JP2006338978A - Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation - Google Patents

Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation Download PDF

Info

Publication number
JP2006338978A
JP2006338978A JP2005160825A JP2005160825A JP2006338978A JP 2006338978 A JP2006338978 A JP 2006338978A JP 2005160825 A JP2005160825 A JP 2005160825A JP 2005160825 A JP2005160825 A JP 2005160825A JP 2006338978 A JP2006338978 A JP 2006338978A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
flow
inspection
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160825A
Other languages
Japanese (ja)
Inventor
Yasuyuki Iida
康之 飯田
Nobuo Kobayashi
信夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005160825A priority Critical patent/JP2006338978A/en
Publication of JP2006338978A publication Critical patent/JP2006338978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method of flow of a reactant gas in a fuel cell which enables to comprehend quantitative movement and flow distribution of gas in a separator surface, an evaluation device, and a fuel cell for evaluation. <P>SOLUTION: (1) The evaluation method of flow of a reactant gas in the fuel cell has a process of introducing an inspection gas from an inspection gas entrance 53 provided between an entrance 51 and an exit 52 of a normal reactant gas and a process of detecting a detection gas by a detection part 54 provided between the entrance and exit of the normal reactant gas. (2) The evaluation device 50 of flow of an reactant gas in the fuel cell has an inspection gas entrance 53 provided between the entrance and exit of the normal reactant gas and an inspection gas detection part 54 provided between the entrance and exit of the normal reactant gas, and an inspection gas measurement means 56 connected to it. (3) The fuel cell for evaluation 10T of flow of the reactant gas in the fuel cell has an inspection gas entrance 53 provided between the entrance and exit of the normal reactant gas and an inspection gas detection part 54 provided between the entrance and exit of the normal reactant gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池内の反応ガスの流動の評価方法と、該評価方法の実施に直接使用する評価装置および評価用燃料電池に関する。   The present invention relates to a method for evaluating the flow of a reaction gas in a fuel cell, an evaluation device used directly for carrying out the evaluation method, and an evaluation fuel cell.

燃料電池(セル)は電解質膜の一面にアノードを設け多面にカソードを設けた膜−電極アッセンブリ(MEA)を、拡散層を介して、MEA対向面側に反応ガス流路を形成した一対のセパレータで挟んだものから構成される。MEAと反応ガスを流れるガスとの接触面積が大になるほど発電電流が大となるため、反応ガスはセパレータ面内を偏らずに流れることが重要となる。燃料電池内のガス流れ状態を把握することは、適正流路パターンの決定を含む燃料電池を開発する上で重要である。
特開平8−293318号公報は、セパレータ流路内でのガス流れを計測するために、供給ガスに白煙を混合してガスの流れを可視化する燃料電池内の反応ガスの流動の評価方法を開示している。
特開平8−293318号公報
A fuel cell (cell) has a membrane-electrode assembly (MEA) in which an anode is provided on one surface of the electrolyte membrane and a cathode is provided on multiple surfaces, and a pair of separators in which a reaction gas channel is formed on the MEA facing surface side through a diffusion layer Consists of what is sandwiched between. The larger the contact area between the MEA and the gas flowing through the reaction gas, the larger the generated current. Therefore, it is important that the reaction gas flows without being biased in the separator surface. Understanding the gas flow state in the fuel cell is important in developing a fuel cell including determination of an appropriate flow path pattern.
Japanese Patent Application Laid-Open No. 8-293318 discloses a method for evaluating the flow of a reaction gas in a fuel cell in which white smoke is mixed with a supply gas to visualize the gas flow in order to measure the gas flow in a separator flow path. Disclosure.
JP-A-8-293318

従来の燃料電池の反応ガスの流動の評価方法にはつぎの課題がある。
白煙を供給ガスマニホールドから反応ガスと一緒に供給しているため、ガスの流れを目視にて観察できるが、セパレータ面内におけるガスの定量的な、ガス挙動、ガス流量分布はわからず、反応ガスがセパレータ面内を偏らずに流れているか否か、反応ガス流路がセパレータ面内に均一にガスを流す適正流路パターンになっているか否か、等はわからない。
Conventional methods for evaluating the flow of reactant gas in a fuel cell have the following problems.
Since white smoke is supplied from the supply gas manifold together with the reaction gas, the gas flow can be visually observed, but the quantitative, gas behavior and gas flow distribution of the gas in the separator surface are not known, and the reaction It is not known whether or not the gas is flowing in the separator surface without being biased, and whether or not the reaction gas flow path has an appropriate flow path pattern for flowing the gas uniformly in the separator surface.

本発明の目的は、セパレータ面内におけるガスの定量的な、挙動、流量分布を把握することを可能とする燃料電池内の反応ガスの流動の評価方法、評価装置、評価用燃料電池を提供することにある。   An object of the present invention is to provide a method, an evaluation apparatus, and an evaluation fuel cell for evaluating the flow of a reactive gas in a fuel cell, which makes it possible to grasp the quantitative behavior and flow distribution of the gas in the separator surface. There is.

