層7を形成している。ただ、電池パックは、必ずしも円筒形電池1の外周面の全体に空気層を設ける必要はなく、隣接する円筒形電池の間にのみ空気層を設けることもできる。また、隣接する円筒形電池の間に形成される空気層は、必ずしも対向する円筒形電池の両方に設ける必要はなく、対向する円筒形電池のいずれか一方にのみ設けることもできる。以下、図4~図11に本発明の他の実施例にかかる電池パックに使用する電池ホルダの例を示している。これ等の図においても、電池ホルダ2は、その形状及び構成をわかりやすくするために、厚さを誇張して示している。  In the battery pack of the above embodiment, four rows of vertical grooves 6 are provided on the inner surface of the insertion portion 4 forming the battery housing portion 3, and four air layers 7 are formed on the surface of each cylindrical battery 1. ing. However, in the battery pack, it is not always necessary to provide an air layer on the entire outer peripheral surface of the cylindrical battery 1, and an air layer can be provided only between adjacent cylindrical batteries. Moreover, the air layer formed between adjacent cylindrical batteries does not necessarily need to be provided in both of the opposing cylindrical batteries, and can be provided only in one of the opposing cylindrical batteries. 4 to 11 show examples of battery holders used for battery packs according to other embodiments of the present invention. In these drawings, the thickness of the battery holder 2 is exaggerated in order to make the shape and configuration easy to understand. *
(実施例2の電池ホルダ)
 図4~図6に示す電池ホルダ22は、3本の円筒形電池1を収納できるように、3つの挿入部4を平行な姿勢で横一列に並べた形状の電池収納部23を備えている。図に示す電池ホルダ22は、挿入部4を円筒状としており、3本の円筒を連結してなる形状に成形している。この電池ホルダ2は、外周壁9と隔壁25とを一体成形して挿入部4を形成して、隣接して配置される3本の円筒形電池1の間に隔壁25を配置している。
(Battery holder of Example 2)
The battery holder 22 shown in FIGS. 4 to 6 includes a battery storage portion 23 having a shape in which three insertion portions 4 are arranged in a horizontal row in parallel postures so as to store three cylindrical batteries 1. . The battery holder 22 shown in the figure has a cylindrical shape in the insertion portion 4 and is formed into a shape formed by connecting three cylinders. In the battery holder 2, the outer peripheral wall 9 and the partition wall 25 are integrally formed to form the insertion portion 4, and the partition wall 25 is disposed between the three cylindrical batteries 1 disposed adjacent to each other.
 さらに、図4~図6に示す電池ホルダ22は、隣接する円筒形電池1の対向面の間において、対向する円筒形電池1のいずれか一方の円筒形電池1の外周面にのみ空気層27を設けている。図に示す電池ホルダ22は、挿入部4の内面であって、円筒形電池1の封口板12が配置される側の端部にのみ縦溝26を設けて空気層27を形成している。この電池ホルダ22は、図4と図5に示すように、3つの挿入部4のうち、中間の挿入部4に収納される円筒形電池1の封口板12側の端部の両側に配置された隔壁25の内面に縦溝26を設けて空気層27を形成し、図4と図6に示すように、3つの挿入部4のうち、両側の挿入部4に収納される円筒形電池1の封口板12側の端部と対向する隔壁5の内面に縦溝26を設けて空気層27を形成している。 Furthermore, the battery holder 22 shown in FIG. 4 to FIG. 6 has an air layer 27 only on the outer peripheral surface of one of the opposed cylindrical batteries 1 between the opposed surfaces of the adjacent cylindrical batteries 1. Is provided. The battery holder 22 shown in the figure is an inner surface of the insertion portion 4, and a vertical groove 26 is provided only at an end portion on the side where the sealing plate 12 of the cylindrical battery 1 is disposed to form an air layer 27. As shown in FIGS. 4 and 5, the battery holder 22 is disposed on both sides of the end portion on the sealing plate 12 side of the cylindrical battery 1 housed in the intermediate insertion portion 4 among the three insertion portions 4. A vertical groove 26 is provided on the inner surface of the partition wall 25 to form an air layer 27. As shown in FIGS. 4 and 6, the cylindrical battery 1 accommodated in the insertion portions 4 on both sides of the three insertion portions 4 is used. A vertical groove 26 is provided on the inner surface of the partition wall 5 facing the end of the sealing plate 12 side to form an air layer 27.
 図5と図6に示す電池ホルダ22は、縦溝26(空気層27)の開口幅を円筒形電池1の外周の約1/6としている。この電池ホルダ22は、互いに隣接する円筒形電池1のうち、一方の円筒形電池1と対向する隔壁25にのみ縦溝26を設けて空気層27を形成する。したがって、構造を簡単にしながら、隣接する円筒形電池1間では熱伝導を抑制できる特徴がある。この電池ホルダ22も、いずれかの円筒形電池1が過熱されて熱暴走する状態では、熱伝導の経路が非直線状となるようにして、速やかな熱伝導を回避している。図の電池ホルダ22は、縦溝26の開口幅を、円筒形電池1の端部の外周面の約1/6として、対向する円筒形電池1の間の広い領域を単一の空気層7でカバーする構造としている。 The battery holder 22 shown in FIGS. 5 and 6 has an opening width of the longitudinal groove 26 (air layer 27) set to about 1/6 of the outer periphery of the cylindrical battery 1. The battery holder 22 forms the air layer 27 by providing the vertical groove 26 only in the partition wall 25 facing the one cylindrical battery 1 among the cylindrical batteries 1 adjacent to each other. Therefore, there is a feature that heat conduction can be suppressed between the adjacent cylindrical batteries 1 while simplifying the structure. This battery holder 22 also avoids rapid heat conduction by making the heat conduction path non-linear when any one of the cylindrical batteries 1 is overheated and undergoes thermal runaway. In the illustrated battery holder 22, the opening width of the longitudinal groove 26 is set to about 1/6 of the outer peripheral surface of the end of the cylindrical battery 1, and a wide region between the opposed cylindrical batteries 1 is formed as a single air layer 7. The structure is covered with
 さらに、図に示す電池ホルダ22は、円筒形電池1の封口板12と対向する端部にのみ空気層27を設ける構造としている。この電池ホルダ22は、図4に示すように、挿入部4に形成される縦溝26の全長を挿入部4全体の約1/2として、挿入部4の中間部分まで空気層27を有する構造としている。この電池ホルダ22は、図4に示すように3つの挿入部4のうち、中間に配置される挿入部4については、図において下側の端部の両側に対向して配置された隔壁25の内面に縦溝26を設けている。この縦溝26は、図4において下側の開口端から挿入部4の中間まで延長して形成されている。また、図4に示すように3つの挿入部4のうち両側に配置される挿入部4については、図において上側の端部の中央側に対向して配置された隔壁25の内面に縦溝26を設けている。この縦溝26は、図4において上側の開口端から挿入部4の中間まで延長して形成されている。 Furthermore, the battery holder 22 shown in the figure has a structure in which an air layer 27 is provided only at an end portion facing the sealing plate 12 of the cylindrical battery 1. As shown in FIG. 4, the battery holder 22 has a structure having an air layer 27 up to an intermediate portion of the insertion portion 4 with the entire length of the longitudinal groove 26 formed in the insertion portion 4 being about ½ of the entire insertion portion 4. It is said. As shown in FIG. 4, the battery holder 22 includes a partition wall 25 arranged opposite to both sides of the lower end portion in the drawing with respect to the insertion portion 4 arranged in the middle of the three insertion portions 4. A longitudinal groove 26 is provided on the inner surface. The vertical groove 26 is formed to extend from the lower opening end to the middle of the insertion portion 4 in FIG. Further, as shown in FIG. 4, the insertion portions 4 arranged on both sides of the three insertion portions 4 are vertically grooved 26 on the inner surface of the partition wall 25 arranged opposite to the center side of the upper end portion in the drawing. Is provided. The vertical groove 26 is formed to extend from the upper opening end to the middle of the insertion portion 4 in FIG.
