JPH08185878A - Fuel cell power generation device - Google Patents

Fuel cell power generation device

Info

Publication number
JPH08185878A
JPH08185878A JP6324192A JP32419294A JPH08185878A JP H08185878 A JPH08185878 A JP H08185878A JP 6324192 A JP6324192 A JP 6324192A JP 32419294 A JP32419294 A JP 32419294A JP H08185878 A JPH08185878 A JP H08185878A
Authority
JP
Japan
Prior art keywords
fuel
gas
air
fuel cell
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6324192A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakajima
憲之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6324192A priority Critical patent/JPH08185878A/en
Publication of JPH08185878A publication Critical patent/JPH08185878A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To surely detect the leak and permeation of reaction gases across electrodes due to the deterioration of an electrode structure during an operation of power generation. CONSTITUTION: A helium gas feed pipe 22 is connected to a fuel gas feed pipe 21 mounted on the side of a layer-built fuel cell 10 and jointed to a fuel gas feed manifold 13, thereby feeding He gases to a fuel electrode, together with fuel gases. Also, a helium gas sensor 23 is connected to an air discharge pipe 17 jointed to an air discharge manifold 12, thereby detecting the concentration of He gases leaking and permeating from the fuel electrode to an air electrode and discharged, together with the unconverted air. In addition, a He gas concentration measurement signal is sent to an arithmetic operation device 24, and an error signal is generated, when He gas concentration exceeds a reference value calculated with an operation condition accounted on the basis of the current value signal, fuel gas flowrate signal and air flowrate signal of a fuel cell power generation device, thereby detecting the leak and permeation of unconverted gases across both electrodes due to the deterioration of an electrode structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料極と空気極との
間の反応ガスの漏洩透過を運転中に検知する機能を備え
たリン酸型の燃料電池発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid type fuel cell power generator having a function of detecting leakage and permeation of a reaction gas between a fuel electrode and an air electrode during operation.

【0002】[0002]

【従来の技術】図2は、従来より用いられているリン酸
型の燃料電池発電装置の燃料電池本体の積層燃料電池の
基本構成を示す断面図である。電解質体のリン酸を含ん
だ電解質マトリックス1を、燃料ガス通流溝3aを有す
る燃料極基材3と燃料極触媒層2とからなる燃料極4
と、空気通流溝6aを有する空気極基材6と空気極触媒
層5とからなる空気極7とで挟持してなる単セルを、側
面をシール材9で気密に保持して、セパレータ8と交互
に積層し、さらに図示しない冷却板を適宜挿入して積層
することにより積層燃料電池が形成されている。本構成
において、燃料ガス通流溝3aに燃料ガスを通流し、空
気通流溝6aに空気を通流すると、電気化学反応によっ
て両電極間に直流電力が生じることとなる。
2. Description of the Related Art FIG. 2 is a sectional view showing a basic structure of a laminated fuel cell of a fuel cell body of a phosphoric acid type fuel cell power generator which has been conventionally used. A fuel electrode 4 comprising an electrolyte matrix 1 containing phosphoric acid as an electrolyte body and a fuel electrode base material 3 having a fuel gas flow groove 3a and a fuel electrode catalyst layer 2.
And the air electrode base material 6 having the air flow groove 6a and the air electrode 7 composed of the air electrode catalyst layer 5, the side surface of the single cell is hermetically held by the sealing material 9, and the separator 8 And a cooling plate (not shown) are appropriately inserted and laminated to form a laminated fuel cell. In this configuration, when the fuel gas is passed through the fuel gas flow groove 3a and the air is passed through the air flow groove 6a, a DC power is generated between the electrodes due to the electrochemical reaction.

【0003】このように構成された積層燃料電池を用い
たリン酸型の燃料電池発電装置においても、発電運転の
進行とともに、電極構造の劣化、例えば、両電極の仕切
り板の役割を果たすセパレータ8の損傷、電解質マトリ
ックス1の損傷、シール材9の特性低下、あるいは電解
質マトリックス1に含まれるリン酸の欠乏等が生じる
と、反応ガスの両電極間での漏洩透過が起こるので、出
力電圧が低下してしまい、さらに、各電極内部で生じる
発電反応による電気エネルギーが局部的に消費されるの
で、局部加熱が起こり、構造材が熱損傷することとな
る。したがって、燃料電池発電装置においては、電極構
造の劣化による反応ガスの両電極間での漏洩透過の有無
を検知し、漏洩透過が有る場合には速やかに補修を加え
ることが必要である。
Also in the phosphoric acid type fuel cell power generator using the laminated fuel cell thus constructed, the electrode structure is deteriorated with the progress of the power generation operation, for example, the separator 8 serving as a partition plate for both electrodes. When the electrolyte matrix 1 is damaged, the electrolyte matrix 1 is damaged, the characteristics of the sealing material 9 are deteriorated, or the phosphoric acid contained in the electrolyte matrix 1 is deficient, the reaction gas leaks and permeates between both electrodes, resulting in a decrease in output voltage. Moreover, since electric energy generated by the power generation reaction inside each electrode is locally consumed, local heating occurs and the structural material is thermally damaged. Therefore, in the fuel cell power generator, it is necessary to detect the presence / absence of leakage and permeation of the reaction gas between both electrodes due to the deterioration of the electrode structure, and if there is leakage / permeation, it is necessary to promptly make repairs.