上記課題を解決する、そして上記目的を達成する、本発明は、つぎのとおりである。
(1) 燃料電池のガス流路に正規の反応ガスを供給する工程と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口から検査ガスを導入する工程と、ガス流路の正規の反応ガスの入口と出口との間に設けた検出部にて検査ガスを検出する工程とを、有する燃料電池内の反応ガスの流動の評価方法。
(2) 検査ガスを、検査ガス入口での燃料電池のガス流路のガス圧力と等しい圧力で、燃料電池のガス流路に導入する(1)記載の燃料電池内の反応ガスの流動の評価方法。
(3) 検査ガスは、反応ガスと異なる種類のガスを含む(1)記載の燃料電池内の反応ガスの流動の評価方法。
(4) 反応ガスが水素である場合に、前記反応ガスと異なる種類のガスが重水素である(3)記載の燃料電池内の反応ガスの流動の評価方法。
(5) 燃料電池のガス流路に正規の反応ガスを供給する手段と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス検出用の検出部および該検出部に接続された検査ガス測定手段とを、有する燃料電池内の反応ガスの流動の評価装置。
(6) 正規の反応ガスの入口と出口を有するガス流路と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス検出用の検出部とを、有する燃料電池内の反応ガスの流動の評価用燃料電池。
The present invention for solving the above problems and achieving the above object is as follows.
(1) supplying a normal reaction gas to the gas flow path of the fuel cell, introducing a test gas from a test gas inlet provided between the normal reaction gas inlet and the outlet of the gas flow path, A method for evaluating the flow of a reaction gas in a fuel cell, comprising: detecting a test gas with a detection unit provided between an inlet and an outlet of a normal reaction gas in a gas flow path.
(2) The test gas is introduced into the gas flow path of the fuel cell at a pressure equal to the gas pressure of the gas flow path of the fuel cell at the test gas inlet. (1) Evaluation of the flow of the reaction gas in the fuel cell according to (1) Method.
(3) The method for evaluating the flow of the reaction gas in the fuel cell according to (1), wherein the inspection gas includes a different type of gas from the reaction gas.
(4) The method for evaluating the flow of the reaction gas in the fuel cell according to (3), wherein when the reaction gas is hydrogen, the type of gas different from the reaction gas is deuterium.
(5) Means for supplying normal reaction gas to the gas flow path of the fuel cell, inspection gas inlet provided between the normal reaction gas inlet and outlet of the gas flow path, and normal reaction in the gas flow path An apparatus for evaluating the flow of a reaction gas in a fuel cell, comprising: a detector for detecting a test gas provided between a gas inlet and an outlet; and a test gas measuring means connected to the detector.
(6) A gas flow path having a normal reaction gas inlet and outlet, a test gas inlet provided between the normal reaction gas inlet and outlet of the gas flow path, and a normal reaction gas flow rate of the gas flow path A fuel cell for evaluating the flow of a reaction gas in a fuel cell having a detection unit for detecting a test gas provided between an inlet and an outlet.

上記(1)の燃料電池内の反応ガスの流動の評価方法、上記(5)の燃料電池内の反応ガスの流動の評価装置、上記(6)の評価用燃料電池によれば、ガス流路の正規の反応ガスの入口と出口との間に検査ガス入口とガス検出部を設けたので、任意の2点(検査ガス入口と検出部)間のガスの挙動、流量分布を求めることができる。
上記(2)の燃料電池内の反応ガスの流動の評価方法によれば、検査ガスを、検査ガス入口での燃料電池のガス流路のガス圧力と等しい圧力で、燃料電池のガス流路に導入するので、正規の反応ガスの流れを乱すことが抑制される。
上記(3)の燃料電池内の反応ガスの流動の評価方法によれば、検査ガスは、反応ガスと異なる種類のガスを含むので、検査ガスと反応ガスの区別がつき、検出、測定の精度が上がる。
上記(4)の燃料電池内の反応ガスの流動の評価方法によれば、検査ガスが重水素を含むので、重水素も電極上で反応するため、水生成を含む、発電中のガス流路内の状態を正確に再現することができ、実際に近い状態で試験することができる。
According to (1) the method for evaluating the flow of the reaction gas in the fuel cell, (5) the apparatus for evaluating the flow of the reaction gas in the fuel cell, and (6) the fuel cell for evaluation according to the above (6) Since the inspection gas inlet and the gas detector are provided between the normal reaction gas inlet and outlet, the gas behavior and flow distribution between any two points (inspection gas inlet and detector) can be obtained. .
According to the method for evaluating the flow of the reaction gas in the fuel cell in (2) above, the test gas is supplied to the gas flow path of the fuel cell at a pressure equal to the gas pressure of the gas flow path of the fuel cell at the test gas inlet. Since it introduce | transduces, disturbing the flow of the regular reaction gas is suppressed.
According to the method for evaluating the flow of the reaction gas in the fuel cell in (3) above, since the inspection gas includes a different type of gas from the reaction gas, the inspection gas and the reaction gas can be distinguished from each other, and the accuracy of detection and measurement is increased. Goes up.
According to the method for evaluating the flow of the reaction gas in the fuel cell in (4) above, since the inspection gas contains deuterium, the deuterium also reacts on the electrode, so that the gas flow path during power generation including water generation Can be accurately reproduced, and the test can be performed in a state close to the actual state.

以下に、本発明の燃料電池内の反応ガスの流動の評価方法、評価装置、評価用燃料電池を、図1〜図5を参照して説明する。
本発明の反応ガスの流動の評価対象は、たとえば固体高分子電解質型燃料電池(セル)10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
また、評価試験で用いられる評価用燃料電池10T(Tは評価テスト用を示す)は、実際の燃料電池10のセパレータ18に検査用ガスの入口、出口(検査用ガスの入口、出口がセパレータに設けた中間マニホールドであってもよい)を設けたセパレータ18Tをもつ燃料電池であり、ガス流路、膜−電極アッセンブリの構造は実際の燃料電池10のガス流路、膜−電極アッセンブリの構造と同じである。
Hereinafter, an evaluation method, an evaluation apparatus, and an evaluation fuel cell for evaluating the flow of reaction gas in a fuel cell according to the present invention will be described with reference to FIGS.
The evaluation object of the flow of the reaction gas of the present invention is, for example, a solid polymer electrolyte fuel cell (cell) 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
In addition, the evaluation fuel cell 10T used in the evaluation test (T indicates that for the evaluation test) is an inspection gas inlet and outlet (the inspection gas inlet and outlet are the separators of the actual fuel cell 10). A fuel cell having a separator 18T provided with an intermediate manifold provided), and the structure of the gas flow path and the membrane-electrode assembly is the same as the structure of the gas flow path and the membrane-electrode assembly of the actual fuel cell 10. The same.