 このように、対向する円筒形電池1のいずれか一方にのみ空気層27を設ける構造は、電池ホルダ22を製造する金型を簡素化して安価に製造できる特徴がある。とくに、図に示す電池ホルダ22は、挿入部4に収納される円筒形電池1の封口板12側の端部と対向する領域にのみ空気層27を設ける構造としている。円筒形電池1は、図示しないが、凸部電極を設けた封口板12に排気口を設けて、この排気口に安全弁を設けている。この円筒形電池1は、過充電や内部短絡等により電池の内圧が上昇すると、安全弁を開弁して内部のガスを排気口から排気して安全性を保証するようにしている。このため、円筒形電池1は、異常が発生してさらに過熱されると、封口板12側から高温のガスが噴出し、あるいは燃焼する火炎となって噴出されるため、缶底側に比べて封口板12側の方が高温になる弊害が発生しやすい。このため、電池ホルダ22は、挿入部4に収納される円筒形電池1の両端のうち、封口板12側の方が高温になる弊害が生じやすい。したがって、電池ホルダ22は、図4~図6に示すように、封口板12側の端部と対向する内面に空気層27を設けることでより効果的に熱暴走による弊害を抑制できる。 Thus, the structure in which the air layer 27 is provided only on one of the opposed cylindrical batteries 1 has a feature that the mold for manufacturing the battery holder 22 can be simplified and manufactured at low cost. In particular, the battery holder 22 shown in the figure has a structure in which the air layer 27 is provided only in a region facing the end of the cylindrical battery 1 housed in the insertion portion 4 on the sealing plate 12 side. Although not shown, the cylindrical battery 1 is provided with an exhaust port in a sealing plate 12 provided with a convex electrode, and a safety valve is provided at the exhaust port. In the cylindrical battery 1, when the internal pressure of the battery rises due to overcharge, internal short circuit or the like, the safety valve is opened and the internal gas is exhausted from the exhaust port to ensure safety. For this reason, in the case where the cylindrical battery 1 is abnormally heated and further heated, a high-temperature gas is ejected from the sealing plate 12 side or ejected as a burning flame. There is a tendency for the harmful effect that the sealing plate 12 side becomes higher in temperature. For this reason, the battery holder 22 is liable to cause a problem that the sealing plate 12 side has a higher temperature among both ends of the cylindrical battery 1 housed in the insertion portion 4. Therefore, as shown in FIGS. 4 to 6, the battery holder 22 can more effectively suppress the adverse effects caused by the thermal runaway by providing the air layer 27 on the inner surface facing the end on the sealing plate 12 side.
(実施例3の電池ホルダ)
 さらに、図7と図8に示す電池ホルダ32は、中間で分割してなる一対のホルダーユニット32Aで構成している。図7と図8に示す電池ホルダ32は、円筒形電池1を挿通して保持する電池収納部33の両端に、円筒形電池1の両端の電極端子を表出させる開口窓34aを開口すると共に、この開口窓34aから表出する円筒形電池1の電極端子にリード板15及び出力用のリード板15Aを接続できるようにしている。電池ホルダ32は、両端面にリード板15及び出力用のリード板15Aを配置する凹部31を形成している。さらに、両端面において、円筒形電池1の端面を位置決めする位置決凸部34bを内側に突出して設けている。
(Battery holder of Example 3)
Further, the battery holder 32 shown in FIG. 7 and FIG. 8 is constituted by a pair of holder units 32A divided in the middle. The battery holder 32 shown in FIG. 7 and FIG. 8 has opening windows 34 a that expose electrode terminals at both ends of the cylindrical battery 1 at both ends of the battery storage portion 33 through which the cylindrical battery 1 is inserted and held. The lead plate 15 and the output lead plate 15A can be connected to the electrode terminals of the cylindrical battery 1 exposed from the opening window 34a. The battery holder 32 has recesses 31 in which the lead plate 15 and the output lead plate 15A are disposed at both end faces. Furthermore, the positioning convex part 34b which positions the end surface of the cylindrical battery 1 protrudes inward in both end surfaces.
