JP2006337631A - Inspection method and method for manufacturing liquid crystal display apparatus using same - Google Patents

Inspection method and method for manufacturing liquid crystal display apparatus using same Download PDF

Info

Publication number
JP2006337631A
JP2006337631A JP2005161038A JP2005161038A JP2006337631A JP 2006337631 A JP2006337631 A JP 2006337631A JP 2005161038 A JP2005161038 A JP 2005161038A JP 2005161038 A JP2005161038 A JP 2005161038A JP 2006337631 A JP2006337631 A JP 2006337631A
Authority
JP
Japan
Prior art keywords
pattern
region
seam
accuracy
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161038A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamashita
敏広 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005161038A priority Critical patent/JP2006337631A/en
Priority to SG200601991A priority patent/SG127790A1/en
Priority to TW095110674A priority patent/TW200643582A/en
Priority to CNA2006100792720A priority patent/CN1873538A/en
Priority to KR1020060046934A priority patent/KR100812322B1/en
Publication of JP2006337631A publication Critical patent/JP2006337631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method for quantitatively measuring the accuracy of a seam of patterns and improving the accuracy of a seam of patterns, and to provide a method for manufacturing a liquid crystal display apparatus using the above method. <P>SOLUTION: The inspection method aims to inspect the accuracy of a seam of patterns by different exposures in a process of forming predetermined patterns by dividing a substrate into a plurality of regions and separately exposing. The method includes: in an overlap region where a first region and a second region overlap in a plurality of regions, a step of measuring a first distance between a first pattern element relating to the exposure of the first region and a second pattern element disposed approximately parallel to the first pattern element and relating to the exposure of the first region; a step of measuring a second distance between a third pattern element to be connected to the first pattern element relating to the exposure of the second region, and the second pattern element; and a step of obtaining the difference between the first distance and the second distance and quantifying and measuring the accuracy of the seam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、検査方法及びこれを用いた液晶表示装置の製造方法に係る発明であって、特に、基板を複数の領域に分けて別々に露光することで所定のパターンを形成する場合の継ぎ目の検査方法及びこれを用いた液晶表示装置の製造方法に関するものである。   The present invention relates to an inspection method and a manufacturing method of a liquid crystal display device using the same, and in particular, a seam when a predetermined pattern is formed by dividing a substrate into a plurality of regions and separately exposing the substrate. The present invention relates to an inspection method and a manufacturing method of a liquid crystal display device using the same.

一般的に、TFT(Thin Film Transistor)を用いた液晶表示装置では、一方の基板上に写真製版を用いて形成されたTFTを有している。写真製版は、露光装置により所定のパターンを基板上にパターニングしているが、基板が大型化すると一枚のマスクで一括露光することが困難になる。そのため、基板が大型化するに従い、基板を複数の領域に分けて複数のマスクを用いて露光し所定のパターンを形成する必要がある。   In general, a liquid crystal display device using a TFT (Thin Film Transistor) has a TFT formed on one substrate using a photolithography. In photoengraving, a predetermined pattern is patterned on a substrate by an exposure apparatus. However, when the substrate is enlarged, it is difficult to perform batch exposure with a single mask. Therefore, as the substrate becomes larger, it is necessary to divide the substrate into a plurality of regions and perform exposure using a plurality of masks to form a predetermined pattern.

しかし、基板を複数の領域に分けて露光する場合、それぞれの領域に形成されたパターン同士の継ぎ目が問題となる。つまり、露光装置の機差やマスク自身の製造誤差により、露光時におけるショット間のパターンの位置ズレ方向が異なり、領域の重なり部分においてパターンの継ぎ目にズレが生じる場合があった。   However, when exposure is performed by dividing the substrate into a plurality of regions, a seam between patterns formed in each region becomes a problem. In other words, due to machine differences in the exposure apparatus and manufacturing errors of the mask itself, the pattern misalignment direction between shots at the time of exposure is different, and a pattern misalignment may occur at the overlapping portion of regions.

当該継ぎ目のズレは、基板上にTFTを形成した際に、トランジスタ特性を変化させる。そして、トランジスタ特性の変化が大きいと、正常なトランジスタ特性の部分との差が大きくなり表示ムラとして人の目に認識される。この表示ムラは、ショットムラとも呼ばれ、不良パネルとなる場合がある。   The misalignment of the joint changes the transistor characteristics when the TFT is formed on the substrate. If the change in the transistor characteristics is large, the difference from the normal transistor characteristics becomes large, which is recognized by the human eye as display unevenness. This display unevenness is also called shot unevenness and may be a defective panel.

継ぎ目のズレによる表示ムラを軽減するために、人の視認性を利用した対策が特許文献1や特許文献2に開示されている。特許文献1や特許文献2では、露光する一方の領域と他方の領域とが重なる重なり領域を設け、当該重なり領域内において、一方の領域を露光する際に露光する部分と、他方の領域を露光する際に露光する部分とを任意に設けている。なお、一方の領域を露光する際に露光される部分は、他方の領域を露光する際には非露光部分となる。逆に、他方の領域を露光する際に露光される部分は、一方の領域を露光する際に非露光部分となる。   In order to reduce display unevenness due to seam misalignment, Patent Document 1 and Patent Document 2 disclose measures using human visibility. In Patent Document 1 and Patent Document 2, an overlapping area is formed in which one area to be exposed and the other area overlap each other, and in the overlapping area, a portion exposed when one area is exposed and the other area are exposed. In this case, a portion to be exposed is arbitrarily provided. Note that the portion exposed when one region is exposed becomes a non-exposed portion when the other region is exposed. Conversely, a portion exposed when the other region is exposed becomes a non-exposed portion when one region is exposed.

特許文献1や特許文献2では、重なり領域内で、一方の領域を露光する際に露光する部分と他方の領域を露光する際に露光する部分とを任意に混在することにより、一方の領域と他方の領域とが直線状に継ぎ合わされるのではなく、継ぎ目のズレによる表示ムラを人が視認しづらくなる。   In Patent Document 1 and Patent Document 2, by arbitrarily mixing a portion exposed when exposing one region and a portion exposed when exposing the other region in the overlapping region, The other area is not joined in a straight line, but it becomes difficult for a person to visually recognize display unevenness due to a gap in the joint.

特開2003−315831号公報JP 2003-315831 A 再公表特許WO95/16276号Republished patent WO95 / 16276

しかし、特許文献1や特許文献2に示す方法を用いたとしても、基板上に形成される各層の重ね合わせ精度がより厳しい場合や、露光装置の機差、マスクの製造誤差により表示ムラが人の目に認識される問題があった。   However, even if the methods shown in Patent Document 1 and Patent Document 2 are used, display unevenness may occur due to the fact that the overlay accuracy of each layer formed on the substrate is more severe, the difference in exposure apparatus, or the manufacturing error of the mask. There was a problem recognized by the eyes.