固体高分子電解質型燃料電池(セル)10は、図3〜図5に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体、たとえば、MEAを一対のセパレータ18で挟んだものからなる。
膜−電極アッセンブリは、イオン交換膜からなる電解質膜11とこの電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)14および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側にそれぞれガス拡散層(以下、単に、拡散層という)13、16が設けられる。
膜−電極アッセンブリとセパレータ18を重ねてセルモジュール19(1セルで1モジュールを構成する場合は、セル10とモジュール19は同じ)を構成し、セルモジュール19を積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、両端のエンドプレート22をセル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)にボルト・ナット25にて固定し、一端のエンドプレートに設けた調整ネジにてその内側に設けたバネを介してセル積層体にセル積層方向の締結荷重をかけ、燃料電池スタック23を構成する。
As shown in FIGS. 3 to 5, the solid polymer electrolyte fuel cell (cell) 10 includes a laminated body of a membrane-electrode assembly (MEA) and a separator 18, for example, MEA as a pair of separators. It consists of something sandwiched between 18.
The membrane-electrode assembly includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 made of a catalyst layer disposed on one surface of the electrolyte membrane, and a catalyst layer disposed on the other surface of the electrolyte membrane. It consists of electrodes (cathode, air electrode) 17. Between the membrane-electrode assembly and the separator 18, gas diffusion layers (hereinafter simply referred to as diffusion layers) 13 and 16 are provided on the anode side and the cathode side, respectively.
A cell module 19 is formed by stacking the membrane-electrode assembly and the separator 18 (when one module is constituted by one cell, the cell 10 and the module 19 are the same), and the cell module 19 is laminated to form a cell laminate. Terminals 20, insulators 21, and end plates 22 are arranged at both ends of the stacked body in the cell stacking direction, and bolts are attached to fastening members (for example, tension plates 24) that extend the end plates 22 at both ends in the cell stacking direction outside the cell stacked body. A fuel cell stack 23 is configured by fixing with a nut 25 and applying a fastening load in the cell stacking direction to the cell stack through a spring provided on the inner side with an adjustment screw provided on one end plate.

セパレータ18のMEA対向面には、発電領域において、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18のMEA対向面と反対側面には冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。セパレータ18には、非発電領域において、燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成されている。燃料ガスマニホールド30は燃料ガス流路27と連通しており、酸化ガスマニホールド31は酸化ガス流路28と連通しており、冷媒マニホールド29は冷媒流路26と連通している。
セパレータ18は、カーボンセパレータ、メタルセパレータ、メタルセパレータと樹脂フレームとの組合せ、等からなる。
燃料ガス、酸化ガス、冷媒は、セル内において互いにシールされている。各セルモジュール19のMEAを挟む2つのセパレータ18間は、第1のシール部材32によってシールされており、隣接するセルモジュール19同士の間は、第2のシール部材33によってシールされている。
A fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14 is formed on the MEA facing surface of the separator 18 in the power generation region, and oxidizing gas (oxygen, usually air) is supplied to the cathode 17. For this purpose, an oxidizing gas passage 28 is formed. In addition, a coolant channel 26 for flowing a coolant (usually cooling water) is also formed on the side surface of the separator 18 opposite to the MEA facing surface. In the separator 18, a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 are formed in the non-power generation region. The fuel gas manifold 30 is in communication with the fuel gas passage 27, the oxidizing gas manifold 31 is in communication with the oxidizing gas passage 28, and the refrigerant manifold 29 is in communication with the refrigerant passage 26.
The separator 18 includes a carbon separator, a metal separator, a combination of a metal separator and a resin frame, and the like.
The fuel gas, the oxidizing gas, and the refrigerant are sealed with each other in the cell. The two separators 18 sandwiching the MEA of each cell module 19 are sealed by a first seal member 32, and the adjacent cell modules 19 are sealed by a second seal member 33.

各セル10(1セルモジュールの場合は、セル10はセルモジュール19と同じになる)の、アノード14側では、水素を水素イオン(プロトン)と電子に変換する電離反応が行われ、水素イオンは電解質膜11中をカソード17側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水が生成され、次式にしたがって発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 10 (in the case of a one-cell module, the cell 10 is the same as the cell module 19). The electrolyte moves through the electrolyte membrane 11 to the cathode 17 side. On the cathode 17 side, oxygen, hydrogen ions, and electrons (electrons generated at the anode of the adjacent MEA pass through the separator, or electrons generated at the anode of the cell at one end in the cell stacking direction). From an external circuit to the cathode of the other cell), and water is generated according to the following equation.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

発電領域の全領域で発電が行われるためには、セパレータ18の面内で反応ガス(燃料ガス、酸化ガス)が偏らずに均一に流れることが重要であり、そのために、実際のセル10のセパレータ18と同じ構造のガス流路27、28をもつテスト用セパレータ18Tを具備した評価用燃料電池10Tを用いてガスの挙動、流量分布を把握することは、燃料電池の開発にとって重要なことである。   In order for power generation to be performed in the entire power generation region, it is important that the reaction gas (fuel gas, oxidant gas) flows uniformly in the plane of the separator 18. It is important for the development of the fuel cell to grasp the gas behavior and the flow rate distribution using the evaluation fuel cell 10T having the test separator 18T having the gas flow paths 27, 28 having the same structure as the separator 18. is there.