 さらに、図の電池ホルダ32は、円筒形電池1の全体を挿入部34で被覆できるように、各ホルダーユニット32Aに形成される挿入部34の長さを円筒形電池1の全長のほぼ半分の長さとしている。一対のホルダーユニット32Aは、円筒形電池1の両端部から装着されて互いに連結する状態で、一対の挿入部34で円筒形電池1の全体を被覆する。このように円筒形電池1の全体を挿入部34で被覆する構造は、隣接する円筒形電池1間の類焼を有効に防止できる。 Further, in the illustrated battery holder 32, the length of the insertion portion 34 formed in each holder unit 32 </ b> A is approximately half of the entire length of the cylindrical battery 1 so that the entire cylindrical battery 1 can be covered with the insertion portion 34. It is a length. The pair of holder units 32 </ b> A are attached from both ends of the cylindrical battery 1 and are connected to each other, and cover the entire cylindrical battery 1 with the pair of insertion portions 34. In this way, the structure in which the entire cylindrical battery 1 is covered with the insertion portion 34 can effectively prevent similar burning between adjacent cylindrical batteries 1.
 さらに、図の電池ホルダ32は、ホルダーユニット32Aを形成する挿入部34の内面に1列の縦溝36を設けて、各円筒形電池1の外周面との間に空気層37を形成している。図の電池ホルダ32は、隣接する円筒形電池1の間に形成された隔壁35の両面に空気層37を設けている。この電池ホルダ32は、図8に示すように、隣接する円筒形電池1の対向面の間に、各々の円筒形電池1の表面に沿って形成された空気層37を対向して配置している。図の電池ホルダ32は、対向する空気層37を円筒形電池1の外周に沿って位置ずれさせた状態で配置しており、対向する円筒形電池1の間の広い領域を2つの空気層7でカバーする構造としている。さらに、対向する2つの空気層37は、隣接する円筒形電池1の中心を結ぶ線上において、互いにオーバーラップさせる状態で配置している。これにより、隣接する円筒形電池1間で最短距離における熱伝導を回避して、熱伝導の経路が非直線状となるようにしている。 Further, the battery holder 32 shown in the figure is provided with a row of vertical grooves 36 on the inner surface of the insertion portion 34 forming the holder unit 32A, and an air layer 37 is formed between the outer peripheral surfaces of the cylindrical batteries 1. Yes. In the illustrated battery holder 32, air layers 37 are provided on both surfaces of a partition wall 35 formed between adjacent cylindrical batteries 1. As shown in FIG. 8, the battery holder 32 is configured such that an air layer 37 formed along the surface of each cylindrical battery 1 is disposed between the opposed surfaces of adjacent cylindrical batteries 1 so as to face each other. Yes. The illustrated battery holder 32 is arranged in a state where the opposed air layers 37 are displaced along the outer periphery of the cylindrical battery 1, and a wide area between the opposed cylindrical batteries 1 is arranged in two air layers 7. The structure is covered with Further, the two air layers 37 facing each other are arranged in a state of overlapping each other on a line connecting the centers of the adjacent cylindrical batteries 1. This avoids heat conduction at the shortest distance between adjacent cylindrical batteries 1 so that the heat conduction path is non-linear.
 さらに、図7に示す電池ホルダ32は、2本の縦溝36を、挿入部34の両端まで延長することなく、ホルダーユニット32Aの中間開口部から電池収納部33の両端部まで延長している。電池収納部33の両端部においては、挿入部34の内面が円筒形電池1の端部の外周面に沿う形状としている。この構造は、円筒形電池1の中央部分のほぼ全体にわたって熱伝導を抑制できる。また、円筒形電池1の両端部においては、挿入部34の内面を円筒形電池1の外周面に接近させることで、隣接する円筒形電池1間の類焼を有効に防止できる。 Further, the battery holder 32 shown in FIG. 7 extends the two vertical grooves 36 from the intermediate opening of the holder unit 32 </ b> A to both ends of the battery storage portion 33 without extending to both ends of the insertion portion 34. . At both ends of the battery storage portion 33, the inner surface of the insertion portion 34 is shaped along the outer peripheral surface of the end portion of the cylindrical battery 1. This structure can suppress heat conduction over almost the entire central portion of the cylindrical battery 1. In addition, at both ends of the cylindrical battery 1, by making the inner surface of the insertion portion 34 approach the outer peripheral surface of the cylindrical battery 1, it is possible to effectively prevent similar firing between adjacent cylindrical batteries 1.
 以上の電池ホルダ32は、各ホルダーユニット32Aの挿入部34に円筒形電池1の端部を挿入して保持する状態、すなわち、対向する挿入部34に挿入孔8に円筒形電池1の両端部を挿入する状態で一対のホルダーユニット32Aを連結して、円筒形電池1を定位置に保持している。一対のホルダーユニット32Aは、挿入部34の谷間14に設けた連結部16を互いに当接させた状態で止ネジ17をねじ込むことで連結して固定される。ただ、一対のホルダーユニットは、係止構造で連結し、あるいは接着して連結し、あるいはこれ等を組み合わせて連結することもできる。 The battery holder 32 described above is in a state in which the end of the cylindrical battery 1 is inserted and held in the insertion portion 34 of each holder unit 32A, that is, both end portions of the cylindrical battery 1 in the insertion hole 8 in the opposite insertion portion 34. The pair of holder units 32A are connected in a state where the cylindrical battery 1 is inserted to hold the cylindrical battery 1 in place. The pair of holder units 32 </ b> A are connected and fixed by screwing a set screw 17 in a state where the connecting portions 16 provided in the valleys 14 of the insertion portion 34 are in contact with each other. However, the pair of holder units can be coupled by a locking structure, or can be coupled by bonding, or can be coupled by combining these.
(実施例4の電池ホルダ)
 以上の実施例の電池ホルダは、2~3本の円筒形電池1を横に並べて収納する構造としたが、電池パックは、図9に示すように、複数の円筒形電池1を多段多列に配置する構造とすることもできる。図9に示す電池ホルダ42は、複数の挿入部4を縦横に並べた形状の電池収納部43を備えており、この電池収納部43に10個の円筒形電池1を2段5列に配置している。
(Battery holder of Example 4)
The battery holder of the above embodiment has a structure in which two to three cylindrical batteries 1 are stored side by side. However, as shown in FIG. 9, the battery pack includes a plurality of cylindrical batteries 1 arranged in multiple stages and multiple rows. It can also be set as the structure arrange | positioned. A battery holder 42 shown in FIG. 9 includes a battery storage portion 43 having a shape in which a plurality of insertion portions 4 are arranged vertically and horizontally, and ten cylindrical batteries 1 are arranged in two rows and five rows in the battery storage portion 43. is doing.