【0004】図3は、従来の燃料電池発電装置における
両電極間の反応ガスの漏洩透過検知手段の構成図であ
る。本図の構成においては、図2に示した単セルを燃料
ガス通流溝3aと空気通流溝6aとが直交するように積
層して形成された積層燃料電池10の、燃料ガス通流溝
3aが開口部をもつ両側面にそれぞれ燃料ガス供給マニ
ホールド13と燃料ガス排出マニホールド14を、また
空気通流溝6aが開口部をもつ他の両側面にそれぞれ空
気供給マニホールド11と空気排出マニホールド12を
組み込んだ燃料電池本体において、空気排出マニホール
ド12に連結された未反応空気を外部に排出する空気排
出管17に水素ガスセンサー18が接続されており、さ
らに燃料ガス排出マニホールド14に連結された未反応
燃料ガスを外部に排出する燃料ガス排出管19に酸素ガ
スセンサー20が接続されている。両電極間の漏洩透過
が無視できる正常な運転においては、燃料ガスとして燃
料ガス供給マニホールド13に供給された水素は燃料ガ
ス排出管19より未反応燃料ガスに含まれて排出され、
空気供給マニホールド11に供給された空気中の酸素は
空気排出管17より未反応空気に含まれて排出される
が、両電極間の漏洩透過があると、空気排出管17より
排出される未反応空気への水素の混入、あるいは燃料ガ
ス排出管19より排出される未反応燃料ガスへの空気中
の酸素の混入が生じることとなる。したがって、上記の
ように、両排出管にガスセンサーを接続して混入したガ
スを測定することにより両電極間の漏洩透過の有無が検
知されることとなる。
FIG. 3 is a block diagram of a leak gas permeation detecting means for a reaction gas between both electrodes in a conventional fuel cell power generator. In the configuration of this figure, the fuel gas passage groove of the laminated fuel cell 10 formed by stacking the unit cells shown in FIG. 2 so that the fuel gas passage groove 3a and the air passage groove 6a are orthogonal to each other. 3a has a fuel gas supply manifold 13 and a fuel gas discharge manifold 14 on both sides having openings, and an air supply groove 6a has an air supply manifold 11 and an air discharge manifold 12 on both sides having openings. In the built-in fuel cell main body, a hydrogen gas sensor 18 is connected to an air exhaust pipe 17 that is connected to the air exhaust manifold 12 and discharges unreacted air to the outside. An oxygen gas sensor 20 is connected to a fuel gas discharge pipe 19 that discharges the fuel gas to the outside. In a normal operation in which leakage and permeation between both electrodes can be ignored, hydrogen supplied to the fuel gas supply manifold 13 as a fuel gas is discharged from the fuel gas discharge pipe 19 as unreacted fuel gas.
Oxygen in the air supplied to the air supply manifold 11 is contained in the unreacted air and is discharged from the air discharge pipe 17, but if there is leakage permeation between both electrodes, the unreacted oxygen discharged from the air discharge pipe 17 is discharged. Hydrogen will be mixed into the air, or oxygen in the air will be mixed into the unreacted fuel gas discharged from the fuel gas discharge pipe 19. Therefore, as described above, the presence / absence of leakage / transmission between both electrodes can be detected by connecting the gas sensors to both the exhaust pipes and measuring the mixed gas.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ように両電極間の反応ガスの漏洩透過検知手段を備えて
構成した燃料電池発電装置においても、両電極間の漏洩
透過が生じ、反応ガスが一方の電極から他方の電極へと
漏洩しても、漏洩した反応ガスは漏洩先の電極内で反応
を起こして消費されることとなる。したがって、両電極
間での漏洩透過が少量である場合には、上記のように排
出管に混入して排出される量は極微量となりガスセンサ
ーでの検知が不可能となる。すなわち、本構成による検
知方法においては、両電極間の反応ガスのシール性能の
劣化が進行して漏洩透過量がかなり多量にならなければ
検知できないという問題点がある。
However, even in the fuel cell power generator having the reaction gas leak permeation detecting means between both electrodes as described above, leak permeation occurs between both electrodes and the reaction gas is not generated. Even if the electrode leaks from one electrode to the other electrode, the leaked reaction gas will react and be consumed in the electrode at the leak destination. Therefore, when the amount of leakage and transmission between both electrodes is small, the amount mixed and discharged in the discharge pipe becomes extremely small as described above, and detection by the gas sensor becomes impossible. That is, the detection method according to the present configuration has a problem that detection cannot be performed unless the leak gas permeation amount becomes considerably large due to deterioration of the sealing performance of the reaction gas between both electrodes.

【0006】両電極間の漏洩透過の検知方法としては、
上記の他に、空気極あるいは燃料極のいずれか一方のガ
ス流通溝に窒素ガスを供給して加圧し、相対する電極の
端面に漏洩する量を測定して漏洩透過を検知する方法が
ある。この方法は、上記のような電極内部での反応に妨
げられることなく漏洩透過を検知できるという特長があ
るが、燃料電池発電装置が停止中にのみ実施可能な方法
であり、発電中に検知する方法としては採用できないと
いう難点がある。
As a method of detecting leakage and transmission between both electrodes,
In addition to the above, there is a method of supplying nitrogen gas to the gas flow groove of either the air electrode or the fuel electrode, pressurizing the gas, and measuring the amount of leakage to the end face of the opposing electrode to detect the leakage permeation. This method has the feature that leak permeation can be detected without being hindered by the reaction inside the electrode as described above, but it is a method that can be performed only while the fuel cell power generator is stopped, and it can be detected during power generation. There is a drawback that it cannot be adopted as a method.