この試験を行うための燃料電池内の反応ガスの流動の評価装置50と評価用燃料電池10Tを、図1、図2を参照して説明する。
本発明の評価用燃料電池10Tは、正規の反応ガス(燃料ガスおよび/または酸化ガス)の入口(入り側ガスマニホールドへの連通路)51と出口(出側ガスマニホールドへの連通路)52を有するガス流路27、28と、ガス流路27、28(燃料ガス流路27と酸化ガス流路28の両方でもよいし、何れか一方でもよい)の正規の反応ガスの入口51と出口52との間に設けた検査ガス入口53と、ガス流路27、28(燃料ガス流路27と酸化ガス流路28の両方でもよいし、何れか一方でもよい)の正規の反応ガスの入口51と出口52との間に設けた検査ガス検出用の検出部54とを、有する。検出部54から燃料電池内ガス流路を流れるガスを必要量取り出し分析する。その他の燃料電池構成は、図3〜図5の燃料電池構成に準じる。
An apparatus 50 for evaluating the flow of reaction gas in the fuel cell and the evaluation fuel cell 10T for performing this test will be described with reference to FIGS.
The evaluation fuel cell 10T of the present invention has an inlet (communication path to the inlet side gas manifold) 51 and an outlet (communication path to the outlet side gas manifold) 52 of the normal reaction gas (fuel gas and / or oxidant gas). The normal reaction gas inlet 51 and the outlet 52 of the gas flow paths 27 and 28 and the gas flow paths 27 and 28 (both the fuel gas flow path 27 and the oxidation gas flow path 28 may be either or both). And a normal reaction gas inlet 51 of the gas flow paths 27 and 28 (both the fuel gas flow path 27 and the oxidant gas flow path 28 may be either or both). And a detection portion 54 for detecting a test gas provided between the gas outlet and the outlet 52. A required amount of gas flowing through the gas flow path in the fuel cell is extracted from the detection unit 54 and analyzed. Other fuel cell configurations conform to the fuel cell configurations of FIGS.

本発明の燃料電池内の反応ガスの流動の評価装置50は、評価用燃料電池10Tのガス流路27、28(燃料ガス流路27と酸化ガス流路28の両方でもよいし、何れか一方でもよい)に正規の反応ガスを供給する手段55と、ガス流路27、28の正規の反応ガスの入口51と出口52との間に設けた検査ガス入口53および該検査ガス入口53に接続された検査ガスの供給手段56と、ガス流路27、28の正規の反応ガスの入口51と出口52との間に設けた検査ガス検出用の検出部54および該検出部54に接続された検査ガス測定手段57とを、有する。   The reaction gas flow evaluation device 50 in the fuel cell of the present invention may include the gas flow paths 27 and 28 of the evaluation fuel cell 10T (both the fuel gas flow path 27 and the oxidation gas flow path 28, or one of them). May be connected to the inspection gas inlet 53 and the inspection gas inlet 53 provided between the normal reaction gas inlet 51 and the outlet 52 of the gas flow paths 27, 28. The inspection gas supply means 56, the detection gas detection detector 54 provided between the normal reaction gas inlet 51 and the outlet 52 of the gas flow paths 27 and 28, and the detection gas 54 are connected to the detection gas 54. And an inspection gas measuring means 57.

正規の反応ガスを供給する手段55は、たとえば、正規の反応ガスのガス源58、59(燃料ガスガス源58、酸化ガスガス源59)と、ガス源58、59から反応ガスの入口51までのガス供給配管60の途中に設けた圧力調整弁61、流量調整弁62と、配管切り離し可能なフランジ63の両側に設けられた電磁弁64、65等を含む。また、酸化ガスの供給配管には加湿装置66を設けて酸化ガスを加湿するようにしてもよい。ただし、この系構成に限るものではない。
反応ガスの出口52には、ガス排出配管67が接続され、ガス排出配管67の途中には電磁弁68が設けられる。ただし、この系構成に限るものではない。
The normal reaction gas supply means 55 includes, for example, normal reaction gas sources 58 and 59 (fuel gas gas source 58 and oxidizing gas gas source 59) and gas from the gas sources 58 and 59 to the reaction gas inlet 51. A pressure adjustment valve 61 and a flow rate adjustment valve 62 provided in the middle of the supply pipe 60 and electromagnetic valves 64 and 65 provided on both sides of the flange 63 that can be separated from the pipe are included. Further, a humidifier 66 may be provided in the oxidizing gas supply pipe to humidify the oxidizing gas. However, the system configuration is not limited to this.
A gas discharge pipe 67 is connected to the reaction gas outlet 52, and an electromagnetic valve 68 is provided in the middle of the gas discharge pipe 67. However, the system configuration is not limited to this.