 図9に示す電池ホルダ42は、図において左右の両端に配置される挿入部4には2列の縦溝6を設けて、対向する円筒形電池1の間に配置された隔壁5の内面に空気層7を形成している。また、図において左右の両端を除く中間に配置される挿入部4には3列の縦溝6を設けて、対向する円筒形電池1の間に配置された隔壁5の内面に空気層7を形成している。図に示す電池ホルダ42は、前述の図2に示す電池ホルダと同様に、各縦溝6及び各空気層7の開口幅を、円筒形電池1の外周の約1/8として、これ等の縦溝及び空気層を90度のピッチで配置している。 The battery holder 42 shown in FIG. 9 is provided with two rows of vertical grooves 6 in the insertion portions 4 arranged at the left and right ends in the figure, and is formed on the inner surface of the partition wall 5 arranged between the opposed cylindrical batteries 1. An air layer 7 is formed. Further, in the drawing, the insertion portion 4 disposed in the middle except for the left and right ends is provided with three rows of vertical grooves 6, and an air layer 7 is provided on the inner surface of the partition wall 5 disposed between the opposed cylindrical batteries 1. Forming. The battery holder 42 shown in the figure is similar to the battery holder shown in FIG. 2 described above, with the opening width of each longitudinal groove 6 and each air layer 7 being about 1/8 of the outer periphery of the cylindrical battery 1. Longitudinal grooves and air layers are arranged at a pitch of 90 degrees.
 図9に示す電池ホルダ42は、隣接する円筒形電池1の間に配置される隔壁5の両面に、各々の円筒形電池1の表面に沿って形成された空気層7を対向して配置している。図の電池ホルダ42は、対向する空気層7を円筒形電池1の外周に沿って位置ずれさせた状態で配置しており、対向する円筒形電池1の間の広い領域を2つの空気層7でカバーする構造としている。さらに、対向する2つの空気層7は、隣接する円筒形電池1の中心を結ぶ線上において、互いにオーバーラップさせる状態で配置している。これにより、隣接する円筒形電池1間で最短距離における熱伝導を回避して、熱伝導の経路が非直線状となるようにしている。 A battery holder 42 shown in FIG. 9 has air layers 7 formed along the surface of each cylindrical battery 1 facing each other on both surfaces of a partition wall 5 arranged between adjacent cylindrical batteries 1. ing. The battery holder 42 in the figure is arranged in a state where the opposed air layers 7 are displaced along the outer periphery of the cylindrical battery 1, and a wide area between the opposed cylindrical batteries 1 is arranged in the two air layers 7. The structure is covered with Furthermore, the two air layers 7 facing each other are arranged in a state of overlapping each other on a line connecting the centers of the adjacent cylindrical batteries 1. This avoids heat conduction at the shortest distance between adjacent cylindrical batteries 1 so that the heat conduction path is non-linear.
 さらに、図に示す電池ホルダ42は、4つの挿入部4の間には空隙18を形成しており、4つの挿入部4のうち、対角の位置に配置される円筒形電池1の間における熱伝導をこの空隙18により抑制している。これにより、縦横に隣接する円筒形電池1の熱伝導だけでなく、斜め方向に隣接する円筒形電池1間における熱伝導も効果的に抑制できる特徴が実現できる。このことは、図10に示すように、多数の円筒形電池1を縦横に並べてマトリクス状に配置する構造において、とくに有効である。 Furthermore, the battery holder 42 shown in the figure forms a gap 18 between the four insertion portions 4, and the cylindrical holder 1 disposed between the four insertion portions 4 at diagonal positions. Heat conduction is suppressed by the gap 18. Thereby, not only the heat conduction of the cylindrical batteries 1 that are adjacent in the vertical and horizontal directions but also the feature that can effectively suppress the heat conduction between the cylindrical batteries 1 that are adjacent in the oblique direction can be realized. This is particularly effective in a structure in which a large number of cylindrical batteries 1 are arranged vertically and horizontally and arranged in a matrix as shown in FIG.
(実施例5の電池ホルダ)
 さらに、電池ホルダ52は、図10に示すように、複数の円筒形電池1を挿入部54に挿入して俵積み状態に配置する構造とすることもできる。この電池ホルダ52は、複数の円筒形電池1を俵積み状態で収納できるように複数の挿入部54を連結してなる電池収納部53を備えており、この電池収納部53に円筒形電池1を複数段に配置して、各段に配置される円筒形電池1を対向する段の円筒形電池1の谷間に配置している。図10に示す電池ホルダ52は、15個の円筒形電池1を3段5列に配置している。この電池ホルダ52は、多数の円筒形電池1を互いに接近して配置できるので、電池ホルダ52の外形を小さくして多数の円筒形電池1を収納できる。
(Battery holder of Example 5)
Furthermore, as shown in FIG. 10, the battery holder 52 may have a structure in which a plurality of cylindrical batteries 1 are inserted into the insertion portion 54 and arranged in a stacked state. The battery holder 52 includes a battery storage portion 53 formed by connecting a plurality of insertion portions 54 so that a plurality of cylindrical batteries 1 can be stored in a stacked state, and the cylindrical battery 1 is provided in the battery storage portion 53. Are arranged in a plurality of stages, and the cylindrical battery 1 arranged in each stage is arranged in the valley of the cylindrical battery 1 in the opposite stage. The battery holder 52 shown in FIG. 10 has 15 cylindrical batteries 1 arranged in three rows and five rows. Since this battery holder 52 can arrange many cylindrical batteries 1 close to each other, the outer shape of the battery holder 52 can be reduced to accommodate many cylindrical batteries 1.