【0007】この発明は、上記のごとき問題点を考慮し
てなされたもので、その目的は、電極構造の劣化に伴っ
て生じた両電極間の反応ガスの漏洩透過を、発電運転状
態において、電池内部での反応に左右されることなく的
確に検知する機能を備えた燃料電池発電装置を提供する
ことにある。
The present invention has been made in consideration of the above problems, and an object thereof is to prevent leakage and permeation of a reaction gas between both electrodes caused by deterioration of an electrode structure during power generation operation. It is an object of the present invention to provide a fuel cell power generator having a function of detecting accurately without being influenced by the reaction inside the cell.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電解質マトリックスを、燃料
ガス通流溝を有する燃料極基材および燃料極触媒層から
なる燃料極と、空気通流溝を有する空気極基材および空
気極触媒層からなる空気極とにより挟持してなる単セル
をセパレータと交互に積層して形成される積層板燃料電
池の、燃料ガス通流溝が開口部を有する相対する二つの
側面にそれぞれ燃料ガス供給マニホールドと燃料ガス排
出マニホールドを配し、空気通流溝が開口部を有する他
の二つの側面にそれぞれ空気供給マニホールドと空気排
出マニホールドを配し、燃料ガス供給マニホールドに燃
料ガスを、また空気供給マニホールドに空気を供給し
て、電気化学反応により直流電力を得る燃料電池発電装
置において、燃料ガス供給マニホールドへ燃料ガスを供
給する配管に不活性ガスを供給する配管を接続し、かつ
空気排出マニホールドより未反応空気を排出する配管に
上記の不活性ガスの濃度を測定する検知器を連結した配
管を接続するか、あるいは空気供給マニホールドへ空気
を供給する配管に不活性ガスを供給する配管を接続し、
かつ燃料ガス排出マニホールドより未反応燃料ガスを排
出する配管に上記の不活性ガスの濃度を測定する検知器
を接続することとする。
In order to achieve the above object, in the present invention, an electrolyte matrix is used, and a fuel electrode comprising a fuel electrode substrate having a fuel gas flow channel and a fuel electrode catalyst layer, and an air. A fuel gas flow groove of a laminated plate fuel cell formed by alternately stacking single cells sandwiched by an air electrode base material having a flow groove and an air electrode composed of an air electrode catalyst layer is opened. A fuel gas supply manifold and a fuel gas discharge manifold are respectively arranged on the two opposite side surfaces having a portion, and an air supply manifold and an air discharge manifold are respectively arranged on the other two side surfaces where the air flow groove has an opening, In a fuel cell power generator that supplies fuel gas to the fuel gas supply manifold and air to the air supply manifold to obtain DC power by an electrochemical reaction, A pipe that connects the pipe that supplies the inert gas to the pipe that supplies the fuel gas to the supply manifold, and that connects the detector that measures the concentration of the inert gas to the pipe that discharges the unreacted air from the air discharge manifold. , Or connect a pipe that supplies an inert gas to the pipe that supplies air to the air supply manifold,
In addition, the detector for measuring the concentration of the above-mentioned inert gas is connected to the pipe for discharging the unreacted fuel gas from the fuel gas discharge manifold.

【0009】さらに、上記の燃料電池発電装置におい
て、不活性ガスの濃度を測定する検知器を、その検知器
による不活性ガス濃度測定信号と、燃料電池発電装置の
運転電流値を表す電流値信号、燃料ガスの供給流量を表
す燃料ガス流量信号、および空気の供給流量を表す空気
流量信号を入力とし、その電流値信号、燃料ガス流量信
号、および空気流量信号より不活性ガス濃度の標準値を
演算し、さらに演算された標準値と不活性ガス濃度測定
信号による測定値を比較演算し、その差異により異常信
号を出力する機能を有する演算装置に接続することとす
る。
Further, in the above fuel cell power generator, a detector for measuring the concentration of the inert gas is provided with an inert gas concentration measurement signal by the detector and a current value signal representing an operating current value of the fuel cell power generator. , The fuel gas flow rate signal indicating the fuel gas supply flow rate, and the air flow rate signal indicating the air supply flow rate are input, and the standard value of the inert gas concentration is calculated from the current value signal, the fuel gas flow rate signal, and the air flow rate signal. The calculation is performed, and the calculated standard value and the measurement value by the inert gas concentration measurement signal are compared and calculated, and the difference is connected to a calculation device having a function of outputting an abnormal signal.

【0010】さらにまた、上記の検知器および演算装置
を、燃料電池発電装置に着脱可能に組み込むこととす
る。さらにまた、上記の不活性ガスをヘリウムガスとす
る。
Furthermore, the above detector and arithmetic unit are detachably incorporated in the fuel cell power generator. Furthermore, the above-mentioned inert gas is helium gas.

【0011】[0011]

【作用】上記のごとく、燃料電池発電装置の積層燃料電
池において、燃料ガス供給マニホールドへ燃料ガスを供
給する配管に不活性ガスを供給する配管を接続し、かつ
空気排出マニホールドより未反応空気を排出する配管に
上記の不活性ガスの濃度を測定する検知器を接続する
か、あるいは空気供給マニホールドへ空気を供給する配
管に不活性ガスを供給する配管を接続し、かつ燃料ガス
排出マニホールドより未反応燃料ガスを排出する配管に
上記の不活性ガスの濃度を測定する検知器を接続するこ
ととすれば、不活性ガスを供給する配管より送られる不
活性ガスは化学的に極めて安定した元素であるので、発
電運転中の電池内部にあっても何ら反応を起こすことな
く、反応ガスの流れとともに排出される。すなわち、積
層燃料電池の燃料極と空気極間の漏洩透過が皆無であれ
ば、燃料ガスを供給する配管に供給された不活性ガスは
未反応燃料ガスを排出する配管より排出され、また空気
を供給する配管に不活性ガスが供給された場合には未反
応空気を排出する配管より排出されることとなるが、燃
料極と空気極の間の漏洩透過が生じると、燃料ガスを供
給する配管に供給された不活性ガスの一部は燃料ガスと
ともに空気極へ漏洩透過して未反応空気を排出する配管
より排出され、また空気を供給する配管に不活性ガスが
供給された場合にはその一部が空気とともに燃料極へと
漏洩透過して未反応燃料ガスを排出する配管より排出さ
れることとなる。したがって、上記のように、不活性ガ
スを供給する電極と相対する電極より未反応反応ガスを
排出する配管に検知器を配置して、その不活性ガスを測
定することにより、発電運転中に連続的に、かつ電池内
部での反応により妨げを受けることなく、両電極間の反
応ガスの漏洩透過を検知することができ、またその漏洩
透過量より電池構造の劣化の度合いを知ることができ
る。
As described above, in the laminated fuel cell of the fuel cell power generator, the pipe for supplying the inert gas is connected to the pipe for supplying the fuel gas to the fuel gas supply manifold, and the unreacted air is discharged from the air discharge manifold. Connect the detector for measuring the above-mentioned inert gas concentration to the pipe to be connected, or connect the pipe to supply the inert gas to the pipe to supply air to the air supply manifold, and not react from the fuel gas exhaust manifold. If a detector for measuring the concentration of the above inert gas is connected to the pipe for discharging the fuel gas, the inert gas sent from the pipe for supplying the inert gas is a chemically extremely stable element. Therefore, even if it is inside the battery during the power generation operation, the reaction gas is discharged without causing any reaction. That is, if there is no leakage permeation between the fuel electrode and the air electrode of the laminated fuel cell, the inert gas supplied to the pipe for supplying the fuel gas is discharged from the pipe for discharging the unreacted fuel gas, and the air is also discharged. When inert gas is supplied to the supply pipe, it will be discharged from the pipe that discharges unreacted air, but if leakage permeation occurs between the fuel electrode and the air electrode, the pipe that supplies fuel gas Part of the inert gas supplied to the air is leaked and permeated to the air electrode together with the fuel gas and discharged from the pipe that discharges unreacted air.If the inert gas is supplied to the pipe that supplies air, the Part of the gas leaks and permeates with the air to the fuel electrode and is discharged from the pipe for discharging the unreacted fuel gas. Therefore, as described above, by arranging the detector in the pipe that discharges the unreacted reaction gas from the electrode facing the electrode supplying the inert gas, and measuring the inert gas, continuous operation during power generation operation can be performed. Moreover, the leakage and permeation of the reaction gas between both electrodes can be detected without being hindered by the reaction inside the battery, and the degree of deterioration of the battery structure can be known from the amount of the leakage and permeation.