検査ガスの供給手段56は、たとえば、正規の反応ガスのガスと異なる種類のガス(たとえば、燃料ガスの検査用には重水素、窒素、ヘリウム、炭酸ガスの何れかなど、酸化ガスの検査用には窒素、ヘリウム、炭酸ガスの何れかなど)からなる検査ガスのガス源70と、ガス源を変えるときに検査用ガス供給配管71を切り離し可能なフランジ72の両側に設けられた電磁弁73、74と、検査用ガスの供給を燃料ガス流路27、酸化ガス流路28との間に切り替える切り替え弁75と、検査用ガス供給配管71の途中に設けられた圧力調整弁76(供給される検査用ガスの圧力を、検査用ガスが供給されるガス流路27、28部位を流れるガス圧力に等しくするための圧力調整弁で、たとえば検査用ガスが供給されるガス流路27、28部位から導管77を介してダイヤフラム室に圧力が導かれたダイヤフラム弁からなる)と、検査ガス供給用配管系と評価用燃料電池10Tとを切り離し可能なフランジ78の両側に設けられた電磁弁79、80と、導管77と評価用燃料電池10Tとを切り離し可能なフランジ81の両側に設けられた電磁弁82、83とを、有する。ただし、この系構成に限るものではない。   The inspection gas supply means 56 is, for example, a gas of a different type from the normal reaction gas (for example, for inspecting an oxidizing gas such as deuterium, nitrogen, helium or carbon dioxide for the inspection of fuel gas). And an electromagnetic valve 73 provided on both sides of a flange 72 capable of separating the inspection gas supply pipe 71 when changing the gas source. 74, a switching valve 75 for switching the supply of the inspection gas between the fuel gas passage 27 and the oxidant gas passage 28, and a pressure adjusting valve 76 (provided in the middle of the inspection gas supply pipe 71). A pressure regulating valve for equalizing the pressure of the inspection gas to the gas pressure flowing through the gas flow passages 27 and 28 to which the inspection gas is supplied. For example, the gas flow passages 27 and 28 to which the inspection gas is supplied. Part And a solenoid valve 79 provided on both sides of a flange 78 capable of separating the inspection gas supply piping system and the evaluation fuel cell 10T from a diaphragm valve whose pressure is guided to a diaphragm chamber from a pipe 77 through a conduit 77, 80, and electromagnetic valves 82 and 83 provided on both sides of a flange 81 capable of separating the conduit 77 and the evaluation fuel cell 10T. However, the system configuration is not limited to this.

検出部54に接続された検査ガス測定手段57は、検出部54から取り出されたサンプルガスが導管84を介して導かれるガスを定量分析する定量分析器85(たとえば、質量分析計など)と、検出部54から取り出されたサンプルガスが導管84を介して導かれるガスを定性分析する定性分析器86(たとえば、クロマトグラフ、発光分析計、吸光分析計など)と、導管84を切り離し可能なフランジ87の燃料電池10T側に設けられた電磁弁88と、検出対象を燃料ガスと酸化ガスとの間に切り替える切り替え弁89と、分析器に接続されデータを処理するコンピュータ90とを、含む。ただし、この系構成に限るものではない。また、分析器85、86は、燃料電池の生成水も分析可能なものであることが望ましい。   The inspection gas measuring means 57 connected to the detection unit 54 includes a quantitative analyzer 85 (for example, a mass spectrometer) that quantitatively analyzes the gas from which the sample gas extracted from the detection unit 54 is guided through the conduit 84, and A qualitative analyzer 86 (for example, a chromatograph, an emission spectrometer, an absorption spectrometer, etc.) for qualitatively analyzing the gas from which the sample gas taken out from the detection unit 54 is guided through the conduit 84, and a flange capable of separating the conduit 84 87, an electromagnetic valve 88 provided on the fuel cell 10T side, a switching valve 89 that switches a detection target between fuel gas and oxidizing gas, and a computer 90 that is connected to an analyzer and processes data. However, the system configuration is not limited to this. Moreover, it is desirable that the analyzers 85 and 86 can analyze the generated water of the fuel cell.

つぎに、上記の評価装置を用いて実施される本発明の燃料電池内の反応ガスの流動の評価方法を説明する。
本発明の燃料電池内の反応ガスの流動の評価方法は、評価用燃料電池10Tのガス流路27、28に正規の反応ガス(燃料ガスおよび/または酸化ガス)を供給する工程と、正規の反応ガスをガス流路27、28に流しつつガス流路27、28の正規の反応ガスの入口51と出口52との間に設けた検査ガス入口53からガス流路27、28に検査ガスを導入する工程と、ガス流路27、28の正規の反応ガスの入口51と出口52との間に設けた検出部54にて検査ガスを検出し(検出部54で取り出したガスを定量分析器85、および/または定性分析器86に送って検査ガスを検出する)、検出データを基にしてコンピュータ90にて、検査ガスのセパレータ面内における流量分布、流速を演算し求める工程とを、有する。
Next, a method for evaluating the flow of the reaction gas in the fuel cell of the present invention, which is performed using the above-described evaluation apparatus, will be described.
The method for evaluating the flow of the reaction gas in the fuel cell according to the present invention includes a step of supplying a normal reaction gas (fuel gas and / or oxidizing gas) to the gas flow paths 27 and 28 of the evaluation fuel cell 10T, While flowing the reaction gas into the gas flow paths 27, 28, the inspection gas is supplied to the gas flow paths 27, 28 from the inspection gas inlet 53 provided between the normal reaction gas inlet 51 and the outlet 52 of the gas flow paths 27, 28. The inspection gas is detected by the detecting unit 54 provided between the inlet 51 and the outlet 52 of the normal reaction gas in the gas flow paths 27 and 28 in the introducing step (the gas taken out by the detecting unit 54 is quantitatively analyzed) 85 and / or sent to the qualitative analyzer 86 to detect the test gas), and the computer 90 calculates the flow rate distribution and flow velocity of the test gas in the separator plane based on the detected data. .