特に、第1層目を基板上にパターニングする写真製版の第1工程の場合、基板上には、露光する領域の位置合わせのための基準(アライメントマーク)が何ら設けられていない。そのため、露光するマスクに形成されているマスクアライメントマークと、基板を支持するステージ上の位置合わせマークとの相対位置により、露光する領域の位置合わせを行っている。なお、第2工程目以降は、第1工程目のパターンで形成したアライメントマークを用いて、露光する領域の位置合わせを行うことができる。   In particular, in the case of the first step of photolithography in which the first layer is patterned on the substrate, no reference (alignment mark) is provided on the substrate for alignment of the region to be exposed. For this reason, the exposure area is aligned based on the relative position between the mask alignment mark formed on the mask to be exposed and the alignment mark on the stage that supports the substrate. In the second and subsequent steps, alignment of the region to be exposed can be performed using the alignment mark formed by the pattern in the first step.

そのため、第2工程目以降における、露光する各領域の位置合わせ精度は、第1工程目のアライメントマークの影響を受けることになる。つまり、第1工程目における位置合わせ精度が悪いと、パターンの継ぎ目の精度が悪くなり、特許文献1や特許文献2を用いた場合でも表示ムラを視認できることがある。   Therefore, the alignment accuracy of each area to be exposed in the second and subsequent steps is affected by the alignment mark in the first step. That is, if the alignment accuracy in the first step is poor, the accuracy of the pattern seam is deteriorated, and even when Patent Document 1 or Patent Document 2 is used, display unevenness may be visually recognized.

具体例を示すと、写真製版の第1工程(以下、単に第1工程ともいう)により基板上にゲートパターンを、写真製版の第2工程(以下、単に第2工程ともいう)によりシリコンのエッチングパターンを、写真製版の第3工程(以下、単に第3工程ともいう)によりソースパターン及びドレインパターンをそれぞれパターニングしている。第1工程乃至第3工程を行うことにより、基板上にトランジスタを形成している。   As a specific example, a gate pattern is formed on a substrate by a first step of photoengraving (hereinafter also simply referred to as a first step), and silicon is etched by a second step of photoengraving (hereinafter also simply referred to as a second step). The source pattern and the drain pattern are respectively patterned by a third step of photoengraving (hereinafter also simply referred to as a third step). By performing the first to third steps, a transistor is formed over the substrate.

第1工程では、上記で説明したように基板上にアライメントマークが存在しないので、露光装置の機差やマスクの製造誤差等により、パターンの継ぎ目の精度が悪くなる場合がある。第1工程で形成したパターンの継ぎ目の精度が悪いと、第2工程のパターン及び第3工程のパターンにも影響を与えることになり、シリコンのエッチングパターンがソースパターン又はドレインパターンの端部と重なり、当該箇所でリークが発生しやすくなる。   In the first step, since there is no alignment mark on the substrate as described above, the accuracy of the pattern seam may be deteriorated due to a difference in the exposure apparatus, a mask manufacturing error, or the like. If the accuracy of the seam of the pattern formed in the first process is poor, the pattern of the second process and the pattern of the third process are also affected, and the silicon etching pattern overlaps with the end of the source pattern or the drain pattern. Leakage is likely to occur at the location.

上記のような液晶パネルを表示させると、パターンの継ぎ目部分でリークが発生して画素の充電特性にバラツキが生じ、ちらつき現象と呼ばれる表示不良が起こる場合があった。   When the liquid crystal panel as described above is displayed, a leak occurs at the joint portion of the pattern, causing variation in the charge characteristics of the pixels, resulting in a display defect called a flicker phenomenon.

また、第1工程のパターンをパターニングすることが可能な露光装置が複数台存在する場合、露光装置間の機差により、同じ条件設定で露光を行ってもパターンの継ぎ目の精度が個々の露光装置間で異なってしまう。第1工程のパターンをパターニングした基板に、第2工程のパターンをパターニングする場合、第1工程でのパターンの継ぎ目の精度が露光装置間でばらつくと、第2工程でのパターンの継ぎ目の精度を調整することが困難となる。   In addition, when there are a plurality of exposure apparatuses capable of patterning the pattern in the first step, the accuracy of the pattern seam is different even if exposure is performed under the same condition setting due to machine differences between the exposure apparatuses. It will be different between. When patterning the pattern of the second process on the substrate patterned with the pattern of the first process, if the accuracy of the pattern seam in the first process varies between exposure apparatuses, the accuracy of the pattern seam in the second process is increased. It becomes difficult to adjust.

具体的には、第2工程のパターンをパターニングする際に、どの露光装置で第1工程のパターンをパターニングしたかを確認し、その確認結果に合わせて第2工程の露光条件を設定する必要があるので、生産性が低下する問題があった。   Specifically, when patterning the pattern of the second step, it is necessary to confirm with which exposure apparatus the pattern of the first step is patterned, and to set the exposure conditions of the second step according to the confirmation result. As a result, there was a problem that productivity was lowered.

そこで、本発明は、パターンの継ぎ目の精度を定量的に計測し、パターンの継ぎ目の精度を向上させることが可能な検査方法及びこれを用いた液晶表示装置の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an inspection method capable of quantitatively measuring the accuracy of pattern seams and improving the accuracy of pattern seams, and a method of manufacturing a liquid crystal display device using the same. To do.

本発明に係る解決手段は、基板を複数の領域に分けて別々に露光することで所定のパターンを形成する場合において、異なる露光によるパターンの継ぎ目の精度を検査する検査方法であって、複数の領域における第1領域と第2領域とが重なる重なり領域において、第1領域の露光に係る第1パターン要素と、第1パターン要素と略平行に配置される第1領域の露光に係る第2パターン要素との第1距離を計測するステップと、重なり領域において、第2領域の露光に係る第1パターン要素と継ぎ合わされる第3パターン要素と、第2パターン要素との第2距離を計測するステップと、第1距離と第2距離との差を求め継ぎ目の精度を定量化し計測するステップとを備える。   The solution according to the present invention is an inspection method for inspecting the accuracy of pattern seams by different exposures when a predetermined pattern is formed by dividing a substrate into a plurality of regions and separately exposing the substrate. In the overlapping region where the first region and the second region in the region overlap, the first pattern element related to the exposure of the first region and the second pattern related to the exposure of the first region arranged substantially parallel to the first pattern element A step of measuring a first distance from the element, and a step of measuring a second distance between the third pattern element joined to the first pattern element related to the exposure of the second area and the second pattern element in the overlapping area And determining the difference between the first distance and the second distance and quantifying and measuring the accuracy of the seam.

本発明に記載の検査方法は、第1距離と第2距離との差を求め継ぎ目の精度を定量化し計測するステップを備えるので、パターンの継ぎ目の精度を定量的に管理することができ、パターンの継ぎ目の精度を向上させることが可能となる効果がある。   Since the inspection method according to the present invention includes a step of obtaining the difference between the first distance and the second distance and quantifying and measuring the accuracy of the seam, the accuracy of the seam of the pattern can be managed quantitatively. This has the effect of improving the accuracy of the seam.