【0012】積層燃料電池の燃料極と空気極との間の気
密が完全に保持されていれば極間の反応ガスの漏洩透過
は皆無であるが、実際に製作される積層燃料電池におい
ては完全な気密を得ることは不可能で、極微量ながらも
反応ガスの漏洩透過が存在するのが通例である。このよ
うな電極構造の劣化に起因しない基礎的な漏洩透過量
は、積層燃料電池の運転条件によって変化し、主として
出力電流により左右される温度条件、供給される燃料ガ
スの流量および空気の流量に対応して変動する。このよ
うに積層燃料電池で極間の反応ガスの漏洩透過があって
も、その漏洩透過量が極微量であれば発電運転に支障を
及ぼすことはない。
If the airtightness between the fuel electrode and the air electrode of the laminated fuel cell is completely maintained, there will be no leakage and permeation of the reaction gas between the electrodes. It is impossible to obtain high airtightness, and it is usual that there is leakage and permeation of the reaction gas even though the amount is very small. The basic amount of leakage and permeation that does not result from such deterioration of the electrode structure changes depending on the operating conditions of the laminated fuel cell, and mainly depends on the temperature conditions that are influenced by the output current, the flow rate of the supplied fuel gas, and the flow rate of air. Correspondingly fluctuates. As described above, even if there is a leak and permeation of the reaction gas between the electrodes in the laminated fuel cell, if the amount of the leak and permeation is extremely small, it does not hinder the power generation operation.

【0013】したがって、上述のように、燃料電池発電
装置に付設する不活性ガスの濃度を測定する検知器を、
その検知器の不活性ガス濃度測定信号と、燃料電池発電
装置の電流値信号、燃料ガス流量信号、および空気流量
信号を入力とし、その電流値信号、燃料ガス流量信号、
および空気流量信号より不活性ガス濃度の標準値を演算
し、さらに演算された標準値と不活性ガス濃度測定信号
による測定値を比較演算し、その差異により異常信号を
出力する機能を有する演算装置に接続することとすれ
ば、運転条件を加味して補正した電池構造の劣化に起因
しない極間の漏洩透過量を基準値とし、これと測定値を
比較することによって電池構造の劣化に起因する漏洩透
過の有無が検知されこととなる。
Therefore, as described above, the detector for measuring the concentration of the inert gas attached to the fuel cell power generator is
The inert gas concentration measurement signal of the detector, the current value signal of the fuel cell power generator, the fuel gas flow rate signal, and the air flow rate signal are input, and the current value signal, the fuel gas flow rate signal,
And an arithmetic unit having a function of calculating a standard value of the inert gas concentration from the air flow rate signal, comparing and calculating the calculated standard value and the measurement value of the inert gas concentration measurement signal, and outputting an abnormal signal based on the difference. If it is connected to the battery, the reference value is the leakage permeation amount between the electrodes, which is not caused by the deterioration of the battery structure corrected by taking into consideration the operating conditions, and the measured value is compared to cause the deterioration of the battery structure. The presence or absence of leakage / transmission will be detected.

【0014】さらにまた、上記の検知器と演算装置を燃
料電池発電装置に着脱可能に組み込むこととすれば、一
式の検知器と演算装置を複数の燃料電池発電装置に順次
装着し、その積層燃料電池の極間の反応ガスの漏洩透過
を評価することができる。また、上記の不活性ガスとし
てヘリウムガスを用いることとすれば、ヘリウムガス
は、高真空容器の漏洩検知に汎用されているごとく極め
て透過性の高い不活性ガスであるので、漏洩個所に効果
的に透過し、極間の漏洩透過が精度よく検知できる。
Furthermore, if the above-mentioned detector and arithmetic unit are removably incorporated in the fuel cell power generator, a set of detector and arithmetic unit are sequentially attached to a plurality of fuel cell power generators, and the fuel stack is obtained. Leakage and permeation of the reaction gas between the electrodes of the battery can be evaluated. Further, if helium gas is used as the above-mentioned inert gas, helium gas is an extremely highly permeable inert gas as is commonly used for leak detection in high vacuum containers, so it is effective at leaking points. It is possible to accurately detect leakage and transmission between the electrodes.