 図10に示す電池ホルダ52は、隣接する円筒形電池1の対向面の間において、対向する円筒形電池1のいずれか一方の円筒形電池1の外周面にのみ空気層57を設けている。図に示す電池ホルダ52は、各挿入部54に1~3個の縦溝56を設けて円筒形電池1の外周面との間に空気層57を設けている。図10において、中段に配置される挿入部54に形成される縦溝56及び空気層57は、挿入部54の三方に等間隔で設けている。図に示す挿入部54は、3つの縦溝56を120度のピッチで等間隔に設けている。また、図において上下段の両端、すなわち四隅に位置する挿入部54は、単一の縦溝56及び空気層57が形成されており、この縦溝56及び空気層57を隣接する円筒形電池1との間に配置された隔壁55の内面に設けている。さらにまた、上段及び下段の両端を除く中間部分に設けられた挿入部54に形成される縦溝56及び空気層57は、隣接する円筒形電池1との間に配置された隔壁55の内面に設けられている。  The battery holder 52 shown in FIG. 10 is provided with the air layer 57 only on the outer peripheral surface of one of the opposed cylindrical batteries 1 between the opposed surfaces of the adjacent cylindrical batteries 1. In the battery holder 52 shown in the figure, one to three vertical grooves 56 are provided in each insertion portion 54 and an air layer 57 is provided between the outer peripheral surface of the cylindrical battery 1. In FIG. 10, the longitudinal groove 56 and the air layer 57 formed in the insertion portion 54 disposed in the middle stage are provided at equal intervals on three sides of the insertion portion 54. The insertion portion 54 shown in the figure is provided with three longitudinal grooves 56 at equal intervals of 120 degrees. Further, in the drawing, the insertion portions 54 located at both ends of the upper and lower stages, that is, at the four corners, are formed with a single vertical groove 56 and an air layer 57, and the cylindrical battery 1 adjacent to the vertical groove 56 and the air layer 57 is formed. Is provided on the inner surface of the partition wall 55 disposed between the two. Furthermore, the longitudinal groove 56 and the air layer 57 formed in the insertion portion 54 provided in the intermediate portion excluding both ends of the upper stage and the lower stage are formed on the inner surface of the partition wall 55 disposed between the adjacent cylindrical batteries 1. Is provided. *
 図10に示す電池ホルダ52は、縦溝56(空気層57)の開口幅を円筒形電池1の外周の約1/6としている。この電池ホルダ52は、互いに隣接する円筒形電池1のうち、一方の円筒形電池1と対向する隔壁55にのみ縦溝56を設けて空気層57を形成している。このため、構造を簡単にしながら、隣接する円筒形電池1間では熱伝導を抑制できる特徴がある。この電池ホルダ52も、隣接する円筒形電池1間における熱伝導の経路が非直線状となるように、円筒形電池1の対向面の間には空気層57が配置されている。したがって、いずれかの円筒形電池1が過熱されて熱暴走する状態においても、熱暴走による弊害を効果的に抑制できる。 The battery holder 52 shown in FIG. 10 has an opening width of the longitudinal groove 56 (air layer 57) of about 1/6 of the outer periphery of the cylindrical battery 1. In the battery holder 52, among the cylindrical batteries 1 adjacent to each other, the vertical groove 56 is provided only in the partition wall 55 facing the one cylindrical battery 1 to form an air layer 57. For this reason, there exists the characteristic which can suppress heat conduction between the adjacent cylindrical batteries 1 while simplifying a structure. Also in this battery holder 52, an air layer 57 is disposed between the opposing surfaces of the cylindrical battery 1 so that the heat conduction path between the adjacent cylindrical batteries 1 is non-linear. Therefore, even in the state where any one of the cylindrical batteries 1 is overheated to cause thermal runaway, it is possible to effectively suppress the adverse effects caused by thermal runaway.
(実施例6の電池ホルダ)
 以上の実施例の電池ホルダは、挿入部4を円筒形電池1の外周面に沿う挿入孔としている。ただ、本発明は、円筒形電池1を保持する構造を挿入孔には特定せず、保持溝とすることもできる。図11に示す電池ホルダ62は、底板69の周囲に底板69と垂直方向に周壁69Aを設けて上方を開口する箱形に成形してなる電池収納部63を備えている。この電池収納部63は、円筒形電池1を案内して水平方向の同一平面で定位置に保持する複数の挿入部64を備えている。図11の電池収納部63は、挿入部64の内側に円筒形電池1の外周面に沿う保持溝68を備えており、この保持溝68に円筒形電池1を収納している。底板69は、円筒形電池1の表面に沿う形状の保持溝68を有する波形に成形している。この底板69は、円筒形電池1の下側の半面に密着して、円筒形電池1を熱結合状態に配置する。
(Battery holder of Example 6)
In the battery holder of the above embodiment, the insertion portion 4 is an insertion hole along the outer peripheral surface of the cylindrical battery 1. However, in the present invention, the structure for holding the cylindrical battery 1 is not specified as an insertion hole, but can be a holding groove. A battery holder 62 shown in FIG. 11 includes a battery housing 63 formed by forming a peripheral wall 69A around the bottom plate 69 in a direction perpendicular to the bottom plate 69 and forming a box shape opening upward. The battery storage part 63 includes a plurality of insertion parts 64 that guide the cylindrical battery 1 and hold it in place on the same horizontal plane. The battery storage part 63 of FIG. 11 includes a holding groove 68 along the outer peripheral surface of the cylindrical battery 1 inside the insertion part 64, and the cylindrical battery 1 is stored in the holding groove 68. The bottom plate 69 is formed into a corrugated shape having a holding groove 68 having a shape along the surface of the cylindrical battery 1. The bottom plate 69 is in close contact with the lower half of the cylindrical battery 1 to place the cylindrical battery 1 in a thermally coupled state.
 底板69の保持溝68は、円筒形電池1の外周面の約1/2の領域の表面に沿う形状に成形される。さらに、波形の底板69は、保持溝68の間であって、隣接する円筒形電池1の間に配置される隔壁65を備えている。隔壁65は、保持溝68に配置される円筒形電池1の直径よりも低く、理想的には、図11に示すように、円筒形電池1の上端面と同じ高さとなる突出高さに成形される。ただ、底板から突出する隔壁の高さは、円筒形電池の上端面よりも低くすることもできる。 The holding groove 68 of the bottom plate 69 is formed in a shape along the surface of a region about ½ of the outer peripheral surface of the cylindrical battery 1. Further, the corrugated bottom plate 69 includes a partition wall 65 disposed between the holding grooves 68 and between the adjacent cylindrical batteries 1. The partition wall 65 is formed to have a protruding height that is lower than the diameter of the cylindrical battery 1 disposed in the holding groove 68 and ideally the same height as the upper end surface of the cylindrical battery 1 as shown in FIG. Is done. However, the height of the partition wall protruding from the bottom plate can be made lower than the upper end surface of the cylindrical battery.
