JP2006336874A - Heat pump type drier - Google Patents

Heat pump type drier Download PDF

Info

Publication number
JP2006336874A
JP2006336874A JP2003354974A JP2003354974A JP2006336874A JP 2006336874 A JP2006336874 A JP 2006336874A JP 2003354974 A JP2003354974 A JP 2003354974A JP 2003354974 A JP2003354974 A JP 2003354974A JP 2006336874 A JP2006336874 A JP 2006336874A
Authority
JP
Japan
Prior art keywords
air
heat pump
evaporator
radiator
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003354974A
Other languages
Japanese (ja)
Inventor
Yuichi Kusumaru
雄一 藥丸
Fumitoshi Nishiwaki
文俊 西脇
Atsuo Okaichi
敦雄 岡市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003354974A priority Critical patent/JP2006336874A/en
Priority to PCT/JP2004/015546 priority patent/WO2005036079A2/en
Publication of JP2006336874A publication Critical patent/JP2006336874A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • F26B23/005Heating arrangements using waste heat recovered from dryer exhaust gases using a closed cycle heat pump system ; using a heat pipe system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Drying Of Solid Materials (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an air current distribution of a radiator and an evaporator, and to shorten a drying time by increasing heat exchanging amount of the radiator and the evaporator. <P>SOLUTION: This heat pump drier comprises a heat pump cycle in which a refrigerant circulates through a compressor 31, the radiator 32, a throttle apparatus 33 and the evaporator 34 in this order, and an air duct 39 which envelops the radiator 32 and the evaporator 34, and which dehumidifies drying air 45 from moisture absorbed from a drying object 36 by means of the evaporator 34 and heats the air by means of the radiator 32. A rectifier apparatus 35 is provided at an inlet 39a of the air duct 39. Drying air 45 having stable and uniform air current distribution flows through the evaporator 34 and the radiator 32 to carry out effective heat exchange in the evaporator 34 and the radiator 32, and drying air 45 having higher temperature and lower moisture is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧縮機、放熱器、絞り装置、蒸発器を環状に接続して構成するヒートポンプ装置を備えたヒートポンプ式乾燥機に関する。   The present invention relates to a heat pump dryer provided with a heat pump device configured by connecting a compressor, a radiator, a throttle device, and an evaporator in an annular shape.

従来のヒートポンプ式乾燥機としては、衣類等の乾燥を行う手段としてヒートポンプを用いる衣類乾燥機が提案されている(例えば特許文献1参照)。図9は、特許文献1に記載された従来のヒートポンプ式乾燥機を示す構成図である。
図9に示す衣類乾燥機は、圧縮機1,凝縮器2,膨張器3及び蒸発器4を管路5で結び、蒸発器4下部に、結露を受けて外部に排出する結露受け部6を持つヒートポンプを形成し、主空気吸入口7を蒸発器4の上流側位置に開口させ、この主空気吸入口7より吸入する空気流を蒸発器4及び凝縮器2を経由して空気吐出口9へ流れる空気流とし、副空気吸入口8を凝縮器2と空気吐出口9との間に設置し、副空気吸入口8より吸入する空気流を上記蒸発器4及び凝縮器2を経由して流れる空気流と合流させて空気吐出口9から吐出させる構成である。
この衣類乾燥機の動作は次のとおりである。送風機11及び外装ケーシング10内に内装されているヒ−トポンプを働かせると、衣類収納庫12中の湿り空気は、主空気吸入口7及び副空気吸入口8に吸い込まれる。主空気吸入口7より吸い込まれた空気は、蒸発器4で除湿され、凝縮器2を通って加熱された後、送風機11に向かう。副空気吸入口8より吸い込まれた空気は、凝縮器2を通過した空気と混合しつつ送風機11に向かう。
このようにして、空気吐出口9からは、主副の空気吸入口7,8より吸い込まれた両方の空気流が衣類収納庫12内に吹き出される。この空気流は、主空気吸入口7より吸入した空気流が除湿されたものであるので、衣類収納庫12内の空気に比べると除湿され、乾燥した空気であり、衣類収納庫12内の衣類14にあたって乾燥させる。
そして、上記衣類乾燥機によれば、ヒ−トポンプの蒸発器4に流す風は、除湿機能を害さない程度におさえることができると共に、乾燥すべき衣類に流す空気流量は充分に確保することができるので、衣類の乾燥効率はきわめて優れている。
特開昭63−183096号公報(第7頁、図8)
As a conventional heat pump dryer, a clothing dryer using a heat pump as a means for drying clothes and the like has been proposed (for example, see Patent Document 1). FIG. 9 is a block diagram showing a conventional heat pump dryer described in Patent Document 1. As shown in FIG.
The clothes dryer shown in FIG. 9 connects the compressor 1, the condenser 2, the expander 3 and the evaporator 4 with a pipe line 5, and a dew condensation receiving part 6 for receiving dew condensation and discharging it to the outside at the lower part of the evaporator 4. The main air suction port 7 is opened at a position upstream of the evaporator 4, and the air flow sucked from the main air suction port 7 is passed through the evaporator 4 and the condenser 2 to the air discharge port 9. The auxiliary air suction port 8 is installed between the condenser 2 and the air discharge port 9, and the air flow sucked from the auxiliary air suction port 8 passes through the evaporator 4 and the condenser 2. In this configuration, the air flow is combined with the flowing air flow and discharged from the air discharge port 9.
The operation of this clothes dryer is as follows. When the heat pump incorporated in the blower 11 and the outer casing 10 is operated, the humid air in the clothing storage 12 is sucked into the main air inlet 7 and the sub air inlet 8. The air sucked from the main air inlet 7 is dehumidified by the evaporator 4, heated through the condenser 2, and then goes to the blower 11. The air sucked from the auxiliary air suction port 8 goes to the blower 11 while being mixed with the air that has passed through the condenser 2.
In this manner, both air flows sucked from the main and sub air intake ports 7 and 8 are blown out from the air discharge port 9 into the clothing storage case 12. Since the air flow sucked from the main air suction port 7 is dehumidified, the air flow is dehumidified and dry compared to the air in the clothing storage 12, and the clothing in the clothing storage 12 14 to dry.
And according to the said clothes dryer, while the wind sent to the evaporator 4 of a heat pump can be suppressed to such an extent that it does not impair a dehumidification function, it can ensure sufficient air flow volume to flow through the clothes to be dried. Since it is possible, the drying efficiency of clothes is very excellent.
JP 63-183096 A (7th page, FIG. 8)