(実施の形態1)
基板を複数の領域に分けて別々に露光することで所定のパターンを形成する場合、特に、本実施の形態では、図1(a)に示すように2つの領域を設け、領域毎にマスクを用いて露光し、基板上に一つのパターンを形成する。図1(a)では、左側の細線で示した領域1と、右側の太線で示した領域2が示されている。領域1及び領域2を基板上に露光する場合、単純に領域1,2が並ぶように露光するのではなく、図1(b)に示すように領域1と領域2とが重なる重なり領域3を設けるように露光する。なお、領域1から露光しても、領域2から露光してもどちらでも良い。また、重なり領域3は、図示していないが領域1を露光する際には露光されるが、領域2を露光する際には露光されない領域と、領域2を露光する際には露光されるが、領域1を露光する際には露光されない領域とが混在する領域である。
(Embodiment 1)
When a predetermined pattern is formed by dividing the substrate into a plurality of regions and separately exposing, in this embodiment, in particular, two regions are provided as shown in FIG. And exposing to form a pattern on the substrate. In FIG. 1A, a region 1 indicated by a thin line on the left side and a region 2 indicated by a thick line on the right side are shown. When the regions 1 and 2 are exposed on the substrate, the overlapping regions 3 where the regions 1 and 2 overlap as shown in FIG. Exposure to provide. Either exposure from the area 1 or exposure from the area 2 may be performed. Although not shown, the overlapping region 3 is exposed when the region 1 is exposed, but is exposed when the region 2 is exposed, and is exposed when the region 2 is exposed. When the region 1 is exposed, the region that is not exposed is mixed.

図1(b)のように2つの領域1,2を分けて露光し形成したパターンを図2に示す。図2では、重なり領域3を除く領域1、重なり領域3を除く領域2及び重なり領域3のそれぞれに、ゲート配線4、容量配線5、シリコン層6、ソース配線7及びドレイン電極8の所定のパターンが模式的に図示されている。これらのパターンは、発明が解決しようとする課題で説明したように、写真製版の各工程でパターニングされる。具体的には、写真製版の第1工程でゲート配線4と容量配線5がパターニングされ、写真製版の第2工程でシリコン層6がパターニングされ、写真製版の第3工程でソース配線7及びドレイン電極8がパターニングされている。   A pattern formed by exposing the two regions 1 and 2 separately as shown in FIG. 1B is shown in FIG. In FIG. 2, predetermined patterns of the gate wiring 4, the capacitor wiring 5, the silicon layer 6, the source wiring 7, and the drain electrode 8 are respectively formed in the area 1 excluding the overlapping area 3, the area 2 excluding the overlapping area 3, and the overlapping area 3. Is schematically illustrated. These patterns are patterned in each step of photolithography as described in the problem to be solved by the invention. Specifically, the gate wiring 4 and the capacitor wiring 5 are patterned in the first step of photolithography, the silicon layer 6 is patterned in the second step of photolithography, and the source wiring 7 and the drain electrode in the third step of photolithography. 8 is patterned.

また、背景技術でも説明したように、重なり領域3におけるパターンの継ぎ目の精度は、写真製版の第1工程のパターンが重要である。そのため、本実施の形態では、第1工程のパターンにおける継ぎ目の精度を定量的に検査する検査方法について説明する。そこで、第1工程でゲート配線4及び容量配線5のみがパターニングされた時点の基板を示す図を図3に示す。   As described in the background art, the pattern of the first step of photolithography is important for the accuracy of the pattern seam in the overlapping region 3. Therefore, in this embodiment, an inspection method for quantitatively inspecting the accuracy of the seam in the pattern of the first step will be described. FIG. 3 shows a view of the substrate when only the gate wiring 4 and the capacitor wiring 5 are patterned in the first step.

図3に示す重なり領域3には、破線の内側の領域3Aと破線の外側の領域3Bとがある。領域3Aは、領域1を露光する際に露光される領域であり、領域3Bは、領域2を露光する際に露光される領域である。なお、領域1を露光する際に露光される領域3Aは、領域2を露光する際には非露光部分であり、領域2を露光する際に露光される領域3Bは、領域1を露光する際には非露光部分である。   The overlapping region 3 shown in FIG. 3 includes a region 3A inside the broken line and a region 3B outside the broken line. The area 3A is an area that is exposed when the area 1 is exposed, and the area 3B is an area that is exposed when the area 2 is exposed. Note that the region 3A exposed when the region 1 is exposed is a non-exposed portion when the region 2 is exposed, and the region 3B exposed when the region 2 is exposed is when the region 1 is exposed. Is an unexposed part.

そのため、図3に示す重なり領域3では、領域1の露光によりパターニングされるゲート配線4及び容量配線5と、領域2の露光によりパターニングされるゲート配線4及び容量配線5とが継ぎ合わされている部分が存在することになる。この継ぎ合わされている部分(継ぎ目9)は、図3に示すようにパターンが三角状に内側にへこんだ形状である。そのため、顕微鏡等を用いて目視で継ぎ目9を確認することができる。なお、継ぎ目9の状態によっては、パターンが三角状に内側にへこんだ形状とはならず、段差が生じたような形状となる場合もある。   Therefore, in the overlapping region 3 shown in FIG. 3, the gate wiring 4 and the capacitor wiring 5 patterned by the exposure of the region 1 and the gate wiring 4 and the capacitor wiring 5 patterned by the exposure of the region 2 are joined together. Will exist. The jointed portion (seam 9) has a shape in which the pattern is recessed inward in a triangular shape as shown in FIG. Therefore, the joint 9 can be visually confirmed using a microscope or the like. Note that, depending on the state of the seam 9, the pattern may not have a shape that is recessed inward in a triangular shape, but may have a shape that has a step.

重なり領域3内の拡大した図を図4(a)に示す。図4(a)には、写真製版の第1工程においてパターニングされたゲート配線4及び容量配線5が示されているが、破線より下側の領域(以下、単に領域3Aともいう)は、領域1を露光する際に露光される領域3Aであり、且つ領域2を露光する際には非露光部分である。一方、破線より上側の領域(以下、単に領域3B)は、領域2を露光する際に露光される領域3Bであり、且つ領域1を露光する際には非露光部分である。   An enlarged view of the overlapping region 3 is shown in FIG. FIG. 4A shows the gate wiring 4 and the capacitor wiring 5 patterned in the first step of photoengraving. An area below the broken line (hereinafter also simply referred to as area 3A) is an area. It is a region 3A that is exposed when 1 is exposed and a non-exposed portion when the region 2 is exposed. On the other hand, the region above the broken line (hereinafter simply referred to as region 3B) is a region 3B that is exposed when the region 2 is exposed, and is a non-exposed portion when the region 1 is exposed.