検出ガス入口53は、1個以上設けられ、複数個設けられてもよい。また、検出部54も1個以上設けられ、複数個設けられてもよい。検出ガス入口53と検出部54との組を任意に選択することにより、任意の2以上の点(入口51と出口52を除く2以上の点であることが望ましいが、入口51と出口52を含む2以上の点であってもよい)での検査ガスの濃度を検知でき、それをコンピュータ等にて演算、解析することにより、セパレータ面内のガス流量分布(たとえば、あるガス導入点で検査ガスを入れ、複数の点で検査ガスの濃度を検知すればガス流量分布がわかる)、ガス流速(たとえば、ガス導入点から検出部まで検査ガスが流れるに要した時間からガス流速が検知可能)を求めることができる。   One or more detection gas inlets 53 may be provided, and a plurality of detection gas inlets 53 may be provided. One or more detection units 54 may be provided, and a plurality of detection units 54 may be provided. By arbitrarily selecting a set of the detection gas inlet 53 and the detection unit 54, it is desirable that there are two or more arbitrary points (two or more points excluding the inlet 51 and the outlet 52). It is possible to detect the concentration of the inspection gas at a point including two or more points, and calculate and analyze it with a computer or the like, thereby inspecting the gas flow distribution in the separator surface (for example, inspection at a certain gas introduction point) Gas can be detected by detecting the concentration of the test gas at multiple points and gas flow rate), gas flow rate (for example, the gas flow rate can be detected from the time required for the test gas to flow from the gas introduction point to the detector) Can be requested.

検査ガスは、検査ガス入口53での燃料電池10Tのガス流路27、28のガス圧力と等しい圧力で、燃料電池10Tのガス流路27、28に導入される。ダイヤフラム型の圧力調整弁76を用いると、容易に、検査ガスを、検査ガス入口53での燃料電池10Tのガス流路27、28のガス圧力と等しい圧力で、燃料電池10Tのガス流路27、28に導入することができる。   The inspection gas is introduced into the gas passages 27 and 28 of the fuel cell 10T at a pressure equal to the gas pressure of the gas passages 27 and 28 of the fuel cell 10T at the inspection gas inlet 53. When the diaphragm type pressure regulating valve 76 is used, the gas flow 27 of the fuel cell 10T can be easily supplied with the test gas at a pressure equal to the gas pressure of the gas flow channel 27, 28 of the fuel cell 10T at the test gas inlet 53. , 28.

検査ガスは、反応ガス(水素、および/または、空気)と異なる種類のガスを含む。検査ガスは、反応ガス(水素、および/または、空気)と異なる種類のガスが100%のガスであってもよいし、反応ガス(水素、および/または、空気)と異なる種類のガスと反応ガスとの混合ガスであってもよい。
反応ガスと異なる種類のガスは、反応ガスと反応しないガスであることが望ましい。反応ガスが水素の場合は、検査ガスに重水素、ヘリウム、窒素、炭酸ガスなどを用いることができる。また、反応ガスが空気の場合は、検査ガスにヘリウム、窒素、炭酸ガスなどを用いることができる。
The inspection gas includes a different type of gas from the reactive gas (hydrogen and / or air). The inspection gas may be a gas whose type of gas different from that of the reactive gas (hydrogen and / or air) may be 100%, or may react with a type of gas different from the reactive gas (hydrogen and / or air). It may be a mixed gas with gas.
The kind of gas different from the reactive gas is desirably a gas that does not react with the reactive gas. When the reaction gas is hydrogen, deuterium, helium, nitrogen, carbon dioxide, or the like can be used as the inspection gas. When the reaction gas is air, helium, nitrogen, carbon dioxide gas or the like can be used as the inspection gas.

つぎに、本発明の燃料電池内の反応ガスの流動の評価方法、評価装置50、評価用燃料電池18Tの作用・効果を説明する。
まず、ガス流路27、28の正規の反応ガスの入口51と出口52との間に検査ガス入口53と検出部54を設けたので、任意の2点(検査ガス入口53と検出部54)間のガスの挙動、流量分布を定量的に求めることができる。
Next, the operation and effect of the evaluation method of the flow of the reaction gas in the fuel cell, the evaluation device 50, and the evaluation fuel cell 18T of the present invention will be described.
First, since the inspection gas inlet 53 and the detection unit 54 are provided between the normal reaction gas inlet 51 and the outlet 52 of the gas flow paths 27 and 28, two arbitrary points (the inspection gas inlet 53 and the detection unit 54) are provided. It is possible to quantitatively determine the gas behavior and flow rate distribution.

また、検査ガスを、検査ガス入口53での燃料電池のガス流路27、28のガス圧力と等しい圧力で、燃料電池のガス流路27、28に導入するので、正規の反応ガスの流れを乱すことが抑制される。
また、検査ガスは、反応ガスと異なる種類のガスを含むので、検査ガスと反応ガスの区別がつき、検出、測定の精度が上がる。
また、検査ガスが重水素を含む場合は、重水素も電極上で反応するため、水生成を含む、発電中のガス流路27、28内の状態を正確に再現することができ、発電をしながら、実際に近い状態でガス流の流動の評価試験することができる。
In addition, since the inspection gas is introduced into the gas flow paths 27 and 28 of the fuel cell at a pressure equal to the gas pressure of the gas flow paths 27 and 28 of the fuel cell at the inspection gas inlet 53, the flow of the normal reaction gas is reduced. Disturbance is suppressed.
In addition, since the inspection gas contains a different type of gas from the reaction gas, the inspection gas and the reaction gas can be distinguished from each other, and the accuracy of detection and measurement is improved.
In addition, when the inspection gas contains deuterium, deuterium also reacts on the electrode, so that the state in the gas flow paths 27 and 28 during power generation, including water generation, can be accurately reproduced. However, it is possible to perform an evaluation test of the flow of the gas flow in a state close to actuality.