 電池ホルダ62は、周壁69Aの高さを円筒形電池1の高さとほぼ等しくし、言い換えると、周壁69Aの上端を円筒形電池1の上端と同一平面に配置して、周壁69Aの内側に円筒形電池1を配置している。ただ、電池ホルダは、周壁を円筒形電池の上面よりも低くすることもできる。さらに、電池ホルダ62は、複数の保持溝68に円筒形電池1を収納した状態で、上方開口部が蓋プレート70で閉塞されている。図に示す蓋プレート70は、隔壁65及び周壁69Aの上端面に接着又は溶着等により固定される。 In the battery holder 62, the height of the peripheral wall 69A is substantially equal to the height of the cylindrical battery 1, in other words, the upper end of the peripheral wall 69A is arranged in the same plane as the upper end of the cylindrical battery 1, and the cylinder is formed inside the peripheral wall 69A. A battery 1 is disposed. However, a battery holder can also make a surrounding wall lower than the upper surface of a cylindrical battery. Further, the battery holder 62 is closed at the upper opening by the lid plate 70 in a state where the cylindrical battery 1 is housed in the plurality of holding grooves 68. The lid plate 70 shown in the figure is fixed to the upper end surfaces of the partition wall 65 and the peripheral wall 69A by adhesion or welding.
 さらに、図11に示す電池ホルダ62は、挿入部64の内面に円筒形電池1の長手方向に延びる縦溝66を設けており、この縦溝66と円筒形電池1の外周面との間に空気層67を形成している。図11に示す電池ホルダ62は、隣接する円筒形電池1の間に配置される隔壁65の両面に縦溝66を設けており、隔壁65の両側において、円筒形電池1との間に空気層67を形成している。図に示す電池ホルダ62は、隣接する円筒形電池1の対向面の間に、各々の円筒形電池1の表面に沿って形成された空気層67を対向して配置している。 Furthermore, the battery holder 62 shown in FIG. 11 is provided with a longitudinal groove 66 extending in the longitudinal direction of the cylindrical battery 1 on the inner surface of the insertion portion 64, and between the longitudinal groove 66 and the outer peripheral surface of the cylindrical battery 1. An air layer 67 is formed. A battery holder 62 shown in FIG. 11 is provided with longitudinal grooves 66 on both surfaces of a partition wall 65 disposed between adjacent cylindrical batteries 1, and an air layer is formed between the cylindrical battery 1 on both sides of the partition wall 65. 67 is formed. In the battery holder 62 shown in the figure, an air layer 67 formed along the surface of each cylindrical battery 1 is disposed so as to face each other between the facing surfaces of the adjacent cylindrical batteries 1.
 図11において隔壁65の左側に形成される第1の縦溝66Aは、保持溝68の内面に沿う形状としており、円筒形電池1の外周面の円弧に沿う形状の第1の空気層67Aを形成している。また、図11において隔壁65の右側に形成される第2の縦溝66Bは、下部を保持溝68の内面に沿う円弧状とし、上部を隔壁65の内面に沿う平面状として、隔壁の内面に沿う第2の空気層67Bを形成している。図の電池ホルダ62は、対向する第1の空気層67Aと第2の空気層67Bを上下方向に位置ずれさせた状態で配置しており、対向する円筒形電池1の間の広い領域を2つの空気層67でカバーする構造としている。さらに、対向する2つの空気層67は、互いにオーバーラップさせる状態で配置している。これにより、隣接する円筒形電池1間で最短距離における熱伝導を回避して、熱伝導の経路が非直線状となるようにしている。 11, the first vertical groove 66A formed on the left side of the partition wall 65 has a shape along the inner surface of the holding groove 68. The first air layer 67A having a shape along the arc of the outer peripheral surface of the cylindrical battery 1 is formed. Forming. In addition, the second vertical groove 66B formed on the right side of the partition wall 65 in FIG. 11 has an arc shape along the inner surface of the holding groove 68 at the lower portion and a planar shape along the inner surface of the partition wall 65 at the upper portion. A second air layer 67B is formed along. The battery holder 62 in the figure is arranged in a state where the first air layer 67A and the second air layer 67B facing each other are displaced in the vertical direction, and a wide area between the facing cylindrical batteries 1 is 2 in size. The structure is covered with two air layers 67. Furthermore, the two air layers 67 facing each other are arranged so as to overlap each other. This avoids heat conduction at the shortest distance between adjacent cylindrical batteries 1 so that the heat conduction path is non-linear.
 本発明の電池パックは、複数の円筒形電池を備える構造としながら、円筒形電池の熱暴走の誘発を防止して安全に使用できる。 The battery pack of the present invention has a structure including a plurality of cylindrical batteries, and can be used safely by preventing thermal runaway of the cylindrical batteries.