しかしながら、従来例に示すヒートポンプ式乾燥機の構成では、空気を凝縮器及び蒸発器の下部から吸い込んで再び下部に吐出する構成のため、気流が偏って熱交換器全体の流速分布が悪くなり、有効に熱交換が行われず、凝縮器及び蒸発器とも熱交換量が小さくなってしまうという課題を有していた。
また、ヒートポンプ装置の冷媒として従来使われてきたHCFC冷媒(分子中に塩素、水素、フッ素、炭素の各原子を含む)や、HFC冷媒(分子中に水素、フッ素、炭素の各原子を含む)が、オゾン層破壊あるいは地球温暖化に直接的に影響するとして、これらの代替として自然界に存在する炭化水素や二酸化炭素(以下CO2と記す)などの自然冷媒への転換が提案されている。
また、エネルギー機器の効率が悪いと、より多くの電力量を消費してしまうため、CO2排出量が大きくなってしまうという間接的な悪影響を及ぼしてしまう。そこで、オゾン層破壊あるいは地球温暖化に直接的に影響しないCO2などの自然冷媒を用いて、さらに地球温暖化への間接的な影響を小さくするための省エネルギー化を実現することが要望されている。
However, in the configuration of the heat pump dryer shown in the conventional example, because air is sucked from the lower part of the condenser and the evaporator and discharged again to the lower part, the air flow is uneven and the flow rate distribution of the entire heat exchanger becomes worse, Heat exchange was not performed effectively, and both the condenser and the evaporator had a problem that the amount of heat exchange was small.
In addition, HCFC refrigerants (including chlorine, hydrogen, fluorine, and carbon atoms in the molecule) and HFC refrigerants (including hydrogen, fluorine, and carbon atoms in the molecule) that have been conventionally used as refrigerants for heat pump devices However, as a direct influence on ozone layer destruction or global warming, conversion to natural refrigerants such as hydrocarbons and carbon dioxide (hereinafter referred to as CO 2 ) existing in nature has been proposed as an alternative to these.
In addition, when the efficiency of the energy device is low, a larger amount of electric power is consumed, resulting in an indirect adverse effect that the CO 2 emission amount becomes large. Therefore, there is a demand for energy saving to further reduce indirect effects on global warming by using natural refrigerants such as CO 2 that do not directly affect ozone layer destruction or global warming. Yes.

したがって本発明は、上記課題を解決するもので、放熱器及び蒸発器を流れる空気の流速分布を改善することにより、放熱器及び蒸発器の熱交換量を増大し、乾燥時間の短縮、すなわち省エネルギー化を図ることができるヒートポンプ式乾燥機を提供することを目的とする。
また、冷媒としてCO2等の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用いた場合にも、装置の大型化を抑制し、さらなる高効率化を実現するヒートポンプ式乾燥機を提供することを目的とする。
Therefore, the present invention solves the above-mentioned problem, and improves the flow rate distribution of the air flowing through the radiator and the evaporator, thereby increasing the heat exchange amount of the radiator and the evaporator and shortening the drying time, that is, energy saving. An object of the present invention is to provide a heat pump dryer capable of achieving the above.
Moreover, even when a refrigerant that can be in a supercritical state on the heat radiation side of the refrigeration cycle such as CO 2 is used as the refrigerant, a heat pump dryer that suppresses the enlargement of the apparatus and realizes further high efficiency is provided. With the goal.

請求項1記載の本発明のヒートポンプ式乾燥機は、冷媒が、圧縮機,放熱器,絞り装置,蒸発器の順に循環するヒートポンプ装置と、前記放熱器及び前記蒸発器を内包するとともに乾燥対象から水分を奪った空気を前記蒸発器で除湿して前記放熱器で加熱する空気ダクトとを備えるヒートポンプ式乾燥機であって、前記空気ダクト入口に整流装置を設けたことを特徴とする。
請求項2記載の本発明は、請求項1に記載のヒートポンプ式乾燥機において、前記整流装置を、径の異なる複数のラッパ状部材で構成したことを特徴とする。
請求項3記載の本発明は、請求項1に記載のヒートポンプ式乾燥機において、前記整流装置を、円錐形状部材で構成したことを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載のヒートポンプ式乾燥機において、前記整流装置を、ラッパ状部材で構成して前記空気ダクト入口の真上に設けたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ式乾燥機において、前記整流装置を、ダクト部材で構成して前記空気ダクト入口の真上に設け、当該ダクト部材の入口部を前記空気ダクト中心部からずらして設けるとともにダクト中心方向に対して傾斜を有して設けたことを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれかに記載のヒートポンプ式乾燥機において、前記冷媒として、前記ヒートポンプ装置の高サイドの圧力が超臨界状態となる冷媒を用いたことを特徴とする。
The heat pump dryer according to the first aspect of the present invention includes a heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttling device, and an evaporator, the radiator and the evaporator, and a drying target. A heat pump dryer having an air duct that dehumidifies the moisture with the evaporator and heats it with the radiator. A rectifier is provided at the inlet of the air duct.
According to a second aspect of the present invention, in the heat pump dryer according to the first aspect, the rectifying device is composed of a plurality of trumpet members having different diameters.
According to a third aspect of the present invention, in the heat pump dryer according to the first aspect, the rectifying device is formed of a conical member.
According to a fourth aspect of the present invention, in the heat pump dryer according to any one of the first to third aspects, the rectifying device is formed of a trumpet-shaped member and is provided directly above the air duct inlet. It is characterized by that.
According to a fifth aspect of the present invention, in the heat pump dryer according to any one of the first to fourth aspects, the rectifying device is formed of a duct member and is provided directly above the air duct inlet. The inlet portion of the duct member is provided while being shifted from the center portion of the air duct, and is provided with an inclination with respect to the duct center direction.
According to a sixth aspect of the present invention, in the heat pump dryer according to any one of the first to fifth aspects, a refrigerant in which a high-side pressure of the heat pump device is in a supercritical state is used as the refrigerant. It is characterized by that.

本発明のヒートポンプ式乾燥機によれば、安定かつ均一な気流分布の乾燥用空気を放熱器及び蒸発器に流すことが可能となるため、放熱器及び蒸発器と空気の熱交換する伝熱面積が増加する。この結果、放熱器及び蒸発器の熱交換量が増大し、より高温低湿の乾燥用空気が得られるため、乾燥時間の短縮を図ることができる。すなわち、圧縮機の消費電力量低減に結びつき、省エネルギー化を図ることができる。   According to the heat pump dryer of the present invention, it becomes possible to flow the drying air having a stable and uniform airflow distribution to the radiator and the evaporator, so that the heat transfer area for exchanging heat between the radiator and the evaporator is air. Will increase. As a result, the amount of heat exchange between the radiator and the evaporator increases, and drying air with higher temperature and humidity can be obtained, so that the drying time can be shortened. That is, it leads to reduction of the power consumption of the compressor, and energy saving can be achieved.

本発明の第1の実施の形態によるヒートポンプ式乾燥機は、冷媒が、圧縮機,放熱器,絞り装置,蒸発器の順に循環するヒートポンプ装置と、放熱器及び蒸発器を内包し、乾燥対象から水分を奪った空気を蒸発器で除湿して放熱器で加熱する空気ダクトとを備えるヒートポンプ式乾燥機の、その空気ダクト入口に整流装置を設けたものである。本実施の形態によれば、整流装置が、空気ダクトに流入する空気を入口で整流し、安定かつ均一な気流分布にして放熱器及び蒸発器へ流すので、放熱器及び蒸発器で熱交換が有効に行われ、より高温低湿の乾燥用空気を得ることができ、乾燥時間の短縮を図ることができる。
本発明の第2の実施の形態は、第1の実施の形態によるヒートポンプ式乾燥機において、整流装置を、径の異なる複数のラッパ状部材で構成したものである。本実施の形態によれば、整流装置のそれぞれのラッパ状部材が、空気を整流し、均一な気流分布にして放熱器及び蒸発器へ流すので、熱交換を有効に行うことができる。
本発明の第3の実施の形態は、第1の実施の形態によるヒートポンプ式乾燥機において、整流装置を、円錐形状部材で構成したものである。本実施の形態によれば、整流装置の円錐形状部材が、空気を整流し、均一な気流分布にして放熱器及び蒸発器へ流すので、熱交換を有効に行うことができる。
本発明の第4の実施の形態は、第1から第3の実施の形態によるヒートポンプ式乾燥機において、整流装置を、ラッパ状部材で構成して空気ダクト入口の真上に設けたものである。本実施の形態によれば、整流装置のラッパ状部材が、空気ダクトに流入する空気をラッパ内面に沿って拡大して偏りのない流れとするので、均一な気流分布を得ることができる。
本発明の第5の実施の形態は、第1から第4の実施の形態によるヒートポンプ式乾燥機において、整流装置を、ダクト部材で構成して空気ダクト入口の真上に設け、当該ダクト部材の入口部を空気ダクト中心部からずらして設けるとともに空気ダクト中心方向に対して傾斜を有して設けたものである。本実施の形態によれば、傾斜を有した整流装置が、空気ダクトに流入する空気を、ダクト入口から熱交換器を通ってダクト出口に向けて偏りのない流れとするので、均一な気流分布を得ることができる。
本発明の第6の実施の形態は、第1から第5の実施の形態によるヒートポンプ式乾燥機において、冷媒として、ヒートポンプ装置の高サイドの圧力が超臨界状態となる冷媒を用いたものである。本実施の形態によれば、例えばCO2冷媒を用いて、ヒートポンプ装置を高サイドにおいて超臨界圧力の状態で運転することにより、乾燥空気温度を高くすることができ、乾燥時間を短縮することができる。
The heat pump dryer according to the first embodiment of the present invention includes a heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttling device, and an evaporator, and a radiator and an evaporator. A heat pump dryer provided with an air duct that dehumidifies air with an evaporator and heats it with a radiator, and a rectifier is provided at the air duct inlet. According to the present embodiment, the rectifier rectifies the air flowing into the air duct at the inlet and flows it to the radiator and the evaporator with a stable and uniform air flow distribution. Therefore, heat exchange is performed between the radiator and the evaporator. Effectively, drying air with higher temperature and humidity can be obtained, and the drying time can be shortened.
In the heat pump dryer according to the first embodiment, the second embodiment of the present invention is configured such that the rectifier is composed of a plurality of trumpet members having different diameters. According to the present embodiment, each trumpet member of the rectifying device rectifies the air to make a uniform air flow distribution and flows it to the radiator and the evaporator, so that heat exchange can be performed effectively.
According to a third embodiment of the present invention, in the heat pump dryer according to the first embodiment, the rectifying device is configured by a conical member. According to the present embodiment, the conical member of the rectifier rectifies the air and makes a uniform air flow distribution to flow to the radiator and the evaporator, so that heat exchange can be performed effectively.
In the fourth embodiment of the present invention, in the heat pump dryer according to the first to third embodiments, the rectifier is formed of a trumpet-like member and is provided directly above the air duct inlet. . According to the present embodiment, the trumpet-shaped member of the rectifying device expands the air flowing into the air duct along the inner surface of the trumpet to make a non-biased flow, so that a uniform airflow distribution can be obtained.
According to a fifth embodiment of the present invention, in the heat pump dryer according to the first to fourth embodiments, the rectifier is configured by a duct member and is provided directly above the air duct inlet. The inlet portion is provided while being shifted from the center portion of the air duct, and is provided with an inclination with respect to the air duct center direction. According to the present embodiment, since the rectifying device having an inclination causes the air flowing into the air duct to flow without deviation from the duct inlet to the duct outlet through the heat exchanger, a uniform air flow distribution is obtained. Can be obtained.
In the heat pump dryer according to the first to fifth embodiments, the sixth embodiment of the present invention uses a refrigerant in which the high-side pressure of the heat pump device is in a supercritical state as the refrigerant. . According to the present embodiment, for example, by using the CO 2 refrigerant and operating the heat pump device in a supercritical pressure state on the high side, the drying air temperature can be increased and the drying time can be shortened. it can.

以下、本発明の一実施例について、図面を参照しながら説明する。
図1は、本発明の第1の実施例におけるヒートポンプ式乾燥機の構成図である。
図1に示す本実施例のヒートポンプ式乾燥機においては、圧縮機31,放熱器32,絞り装置33,蒸発器34を順に配管接続し、冷媒を封入することにより、ヒートポンプ装置を構成している。また、ヒートポンプ式乾燥機は、整流装置35,送風ファン37,ドレン水受け38,空気ダクト39を備え、この空気ダクト39内に、蒸発器34を放熱器32の風上側、即ち放熱器32の上方に設置した構成としている。そして、乾燥用空気45が、乾燥対象36の上方から空気ダクト39に流入し、この空気ダクト39入口に設けた整流装置35で整流されて、蒸発器34、放熱器32の順に流れる構成としている。尚、乾燥対象36は、例えば衣類などであるが、浴室などの乾燥空間を含むものとする。また、図1中の実線矢印は冷媒の流れを、白抜き矢印は乾燥用空気45の流れを表す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a heat pump dryer according to a first embodiment of the present invention.
In the heat pump dryer of the present embodiment shown in FIG. 1, a compressor 31, a radiator 32, a throttling device 33, and an evaporator 34 are connected in order, and a heat pump device is configured by enclosing a refrigerant. . The heat pump dryer includes a rectifier 35, a blower fan 37, a drain water receiver 38, and an air duct 39. In this air duct 39, the evaporator 34 is connected to the windward side of the radiator 32, that is, the radiator 32. The configuration is set up. The drying air 45 flows into the air duct 39 from above the drying target 36, is rectified by the rectifier 35 provided at the inlet of the air duct 39, and flows in the order of the evaporator 34 and the radiator 32. . The drying object 36 is, for example, clothes, but includes a drying space such as a bathroom. Moreover, the solid line arrow in FIG. 1 represents the flow of the refrigerant, and the white arrow represents the flow of the drying air 45.

上記ヒートポンプ式乾燥機の動作は次のとおりである。冷媒は、圧縮機31で圧縮されて高温高圧の状態となり、放熱器32で蒸発器34を出た乾燥用空気45と熱交換し、乾燥用空気45を加熱することにより、冷却されて凝縮する。凝縮した冷媒は、絞り装置33で減圧されて低温低圧の状態となり、蒸発器34で乾燥対象36を経てきた乾燥用空気45と熱交換し、乾燥用空気45を冷却することにより、加熱されて蒸発する。この時、蒸発器34で乾燥用空気45に含まれた水分を凝縮、除湿する。そして、蒸発した冷媒は、再び圧縮機31に吸入される。
一方、乾燥用空気45は、蒸発器34で冷却除湿された後に放熱器32で加熱されて高温低湿となり、送風ファン37によって乾燥対象36に強制的に接触させられる際に、乾燥対象36から水分を奪って多湿状態となり、蒸発器34で再び冷却除湿される。すなわち、乾燥用空気45は、空気ダクト39上面に設けた空気入口部39aから流入し、空気入口部39aに設置した整流装置35を通って、蒸発器34及び放熱器32で熱交換した後、空気ダクト39側面下部に設けた空気出口部39bから流出する。
また、蒸発器34で凝縮生成した水分は、ドレン水受け38に滴下して外部に排出される。
以上のような動作を繰り返すことにより、乾燥対象36から水分を奪う乾燥作用を行うことができる。
そして、本実施例では、空気ダクト39入口に設けた整流装置35の整流作用によって、安定かつ均一な気流分布の乾燥用空気45を熱交換器としての放熱器32及び蒸発器34に流すことが可能となる。これに対して整流装置35を設けない場合は、空気ダクト39の空気入口部39aから流入した乾燥用空気45は、空気入口部39aの真下の部分の流速が最も大きくなり、熱交換器全体の流速分布は悪くなる。
このように本実施例のヒートポンプ式乾燥機では、放熱器及び蒸発器を流れる空気の流速分布が改善されて、放熱器32及び蒸発器34と空気の有効に接触する伝熱面積が増加することから、より高温低湿の乾燥用空気45が放熱器32及び蒸発器34で得られ、乾燥時間の短縮を図ることができる。換言すれば、圧縮機31の消費電力量低減に結びつき、省エネルギー化を図ることができる。
また、放熱器32及び蒸発器34での空気と熱交換する熱交換量が増大することから、放熱器32及び蒸発器34の大きさを一層小型化することが可能となる。したがって、ヒートポンプ装置の小型化を図ることができる。
なお、本実施例では、乾燥用空気45を乾燥対象36に対して強制的に下方から上方に流す構成を説明したが、この構成に限るものではなく、乾燥用空気45を乾燥対象36に対して強制的に上方から下方に流す構成であっても、冷媒の流し方を逆方向にして、ドレン水受け38を蒸発器の下方に設置すれば、同じ効果を有することは言うまでもない。なお、以下の実施例の説明においても同様である。
The operation of the heat pump dryer is as follows. The refrigerant is compressed by the compressor 31 to be in a high-temperature and high-pressure state, is heat-exchanged with the drying air 45 exiting the evaporator 34 by the radiator 32, and is heated and cooled to condense. . The condensed refrigerant is depressurized by the expansion device 33 to be in a low-temperature and low-pressure state, and is heated by exchanging heat with the drying air 45 that has passed through the drying object 36 by the evaporator 34 and cooling the drying air 45. Evaporate. At this time, the water contained in the drying air 45 is condensed and dehumidified by the evaporator 34. Then, the evaporated refrigerant is sucked into the compressor 31 again.
On the other hand, when the drying air 45 is cooled and dehumidified by the evaporator 34 and then heated by the radiator 32 to become high temperature and low humidity and is forced to contact the drying target 36 by the blower fan 37, Is taken into a humid state, and is cooled and dehumidified again by the evaporator 34. That is, the drying air 45 flows from the air inlet 39a provided on the upper surface of the air duct 39, passes through the rectifier 35 installed in the air inlet 39a, and exchanges heat with the evaporator 34 and the radiator 32. The air flows out from an air outlet 39b provided at the lower side of the air duct 39.
Further, the moisture condensed and generated by the evaporator 34 is dropped onto the drain water receiver 38 and discharged to the outside.
By repeating the operation as described above, it is possible to perform a drying action for removing moisture from the drying target 36.
In this embodiment, the rectifying action of the rectifier 35 provided at the inlet of the air duct 39 allows the drying air 45 having a stable and uniform air flow distribution to flow through the radiator 32 and the evaporator 34 as heat exchangers. It becomes possible. On the other hand, when the rectifier 35 is not provided, the drying air 45 flowing from the air inlet 39a of the air duct 39 has the highest flow velocity in the portion directly below the air inlet 39a, and the entire heat exchanger The flow velocity distribution gets worse.
As described above, in the heat pump dryer of the present embodiment, the flow velocity distribution of the air flowing through the radiator and the evaporator is improved, and the heat transfer area in which the air effectively contacts the radiator 32 and the evaporator 34 is increased. Therefore, drying air 45 with higher temperature and humidity can be obtained by the radiator 32 and the evaporator 34, and the drying time can be shortened. In other words, the energy consumption of the compressor 31 can be reduced and energy saving can be achieved.
Further, since the amount of heat exchange for exchanging heat with air in the radiator 32 and the evaporator 34 increases, the size of the radiator 32 and the evaporator 34 can be further reduced. Therefore, it is possible to reduce the size of the heat pump device.
In the present embodiment, the configuration in which the drying air 45 is forced to flow from the lower side to the upper side with respect to the drying target 36 has been described. However, the present invention is not limited to this configuration. Needless to say, even if it is configured to force the refrigerant to flow downward from above, the same effect can be obtained if the drain water receiver 38 is installed below the evaporator with the refrigerant flowing in the opposite direction. The same applies to the description of the following embodiments.

図2は、本発明の第2の実施例におけるヒートポンプ式乾燥機の構成図であり、図3は、図2に示すヒートポンプ式乾燥機の整流装置の平面及び側面図である。本実施例のヒートポンプ式乾燥機の構成に関して、第1の実施例と同じ構成要素については同一の符号を用いてその説明を省略し、第1の実施例と異なる構成の整流装置について説明する。
図2及び図3において、本実施例の第1の整流装置40は、径の異なる複数のラッパ状部材40a,40b,40cで構成されている。本実施例の第1の整流装置40では、3個のラッパ状部材で構成される場合を例に挙げたが、個数は3個以外でも構わない。そして、第1の整流装置40は、空気入口部39aの真下に設けられている。
一方、第1の整流装置40において、それぞれのラッパ状部材40a,40b,40cで乾燥用空気45を分流して偏りのない流れにする整流動作が行われる。
このように本実施例のヒートポンプ式乾燥機では、空気ダクト39入口に第1の整流装置40を設けることにより、さらに均一な気流分布を得ることが可能となるため、より確実に放熱器32及び蒸発器34の熱交換量を増大させることができる。これにより、さらなる乾燥時間の短縮化、ヒートポンプ装置の省エネルギー化及び小型化を図ることが可能となる。
FIG. 2 is a configuration diagram of a heat pump dryer in the second embodiment of the present invention, and FIG. 3 is a plan view and a side view of the rectifier of the heat pump dryer shown in FIG. Regarding the configuration of the heat pump dryer of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. A rectifier having a configuration different from that of the first embodiment will be described.
2 and 3, the first rectifying device 40 of this embodiment is composed of a plurality of trumpet-like members 40a, 40b, and 40c having different diameters. In the first rectifying device 40 of the present embodiment, the case where it is constituted by three trumpet-shaped members has been described as an example, but the number may be other than three. And the 1st rectifier 40 is provided directly under the air inlet part 39a.
On the other hand, in the 1st rectifier 40, the rectification operation | movement which diverts the drying air 45 by each trumpet-shaped member 40a, 40b, 40c, and makes it a flow without a bias is performed.
As described above, in the heat pump dryer according to the present embodiment, by providing the first rectifier 40 at the inlet of the air duct 39, it becomes possible to obtain a more uniform air flow distribution. The amount of heat exchange in the evaporator 34 can be increased. As a result, it is possible to further shorten the drying time, save energy, and reduce the size of the heat pump device.

図4は、本発明の第3の実施例におけるヒートポンプ式乾燥機の構成図である。本実施例のヒートポンプ式乾燥機の構成に関して、第1の実施例と同じ構成要素については同一の符号を用いてその説明を省略し、第1の実施例と異なる構成の整流装置について説明する。
図4において、本実施例の第2の整流装置41は、円錐形状部材で構成されている。そして、第2の整流装置41は、空気ダクト39入口に設けられている。
一方、第2の整流装置41において、当該円錐形状で乾燥用空気45を分流拡大して偏りのない流れにする整流動作が行われる。
このように本実施例のヒートポンプ式乾燥機では、円錐形の第2の整流装置41を設けることにより、気流が物の面に沿って流れるという特性(コアンダー効果)を生かすことができ、均一な気流分布を得ることができる。と同時に、空気圧力損失の大幅な増加を防ぐことができ、送風ファン37の所要動力の増加を防止することができる。
FIG. 4 is a block diagram of a heat pump dryer in the third embodiment of the present invention. Regarding the configuration of the heat pump dryer of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. A rectifier having a configuration different from that of the first embodiment will be described.
In FIG. 4, the 2nd rectifier 41 of a present Example is comprised by the cone-shaped member. And the 2nd rectifier 41 is provided in the air duct 39 entrance.
On the other hand, in the second rectifying device 41, a rectifying operation is performed in which the drying air 45 is diverted and expanded in a conical shape so as to have a non-biased flow.
As described above, in the heat pump dryer of the present embodiment, by providing the conical second rectifier 41, it is possible to take advantage of the characteristic (co-under effect) that the airflow flows along the surface of the object, and the uniform Airflow distribution can be obtained. At the same time, a significant increase in air pressure loss can be prevented, and an increase in required power of the blower fan 37 can be prevented.

図5は、本発明の第4の実施例におけるヒートポンプ式乾燥機の構成図である。本実施例のヒートポンプ式乾燥機の構成に関して、第1の実施例と同じ構成要素については同一の符号を用いてその説明を省略し、第1の実施例と異なる構成の整流装置について説明する。
図5において、本実施例の第3の整流装置42は、入口の方が細く、先の方が太く開いているラッパ状部材で構成されている。そして、第3の整流装置42は、空気入口部39aの真上に設けられている。言い換えれば、放熱器34及び蒸発器32を内包している空気ダクト39と空気入口の直管部の接続部分が曲線部を有して設けられている。
一方、第3の整流装置42では、当該ラッパ状部材で乾燥用空気45の流れをラッパ内面に沿って拡大し、偏りのない流れにするという整流動作が行われる。
このように本実施例のヒートポンプ式乾燥機では、直管部に曲面を有する第3の整流装置42を設けることにより、気流が物の面に沿って流れるという特性(コアンダー効果)をより生かすことができる。すなわち、上方から流入した気流は、第3の整流装置42を設けることによって、吸入口の端面に沿って流れやすくなるため、より均一な気流分布を得ることができる。
また、本実施例では、前述の整流装置35などのような物体を空気ダクト39内に設けない構成であるため、第1から第3の実施例の場合よりも、空気圧力損失の低減を図ることができ、送風ファン37の所要動力の増加を防止することができる。
なお、第1から第3の実施例で述べた整流装置35、第1の整流装置40または第2の整流装置41のうちいずれかの整流装置と、第3の整流装置42とを併設する構成であっても良く、この構成により、さらなる気流分布の均一化を図ることができる。
FIG. 5 is a block diagram of a heat pump dryer according to the fourth embodiment of the present invention. Regarding the configuration of the heat pump dryer of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. A rectifier having a configuration different from that of the first embodiment will be described.
In FIG. 5, the 3rd rectifier 42 of a present Example is comprised by the trumpet-like member with the entrance narrower and the front opened thicker. And the 3rd rectifier 42 is provided right above the air inlet part 39a. In other words, the connecting portion between the air duct 39 containing the radiator 34 and the evaporator 32 and the straight pipe portion of the air inlet is provided with a curved portion.
On the other hand, in the 3rd rectifier 42, the flow of the drying air 45 is expanded along the inner surface of the trumpet by the trumpet-shaped member, and a rectifying operation is performed to make the flow non-uniform.
As described above, in the heat pump dryer according to the present embodiment, by providing the third straightening device 42 having a curved surface in the straight pipe portion, the characteristic that the airflow flows along the surface of the object (co-under effect) is further utilized. Can do. That is, since the airflow flowing in from above easily flows along the end face of the suction port by providing the third rectifying device 42, a more uniform airflow distribution can be obtained.
Further, in this embodiment, since an object such as the rectifying device 35 described above is not provided in the air duct 39, the air pressure loss is reduced as compared with the first to third embodiments. Therefore, an increase in required power of the blower fan 37 can be prevented.
A configuration in which one of the rectifiers 35, the first rectifier 40, or the second rectifier 41 described in the first to third embodiments and the third rectifier 42 are provided. The air flow distribution can be further uniformed by this configuration.

図6は、本発明の第5の実施例におけるヒートポンプ式乾燥機の構成図である。本実施例のヒートポンプ式乾燥機の構成に関して、第1の実施例と同じ構成要素については同一の符号を用いてその説明を省略し、第1の実施例と異なる構成の整流装置について説明する。
図6において、本実施例のヒートポンプ式乾燥機の空気ダクト39は、略L字状の形態であり、空気ダクト39上面に設けた空気入口部39aは鉛直方向に開口し、空気ダクト39側面下部に設けた空気出口部39bは水平方向に開口している。
そこで、本実施例の第4の整流装置43を、ダクト部材から構成し、空気入口部39aの真上に設けた当該第4の整流装置43の入口部43a(即ち、第4の整流装置43内を流れる空気流の方向)を、空気ダクト39中心部からずらして設けるとともに、ダクト中心方向39cに対して傾斜θを有して設ける構成としている。なお、空気入口部39aも空気ダクト39中心部からずらして設ける構成である。
この第4の整流装置43によって、空気ダクト39に流入する乾燥用空気45を、空気入口部39aから放熱器32及び蒸発器34を通って空気出口部39bに向け、偏りのない流れにする整流動作が行われる。
このように本実施例のヒートポンプ式乾燥機では、傾斜θを有する第4の整流装置43を設けることにより、熱交換器の間を気流がより均一に流れるので、より熱交換器での熱交換量を増大させることができる。これにより、さらなる乾燥時間の短縮化、ヒートポンプ装置の省エネルギー化及び小型化を図ることが可能となる。
なお、第1から第3の実施例で述べた整流装置35、第1の整流装置40または第2の整流装置41の内のいずれかの整流装置と、第4の整流装置43とを併設する構成であっても良く、この構成により、さらなる気流分布の均一化を図ることができる。
また、前述の第3の整流装置42(のラッパ状部材はダクト部材に該当する)を、空気ダクト中心部からずらし、且つダクト中心方向に対して傾斜を有して設ける構成であっても良く、この構成により、本実施例の第4の整流装置43と同様に、さらなる気流分布の均一化を図ることができる。
FIG. 6 is a configuration diagram of a heat pump dryer according to the fifth embodiment of the present invention. Regarding the configuration of the heat pump dryer of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. A rectifier having a configuration different from that of the first embodiment will be described.
In FIG. 6, the air duct 39 of the heat pump dryer according to the present embodiment has a substantially L shape, and the air inlet 39 a provided on the upper surface of the air duct 39 opens in the vertical direction, and the air duct 39 has a lower portion on the side surface. The air outlet part 39b provided in is opened in the horizontal direction.
Therefore, the fourth rectifying device 43 of the present embodiment is constituted by a duct member, and the inlet portion 43a (that is, the fourth rectifying device 43) of the fourth rectifying device 43 provided just above the air inlet portion 39a. The direction of the airflow flowing in the interior of the air duct 39 is shifted from the center of the air duct 39 and is provided with an inclination θ with respect to the duct center direction 39c. The air inlet 39a is also provided so as to be shifted from the center of the air duct 39.
The fourth rectifier 43 rectifies the drying air 45 flowing into the air duct 39 from the air inlet portion 39a through the radiator 32 and the evaporator 34 toward the air outlet portion 39b so that there is no uneven flow. Operation is performed.
As described above, in the heat pump dryer according to the present embodiment, by providing the fourth rectifying device 43 having the inclination θ, the airflow flows more uniformly between the heat exchangers. The amount can be increased. As a result, it is possible to further shorten the drying time, save energy, and reduce the size of the heat pump device.
The rectifier 35, the first rectifier 40, or the second rectifier 41 described in the first to third embodiments and the fourth rectifier 43 are provided side by side. The structure may be sufficient, and the air flow distribution can be further uniformed by this structure.
Further, the third rectifier 42 (the trumpet-like member corresponds to the duct member) may be shifted from the center of the air duct and provided with an inclination with respect to the duct center direction. With this configuration, the air flow distribution can be further uniformed, as in the fourth rectifying device 43 of the present embodiment.

図7は、本発明の第6の実施例におけるヒートポンプ式乾燥機の放熱器における冷媒と空気の温度変化を示す図であり、例えばCO2のような、高サイドの圧力が超臨界状態となる冷媒を用いた場合の放熱器における冷媒と空気の温度変化を示している。図8は、フロン冷媒を用いた場合のヒートポンプ式乾燥機の放熱器における冷媒と空気の温度変化を示す図である。本実施例について、図7及び図8を用いて説明する。
図8に示すように、従来のフロン冷媒の場合、冷媒は過熱状態から気液二相状態となり、過冷却状態と状態変化して空気と熱交換し、空気出口温度はCまで上昇する。
一方、第6の実施例のヒートポンプ式乾燥機(図示せず)は、図7に示すように、高サイドの圧力が超臨界状態となるCO2のような冷媒を用いた場合であり、相変化せずに熱交換を行うため、冷媒入口温度T0が同一温度であれば、空気出口温度と冷媒入口温度の温度差(Δt)は、フロン冷媒を用いた場合の温度差(ΔT)よりも、小さくすることができるので、出口空気温度はDとなり、従来のフロン冷媒を用いた場合の出口空気温度Cよりも高くすることができる。
したがって、乾燥対象36から水分を奪う能力が増大し、短時間で乾燥を行うことが可能となる。
このように本実施例のヒートポンプ式乾燥機では、ヒートポンプ装置を高サイドにおいて超臨界圧力の状態で運転することによって、さらに乾燥空気温度を高くすることができるので、従来に比べて乾燥時間を短縮させることが可能となり、高効率な乾燥装置の運転を行うことができる。その上、CO2冷媒等を用いることは、オゾン層を破壊せず、環境に優しいという利点がある。
FIG. 7 is a diagram showing temperature changes of the refrigerant and air in the radiator of the heat pump dryer according to the sixth embodiment of the present invention. For example, high-side pressure such as CO 2 is in a supercritical state. The temperature change of the refrigerant | coolant and air in the heat radiator at the time of using a refrigerant | coolant is shown. FIG. 8 is a diagram showing temperature changes of the refrigerant and air in the heat radiator of the heat pump dryer when a chlorofluorocarbon refrigerant is used. A present Example is described using FIG.7 and FIG.8.
As shown in FIG. 8, in the case of a conventional chlorofluorocarbon refrigerant, the refrigerant changes from an overheated state to a gas-liquid two-phase state, changes state from the supercooled state, exchanges heat with air, and the air outlet temperature rises to C.
On the other hand, the heat pump dryer (not shown) of the sixth embodiment is a case where a refrigerant such as CO 2 in which the high side pressure is in a supercritical state is used as shown in FIG. In order to perform heat exchange without change, if the refrigerant inlet temperature T 0 is the same temperature, the temperature difference (Δt) between the air outlet temperature and the refrigerant inlet temperature is greater than the temperature difference (ΔT) when using a fluorocarbon refrigerant. However, since the outlet air temperature is D, the outlet air temperature C can be higher than that when the conventional refrigerant is used.
Therefore, the ability to take moisture from the drying object 36 increases, and drying can be performed in a short time.
In this way, in the heat pump dryer of this embodiment, the drying air temperature can be further increased by operating the heat pump device in the supercritical pressure state on the high side, so the drying time is shortened compared to the conventional case. And a highly efficient drying apparatus can be operated. In addition, the use of a CO 2 refrigerant or the like has an advantage of being friendly to the environment without destroying the ozone layer.

本発明にかかるヒートポンプ式乾燥機は、整流装置を有し、衣類乾燥等として有用である。また、食器乾燥や、生ゴミ処理乾燥等の用途にも応用できる。   The heat pump dryer according to the present invention has a rectifier and is useful for clothes drying and the like. It can also be applied to uses such as tableware drying and garbage processing drying.

本発明の第1の実施例におけるヒートポンプ式乾燥機の構成図Configuration diagram of heat pump dryer in the first embodiment of the present invention 本発明の第2の実施例におけるヒートポンプ式乾燥機の構成図The block diagram of the heat pump type dryer in 2nd Example of this invention 図2に示すヒートポンプ式乾燥機の整流装置の平面及び側面図Plane and side views of the rectifier of the heat pump dryer shown in FIG. 本発明の第3の実施例におけるヒートポンプ式乾燥機の構成図Configuration diagram of heat pump dryer in the third embodiment of the present invention 本発明の第4の実施例におけるヒートポンプ式乾燥機の構成図The block diagram of the heat pump type dryer in 4th Example of this invention 本発明の第5の実施例におけるヒートポンプ式乾燥機の構成図The block diagram of the heat pump type dryer in the 5th Example of this invention 本発明の第6の実施例におけるヒートポンプ式乾燥機の放熱器における冷媒と空気の温度変化を示す図The figure which shows the temperature change of the refrigerant | coolant and air in the heat radiator of the heat pump type dryer in the 6th Example of this invention. フロン冷媒を用いた場合のヒートポンプ式乾燥機の放熱器における冷媒と空気の温度変化を示す図The figure which shows the temperature change of the refrigerant | coolant and air in the heat radiator of a heat pump type dryer at the time of using a CFC refrigerant 従来のヒートポンプ式乾燥機を示す構成図Configuration diagram showing a conventional heat pump dryer

符号の説明Explanation of symbols

31 圧縮機
32 放熱器
33 絞り装置
34 蒸発器
35 整流装置
36 乾燥対象
37 送風ファン
38 ドレン水受け
39 空気ダクト
39a 空気入口部
39b 空気出口部
39c ダクト中心方向
40 第1の整流装置
40a,40b,40c ラッパ状部材
41 第2の整流装置
42 第3の整流装置
43 第4の整流装置
43a 入口部
45 乾燥用空気
Reference Signs List 31 Compressor 32 Radiator 33 Throttle device 34 Evaporator 35 Rectifier 36 Drying target 37 Blower fan 38 Drain water receiver 39 Air duct 39a Air inlet 39b Air outlet 39c Duct center direction 40 First rectifier 40a, 40b, 40c trumpet member 41 second rectifier 42 third rectifier 43 fourth rectifier 43a inlet 45 air for drying

Claims (6)

冷媒が、圧縮機,放熱器,絞り装置,蒸発器の順に循環するヒートポンプ装置と、前記放熱器及び前記蒸発器を内包するとともに乾燥対象から水分を奪った空気を前記蒸発器で除湿して前記放熱器で加熱する空気ダクトとを備えるヒートポンプ式乾燥機であって、前記空気ダクト入口に整流装置を設けたことを特徴とするヒートポンプ式乾燥機。   A heat pump device in which a refrigerant circulates in the order of a compressor, a radiator, a throttle device, and an evaporator; and the air that contains the radiator and the evaporator and dehydrated air from a drying target is dehumidified by the evaporator A heat pump dryer having an air duct heated by a radiator, wherein a rectifier is provided at an inlet of the air duct. 前記整流装置を、径の異なる複数のラッパ状部材で構成したことを特徴とする請求項1に記載のヒートポンプ式乾燥機。   The heat pump dryer according to claim 1, wherein the rectifying device is configured by a plurality of trumpet members having different diameters. 前記整流装置を、円錐形状部材で構成したことを特徴とする請求項1に記載のヒートポンプ式乾燥機。   The heat pump dryer according to claim 1, wherein the rectifying device is configured by a conical member. 前記整流装置を、ラッパ状部材で構成して前記空気ダクト入口の真上に設けたことを特徴とする請求項1から請求項3のいずれかに記載のヒートポンプ式乾燥機。   The heat pump-type dryer according to any one of claims 1 to 3, wherein the rectifying device is formed of a trumpet-shaped member and is provided directly above the air duct inlet. 前記整流装置を、ダクト部材で構成して前記空気ダクト入口の真上に設け、当該ダクト部材の入口部を前記空気ダクト中心部からずらして設けるとともにダクト中心方向に対して傾斜を有して設けたことを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ式乾燥機。   The rectifying device is formed of a duct member and is provided directly above the air duct inlet, and the inlet of the duct member is provided to be shifted from the center of the air duct and provided with an inclination with respect to the duct center direction. The heat pump dryer according to any one of claims 1 to 4, wherein the heat pump dryer is provided. 前記冷媒として、前記ヒートポンプ装置の高サイドの圧力が超臨界状態となる冷媒を用いたことを特徴とする請求項1から請求項5のいずれかに記載のヒートポンプ式乾燥機。
The heat pump dryer according to any one of claims 1 to 5, wherein a refrigerant in which a high-side pressure of the heat pump device is in a supercritical state is used as the refrigerant.
JP2003354974A 2003-10-15 2003-10-15 Heat pump type drier Withdrawn JP2006336874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003354974A JP2006336874A (en) 2003-10-15 2003-10-15 Heat pump type drier
PCT/JP2004/015546 WO2005036079A2 (en) 2003-10-15 2004-10-14 Heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354974A JP2006336874A (en) 2003-10-15 2003-10-15 Heat pump type drier

Publications (1)

Publication Number Publication Date
JP2006336874A true JP2006336874A (en) 2006-12-14

Family

ID=34431199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354974A Withdrawn JP2006336874A (en) 2003-10-15 2003-10-15 Heat pump type drier

Country Status (2)

Country Link
JP (1) JP2006336874A (en)
WO (1) WO2005036079A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233114A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Endoscope-washing/disinfecting apparatus
KR101105665B1 (en) * 2011-04-08 2012-01-18 신인백 Drying and storing apparatus for agricultural and fishery products having air current forming part
JP2012032122A (en) * 2010-08-02 2012-02-16 Tokyo Electric Power Co Inc:The Industrial heating system
KR101498036B1 (en) * 2008-05-14 2015-03-03 엘지전자 주식회사 Laundry Treating Apparatus
KR101498038B1 (en) * 2008-05-29 2015-03-03 엘지전자 주식회사 Laundry treating machine
JP2016214460A (en) * 2015-05-18 2016-12-22 シャープ株式会社 Heat pump unit and washing and drying machine
JP2017074186A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Clothes dryer
CN108691179A (en) * 2017-03-31 2018-10-23 Bsh家用电器有限公司 Clothes drying utensil
JP2020121244A (en) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 Dehumidifier system
JP2020121250A (en) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 Dehumidifying device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081940A1 (en) * 2011-09-01 2013-03-07 BSH Bosch und Siemens Hausgeräte GmbH Dryers with a cross-flow heat exchanger and method of its operation
CN110629449A (en) * 2012-07-24 2019-12-31 松下电器产业株式会社 Washing machine with drying function
CN104562597A (en) * 2013-10-23 2015-04-29 洛阳蓝海实业有限公司 Air source heat pump clothes drying equipment
CN105040382A (en) * 2015-09-08 2015-11-11 湖北科阳节能设备有限公司 Air energy clothes drying machine
PL3388571T3 (en) * 2017-04-10 2021-01-11 BSH Hausgeräte GmbH Clothes drying appliance

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1412598A (en) * 1920-11-01 1922-04-11 Proctor & Schwartz Inc Air baffle for driers
US2602647A (en) * 1951-03-30 1952-07-08 Standard Oil Co Tubular contactor with conical distribution plate
GB1133098A (en) * 1964-11-20 1968-11-06 John Edward Randell Improvements in and relating to drying apparatus
US3771638A (en) * 1970-12-03 1973-11-13 Texaco Ag Method and apparatus for preventing coke obstructions in pyrolysis plants
FR2268178B1 (en) * 1974-04-18 1978-01-27 Borsig Gmbh
US4471537A (en) * 1982-01-18 1984-09-18 Indesit Industria Elettrodomestici Italiana S.P.A. Dryer apparatus having an improved air circulation
US5709038A (en) * 1993-09-24 1998-01-20 Optimum Air Corporation Automated air filtration and drying system for waterborne paint and industrial coatings
IT1285262B1 (en) * 1996-02-26 1998-06-03 Magneti Marelli Climat Srl CONDENSER FOR AIR CONDITIONING SYSTEMS FOR VEHICLES.
DE19644709A1 (en) * 1996-10-28 1998-04-30 Aeg Hausgeraete Gmbh Laundry dryer
DE19644710A1 (en) * 1996-10-28 1998-04-30 Aeg Hausgeraete Gmbh Laundry drying appliance
US6419009B1 (en) * 1997-08-11 2002-07-16 Christian Thomas Gregory Radial flow heat exchanger
US6684938B2 (en) * 1999-01-20 2004-02-03 Hino Motors, Ltd. EGR cooler
JP2001200812A (en) * 2000-01-20 2001-07-27 Mitsubishi Chemicals Corp Flow straightening device
JP2001235295A (en) * 2000-02-21 2001-08-31 Sharp Corp Header of heat exchanger
DE10021011A1 (en) * 2000-04-06 2001-10-11 Tradlec Stanislav Drying chamber for tunnel finishers features cooling element
JP2003265889A (en) * 2002-03-19 2003-09-24 Sanyo Electric Co Ltd Washing and drying machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233114A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Endoscope-washing/disinfecting apparatus
KR101498036B1 (en) * 2008-05-14 2015-03-03 엘지전자 주식회사 Laundry Treating Apparatus
KR101498038B1 (en) * 2008-05-29 2015-03-03 엘지전자 주식회사 Laundry treating machine
JP2012032122A (en) * 2010-08-02 2012-02-16 Tokyo Electric Power Co Inc:The Industrial heating system
KR101105665B1 (en) * 2011-04-08 2012-01-18 신인백 Drying and storing apparatus for agricultural and fishery products having air current forming part
JP2016214460A (en) * 2015-05-18 2016-12-22 シャープ株式会社 Heat pump unit and washing and drying machine
JP2017074186A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Clothes dryer
CN108691179A (en) * 2017-03-31 2018-10-23 Bsh家用电器有限公司 Clothes drying utensil
JP2020121244A (en) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 Dehumidifier system
JP2020121250A (en) * 2019-01-29 2020-08-13 パナソニックIpマネジメント株式会社 Dehumidifying device
JP7266161B2 (en) 2019-01-29 2023-04-28 パナソニックIpマネジメント株式会社 dehumidifier
JP7266163B2 (en) 2019-01-29 2023-04-28 パナソニックIpマネジメント株式会社 dehumidifier

Also Published As

Publication number Publication date
WO2005036079A3 (en) 2005-07-07
WO2005036079A2 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US7874171B2 (en) Air conditioner for communication equipment and controlling method thereof
JP2004116899A (en) Heat pump type drier
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP2006336874A (en) Heat pump type drier
JP5625883B2 (en) Dehumidifying and heating device and clothes dryer provided with the same
JP2007046806A (en) Ejector type cycle
EP2468948B1 (en) Dehumidifying and heating apparatus and clothes drying machine using the same
EP2385169A1 (en) A laundry machine with heat pump system and a method for operating the laundry machine
JP2006343088A (en) Air conditioner
JP5470531B2 (en) Compressed air dehumidifier
KR20110087138A (en) Double pipe heat exchanger using condensation water
US20100192622A1 (en) Refrigerating system
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JP2010007939A (en) Condenser and compressed air dehumidifier equipped with the same
JP4430612B2 (en) Air conditioner
JP5617602B2 (en) Dehumidifying and heating device and clothes dryer provided with the same
JP2002364939A (en) Refrigeration unit
CN210425998U (en) High-temperature heat pump unit for drying sludge
JP2007218529A (en) Air conditioner
JP2008082608A (en) Air conditioner
KR100436930B1 (en) improved air-conditioner in efficiency using condensed water
KR200345325Y1 (en) Air conditioner
KR100370083B1 (en) Device for eliminating condensed water in air conditioner
KR19990079625A (en) Dehumidifier of Air Conditioner
JPH11325642A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109