【0015】[0015]

【実施例】図1は、本発明の燃料電池発電装置における
両電極間の反応ガスの漏洩透過検知手段の一実施例を示
す構成図である。図3に示した従来例と同一の機能を有
する構成部品については、同一符号を付して重複する説
明を省略する。本実施例と従来例との相違点は、燃料ガ
ス供給マニホールド13に連結された燃料ガス供給管2
1にHeガス供給管22が接続さえていること、空気排
出マニホールド12に連結された空気排出管17に、従
来の水素ガスセンサーに代わり、Heガスセンサー23
が接続されていること、さらにHeガスセンサー23が
演算装置24に接続されていること、また従来例で燃料
ガス排出管19に接続されていた酸素ガスセンサー20
が用いられていないことにある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of a leak permeation detecting means for a reaction gas between both electrodes in a fuel cell power generator of the present invention. Constituent parts having the same functions as those of the conventional example shown in FIG. 3 are designated by the same reference numerals, and redundant description will be omitted. The difference between this embodiment and the conventional example is that the fuel gas supply pipe 2 connected to the fuel gas supply manifold 13 is connected.
1 is connected to the He gas supply pipe 22, and the He gas sensor 23 is connected to the air exhaust pipe 17 connected to the air exhaust manifold 12 in place of the conventional hydrogen gas sensor.
Is connected, the He gas sensor 23 is connected to the arithmetic unit 24, and the oxygen gas sensor 20 connected to the fuel gas discharge pipe 19 in the conventional example.
Is not used.

【0016】本構成の燃料電池発電装置の発電運転の際
に、Heガス供給管22より燃料ガス供給管21を通し
て積層燃料電池10へHeガスを供給すると、正常な運
転状態においては、積層燃料電池10の内部で燃料極か
ら空気極へと漏洩する量は極めて微量であるので、空気
排出管17に接続されたHeガスセンサー23で検知さ
れるHeガス濃度は極微小であるが、電池構造が劣化し
燃料極と空気極との間の反応ガスの漏洩透過量が増大す
るとHeガスの漏洩透過量も増大し、Heガスセンサー
23で検知されるHeガス濃度も高くなる。Heガスセ
ンサー23に接続された演算装置24は、入力される燃
料電池発電装置の電流値信号、燃料ガス流量信号および
空気流量信号より、所定のHeガス供給量における正常
な運転状態におけるHeガスセンサー23の設置位置で
のHeガス濃度の標準値を算出し、Heガスセンサー2
3より入力されるHeガス濃度測定信号によるHeガス
濃度の測定値と上記の標準値とを比較演算し、その差異
により異常信号を出力する機能を有する装置である。し
たがって、電池構造が劣化して電極間の漏洩透過が増大
すれば、Heガスセンサー23で検知されるHeガス濃
度が高くなり、演算装置24より異常信号が出力される
こととなる。
When the He gas is supplied from the He gas supply pipe 22 to the laminated fuel cell 10 through the fuel gas supply pipe 21 during the power generation operation of the fuel cell power generator of the present construction, the laminated fuel cell will be operated under normal operating conditions. Since the amount of leakage from the fuel electrode to the air electrode inside 10 is extremely small, the He gas concentration detected by the He gas sensor 23 connected to the air discharge pipe 17 is extremely small, but the cell structure is When it deteriorates and the amount of leakage and permeation of the reaction gas between the fuel electrode and the air electrode increases, the amount of leakage and permeation of He gas also increases, and the concentration of He gas detected by the He gas sensor 23 also increases. The arithmetic unit 24 connected to the He gas sensor 23 uses the input current value signal, fuel gas flow rate signal and air flow rate signal of the fuel cell power generator to input the He gas sensor in a normal operating state at a predetermined He gas supply amount. The standard value of the He gas concentration at the installation position of 23 is calculated, and the He gas sensor 2
3 is a device having a function of comparing and calculating the measured value of the He gas concentration based on the He gas concentration measuring signal input from No. 3 and the standard value, and outputting an abnormal signal based on the difference. Therefore, if the battery structure deteriorates and leakage and permeation between the electrodes increase, the He gas concentration detected by the He gas sensor 23 increases, and an abnormal signal is output from the arithmetic unit 24.

【0017】なお、図1に示した実施例では燃料ガス供
給管21にHeガス供給管22を接続してHeガスを供
給し、空気排出管17にHeガスセンサー23を接続し
て排出される未反応空気のHe濃度を測定し電極間の漏
洩透過を検知することとしているが、空気供給マニホー
ルド11に連結される空気供給管にHeガス供給管22
を接続してHeガスを供給し、燃料ガス排出マニホール
ド14に連結される燃料排出管にHeガスセンサー23
を接続して排出される未反応燃料ガスのHe濃度を測定
し電極間の漏洩透過を検知することとしても、同様に検
知可能であることは図示するまでもなく明らかである。
In the embodiment shown in FIG. 1, the fuel gas supply pipe 21 is connected to the He gas supply pipe 22 to supply the He gas, and the air discharge pipe 17 is connected to the He gas sensor 23 to discharge the gas. Although the He concentration of the unreacted air is measured to detect the leakage permeation between the electrodes, the He gas supply pipe 22 is connected to the air supply pipe connected to the air supply manifold 11.
To supply He gas, and connect the fuel gas exhaust manifold 14 to the fuel exhaust pipe connected to the He gas sensor 23.
Even if the He concentration of the unreacted fuel gas exhausted by connecting the electrodes is measured and the leakage permeation between the electrodes is detected, it is obvious that it can be detected in the same manner.

【0018】また、本実施例の構成ではHeガスセンサ
ー23を空気排出管17あるいは燃料排出管に着脱自在
に取り付けることは通常の技術で容易に行えるので、H
eガスセンサー23と演算装置24とを複数の燃料電池
発電装置へと順次組み込むことにより、一式の装置で複
数の燃料電池発電装置の電極間の漏洩透過を検知するこ
ともできる。
Further, in the structure of the present embodiment, the He gas sensor 23 can be detachably attached to the air exhaust pipe 17 or the fuel exhaust pipe by a conventional technique.
By sequentially incorporating the e-gas sensor 23 and the arithmetic unit 24 into a plurality of fuel cell power generators, it is possible to detect leakage and permeation between the electrodes of the plurality of fuel cell power generators with a single device.