つまり、領域1の露光によりゲート配線4の破線左側部分と容量配線5とがパターニングされ、領域2の露光によりゲート配線4の破線右側部分がパターニングされる。なお、本発明は上記の場合に限られず、領域1の露光によりゲート配線4の破線右側部分がパターニングされ、領域2の露光によりゲート配線4の破線左側部分と容量配線5とがパターニングされる構成でも良い。   That is, the left side portion of the broken line of the gate line 4 and the capacitor line 5 are patterned by the exposure of the region 1, and the right side portion of the broken line of the gate line 4 is patterned by the exposure of the region 2. Note that the present invention is not limited to the above case, and the right side portion of the broken line of the gate wiring 4 is patterned by the exposure of the region 1, and the left side portion of the broken line of the gate wiring 4 and the capacitor wiring 5 are patterned by the exposure of the region 2. But it ’s okay.

次に、本実施の形態では、ゲート配線4と容量配線5との距離を、ゲート配線4の継ぎ目9(領域3Aと領域3Bとの境界)を境にして両側で計測する。つまり、図4(a)に示すように、容量配線5に対する領域3Aのゲート配線4までの距離10と、容量配線5に対する領域3Bのゲート配線4までの距離11とをそれぞれ計測する。ここで、計測するゲート配線4と容量配線5との距離とは、ゲート配線4からゲート配線4と略平行に設けられた容量配線5部分までの最短距離をいう。   Next, in the present embodiment, the distance between the gate wiring 4 and the capacitor wiring 5 is measured on both sides with the joint 9 (the boundary between the region 3A and the region 3B) of the gate wiring 4 as a boundary. That is, as shown in FIG. 4A, the distance 10 to the gate line 4 in the region 3A with respect to the capacitor line 5 and the distance 11 to the gate line 4 in the region 3B with respect to the capacitor line 5 are measured. Here, the distance between the gate line 4 and the capacitor line 5 to be measured is the shortest distance from the gate line 4 to the part of the capacitor line 5 provided substantially parallel to the gate line 4.

次に、計測した距離10と距離11の差を算出することで、パターン(ゲート配線4)の継ぎ目の精度を定量化することができる。これは、計測した距離10は、領域3A内でともにパターニングされたゲート配線4及び容量配線5に基づいて距離を計測しているが、一方、計測した距離11は、領域3B内でパターニングされたゲート配線4と領域3A内でパターニングされた容量配線5に基づいて距離を計測しているので、両者の差を求めることで継ぎ目の精度を定量化を図ることができる。   Next, by calculating the difference between the measured distance 10 and distance 11, the accuracy of the joint of the pattern (gate wiring 4) can be quantified. This is because the measured distance 10 is measured based on the gate wiring 4 and the capacitor wiring 5 patterned together in the region 3A, while the measured distance 11 is patterned in the region 3B. Since the distance is measured based on the gate wiring 4 and the capacitor wiring 5 patterned in the region 3A, the accuracy of the joint can be quantified by obtaining the difference between the two.

図4(a)に示す例では、距離10と距離11との差はほとんど無いが、図4(b)に示すように、ゲート配線4の継ぎ目9が段差のような形状の場合、距離10と距離11との差が大きくなる。図4(b)では、距離10が距離11に対して大きくなる例が示されているが、継ぎ目9の状態により逆の場合もある。   In the example shown in FIG. 4A, there is almost no difference between the distance 10 and the distance 11, but as shown in FIG. 4B, when the joint 9 of the gate wiring 4 has a shape like a step, the distance 10 And the distance 11 increases. FIG. 4B shows an example in which the distance 10 is larger than the distance 11, but the reverse may occur depending on the state of the seam 9.

図4(b)のように距離10と距離11との差が大きく、当該差が所定の値以上の場合露光装置の補正を行う。ここで、所定の値は、設計や過去の生産データ等から求めた目標値であり、当該目標値以上の場合、表示ムラ等の不良が生じる可能性が高い。   As shown in FIG. 4B, when the difference between the distance 10 and the distance 11 is large and the difference is a predetermined value or more, the exposure apparatus is corrected. Here, the predetermined value is a target value obtained from the design, past production data, or the like. If the predetermined value is equal to or higher than the target value, there is a high possibility that defects such as display unevenness will occur.

図5は、第1層目を基板上にパターニングする写真製版の第1工程で用いられる液晶表示装置の製造方法を示すフローチャートである。まず、ステップ1において、設定されている露光条件に基づいてパターニングを行う。ステップ2では、ステップ1でパターニングしたパターン(図4(a)(b)の例では、ゲート配線4及び容量配線5)について、上記で述べた検査方法を用いて継ぎ目の精度を定量化し計測する。具体的に図4(a)(b)の例では、重なり領域3において、領域1の露光時に形成されたゲート配線4と、ゲート配線4と略平行に配置される容量配線5との距離10を計測し、領域2の露光時に形成され、領域3Aのゲート配線4と継ぎ合わされる領域3Bのゲート配線4と、容量配線5との距離11を計測し、距離10と距離11との差を計測し、継ぎ目の精度を定量化する。なお、計測した差が小さい方が継ぎ目の精度が高く、計測した差が大きい方が継ぎ目の精度が低い関係となっている。   FIG. 5 is a flowchart showing a method for manufacturing a liquid crystal display device used in the first step of photolithography for patterning the first layer on the substrate. First, in step 1, patterning is performed based on the set exposure conditions. In step 2, the accuracy of the seam is quantified and measured for the pattern patterned in step 1 (in the example of FIGS. 4A and 4B, the gate wiring 4 and the capacitor wiring 5) using the inspection method described above. . Specifically, in the example of FIGS. 4A and 4B, in the overlapping region 3, the distance 10 between the gate wiring 4 formed at the time of exposure of the region 1 and the capacitor wiring 5 arranged substantially parallel to the gate wiring 4. And the distance 11 between the capacitance wiring 5 and the gate wiring 4 in the area 3B that is formed at the time of exposure of the area 2 and is joined to the gate wiring 4 in the area 3A, and the difference between the distance 10 and the distance 11 is measured. Measure and quantify seam accuracy. The smaller the measured difference, the higher the seam accuracy, and the larger the measured difference, the lower the seam accuracy.

ステップ3では、ステップ2で計測した差(具体的には距離10と距離11との差)が、所定の値以上か否かを判定する。ステップ3において、計測した差(継ぎ目の精度の値)が所定の値以上の場合ステップ4に進み、計測した差が所定の値より小さい場合ステップ5に進む。   In step 3, it is determined whether or not the difference measured in step 2 (specifically, the difference between distance 10 and distance 11) is equal to or greater than a predetermined value. In step 3, if the measured difference (joint accuracy value) is greater than or equal to a predetermined value, the process proceeds to step 4. If the measured difference is smaller than the predetermined value, the process proceeds to step 5.

ステップ4では、計測した差が所定の値より小さくなるように露光装置の露光条件を補正する。補正する当該露光条件としては、例えば露光する領域1及び領域2の位置を調整等がある。一方、計測した差が所定の値より小さい場合は、ステップ5において写真製版の第1工程の生産を開始する。   In step 4, the exposure conditions of the exposure apparatus are corrected so that the measured difference becomes smaller than a predetermined value. The exposure conditions to be corrected include, for example, adjusting the positions of the areas 1 and 2 to be exposed. On the other hand, if the measured difference is smaller than the predetermined value, the production of the first process of photoengraving is started in step 5.

以上のように、本実施の形態に係る検査方法は、継ぎ目9の両側にあるパターン間の距離10,11を計測して差を取ることで、継ぎ目の精度を定量化することができる。また、継ぎ目の精度を定量化することで、継ぎ目の精度を管理し、継ぎ目の精度を向上させることが可能となる。   As described above, the inspection method according to the present embodiment can quantify the accuracy of the seam by measuring the distances 10 and 11 between the patterns on both sides of the seam 9 and taking the difference. Further, by quantifying the accuracy of the seam, it is possible to manage the accuracy of the seam and improve the accuracy of the seam.

また、本実施の形態に係る液晶表示装置の製造方法は、継ぎ目の精度を定量化する検査方法を用いて生産の準備段階における露光装置を補正するので、継ぎ目の精度を向上させ、継ぎ目の精度が悪いことに起因する表示不良(例えば、ショットムラ等)を低減することができる。具体的に、写真製版の第1工程において図4(b)のように継ぎ目の精度が低い場合は、その後、第2工程及び第3工程を行っても図7に示すように継ぎ目の精度は第1工程の影響を受けることになる。そのため、図7に示すようにシリコン層6の端部がゲート配線4の端部と重なり、表示不良を生じさせる場合がある。しかし、本実施の形態では、上述のような露光装置の補正を行うので、写真製版の第1工程において図4(a)のように継ぎ目の精度が高くなり、その後、第2工程及び第3工程を行っても図6に示すように継ぎ目の精度が高くなるため、表示不良を低減することが可能となる。   In addition, since the liquid crystal display device manufacturing method according to the present embodiment corrects the exposure apparatus in the production preparation stage using an inspection method for quantifying the seam accuracy, the seam accuracy is improved and the seam accuracy is improved. Display defects (for example, shot unevenness and the like) due to badness can be reduced. Specifically, if the seam accuracy is low as shown in FIG. 4B in the first step of photoengraving, the seam accuracy is still as shown in FIG. 7 even if the second and third steps are performed thereafter. It will be affected by the first step. For this reason, as shown in FIG. 7, the end of the silicon layer 6 may overlap with the end of the gate wiring 4 to cause display defects. However, in the present embodiment, since the exposure apparatus is corrected as described above, the accuracy of the seam is increased as shown in FIG. 4A in the first step of photolithography, and then the second and third steps are performed. Even if the process is performed, the accuracy of the seam is increased as shown in FIG. 6, so that display defects can be reduced.

(実施の形態2)
本実施の形態では、実施の形態1で示した検査方法と別の検査方法を示す。また、本実施の形態においても、基板を複数の領域に分けて別々に露光することで所定のパターンを形成している。そのため、図1(a)に示すように領域1及び領域2に分けて基板上に所定のパターンをパターニングすることになる。しかし、領域1及び領域2は、その領域内の全てにパターンを形成するのではなく、領域の一部分(以下、画素部ともいう)にのみ形成され、それ以外はパターンが形成されない非パターニング部分である。なお、画素部は、基板上に形成する所定のパターンの一部を構成している。
(Embodiment 2)
In this embodiment, an inspection method different from the inspection method described in Embodiment 1 is described. Also in this embodiment, the substrate is divided into a plurality of regions and separately exposed to form a predetermined pattern. For this reason, as shown in FIG. 1A, a predetermined pattern is patterned on the substrate in the areas 1 and 2 separately. However, the region 1 and the region 2 are not formed in a pattern in the entire region, but are formed only in a part of the region (hereinafter also referred to as a pixel portion), and the rest are non-patterned portions where no pattern is formed. is there. Note that the pixel portion constitutes a part of a predetermined pattern formed on the substrate.

具体的に、領域1及び領域2に用いられるマスクを図8に示す。図8に示すマスクは、中央部に画素部12を露光するためのマスクパターンが設けられている。そして、図8に示すマスクでは、非パターニング部分13の画素部12近傍に計測パターン14,15を設けている。   Specifically, a mask used for the region 1 and the region 2 is shown in FIG. The mask shown in FIG. 8 is provided with a mask pattern for exposing the pixel portion 12 at the center. In the mask shown in FIG. 8, measurement patterns 14 and 15 are provided in the vicinity of the pixel portion 12 of the non-patterning portion 13.

図8において領域1の下側に設ける計測パターン14のマスクパターンは、外側に大きな四角形状の計測パターン14a、内側に小さな四角形状の計測パターン14bである。また、領域2の上側に設ける計測パターン15のマスクパターンは、外側に小さな四角形状の計測パターン15a、内側に大きな四角形状の計測パターン15bである。この計測パターン14a、15bのマスクパターンで露光することにより、基板上には四角形状のパターンを形成することができる。一方、計測パターン14b、15aのマスクパターンで露光することにより、基板上には四角形状の抜き取りパターンを形成することができる。   In FIG. 8, the mask pattern of the measurement pattern 14 provided on the lower side of the region 1 is a large square measurement pattern 14a on the outside and a small square measurement pattern 14b on the inside. The mask pattern of the measurement pattern 15 provided on the upper side of the region 2 is a small square measurement pattern 15a on the outside and a large square measurement pattern 15b on the inside. By exposing with the mask patterns of the measurement patterns 14a and 15b, a square pattern can be formed on the substrate. On the other hand, a rectangular extraction pattern can be formed on the substrate by exposing with the mask patterns of the measurement patterns 14b and 15a.

なお、図8では、領域1の上側及び領域2の下側にも計測パターン14,15が設けられているが、これは領域1のさらに上側又は領域2のさらに下側に別の領域を重ね合わせる場合に用いるものである。   In FIG. 8, the measurement patterns 14 and 15 are also provided on the upper side of the region 1 and on the lower side of the region 2, but this overlaps another region on the upper side of the region 1 or further on the lower side of the region 2. It is used when matching.

このような、図8に示す2枚のマスクを用いて、基板上にパターンを露光することで、計測パターン14,15が基板上にパターニングされる。図9に、計測パターン14,15がパターニングされた基板の概略図を示す。図9では、領域1と領域2とが重なり領域3を形成しており、この重なり領域3内で計測パターン14と計測パターン15とが重なり合っている。具体的には、四角形状の計測パターン14aに、計測パターン15aの抜き取りパターンが形成され、四角形状の計測パターン15bに、計測パターン14bの抜き取りパターンが形成されている。   By using the two masks shown in FIG. 8 to expose the pattern on the substrate, the measurement patterns 14 and 15 are patterned on the substrate. FIG. 9 shows a schematic view of a substrate on which the measurement patterns 14 and 15 are patterned. In FIG. 9, the region 1 and the region 2 form an overlap region 3, and the measurement pattern 14 and the measurement pattern 15 overlap in the overlap region 3. Specifically, the extraction pattern of the measurement pattern 15a is formed in the square measurement pattern 14a, and the extraction pattern of the measurement pattern 14b is formed in the square measurement pattern 15b.

本実施の形態では、このように計測パターン14と計測パターン15とを重ねて形成し、計測パターン14に対する計測パターン15の位置を計測することで、継ぎ目の精度を定量化している。具体的に、図10(a)に画素部12の両側に設けられた計測パターン14b及び計測パターン15bの拡大図を示す。図10(a)では、計測パターン14bの端辺から計測パターン15bの端辺までの左右方向の距離16は細線の矢印で示し、計測パターン14bの端辺から計測パターン15bの端辺までの上下方向の距離17は太線の矢印で示している。   In the present embodiment, the accuracy of the seam is quantified by forming the measurement pattern 14 and the measurement pattern 15 so as to overlap each other and measuring the position of the measurement pattern 15 with respect to the measurement pattern 14. Specifically, FIG. 10A shows an enlarged view of the measurement pattern 14 b and the measurement pattern 15 b provided on both sides of the pixel unit 12. In FIG. 10A, the horizontal distance 16 from the edge of the measurement pattern 14b to the edge of the measurement pattern 15b is indicated by a thin line arrow, and the vertical distance from the edge of the measurement pattern 14b to the edge of the measurement pattern 15b. The direction distance 17 is indicated by a thick arrow.

図10(a)では、画素部12の両側の距離16,17は互いに等しいので、継ぎ目の精度が高いことが定量的に分かる。一方、図10(b)のように、画素部12の両側の距離16,17が互いに異なる場合、継ぎ目の精度が低いことが定量的に分かる。具体的な定量化方法としては、例えば画素部12の左側における計測パターン14bの上端辺から計測パターン15bの上端辺までの距離17と、画素部12の右側における計測パターン14bの上端辺から計測パターン15bの上端辺までの距離17との差を求める方法が考えられる。このように継ぎ目の精度を定量化する検査方法も、図5に示すフローチャートに適用することができる。つまり、図5で示したステップ2の検査方法に代えて本実施の形態に係る検査方法を用いることができる。   In FIG. 10A, since the distances 16 and 17 on both sides of the pixel portion 12 are equal to each other, it can be quantitatively understood that the seam accuracy is high. On the other hand, when the distances 16 and 17 on both sides of the pixel portion 12 are different from each other as shown in FIG. As a specific quantification method, for example, the distance 17 from the upper end side of the measurement pattern 14b on the left side of the pixel unit 12 to the upper end side of the measurement pattern 15b and the measurement pattern from the upper end side of the measurement pattern 14b on the right side of the pixel unit 12 A method of obtaining a difference from the distance 17 to the upper end side of 15b can be considered. The inspection method for quantifying the accuracy of the seam in this way can also be applied to the flowchart shown in FIG. That is, the inspection method according to the present embodiment can be used in place of the inspection method of Step 2 shown in FIG.

次に、図11は、基板を4つの領域に分け、それぞれの領域に異なるマスクを用いて所定のパターンをパターニングする場合の概略図を示している。図11では、領域21,22,23,24のそれぞれが互いに重なる重なり領域25が形成されている。また、図11では、各領域の画素部12の近傍に計測パターン26,27が形成されている。   Next, FIG. 11 shows a schematic view when the substrate is divided into four regions and a predetermined pattern is patterned using different masks in the respective regions. In FIG. 11, an overlapping region 25 is formed in which the regions 21, 22, 23, and 24 overlap each other. In FIG. 11, measurement patterns 26 and 27 are formed in the vicinity of the pixel portion 12 in each region.

図12には、図11のようなパターンを基板上に露光するためのマスクが示されている。図12に示す領域21のマスクは、画素部12の上側及び左側近傍に計測パターン26を形成するマスクパターンが設けられている。当該マスクパターンを露光することで、大きな四角形状の計測パターン26を基板上に形成することができる。図12に示す領域22のマスクは、画素部12の上側及び右側近傍に計測パターン27を形成するマスクパターンが設けられている。当該マスクパターンを露光することで、小さい四角形状の抜き取りパターン(計測パターン27)を基板上に形成することができる。   FIG. 12 shows a mask for exposing the pattern as shown in FIG. 11 on the substrate. The mask of the region 21 shown in FIG. 12 is provided with a mask pattern that forms the measurement pattern 26 near the upper side and the left side of the pixel unit 12. By exposing the mask pattern, a large square measurement pattern 26 can be formed on the substrate. The mask of the region 22 shown in FIG. 12 is provided with a mask pattern that forms a measurement pattern 27 near the upper side and the right side of the pixel unit 12. By exposing the mask pattern, a small rectangular extraction pattern (measurement pattern 27) can be formed on the substrate.

同様に、図12に示す領域23のマスクは、画素部12の下側及び左側近傍に計測パターン27を形成するマスクパターンが設けられている。図12に示す領域23のマスクは、画素部12の下側及び右側近傍に計測パターン26を形成するマスクパターンが設けられている。   Similarly, the mask of the region 23 shown in FIG. 12 is provided with a mask pattern for forming the measurement pattern 27 on the lower side and the left side of the pixel portion 12. The mask of the region 23 shown in FIG. 12 is provided with a mask pattern that forms a measurement pattern 26 near the lower side and the right side of the pixel unit 12.

そして、図12に示す4つのマスクを用いて基板上にパターンを露光する。パターニングした結果として図11のパターンが得られ、計測パターン26に対する計測パターン27の位置を図10(a)(b)で示した様に計測する。これにより、継ぎ目の精度の定量化をすることができる。この方法を図5に示すフローチャートに適用することで、継ぎ目の精度を向上させることができる。   Then, the pattern is exposed on the substrate using the four masks shown in FIG. As a result of patterning, the pattern of FIG. 11 is obtained, and the position of the measurement pattern 27 with respect to the measurement pattern 26 is measured as shown in FIGS. As a result, the accuracy of the seam can be quantified. By applying this method to the flowchart shown in FIG. 5, the accuracy of the seam can be improved.

なお、図11に示すように4つの領域に分けて別々に露光する場合、一つの領域の2辺が他の領域と重なる関係上、計測パターン26,27を画素部12の一つの対角線上にしか配置することができない。仮に、画素部12の四隅に計測パターン26,27を設けると、計測パターン26,27が隣接する領域内にパターニングされてしまう。   As shown in FIG. 11, when exposure is performed separately in four areas, the measurement patterns 26 and 27 are placed on one diagonal line of the pixel unit 12 because the two sides of one area overlap with other areas. Can only be placed. If the measurement patterns 26 and 27 are provided at the four corners of the pixel unit 12, the measurement patterns 26 and 27 are patterned in adjacent regions.

但し、計測パターン26,27を画素部12の一つの対角線上にしか配置しない場合、画素部12の四隅に計測パターン26,27を設けた場合に比べ、継ぎ目の精度に関して得られる情報が少ないため十分な補正ができない場合も考えられる。その場合は、画素部12内のパターンを解析し、各領域の回転成分を予め取り除いてから、上記の方法を適用すれば良い。   However, when the measurement patterns 26 and 27 are arranged only on one diagonal line of the pixel unit 12, less information is obtained regarding the accuracy of the seam than when the measurement patterns 26 and 27 are provided at the four corners of the pixel unit 12. There may be cases where sufficient correction cannot be made. In that case, the above method may be applied after analyzing the pattern in the pixel portion 12 and removing the rotation component of each region in advance.

以上のように、本実施の形態に係る検査方法は、所定のパターンの一部(画素部12)の近傍に計測パターン14,15,26,27を設け、計測パターン14,26に対する計測パターン15,27の位置を計測することで、継ぎ目の精度を定量化でき、継ぎ目の精度を管理し、継ぎ目の精度を向上させることが可能となる。   As described above, in the inspection method according to the present embodiment, the measurement patterns 14, 15, 26, and 27 are provided in the vicinity of a part of the predetermined pattern (pixel portion 12), and the measurement pattern 15 for the measurement patterns 14 and 26 is provided. , 27 can be quantified, the seam accuracy can be quantified, the seam accuracy can be managed, and the seam accuracy can be improved.

本発明の実施の形態1に係る露光する領域を示す図である。It is a figure which shows the area | region to expose which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液晶表示装置を示す平面図である。It is a top view which shows the liquid crystal display device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るゲート配線及び容量配線をパターニングした基板を示す平面図である。It is a top view which shows the board | substrate which patterned the gate wiring and capacitor wiring which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る重なり領域での継ぎ目を示す平面図である。It is a top view which shows the joint in the overlap area | region which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液晶表示装置の製造方法を説明する図である。It is a figure explaining the manufacturing method of the liquid crystal display device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液晶表示装置において効果を説明するための平面図である。It is a top view for demonstrating an effect in the liquid crystal display device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液晶表示装置において効果を説明するための平面図である。It is a top view for demonstrating an effect in the liquid crystal display device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る液晶表示装置に使用するマスクを示す平面図である。It is a top view which shows the mask used for the liquid crystal display device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る液晶表示装置の計測パターンを示す平面図である。It is a top view which shows the measurement pattern of the liquid crystal display device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る液晶表示装置の計測パターンを説明する平面図である。It is a top view explaining the measurement pattern of the liquid crystal display device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る別の液晶表示装置の計測パターンを示す平面図である。It is a top view which shows the measurement pattern of another liquid crystal display device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る別の液晶表示装置に使用するマスクを示す平面図である。It is a top view which shows the mask used for another liquid crystal display device which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1,2,21,22,23,24 領域、3,25 重なり領域、4 ゲート配線、5 容量配線、6 シリコン層、7 ソース配線、8 ドレイン電極、9 継ぎ目、10,11 距離、12 画素部、13 非パターニング部分、14,15,26,27 計測パターン、16,17 距離。
1, 2, 21, 22, 23, 24 region, 3, 25 overlap region, 4 gate wiring, 5 capacitance wiring, 6 silicon layer, 7 source wiring, 8 drain electrode, 9 joint, 10, 11 distance, 12 pixel portion , 13 Non-patterning part, 14, 15, 26, 27 Measurement pattern, 16, 17 Distance.

Claims (3)

基板を複数の領域に分けて別々に露光することで所定のパターンを形成する場合において、異なる露光によるパターンの継ぎ目の精度を検査する検査方法であって、
前記複数の領域における第1領域と第2領域とが重なる重なり領域において、前記第1領域の露光に係る第1パターン要素と、前記第1パターン要素と略平行に配置される前記第1領域の露光に係る第2パターン要素との第1距離を計測するステップと、
前記重なり領域において、前記第2領域の露光に係る前記第1パターン要素と継ぎ合わされる第3パターン要素と、前記第2パターン要素との第2距離を計測するステップと、
前記第1距離と前記第2距離との差を求め継ぎ目の精度を定量化し計測するステップとを備える検査方法。
In the case where a predetermined pattern is formed by dividing a substrate into a plurality of regions and separately exposing, an inspection method for inspecting the accuracy of a pattern seam by different exposure,
In the overlapping region where the first region and the second region of the plurality of regions overlap, the first pattern element related to the exposure of the first region and the first region disposed substantially parallel to the first pattern element Measuring a first distance from a second pattern element related to exposure;
Measuring a second distance between the third pattern element joined to the first pattern element related to the exposure of the second area and the second pattern element in the overlapping area;
An inspection method comprising a step of obtaining a difference between the first distance and the second distance and quantifying and measuring the accuracy of the seam.
基板を複数の領域に分けて別々に露光することで所定のパターンを形成する場合において、異なる露光によるパターンの継ぎ目の精度を検査する検査方法であって、
前記複数の領域における第1領域と第2領域とが重なる重なり領域において、前記所定のパターン外に、前記第1領域の露光に係る第1計測パターンを設けるステップと、
前記重なり領域において、前記所定のパターン外に、前記第2領域の露光に係る第2計測パターンを設けるステップと、
前記第1計測パターンに対する前記第2計測パターンの位置を計測することで継ぎ目の精度を定量化し計測するステップとを備える検査方法。
In the case where a predetermined pattern is formed by dividing a substrate into a plurality of regions and separately exposing, an inspection method for inspecting the accuracy of a pattern seam by different exposure,
Providing a first measurement pattern related to exposure of the first region outside the predetermined pattern in an overlapping region where the first region and the second region in the plurality of regions overlap;
Providing a second measurement pattern related to exposure of the second region outside the predetermined pattern in the overlapping region;
And a step of quantifying and measuring the accuracy of the seam by measuring the position of the second measurement pattern with respect to the first measurement pattern.
基板を複数の領域に分けて別々に露光することで所定のパターンを形成する工程を含む液晶表示装置の製造方法であって、
(a)基板上の第1層目に対して前記所定のパターンを形成するステップと、
(b)請求項1又は請求項2に記載の検査方法を用いて継ぎ目の精度を定量化し計測するステップと、
(c)計測した前記継ぎ目の精度の値が所定の値以上か否かを判定するステップと、
(d)前記工程(c)で前記継ぎ目の精度の値が所定の値以上と判定された場合、前記第1領域及び前記第2領域の露光位置を補正し、新たな前記基板に対して前記工程(a),(b)を行うステップと、
(e)前記工程(b)で前記継ぎ目の精度の値が所定の値より小さい場合、設定されている条件に基づき生産を開始するステップとを備える液晶表示装置の製造方法。
A method of manufacturing a liquid crystal display device including a step of forming a predetermined pattern by dividing a substrate into a plurality of regions and separately exposing the substrate,
(A) forming the predetermined pattern on the first layer on the substrate;
(B) quantifying and measuring the accuracy of the seam using the inspection method according to claim 1 or claim 2;
(C) determining whether the measured accuracy value of the seam is equal to or greater than a predetermined value;
(D) When it is determined in the step (c) that the accuracy value of the seam is equal to or greater than a predetermined value, the exposure positions of the first area and the second area are corrected, and the new substrate is Performing steps (a) and (b);
(E) A method of manufacturing a liquid crystal display device comprising a step of starting production based on a set condition when the accuracy value of the seam is smaller than a predetermined value in the step (b).
JP2005161038A 2005-06-01 2005-06-01 Inspection method and method for manufacturing liquid crystal display apparatus using same Pending JP2006337631A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005161038A JP2006337631A (en) 2005-06-01 2005-06-01 Inspection method and method for manufacturing liquid crystal display apparatus using same
SG200601991A SG127790A1 (en) 2005-06-01 2006-03-24 Inspection method, and manufacturing method for liquid crystal display using inspection method
TW095110674A TW200643582A (en) 2005-06-01 2006-03-28 Inspection method, and manufacturing method for liquid crystal display using inspection method
CNA2006100792720A CN1873538A (en) 2005-06-01 2006-04-25 Checking method and method for preparation liquid crystal display device using the same
KR1020060046934A KR100812322B1 (en) 2005-06-01 2006-05-25 Inspection method, and manufacturing method for liquid crystal display using inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161038A JP2006337631A (en) 2005-06-01 2005-06-01 Inspection method and method for manufacturing liquid crystal display apparatus using same

Publications (1)

Publication Number Publication Date
JP2006337631A true JP2006337631A (en) 2006-12-14

Family

ID=37484041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161038A Pending JP2006337631A (en) 2005-06-01 2005-06-01 Inspection method and method for manufacturing liquid crystal display apparatus using same

Country Status (5)

Country Link
JP (1) JP2006337631A (en)
KR (1) KR100812322B1 (en)
CN (1) CN1873538A (en)
SG (1) SG127790A1 (en)
TW (1) TW200643582A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911330B1 (en) * 2008-12-30 2009-08-07 주식회사 탑 엔지니어링 Array tester, method for measuring a point of substrate of the same and method for measuring a position cordinate
KR100911331B1 (en) * 2008-12-30 2009-08-07 주식회사 탑 엔지니어링 Array tester and method for measuring a point of substrate of the same
CN102243382B (en) * 2010-05-13 2014-12-31 上海天马微电子有限公司 Liquid crystal display device and manufacturing method thereof, and detection and improvement device
TWI613494B (en) 2016-08-23 2018-02-01 友達光電股份有限公司 Marked pixel unit, display device using the same, and method for fabricating the display device
CN109856930B (en) * 2017-11-30 2021-05-25 京东方科技集团股份有限公司 Alignment mark, substrate, manufacturing method of substrate and exposure alignment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077756A (en) * 1998-04-24 2000-06-20 Vanguard International Semiconductor Overlay target pattern and algorithm for layer-to-layer overlay metrology for semiconductor processing
JP2000277425A (en) * 1999-03-26 2000-10-06 Nec Corp Electron beam lithography method and its device
JP3348783B2 (en) * 1999-07-28 2002-11-20 日本電気株式会社 Mark for overlay and semiconductor device
JP4635354B2 (en) * 2001-03-07 2011-02-23 株式会社ニコン Exposure method, splice error measurement method, and device manufacturing method
DE60108082T2 (en) * 2001-05-14 2005-10-13 Infineon Technologies Ag A method of performing an alignment measurement of two patterns in different layers of a semiconductor wafer
US7190823B2 (en) * 2002-03-17 2007-03-13 United Microelectronics Corp. Overlay vernier pattern for measuring multi-layer overlay alignment accuracy and method for measuring the same

Also Published As

Publication number Publication date
KR20060125476A (en) 2006-12-06
CN1873538A (en) 2006-12-06
TW200643582A (en) 2006-12-16
SG127790A1 (en) 2006-12-29
KR100812322B1 (en) 2008-03-10

Similar Documents

Publication Publication Date Title
US9134615B2 (en) Exposure method for glass substrate of liquid crystal display
US20210296392A1 (en) Flat Panel Array with the Alignment Marks in Active Area
JP4854998B2 (en) Manufacturing method of liquid crystal display device
TWI409579B (en) Method of manufacturing a photomask lithography apparatus, method of inspecting a photomask and apparatus for inspecting a photomask
WO2017114098A1 (en) Display substrate motherboard, manufacturing and detection method therefor and display panel motherboard
JPH1069066A (en) Mask and its inspection method and exposure method
JP5840584B2 (en) Exposure apparatus, exposure method, and manufacturing method of semiconductor device
JP2006337631A (en) Inspection method and method for manufacturing liquid crystal display apparatus using same
JP2009053683A (en) Method for manufacturing gray tone mask, the gray tone mask, method for inspecting the gray tone mask, and pattern transfer method
JP2011232549A (en) Method for manufacturing semiconductor device
KR20060087498A (en) Method of inspecting defect of graytone mask and manufacturing graytone mask
US7279257B2 (en) Pattern forming method, method of manufacturing thin film transistor substrate, method of manufacturing liquid crystal display and exposure mask
JP3968209B2 (en) Photomask defect transfer characteristic evaluation method, photomask defect correction method, and semiconductor device manufacturing method
JP3672884B2 (en) Pattern inspection method, pattern inspection apparatus, and mask manufacturing method
JP5288977B2 (en) Exposure apparatus and device manufacturing method
JP5043474B2 (en) Display device
JP2000340482A (en) Exposing method and aligner using the same
JP2006276747A (en) Pattern forming method and manufacturing method for liquid crystal display device
JP5282476B2 (en) Photomask manufacturing method
JP5836678B2 (en) Manufacturing method of semiconductor device
TWI471669B (en) Method for forming wires with narrow spacing
JP2006202838A (en) Method of manufacturing semiconductor device, active matrix substrate and display device
JP2008276168A (en) Liquid crystal display device with evaluation pattern disposed thereon, and method for manufacturing the same
JP3699894B2 (en) Sample inspection equipment
JP2007248802A (en) Pattern forming method and manufacturing method for gray tone mask