1…円筒形電池
2…電池ホルダ
3…電池収納部
4…挿入部
5…隔壁
6…縦溝
7…空気層
8…挿入孔
9…外周壁
10…外装ケース
10A…本体ケース
10B…蓋ケース
11…外装缶
12…封口板
14…谷間
15…リード板
15A…出力用のリード板
16…連結部
17…止ネジ
18…空隙
22…電池ホルダ
23…電池収納部
25…隔壁
26…縦溝
27…空気層
31…凹部
32…電池ホルダ
32A…ホルダーユニット
33…電池収納部
34…挿入部
34a…開口窓
34b…凸部
35…隔壁
36…縦溝
37…空気層
42…電池ホルダ
43…電池収納部
52…電池ホルダ
53…電池収納部
54…挿入部55…隔壁
56…縦溝
57…空気層
62…電池ホルダ
63…電池収納部
64…挿入部
65…隔壁
66…縦溝
66A…第1の縦溝
66B…第2の縦溝
67…空気層
67A…第1の空気層
67B…第2の空気層
68…保持溝
69…底板
69A…周壁
70…蓋プレート
DESCRIPTION OF SYMBOLS 1 ... Cylindrical battery 2 ... Battery holder 3 ... Battery storage part 4 ... Insertion part 5 ... Partition 6 ... Vertical groove 7 ... Air layer 8 ... Insertion hole 9 ... Outer wall 10 ... Outer case 10A ... Main body case 10B ... Cover case 11 ... outer can 12 ... sealing plate 14 ... valley 15 ... lead plate 15A ... output lead plate 16 ... connection part 17 ... set screw 18 ... gap 22 ... battery holder 23 ... battery storage part 25 ... partition wall 26 ... longitudinal groove 27 ... Air layer 31 ... Recess 32 ... Battery holder 32A ... Holder unit 33 ... Battery housing part 34 ... Insertion part 34a ... Opening window 34b ... Projection part 35 ... Partition 36 ... Vertical groove 37 ... Air layer 42 ... Battery holder 43 ... Battery housing part 52 ... Battery holder 53 ... Battery storage part 54 ... Insertion part 55 ... Partition 56 ... Vertical groove 57 ... Air layer 62 ... Battery holder 63 ... Battery storage part 64 ... Insertion part 65 ... Partition 66 ... Vertical groove 66A ... First vertical Groove 66B ... Second vertical groove 67 Air layer 67A ... first air layer 67B ... second air layer 68 ... retaining groove 69 ... bottom plate 69A ... peripheral wall 70 ... lid plate

Claims (14)

  1.  複数の円筒形電池と、
     前記複数の円筒形電池を平行な姿勢で配置する電池ホルダと、
    を備える電池パックであって、
     前記電池ホルダは、前記複数の円筒形電池を収納する複数の挿入部を有する電池収納部を備え、
     前記電池収納部は、隣接する前記円筒形電池の間に前記挿入部を形成する隔壁を配置すると共に、前記挿入部の内面に該円筒形電池の長手方向に延びる縦溝を設けて、前記縦溝と該円筒形電池の外周面との間に空気層を形成しており、
     互いに隣接する前記円筒形電池の対向面の間に、前記空気層を配置してなることを特徴とする電池パック。
    A plurality of cylindrical batteries;
    A battery holder for arranging the plurality of cylindrical batteries in a parallel posture;
    A battery pack comprising:
    The battery holder includes a battery storage portion having a plurality of insertion portions for storing the plurality of cylindrical batteries.
    The battery housing portion includes a partition wall that forms the insertion portion between the adjacent cylindrical batteries, and a vertical groove extending in a longitudinal direction of the cylindrical battery on the inner surface of the insertion portion, so that the vertical An air layer is formed between the groove and the outer peripheral surface of the cylindrical battery,
    A battery pack, wherein the air layer is disposed between opposing surfaces of the cylindrical batteries adjacent to each other.
  2.  請求項1に記載される電池パックであって、
     前記空気層が、隣接する前記円筒形電池の中心間に配置されてなる電池パック。
    The battery pack according to claim 1,
    A battery pack in which the air layer is disposed between the centers of adjacent cylindrical batteries.
  3.  請求項1または2に記載される電池パックであって、
     前記電池ホルダが、互いに隣接する前記円筒形電池の対向面の間に、各々の円筒形電池の表面に沿って形成された前記空気層を対向する姿勢で配置してなる電池パック。
    The battery pack according to claim 1 or 2,
    A battery pack in which the battery holder is arranged such that the air layers formed along the surface of each cylindrical battery are opposed to each other between opposed surfaces of the cylindrical batteries adjacent to each other.
  4.  請求項3に記載される電池パックであって、
     対向する前記空気層が前記円筒形電池の外周方向に位置ずれされた状態で配置されてなる電池パック。
    The battery pack according to claim 3, wherein
    A battery pack in which the air layers facing each other are arranged in a state of being displaced in the outer peripheral direction of the cylindrical battery.
  5.  請求項1から4のいずれか一に記載される電池パックであって、
     互いに隣接する前記円筒形電池の対向面の間に、各々の円筒形電池の表面に沿って形成された前記空気層がオーバーラップされた状態で配置されてなる電池パック。
    The battery pack according to any one of claims 1 to 4,
    A battery pack in which the air layer formed along the surface of each cylindrical battery is arranged in an overlapping state between opposing surfaces of the cylindrical batteries adjacent to each other.
  6.  請求項1から5のいずれか一に記載される電池パックであって、
     前記電池ホルダの横断面視において、前記空気層を前記円筒形電池の外周に沿って複数設けてなる電池パック。
    The battery pack according to any one of claims 1 to 5,
    A battery pack comprising a plurality of the air layers along an outer periphery of the cylindrical battery in a cross-sectional view of the battery holder.
  7.  請求項1から6のいずれか一に記載される電池パックであって、
     前記電池ホルダは、前記挿入部の内側に前記円筒形電池の外周面に沿う挿入孔を備えており、前記挿入孔に該円筒形電池を収納してなる電池パック。
    The battery pack according to any one of claims 1 to 6,
    The battery holder is provided with an insertion hole along the outer peripheral surface of the cylindrical battery inside the insertion portion, and the cylindrical battery is accommodated in the insertion hole.
  8.  請求項1から7のいずれか一に記載される電池パックであって、
     前記電池ホルダは、前記複数の挿入部を多段多列に配置しており、上下左右に配置される4つの該挿入部の間に空隙が形成されてなる電池パック。
    The battery pack according to any one of claims 1 to 7,
    The battery holder is a battery pack in which the plurality of insertion portions are arranged in multiple rows and columns, and a gap is formed between the four insertion portions arranged in the vertical and horizontal directions.
  9.  請求項1から6のいずれか一に記載される電池パックであって、
     前記電池ホルダは、前記挿入部の内側に前記円筒形電池の外周面に沿う保持溝を備えており、前記保持溝に該円筒形電池を収納してなる電池パック。
    The battery pack according to any one of claims 1 to 6,
    The battery holder is provided with a holding groove along the outer peripheral surface of the cylindrical battery inside the insertion portion, and the cylindrical battery is accommodated in the holding groove.
  10.  請求項1から9のいずれか一に記載される電池パックであって、
     前記電池ホルダは、隣接する前記挿入部の間に谷間を形成しており、前記谷間の一部が隣接する円筒形電池の対向面の間に配置されてなる電池パック。
    The battery pack according to any one of claims 1 to 9,
    The battery holder is a battery pack in which a valley is formed between adjacent insertion portions, and a part of the valley is disposed between opposing surfaces of adjacent cylindrical batteries.