【0019】また、本実施例ではHeガスを用いて電極
間の漏洩透過を検知しているが、他の不活性ガスを用い
ても、Heガスと同様に、積層燃料電池内部での反応に
妨げられることなく漏洩透過が検知できる。
Further, in this embodiment, He gas is used to detect the leakage and permeation between the electrodes. However, even if other inert gas is used, the reaction inside the laminated fuel cell is similar to that of He gas. Leakage and transmission can be detected without hindrance.

【0020】[0020]

【発明の効果】上述したように、本発明においては、電
解質マトリックスを燃料極と空気極とにより挟持してな
る単セルをセパレータと交互に積層して形成される積層
燃料電池の相対する二つの側面にそれぞれ燃料ガス供給
マニホールドと燃料ガス排出マニホールドを配し、他の
二つの側面にそれぞれ空気供給マニホールドと空気排出
マニホールドを配し、燃料ガス供給マニホールドに燃料
ガスを、また空気供給マニホールドに空気を供給して、
電気化学反応により直流電力を得る燃料電池発電装置に
おいて、燃料ガス供給マニホールドへ燃料ガスを供給す
る配管に不活性ガスを供給する配管を接続し、かつ空気
排出マニホールドより未反応空気を排出する配管に上記
の不活性ガスの濃度を測定する検知器を連結した配管を
接続するか、あるいは空気供給マニホールドへ空気を供
給する配管に不活性ガスを供給する配管を接続し、かつ
燃料ガス排出マニホールドより未反応燃料ガスを排出す
る配管に上記の不活性ガスの濃度を測定する検知器を接
続することとしたので、積層燃料電池の内部で反応を生
じることのない不活性ガスを反応ガスとともに供給し、
相対する電極側に排出される未反応ガス中の不活性ガス
の濃度を検知器により測定すれば電極間の漏洩透過が検
知できることとなるので、電極構造の劣化に伴って生じ
た両電極間の反応ガスの漏洩透過を、発電運転状態にお
いて、電池内部での反応に左右されることなく的確に検
知する機能を備えた燃料電池発電装置が得られることと
なった。
As described above, in the present invention, the two opposed fuel cells of the laminated fuel cell formed by alternately laminating the unit cells formed by sandwiching the electrolyte matrix by the fuel electrode and the air electrode are alternately laminated. The fuel gas supply manifold and the fuel gas exhaust manifold are arranged on the side surfaces, and the air supply manifold and the air exhaust manifold are arranged on the other two side surfaces.The fuel gas is supplied to the fuel gas supply manifold and the air is supplied to the air supply manifold. Supply
In a fuel cell power generator that obtains DC power by an electrochemical reaction, connect a pipe for supplying an inert gas to a pipe for supplying a fuel gas to a fuel gas supply manifold, and use a pipe for discharging unreacted air from an air discharge manifold. Connect the pipe connecting the detector for measuring the concentration of the above inert gas, or connect the pipe for supplying the inert gas to the pipe for supplying air to the air supply manifold, and connect the pipe for supplying the inert gas to the air supply manifold. Since it was decided to connect a detector for measuring the concentration of the above-mentioned inert gas to the pipe for discharging the reaction fuel gas, an inert gas that does not cause a reaction inside the laminated fuel cell is supplied together with the reaction gas,
By measuring the concentration of the inert gas in the unreacted gas discharged to the opposite electrode side with a detector, it is possible to detect the leakage permeation between the electrodes. A fuel cell power generator having a function of accurately detecting the leakage and permeation of a reaction gas in a power generation operation state without being influenced by the reaction inside the cell has been obtained.

【0021】また、燃料電池発電装置に付設する不活性
ガスの濃度を測定する検知器を、さらに、その検知器の
不活性ガス濃度測定信号と、燃料電池発電装置の電流値
信号、燃料ガス流量信号、および空気流量信号を入力と
し、その電流値信号、燃料ガス流量信号、および空気流
量信号より不活性ガス濃度の標準値を演算し、さらに演
算された標準値と不活性ガス濃度測定信号による測定値
を比較演算し、その差異により異常信号を出力する機能
を有する演算装置に接続することとすれば、電池構造の
劣化に起因しない極間の漏洩透過量を基準値とし、さら
にこの基準値を運転条件を加味して補正して、これと測
定値を比較することによって電池構造の劣化が生じた時
のみ的確に異常信号が得られることとなるので、電極構
造の劣化に伴って生じた両電極間の反応ガスの漏洩透過
を、発電運転状態において的確に検知する機能を備えた
燃料電池発電装置として好適である。
Further, a detector for measuring the concentration of the inert gas attached to the fuel cell power generator is further provided, and further, an inert gas concentration measurement signal of the detector, a current value signal of the fuel cell power generator, and a fuel gas flow rate. Signal and air flow rate signal as input, calculate the standard value of the inert gas concentration from the current value signal, fuel gas flow rate signal, and air flow rate signal, and use the calculated standard value and the inert gas concentration measurement signal. If it is connected to an arithmetic unit that has the function of comparing and calculating measured values and outputting an abnormal signal based on the difference, the reference value is the amount of leakage and transmission between the electrodes that is not caused by deterioration of the battery structure. It is possible to obtain an accurate abnormal signal only when the deterioration of the battery structure occurs by comparing the measured value with the correction value by taking into account the deterioration of the electrode structure. Flip and the leakage transmission of the reaction gas between the electrodes, is suitable as a fuel cell power generator having a function of detecting accurately the power generating operation state.

【0022】さらにまた、上記の検知器と演算装置を燃
料電池発電装置に着脱可能に組み込むこととすれば、一
式の検知器と演算装置を複数の燃料電池発電装置に順次
装着して、その積層燃料電池の極間の反応ガスの漏洩透
過を評価することができることとなるので、電極構造の
劣化に伴って生じた両電極間の反応ガスの漏洩透過を、
発電運転状態において的確に検知する機能を備え、かつ
効率的に運用できる燃料電池発電装置が得られることと
なる。
Furthermore, if the detector and the arithmetic unit are removably incorporated in the fuel cell power generator, the set of the detector and the arithmetic unit are sequentially attached to a plurality of fuel cell power generators, and the stacks thereof are stacked. Since it is possible to evaluate the leakage and permeation of the reaction gas between the electrodes of the fuel cell, the leakage and permeation of the reaction gas between both electrodes caused by the deterioration of the electrode structure,
It is possible to obtain a fuel cell power generation device that has a function of accurately detecting the power generation operation state and that can be operated efficiently.

【0023】また、上記の不活性ガスとしてヘリウムガ
スを用いることとすれば、ヘリウムガスは極めて透過性
の高い不活性ガスであるので、漏洩個所に効果的に透過
し、極間の漏洩透過が精度よく検知されることとなるの
で、電極構造の劣化に伴って生じた両電極間の反応ガス
の漏洩透過を、発電運転状態において的確に検知する機
能を備えた燃料電池発電装置としてより一層好適であ
る。
Further, if helium gas is used as the above-mentioned inert gas, since helium gas is an inert gas having extremely high permeability, it effectively permeates to leaking points and leaks and permeates between electrodes. Since it can be detected with high accuracy, it is more suitable as a fuel cell power generator having a function of accurately detecting the leakage and permeation of the reaction gas between both electrodes caused by the deterioration of the electrode structure in the power generation operation state. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池発電装置における両電極間の
反応ガスの漏洩透過検知手段の一実施例を示す構成図
FIG. 1 is a configuration diagram showing an embodiment of a leak permeation detecting means for a reaction gas between both electrodes in a fuel cell power generator of the present invention.

【図2】リン酸型の燃料電池発電装置の燃料電池本体の
積層燃料電池の基本構成を示す断面図
FIG. 2 is a cross-sectional view showing the basic configuration of a laminated fuel cell of a fuel cell main body of a phosphoric acid type fuel cell power generator.

【図3】従来の燃料電池発電装置における両電極間の反
応ガスの漏洩透過検知手段の構成図
FIG. 3 is a block diagram of a leak gas permeation detection means for a reaction gas between both electrodes in a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 電解質マトリックス 2 燃料極触媒層 3 燃料極基材 3a 燃料ガス通流溝 4 燃料極 5 空気極触媒層 6 空気極基材 6a 空気通流溝 7 空気極 8 セパレータ 9 シール材 10 積層燃料電池 11 空気供給マニホールド 12 空気排出マニホールド 13 燃料ガス供給マニホールド 14 燃料ガス排出マニホールド 15,16 出力端子 17 空気排出管 21 燃料ガス供給管 22 Heガス供給管 23 Heガスセンサー 24 演算装置 1 Electrolyte Matrix 2 Fuel Electrode Catalyst Layer 3 Fuel Electrode Base Material 3a Fuel Gas Flow Groove 4 Fuel Electrode 5 Air Electrode Catalyst Layer 6 Air Electrode Base Material 6a Air Flow Groove 7 Air Electrode 8 Separator 9 Sealant 10 Laminated Fuel Cell 11 Air supply manifold 12 Air exhaust manifold 13 Fuel gas supply manifold 14 Fuel gas exhaust manifold 15, 16 Output terminal 17 Air exhaust pipe 21 Fuel gas supply pipe 22 He gas supply pipe 23 He gas sensor 24 Computing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解質マトリックスを、燃料ガス通流溝を
有する燃料極基材および燃料極触媒層からなる燃料極
と、空気通流溝を有する空気極基材および空気極触媒層
からなる空気極とにより挟持してなる単セルをセパレー
タと交互に積層して形成される積層燃料電池の、前記燃
料ガス通流溝が開口部を有する相対する二つの側面にそ
れぞれ燃料ガス供給マニホールドと燃料ガス排出マニホ
ールドを配し、前記空気通流溝が開口部を有する他の二
つの側面にそれぞれ空気供給マニホールドと空気排出マ
ニホールドを配し、前記燃料ガス供給マニホールドに燃
料ガスを、また前記空気供給マニホールドに空気を供給
して、電気化学反応により直流電力を得る燃料電池発電
装置において、前記燃料ガス供給マニホールドへ燃料ガ
スを供給する配管に不活性ガスを供給する配管が接続さ
れ、かつ前記空気排出マニホールドより未反応空気を排
出する配管に前記不活性ガスの濃度を測定する検知器が
接続されているか、あるいは前記空気供給マニホールド
へ空気を供給する配管に不活性ガスを供給する配管が接
続され、かつ前記燃料ガス排出マニホールドより未反応
燃料ガスを排出する配管に前記不活性ガスの濃度を測定
する検知器が接続されていることを特徴とする燃料電池
発電装置。
1. An electrolyte matrix comprising a fuel electrode base material having a fuel gas flow groove and a fuel electrode catalyst layer, and an air electrode base material having an air flow groove and an air electrode catalyst layer. A fuel gas supply manifold and a fuel gas discharge are provided on two opposed side surfaces of the laminated fuel cell, in which the fuel gas flow grooves have openings, respectively, which are formed by alternately stacking single cells sandwiched by A manifold is provided, and an air supply manifold and an air discharge manifold are provided on the other two side surfaces having the air flow groove having an opening, respectively, and fuel gas is supplied to the fuel gas supply manifold and air is supplied to the air supply manifold. In a fuel cell power generator that obtains DC power by an electrochemical reaction in a pipe for supplying fuel gas to the fuel gas supply manifold. A pipe for supplying active gas is connected, and a detector for measuring the concentration of the inert gas is connected to a pipe for discharging unreacted air from the air discharge manifold, or air is supplied to the air supply manifold. A pipe for supplying an inert gas is connected to the pipe, and a detector for measuring the concentration of the inert gas is connected to the pipe for discharging the unreacted fuel gas from the fuel gas discharge manifold. Fuel cell power generator.
【請求項2】請求項1記載の燃料電池発電装置におい
て、不活性ガスの濃度を測定する前記検知器が、該検知
器による不活性ガス濃度測定信号と、燃料電池発電装置
の運転電流値を表す電流値信号、燃料ガスの供給流量を
表す燃料ガス流量信号、および空気の供給流量を表す空
気流量信号を入力とし、該電流値信号、該燃料ガス流量
信号、および該空気流量信号より不活性ガス濃度の標準
値を演算し、さらに演算された標準値と不活性ガス濃度
測定信号による測定値を比較演算し、その差異により異
常信号を出力する機能を有する演算装置に接続されてい
ることを特徴とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the detector for measuring the concentration of the inert gas displays an inert gas concentration measurement signal from the detector and an operating current value of the fuel cell power generator. A current value signal indicating the fuel gas flow rate signal indicating the fuel gas supply flow rate and an air flow rate signal indicating the air supply flow rate are input, and the current value signal, the fuel gas flow rate signal, and the air flow rate signal are inactive. It is connected to an arithmetic unit that has the function of calculating the standard value of the gas concentration, comparing the calculated standard value with the measured value of the inert gas concentration measurement signal, and outputting an abnormal signal based on the difference. Characteristic fuel cell power generator.
【請求項3】請求項2記載の燃料電池発電装置におい
て、前記検知器、および前記演算装置が、着脱可能に組
み込まれていることを特徴とする燃料電池発電装置。
3. The fuel cell power generator according to claim 2, wherein the detector and the arithmetic unit are detachably incorporated.
【請求項4】請求項1、2または3記載の燃料電池発電
装置において、前記不活性ガスが、ヘリウムガスである
ことを特徴とする燃料電池発電装置。
4. The fuel cell power generator according to claim 1, 2 or 3, wherein the inert gas is helium gas.
JP6324192A 1994-12-27 1994-12-27 Fuel cell power generation device Pending JPH08185878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6324192A JPH08185878A (en) 1994-12-27 1994-12-27 Fuel cell power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6324192A JPH08185878A (en) 1994-12-27 1994-12-27 Fuel cell power generation device

Publications (1)

Publication Number Publication Date
JPH08185878A true JPH08185878A (en) 1996-07-16

Family

ID=18163103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6324192A Pending JPH08185878A (en) 1994-12-27 1994-12-27 Fuel cell power generation device

Country Status (1)

Country Link
JP (1) JPH08185878A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039870A3 (en) * 1998-12-23 2000-09-21 Ballard Power Systems Method and apparatus for detecting a leak within a fuel cell
JP2001325980A (en) * 2000-05-18 2001-11-22 Chubu Electric Power Co Inc Solid electrolyte fuel cell
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
JP2004273209A (en) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc Operation method and operation system of fuel cell
US6874352B2 (en) 2003-01-09 2005-04-05 Ballard Power Systems Inc. Method and apparatus for locating internal transfer leaks within fuel cell stacks
JP2006338978A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation
US7235323B2 (en) 2000-05-08 2007-06-26 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly and method for making the same
US7829233B2 (en) 2005-08-09 2010-11-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for judging fuel gas leak in a fuel cell system
JP2012511800A (en) * 2008-12-11 2012-05-24 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for inspecting sealing of fuel cell laminate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039870A3 (en) * 1998-12-23 2000-09-21 Ballard Power Systems Method and apparatus for detecting a leak within a fuel cell
US6492043B1 (en) 1998-12-23 2002-12-10 Ballard Power Systems Inc. Method and apparatus for detecting a leak within a fuel cell
US7235323B2 (en) 2000-05-08 2007-06-26 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly and method for making the same
JP2001325980A (en) * 2000-05-18 2001-11-22 Chubu Electric Power Co Inc Solid electrolyte fuel cell
US6475651B1 (en) 2000-07-31 2002-11-05 Ballard Power Systems Inc. Method and apparatus for detecting transfer leaks in fuel cells
US6874352B2 (en) 2003-01-09 2005-04-05 Ballard Power Systems Inc. Method and apparatus for locating internal transfer leaks within fuel cell stacks
JP2004273209A (en) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc Operation method and operation system of fuel cell
JP4554163B2 (en) * 2003-03-06 2010-09-29 株式会社豊田中央研究所 Fuel cell operating method and fuel cell operating system
JP2006338978A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Evaluation method of flow of reactant gas in fuel cell, evaluation device, fuel cell for evaluation
US7829233B2 (en) 2005-08-09 2010-11-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for judging fuel gas leak in a fuel cell system
JP2012511800A (en) * 2008-12-11 2012-05-24 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for inspecting sealing of fuel cell laminate

Similar Documents

Publication Publication Date Title
CA2395015C (en) Gas leak detection method for fuel cell
US6638650B1 (en) Method and apparatus for detecting transfer leaks in fuel cells and fuel cell stacks
US8343679B2 (en) Fuel cell system and hydrogen leak judgment method in the system
EP0827226B1 (en) PEM fuel cell monitoring system
JP3663185B2 (en) Relative humidity sensor that compensates for changes in pressure and gas composition
US6492043B1 (en) Method and apparatus for detecting a leak within a fuel cell
US6475651B1 (en) Method and apparatus for detecting transfer leaks in fuel cells
JP4222019B2 (en) Fuel cell diagnostic method
US8551664B2 (en) Fuel cell humidifier diagnostic
US20050064252A1 (en) Method for operating polymer electrolyte fuel cell
JPH08185878A (en) Fuel cell power generation device
JPH08185879A (en) Detection method for interpole gas leak and permeation for unit cell of fuel cell
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
WO2006070587A1 (en) Fuel cell system
JP3519841B2 (en) Method and apparatus for detecting combustion in solid polymer electrolyte fuel cell
JPH11260389A (en) Inspection method of separator for fuel cell
JP2679298B2 (en) Phosphoric acid residual amount monitor for phosphoric acid fuel cell
JP2005276729A (en) Performance test method of solid polymer fuel cell
JP3875164B2 (en) Gas sensor
JP4711213B2 (en) Fuel cell stack and fuel cell stack case
JP2020159935A (en) Gas leak inspection method and gas leak inspection device
JPH08167423A (en) Fuel cell power generation device
JP2020159936A (en) Gas leakage inspection method and gas leakage inspection device
JPH0340378A (en) Gas leak sensing device for laminate fuel cell
JPH09259900A (en) Phosphoric acid fuel cell