本発明の燃料電池内の反応ガスの流動の評価用燃料電池の正面図である。It is a front view of the fuel cell for evaluation of the flow of the reaction gas in the fuel cell of the present invention. 本発明の燃料電池内の反応ガスの流動の評価装置の系統図である。It is a systematic diagram of the evaluation apparatus of the flow of the reaction gas in the fuel cell of the present invention. 本発明の評価方法が適用される燃料電池のスタックの側面図である。It is a side view of the stack of the fuel cell to which the evaluation method of the present invention is applied. 図4の一部拡大断面図である。It is a partially expanded sectional view of FIG. 図4のセルの正面図である。It is a front view of the cell of FIG.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
10T 評価用燃料電池
11 電解質膜
13、16 拡散層
14 アノード
17 カソード
18 セパレータ
18A 評価用燃料電池のセパレータ
19 セル
20 ターミナル
21 インシュレータ
22 エンドプレート
23 燃料電池スタック
24 締結部材(テンションプレート)
25 ボルト・ナット
26 冷媒流路(流体流路)
27 燃料ガス流路(流体流路)
28 酸化ガス流路(流体流路)
29 冷媒マニホールド(流体マニホールド)
30 燃料ガスマニホールド(流体マニホールド)
31 酸化ガスマニホールド(流体マニホールド)
32 ガスケット
33 接着剤
50 燃料電池内の反応ガスの流動の評価装置
51 正規の反応ガスの入口
52 正規の反応ガスの出口
53 検査ガス入口
54 検出部
55 正規の反応ガスを供給する手段
56 検査ガスの供給手段
57 検査ガス測定手段
58、59 ガス源
60 ガス供給配管
61 圧力調整弁
62 流量調整弁
63 フランジ
64、65 電磁弁
66 加湿装置
67 ガス排出配管
68 電磁弁
70 検査ガスのガス源
71 検査用ガス供給配管
72 フランジ
73、74 電磁弁
75 切り替え弁
76 圧力調整弁
77 導管
78 フランジ
79、80 電磁弁
81 フランジ
82、83 電磁弁
84 導管
85 定量分析器(たとえば、質量分析計など)
86 定性分析器(たとえば、クロマトグラフ、発光分析計、吸光分析計など)
87 フランジ
88 電磁弁
89 切り替え弁
90 コンピュータ
10 (solid polymer electrolyte type) fuel cell 10T evaluation fuel cell 11 electrolyte membrane 13, 16 diffusion layer 14 anode 17 cathode 18 separator 18A evaluation fuel cell separator 19 cell 20 terminal 21 insulator 22 end plate 23 fuel cell stack 24 Fastening member (tension plate)
25 Bolt / Nut 26 Refrigerant flow path (fluid flow path)
27 Fuel gas flow path (fluid flow path)
28 Oxidizing gas channel (fluid channel)
29 Refrigerant manifold (fluid manifold)
30 Fuel gas manifold (fluid manifold)
31 Oxidizing gas manifold (fluid manifold)
32 Gasket 33 Adhesive 50 Evaluation Device 51 for Flow of Reactive Gas in Fuel Cell 51 Regular Reaction Gas Inlet 52 Regular Reaction Gas Outlet 53 Inspection Gas Inlet 54 Detection Unit 55 Means for Supplying Regular Reaction Gas 56 Inspection Gas Gas supply pipe 61 Pressure supply valve 62 Flow rate adjustment valve 63 Flow rate adjustment valve 63 Flange 64, 65 Electromagnetic valve 66 Humidifier 67 Gas discharge pipe 68 Electromagnetic valve 70 Inspection gas source 71 Inspection gas measurement means 58, 59 Gas supply piping 72 Flange 73, 74 Solenoid valve 75 Switching valve 76 Pressure regulating valve 77 Conduit 78 Flange 79, 80 Solenoid valve 81 Flange 82, 83 Solenoid valve 84 Conduit 85 Quantitative analyzer (for example, mass spectrometer)
86 Qualitative analyzers (eg chromatographs, emission spectrometers, absorption spectrometers, etc.)
87 Flange 88 Solenoid valve 89 Switching valve 90 Computer

Claims (6)

燃料電池のガス流路に正規の反応ガスを供給する工程と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口から検査ガスを導入する工程と、ガス流路の正規の反応ガスの入口と出口との間に設けた検出部にて検査ガスを検出する工程とを、有する燃料電池内の反応ガスの流動の評価方法。   A step of supplying a normal reaction gas to the gas flow path of the fuel cell, a step of introducing a test gas from an inspection gas inlet provided between the normal reaction gas inlet and the outlet of the gas flow path, and a gas flow path. The method of evaluating the flow of the reaction gas in the fuel cell, comprising the step of detecting the inspection gas with a detection unit provided between the inlet and the outlet of the regular reaction gas. 検査ガスを、検査ガス入口での燃料電池のガス流路のガス圧力と等しい圧力で、燃料電池のガス流路に導入する請求項1記載の燃料電池内の反応ガスの流動の評価方法。   The method for evaluating a flow of a reaction gas in a fuel cell according to claim 1, wherein the inspection gas is introduced into the gas flow path of the fuel cell at a pressure equal to the gas pressure of the gas flow path of the fuel cell at the inspection gas inlet. 検査ガスは、反応ガスと異なる種類のガスを含む請求項1記載の燃料電池内の反応ガスの流動の評価方法。   The method for evaluating a flow of a reaction gas in a fuel cell according to claim 1, wherein the inspection gas contains a different type of gas from the reaction gas. 反応ガスが水素である場合に、前記反応ガスと異なる種類のガスが重水素である請求項3記載の燃料電池内の反応ガスの流動の評価方法。   4. The method for evaluating the flow of a reaction gas in a fuel cell according to claim 3, wherein when the reaction gas is hydrogen, the type of gas different from the reaction gas is deuterium. 燃料電池のガス流路に正規の反応ガスを供給する手段と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス検出用の検出部および該検出部に接続された検査ガス測定手段とを、有する燃料電池内の反応ガスの流動の評価装置。   Means for supplying normal reaction gas to the gas flow path of the fuel cell, inspection gas inlet provided between the normal reaction gas inlet and outlet of the gas flow path, and normal reaction gas inlet of the gas flow path An apparatus for evaluating the flow of a reaction gas in a fuel cell, comprising: a detection unit for detecting a test gas provided between a gas outlet and an outlet; and a test gas measuring unit connected to the detection unit. 正規の反応ガスの入口と出口を有するガス流路と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス入口と、ガス流路の正規の反応ガスの入口と出口との間に設けた検査ガス検出用の検出部とを、有する燃料電池内の反応ガスの流動の評価用燃料電池。   A gas flow path having a normal reaction gas inlet and outlet, a test gas inlet provided between the normal reaction gas inlet and outlet of the gas flow path, and a normal reaction gas inlet and outlet of the gas flow path A fuel cell for evaluation of the flow of reaction gas in a fuel cell having a detection unit for detecting a test gas provided between the two.
JP2005160825A 2005-06-01 2005-06-01 Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation Pending JP2006338978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160825A JP2006338978A (en) 2005-06-01 2005-06-01 Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160825A JP2006338978A (en) 2005-06-01 2005-06-01 Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation

Publications (1)

Publication Number Publication Date
JP2006338978A true JP2006338978A (en) 2006-12-14

Family

ID=37559367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160825A Pending JP2006338978A (en) 2005-06-01 2005-06-01 Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation

Country Status (1)

Country Link
JP (1) JP2006338978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175873A (en) * 2010-02-24 2011-09-08 Japan Atomic Energy Agency Fuel cell, fuel cell system, and power generation method
CN113642265A (en) * 2021-06-29 2021-11-12 东风汽车集团股份有限公司 Method and device for evaluating fluid flow of fuel cell short stack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185878A (en) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd Fuel cell power generation device
JPH08222260A (en) * 1995-02-15 1996-08-30 Fuji Electric Co Ltd Abnormality monitoring method of fuel cell and device therefof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185878A (en) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd Fuel cell power generation device
JPH08222260A (en) * 1995-02-15 1996-08-30 Fuji Electric Co Ltd Abnormality monitoring method of fuel cell and device therefof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175873A (en) * 2010-02-24 2011-09-08 Japan Atomic Energy Agency Fuel cell, fuel cell system, and power generation method
CN113642265A (en) * 2021-06-29 2021-11-12 东风汽车集团股份有限公司 Method and device for evaluating fluid flow of fuel cell short stack
CN113642265B (en) * 2021-06-29 2024-04-16 东风汽车集团股份有限公司 Method and device for evaluating flow of fuel cell short stack fluid

Similar Documents

Publication Publication Date Title
US6852970B2 (en) Mass spectrometer
EP1279940B1 (en) Gas leak detection method for fuel cell
JP4048097B2 (en) Fuel cell current density measurement device
CA2452789C (en) Diagnostic method for fuel cell
US7544430B2 (en) Online detection of stack crossover rate for adaptive hydrogen bleed strategy
US6638650B1 (en) Method and apparatus for detecting transfer leaks in fuel cells and fuel cell stacks
WO2016095238A1 (en) Method and device for detecting pile consistency of proton exchange membrane fuel cell
Phillips et al. Utilizing a segmented fuel cell to study the effects of electrode coating irregularities on PEM fuel cell initial performance
US6841292B2 (en) Hydrogen sensor for fuel processors of a fuel cell
WO2006134671A1 (en) Fuel cell system designed to ensure stability of operation
Narimani et al. Hydrogen emission characterization for proton exchange membrane fuel cell during oxygen starvation–Part 1: Low oxygen concentration
US11545683B2 (en) Methods and apparatus for detecting electrical short circuits in fuel cell stacks
JP2006338978A (en) Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation
JP2005123101A (en) Gas flow measurement method and device in fuel cell
Partridge et al. Intra-fuel cell stack measurements of transient concentration distributions
Schuler et al. Local online gas analysis in PEFC using tracer gas concepts
JP2006078226A (en) Ion quantitative analyzing method and fluorine ion quantitative analyzing method
US9093676B2 (en) Apparatus and method of in-situ measurement of membrane fluid crossover
US8951690B2 (en) Apparatus and method of in-situ measurement of membrane fluid crossover
JPH08222260A (en) Abnormality monitoring method of fuel cell and device therefof
KR101294182B1 (en) Apparatus and method for testing electrolyte membrane in fuel cell
JP4961639B2 (en) Fluid cell fluid leak inspection method
JP2007194026A (en) Method and device for evaluating deterioration of membrane-electrode assembly
JP6090866B2 (en) Hydrogen peroxide concentration detection sensor for fuel cell and manufacturing method thereof
JP2006012715A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823