  11.  請求項1から10のいずれか一に記載される電池パックであって
     前記円筒形電池が、円筒状で有底の外装缶の開口部を封口板で閉塞しており、 前記挿入部が、前記円筒形電池の封口板側の端部と対向する領域に前記空気層を形成してなる電池パック。
    The battery pack according to any one of claims 1 to 10, wherein the cylindrical battery has a cylindrical and bottomed outer can closed with a sealing plate, and the insertion portion is A battery pack formed by forming the air layer in a region facing an end portion of a cylindrical battery on a sealing plate side.
  12.  請求項1から11のいずれか一に記載される電池パックであって、
     前記円筒形電池の外周面に沿って形成される前記空気層の開口幅が該円筒形電池の外周全体の1/20~1/3である電池パック。
    The battery pack according to any one of claims 1 to 11,
    A battery pack in which an opening width of the air layer formed along an outer peripheral surface of the cylindrical battery is 1/20 to 1/3 of an entire outer periphery of the cylindrical battery.
  13.  請求項1から12のいずれか一に記載される電池パックであって、
     前記電池ホルダが、前記空気層の全長を、前記円筒形電池の全長の30%以上としてなる電池パック。
    The battery pack according to any one of claims 1 to 12,
    The battery pack, wherein the battery holder has a total length of the air layer of 30% or more of a total length of the cylindrical battery.
  14.  請求項1から13のいずれか一に記載される電池パックであって、
     前記電池ホルダが、前記空気層の両端を前記挿入部の両端面に開口してなる電池パック。
    The battery pack according to any one of claims 1 to 13,
    A battery pack in which the battery holder is formed by opening both ends of the air layer at both end faces of the insertion portion.
PCT/JP2016/005174 2016-01-28 2016-12-19 Battery pack WO2017130260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014857A JP2019053816A (en) 2016-01-28 2016-01-28 Battery pack
JP2016-014857 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130260A1 true WO2017130260A1 (en) 2017-08-03

Family

ID=59397577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005174 WO2017130260A1 (en) 2016-01-28 2016-12-19 Battery pack

Country Status (2)

Country Link
JP (1) JP2019053816A (en)
WO (1) WO2017130260A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091628A (en) * 2017-11-15 2019-06-13 スカッドエレクトロニクスジャパン株式会社 Lithium ion battery module
JP2019134044A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Capacitor module
WO2020130029A1 (en) * 2018-12-20 2020-06-25 Nsウエスト株式会社 Helmet and charging system
JP2020100909A (en) * 2018-12-20 2020-07-02 Nsウエスト株式会社 Helmet
CN112020783A (en) * 2018-04-25 2020-12-01 三洋电机株式会社 Battery pack
JPWO2019189280A1 (en) * 2018-03-27 2021-04-01 パナソニックIpマネジメント株式会社 Power storage module
WO2023176298A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack
EP4191774A4 (en) * 2020-07-31 2024-05-01 Panasonic Ip Man Co Ltd Battery pack and battery case

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220001225A (en) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 Manufacturing Method Of Battery Modules To Prevent Thermal Runaway Propagation
JP7089076B1 (en) 2021-02-01 2022-06-21 イビデン株式会社 Batteries and battery packs
WO2023176227A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109674A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Power unit
JP2005285454A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
JP2008277243A (en) * 2007-04-27 2008-11-13 Samsung Sdi Co Ltd Battery module
JP2008311130A (en) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd Power source device and its cooling method
WO2014132649A1 (en) * 2013-02-27 2014-09-04 三洋電機株式会社 Battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109674A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Power unit
JP2005285454A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
JP2008277243A (en) * 2007-04-27 2008-11-13 Samsung Sdi Co Ltd Battery module
JP2008311130A (en) * 2007-06-15 2008-12-25 Hitachi Vehicle Energy Ltd Power source device and its cooling method
WO2014132649A1 (en) * 2013-02-27 2014-09-04 三洋電機株式会社 Battery module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010671B2 (en) 2017-11-15 2022-01-26 スカッドエレクトロニクスジャパン株式会社 Lithium ion battery module
JP2019091628A (en) * 2017-11-15 2019-06-13 スカッドエレクトロニクスジャパン株式会社 Lithium ion battery module
JP2019134044A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Capacitor module
JP7325014B2 (en) 2018-03-27 2023-08-14 パナソニックIpマネジメント株式会社 storage module
JPWO2019189280A1 (en) * 2018-03-27 2021-04-01 パナソニックIpマネジメント株式会社 Power storage module
US11682810B2 (en) 2018-03-27 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Power storage module
CN112020783A (en) * 2018-04-25 2020-12-01 三洋电机株式会社 Battery pack
CN112020783B (en) * 2018-04-25 2023-01-03 三洋电机株式会社 Battery pack
JP2020100909A (en) * 2018-12-20 2020-07-02 Nsウエスト株式会社 Helmet
US20210307444A1 (en) * 2018-12-20 2021-10-07 Ns West Inc. Helmet and charging system
JP7251968B2 (en) 2018-12-20 2023-04-04 Nsウエスト株式会社 Helmet
CN113365523A (en) * 2018-12-20 2021-09-07 Ns西日本株式会社 Helmet and charging system
WO2020130029A1 (en) * 2018-12-20 2020-06-25 Nsウエスト株式会社 Helmet and charging system
EP4191774A4 (en) * 2020-07-31 2024-05-01 Panasonic Ip Man Co Ltd Battery pack and battery case
WO2023176298A1 (en) * 2022-03-18 2023-09-21 パナソニックエナジー株式会社 Battery pack

Also Published As

Publication number Publication date
JP2019053816A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2017130260A1 (en) Battery pack
JP6847864B2 (en) Battery pack
US9537130B2 (en) Battery module
JP6283964B2 (en) Battery module
US9705163B2 (en) Battery module
JP5857254B2 (en) Battery module
JP5725246B1 (en) Battery pack
US11923555B2 (en) Battery pack
WO2018179734A1 (en) Battery pack
KR102113155B1 (en) Battery module and battery pack
WO2017081838A1 (en) Battery pack
JP7301271B2 (en) battery pack
JP7276243B2 (en) battery pack
JP2012059373A (en) Battery pack and battery holder for battery pack
JP7292310B2 (en) pack batteries
JP6946418B2 (en) Battery pack
WO2024004504A1 (en) Battery pack
WO2024004505A1 (en) Battery pack
JP5201812B2 (en) Pack battery
WO2019208219A1 (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP