JP2006336575A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2006336575A
JP2006336575A JP2005164144A JP2005164144A JP2006336575A JP 2006336575 A JP2006336575 A JP 2006336575A JP 2005164144 A JP2005164144 A JP 2005164144A JP 2005164144 A JP2005164144 A JP 2005164144A JP 2006336575 A JP2006336575 A JP 2006336575A
Authority
JP
Japan
Prior art keywords
cooling medium
radiator
cooling water
partition member
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005164144A
Other languages
Japanese (ja)
Inventor
Tomoko Morita
倫子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005164144A priority Critical patent/JP2006336575A/en
Publication of JP2006336575A publication Critical patent/JP2006336575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reduction of cooling performance by preventing miniaturization of a heat radiating core and preventing reduction of amount of passing flow of cooling water into the heat radiating core. <P>SOLUTION: Each radiator tank 3, 5 on the upstream side and the downstream side are arranged on both sides of the heat radiating core 1. A partitioning member 17 having a cylindrical shape is provided in an upper part of the upstream side radiator tank 3 to introduce a part of cooling water introduced from a cooling water introducing pipe 15 into the upstream side radiator tank 3 into a gas-liquid separation space 25 in the partitioning member 17 through an inlet 19 of the gas-liquid separation space. As for cooling water after introduction, gas is separated from liquid in a process in which the cooling water flows downward while turning in the partitioning member 17, and liquid in the cooling water flows out into a cooling water distribution space 11 from a cooling water discharge port 17b in a lower part and flows into the heat radiating core 9 together with cooling water flowing into the cooling water distribution space 11 from an inlet 21 of the cooling water distribution space in the cooling water introducing pipe 15. Air after separation flows into an external cooling water storage tank 35 through an air vent pipe 33 in an upper part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷却媒体を通流させることにより熱源から熱を奪って外気へ放熱させる冷却システムに設けたラジエータに関する。   The present invention relates to a radiator provided in a cooling system that draws heat from a heat source by passing a cooling medium and radiates heat to the outside air.

従来のラジエータの例としては、例えば下記特許文献1に記載されたものがある。これは、放熱コアを中心としてその左右に上流側ラジエータタンクおよび下流側ラジエータタンクをそれぞれ一体化して設けるとともに、放熱コアの上部にリザーバタンクを一体化して設けている。   As an example of a conventional radiator, for example, there is one described in Patent Document 1 below. In this structure, an upstream radiator tank and a downstream radiator tank are integrally provided on the left and right sides of the heat dissipating core, and a reservoir tank is integrally provided on the heat dissipating core.

上記した上流側ラジエータタンクに流入した冷却水は、放熱コアに流入して放熱後、下流側ラジエータタンクを経てラジエータ外部へ流出する。ここで、上流側ラジエータタンクの上部に溜まった空気は、遮蔽板に設けた穴を通って上部のリザーバタンクに抜けることで、気液分離がなされる。
特開2002−38945号公報
The cooling water that has flowed into the upstream radiator tank described above flows into the heat radiating core, radiates heat, and then flows out of the radiator through the downstream radiator tank. Here, the air accumulated in the upper part of the upstream radiator tank passes through a hole provided in the shielding plate and escapes to the upper reservoir tank, whereby gas-liquid separation is performed.
JP 2002-38945 A

従来の構造では、リザーバタンクを放熱コアの上部に一体化しているが、自動車のエンジンルームなど限られた空間にラジエータを設置する場合は、リザーバタンクを一体化する分、放熱コアを小さくしなければならず、その結果冷却性能が低下するという問題がある。また、上流側ラジエータタンクの上部がリザーバタンクに連通しているため、上流側ラジエータタンクに流入した冷却水の一部が、放熱コアに流入せずリザーバタンクに流入して冷却されずに系内に戻されてしまい、冷却性能が低下するという問題がある。   In the conventional structure, the reservoir tank is integrated at the top of the heat dissipating core. However, when installing a radiator in a limited space such as the engine room of an automobile, the heat dissipating core must be made smaller by integrating the reservoir tank. As a result, there is a problem that the cooling performance is lowered. In addition, since the upper part of the upstream radiator tank communicates with the reservoir tank, a part of the cooling water flowing into the upstream radiator tank does not flow into the heat radiating core but flows into the reservoir tank and is not cooled. There is a problem that the cooling performance is lowered.

そこで、本発明は、放熱コアの小型化を防止するとともに、放熱コアへの冷却媒体の通流量低下を防止して、冷却性能を高めることを目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to prevent the heat dissipation core from being reduced in size and to prevent a decrease in the flow rate of the cooling medium to the heat dissipation core, thereby improving the cooling performance.

本発明は、冷却媒体を通流させることにより熱源から熱を奪って外気へ放熱させる冷却システムに設けたラジエータにおいて、前記冷却媒体が通流する放熱コアと、この放熱コアの冷却媒体入口側に連通する上流側ラジエータタンクと、前記放熱コアの冷却媒体出口側に連通する下流側ラジエータタンクとをそれぞれ有し、前記上流側ラジエータタンク内に、円筒形状の仕切り部材を収容して、この上流側ラジエータタンク内を2つの空間に区画し、前記上流側ラジエータタンク内に流入する冷却媒体の一部を前記仕切り部材内に導入する冷却媒体導入口を、前記上流側ラジエータタンクへの冷却媒体流入方向の延長線上でかつ前記仕切り部材の円筒形状の接線方向に開口させる一方、前記仕切り部材内に導入した冷却媒体をその外部の上流側ラジエータタンク内に放出する冷却媒体放出口を、前記上流側ラジエータタンクへの冷却媒体流入方向の延長線上から外れた位置に開口させるとともに、前記仕切り部材の上部に、外部に設置した外部冷却媒体貯留タンクに連通する空気抜き用配管を接続したことを最も主要な特徴とする。   The present invention provides a radiator provided in a cooling system that draws heat from a heat source by passing a cooling medium and dissipates heat to the outside air, and a heat dissipating core through which the cooling medium flows and a cooling medium inlet side of the heat dissipating core. An upstream radiator tank that communicates with a downstream radiator tank that communicates with a cooling medium outlet side of the heat dissipating core, and a cylindrical partition member is accommodated in the upstream radiator tank. A cooling medium inflow direction into the upstream radiator tank is formed by dividing the inside of the radiator tank into two spaces and introducing a cooling medium introduction port for introducing a part of the cooling medium flowing into the upstream radiator tank into the partition member. And the cooling medium introduced into the partition member is upstream of the outside of the partition member. The cooling medium discharge port that discharges into the radiator tank is opened at a position off the extended line in the cooling medium inflow direction to the upstream side radiator tank, and an external cooling medium storage installed outside is provided above the partition member. The main feature is the connection of the air vent piping connected to the tank.

本発明によれば、上流側ラジエータタンク内に円筒形状の仕切り部材を収容して気液分離機能を持たせているので、気液分離を行うためのリザーバタンクを別途放熱コアの上部に一体化させて設ける必要がなく、また別途設ける外部冷却媒体貯留タンクは、気液分離機能を持たせる必要がなく、単に空気の流入分の冷却媒体を系内に供給すればよいので小型化でき、したがってリザーバタンクを一体化させる必要がない分、放熱コアを大きくでき、冷却性能を高めることができる。   According to the present invention, a cylindrical partition member is accommodated in the upstream side radiator tank so as to have a gas-liquid separation function. Therefore, a reservoir tank for performing gas-liquid separation is separately integrated on the upper part of the heat radiating core. The external cooling medium storage tank that is separately provided does not need to have a gas-liquid separation function, and can simply be supplied with the cooling medium for the inflow of air into the system. Since there is no need to integrate the reservoir tank, the heat dissipation core can be enlarged and the cooling performance can be improved.

また、気液分離機能を備えた円筒形状の仕切り部材を通過する冷却媒体も、冷却媒体放出口から放出後は、上流側ラジエータタンク内から放熱コアに流れ、このため上流側ラジエータタンクに流入した冷却媒体は、すべて放熱コアを通過することになるので、放熱コアへの冷却媒体の通流量低下を防止でき、冷却性能を高めることができる。   In addition, the cooling medium passing through the cylindrical partition member having the gas-liquid separation function also flows from the upstream radiator tank to the heat radiating core after being discharged from the cooling medium discharge port, and thus flows into the upstream radiator tank. Since all the cooling medium passes through the heat radiating core, the flow rate of the cooling medium to the heat radiating core can be prevented from being lowered, and the cooling performance can be improved.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態を示すラジエータの一部を省略した斜視図である。このラジエータは、冷却媒体としての冷却水を通流させることにより熱源から熱を奪って外気へ放熱させる冷却システム、例えば自動車に搭載するエンジンなどの熱源を冷却するための冷却システムにおいて、エンジンルーム内の車両前部に設置するものである。なお、図1,2中の矢印FRで示す方向が、本ラジエータを自動車に搭載した際の車両前方側となる。   FIG. 1 is a perspective view in which a part of the radiator showing the first embodiment of the present invention is omitted. This radiator is a cooling system that draws heat from a heat source by passing cooling water as a cooling medium and dissipates heat to the outside air, for example, a cooling system for cooling a heat source such as an engine mounted on an automobile. It is installed in the front part of the vehicle. The direction indicated by the arrow FR in FIGS. 1 and 2 is the front side of the vehicle when the radiator is mounted on an automobile.

このラジエータは、中心部に放熱コア1を備え、その車幅方向両側の一方に上流側ラジエータタンク3を、他方に下流側ラジエータタンク5をそれぞれ一体化して備えている。   This radiator is provided with a heat radiating core 1 at the center, and an upstream radiator tank 3 and a downstream radiator tank 5 are integrally provided on one of both sides in the vehicle width direction.

放熱コア1は、扁平のチューブ7と放熱フィン9とを上下方向に交互に複数重ね合わせた構造であり、チューブ7は、上流側ラジエータタンク3内の冷却水分配空間11と下流側ラジエータタンク5内の冷却水合流空間13とを互いに連通している。   The heat dissipating core 1 has a structure in which a plurality of flat tubes 7 and heat dissipating fins 9 are alternately stacked in the vertical direction, and the tube 7 includes the cooling water distribution space 11 in the upstream radiator tank 3 and the downstream radiator tank 5. The cooling water merge space 13 is communicated with each other.

上流側ラジエータタンク3の車両後方側に対応する後面3aの上部で車両右側角部には、車両に搭載しているエンジンなどの熱源を冷却した冷却水が流入する冷却水導入管15を接続している。冷却水導入管15の冷却水導入方向前方の上流側ラジエータタンク3内には、上流側ラジエータタンク3内を2つの空間に区画する円筒形状の仕切り部材17を配置する。仕切り部材17は、上流側ラジエータタンク3内において、車両前方側で車両右側の角部の上部に配置している。   A cooling water introduction pipe 15 into which cooling water that has cooled a heat source such as an engine mounted on the vehicle flows is connected to the upper right corner of the rear surface 3a corresponding to the rear side of the upstream radiator tank 3 in the vehicle. ing. A cylindrical partition member 17 that divides the inside of the upstream radiator tank 3 into two spaces is disposed in the upstream radiator tank 3 in front of the cooling water introduction pipe 15 in the cooling water introduction direction. The partition member 17 is disposed in the upstream side radiator tank 3 at the upper portion of the corner on the right side of the vehicle on the front side of the vehicle.

上記した冷却水導入管15は、図1の要部の平面図である図2に示すように、車幅方向(図2中で左右方向)右側の冷却媒体導入口としての気液分離空間入口19と、同左側の気液分離空間入口19より通路断面積の大きな冷却水分配空間入口21とに、分離壁23によって分離している。   As shown in FIG. 2, which is a plan view of the main part of FIG. 1, the cooling water introduction pipe 15 described above is a gas-liquid separation space inlet as a cooling medium introduction port on the right side in the vehicle width direction (left-right direction in FIG. 2). 19 and a cooling water distribution space inlet 21 having a passage cross-sectional area larger than that of the gas-liquid separation space inlet 19 on the left side, are separated by a separation wall 23.

この分離壁23によって形成した気液分離空間入口19は、仕切り部材17内の気液分離空間25に、開口部17aを通して連通している。すなわち、分離壁23は、仕切り部材17側に延長部27を有してこの延長部27の端部が仕切り部材17に連結し、さらに気液分離空間入口19が、仕切り部材17内の気液分離空間25に連通するように、分離壁23の下端と上流側ラジエータタンク3の車幅方向右側の側面3bとの間を連結する下壁29を備えている。   The gas-liquid separation space inlet 19 formed by the separation wall 23 communicates with the gas-liquid separation space 25 in the partition member 17 through the opening 17a. That is, the separation wall 23 has an extension 27 on the partition member 17 side, the end of the extension 27 is connected to the partition member 17, and the gas-liquid separation space inlet 19 is connected to the gas-liquid in the partition member 17. A lower wall 29 is provided to connect the lower end of the separation wall 23 and the side surface 3 b on the right side in the vehicle width direction of the upstream radiator tank 3 so as to communicate with the separation space 25.

また、上流側ラジエータタンク3内での気液分離空間入口19の上部壁および車幅方向右側の側部壁は、上流側ラジエータタンク3の外壁(上面3cおよび側面3b)によって構成している。   In addition, the upper wall of the gas-liquid separation space inlet 19 and the side wall on the right side in the vehicle width direction in the upstream radiator tank 3 are constituted by the outer walls (upper surface 3c and side surface 3b) of the upstream radiator tank 3.

上記のように形成した気液分離空間入口19は、上流側ラジエータタンク3への冷却水流入方向の延長線上でかつ仕切り部材17の円筒形状の接線方向に開口しており、仕切り部材17内の気液分離空間25に流入する冷却水は、仕切り部材17の内周面に沿って旋回しながら下方に向けて流れ、その過程で気液分離される。   The gas-liquid separation space inlet 19 formed as described above is open on the extended line in the cooling water inflow direction into the upstream radiator tank 3 and in the cylindrical tangential direction of the partition member 17. The cooling water flowing into the gas-liquid separation space 25 flows downward while swirling along the inner peripheral surface of the partition member 17 and is separated in the process.

仕切り部材17の下部で車両前方側の車幅方向内側部分には、気液分離空間25に導入した冷却水を、仕切り部材17外部の上流側ラジエータタンク3内に放出する冷却水放出口17bを設けている。この冷却水放出口17bは、上記した仕切り部材17内の旋回流の流れ方向前方の仕切り部材17外部に流出するよう仕切り部材17の円筒形状の接線方向に開口している。   A cooling water discharge port 17b for discharging the cooling water introduced into the gas-liquid separation space 25 into the upstream radiator tank 3 outside the partition member 17 is provided at the vehicle width direction inner side on the front side of the vehicle below the partition member 17. Provided. The cooling water discharge port 17b is opened in the cylindrical tangential direction of the partition member 17 so as to flow out of the partition member 17 forward in the flow direction of the swirl flow in the partition member 17 described above.

また、仕切り部材17は、下部に底壁17cを有するが、上部については、上流側ラジエータタンク3の上面3cによって閉塞している。なお、上部についても、上壁を別途設けてもよい。そして、仕切り部材17の上部に対応する上面3cには、連通孔31を形成し、連通孔31には、空気抜き用配管33を介して外部冷却水貯留タンク35に接続する。   The partition member 17 has a bottom wall 17 c at the lower part, but the upper part is closed by the upper surface 3 c of the upstream radiator tank 3. In addition, you may provide an upper wall separately also about an upper part. A communication hole 31 is formed in the upper surface 3 c corresponding to the upper part of the partition member 17, and the communication hole 31 is connected to an external cooling water storage tank 35 via an air vent pipe 33.

外部冷却水貯留タンク35は冷却水を貯留しており、この外部冷却水貯留タンク35には、冷却水戻し配管37の一端を接続し、冷却水戻し配管37の他端は、本ラジエータを含む冷却システムの系内に接続する。   The external cooling water storage tank 35 stores cooling water. One end of a cooling water return pipe 37 is connected to the external cooling water storage tank 35, and the other end of the cooling water return pipe 37 includes this radiator. Connect to the cooling system.

なお、外部冷却水貯留タンク35は、本ラジエータより鉛直方向上方の高い位置で、エンジンルーム内の適宜位置に設置する。   The external cooling water storage tank 35 is installed at an appropriate position in the engine room at a position that is higher in the vertical direction than the radiator.

次に作用を説明する。図示しないエンジンなどの熱源を冷却した冷却水が冷却水導入管15に達し、分離壁23で隔てた一方の冷却水分配空間入口21から上流側ラジエータタンク3内の冷却水分配空間11に流入すると、この冷却水は、上下方向に積層して配置した各チューブ7に分配されて流れ込み、反対側の下流側ラジエータタンク5内の冷却水合流空間13に流出する。   Next, the operation will be described. When cooling water that has cooled a heat source such as an engine (not shown) reaches the cooling water introduction pipe 15 and flows into the cooling water distribution space 11 in the upstream-side radiator tank 3 from one cooling water distribution space inlet 21 separated by the separation wall 23. The cooling water is distributed and flows into the tubes 7 arranged in the vertical direction and flows out into the cooling water merge space 13 in the downstream side radiator tank 5 on the opposite side.

ここで冷却水は、各チューブ7を流れる際に、放熱フィン9を介して外部に放熱して冷却された後、下流側ラジエータタンク5の下部に設けた冷却水排出管38から、図示しない熱源に向けて流れて熱源を冷却した後、再度本ラジエータに戻る経路を辿る。   Here, when the cooling water flows through the tubes 7, the cooling water is radiated to the outside via the heat radiation fins 9 and cooled, and then is supplied from a cooling water discharge pipe 38 provided at the lower portion of the downstream radiator tank 5 to a heat source (not shown) After cooling toward the heat source to cool the heat source, the path back to the radiator is followed again.

一方、前記冷却水導入管15に達した冷却水の一部は、分離壁23で隔てた他方の気液分離空間入口19を流れ、仕切り部材17の開口部17aから気液分離空間25に流入する。このとき、気液分離空間入口19は、上流側ラジエータタンク3への冷却水流入方向の延長線上でかつ仕切り部材17の円筒形状の接線方向に開口しているため、仕切り部材17内の気液分離空間25に流入する冷却水は、仕切り部材17の内周面に沿って旋回しながら下方に向けて流れ、その過程で、密度の高い水分は、遠心力により気液分離空間25の外周に集まり、密度の低い空気は気液分離空間25の中央に集まって、気液分離される。   On the other hand, part of the cooling water reaching the cooling water introduction pipe 15 flows through the other gas-liquid separation space inlet 19 separated by the separation wall 23 and flows into the gas-liquid separation space 25 from the opening 17 a of the partition member 17. To do. At this time, the gas-liquid separation space inlet 19 is open in the cylindrical tangential direction of the partition member 17 on the extended line in the cooling water inflow direction to the upstream radiator tank 3, and therefore the gas-liquid in the partition member 17 The cooling water flowing into the separation space 25 flows downward while swirling along the inner peripheral surface of the partition member 17, and in the process, high-density water is transferred to the outer periphery of the gas-liquid separation space 25 by centrifugal force. The gathered and low-density air gathers in the center of the gas-liquid separation space 25 and is gas-liquid separated.

仕切り部材17内で内周面に沿って下方に向けて旋回しながら流れる冷却水は、下部の冷却水放出口17bから冷却水分配空間11に流出する。この際、冷却水放出口17bは、冷却水分配空間入口21から冷却水分配空間11に流入する冷却水の動圧を受けない下部で、上流側ラジエータタンク3への冷却水流入方向の延長線上から外れた位置に開口しているので、冷却水分配空間11への冷却水の放出がスムーズになされ、仕切り部材17内の効果的な旋回流の発生によって気液分離が効率よくなされる。   The cooling water flowing while turning downward along the inner peripheral surface in the partition member 17 flows out from the lower cooling water discharge port 17b to the cooling water distribution space 11. At this time, the cooling water discharge port 17b is a lower part not subjected to the dynamic pressure of the cooling water flowing into the cooling water distribution space 11 from the cooling water distribution space inlet 21, and on the extended line in the cooling water inflow direction to the upstream side radiator tank 3. Accordingly, the cooling water is smoothly discharged into the cooling water distribution space 11, and the gas-liquid separation is efficiently performed by the generation of an effective swirling flow in the partition member 17.

冷却水放出口17bから冷却水分配空間11に流出した冷却水は、冷却水分配空間入口21から上流側ラジエータタンク3内の冷却水分配空間11に流入した冷却水とともに、各チューブ7に流入して放熱して冷却される。   The cooling water flowing out from the cooling water discharge port 17b into the cooling water distribution space 11 flows into each tube 7 together with the cooling water flowing into the cooling water distribution space 11 in the upstream side radiator tank 3 from the cooling water distribution space inlet 21. To dissipate heat and cool.

一方、気液分離空間25で気液分離された空気は、上部中央の連通孔31から空気抜き用配管33を経て外部冷却水貯留タンク35に流入する。そして、上流側ラジエータタンク3から外部冷却水貯留タンク35に空気が流入することによって、冷却システム系内が負圧となり、この負圧の作用によって、外部冷却水貯留タンク35内の冷却水が、前記空気の流出分だけ冷却システムの系内に流入する。   On the other hand, the air that has been gas-liquid separated in the gas-liquid separation space 25 flows into the external cooling water storage tank 35 from the upper central communication hole 31 through the air vent pipe 33. And when air flows into the external cooling water storage tank 35 from the upstream side radiator tank 3, the inside of the cooling system system becomes negative pressure, and by the action of this negative pressure, the cooling water in the external cooling water storage tank 35 is The air flows out into the cooling system.

このように、本実施形態によれば、上流側ラジエータタンク3内に円筒形状の仕切り部材17を収容して気液分離機能を持たせているので、気液分離を行うためのリザーバタンクを別途放熱コア1の上部に一体化させて設ける必要がなく、また別途設ける外部冷却水貯留タンク35には、気液分離機能を持たせる必要がなく、単に空気の流入分の冷却水を冷却システムの系内に供給すればよいので小型化でき、したがってリザーバタンクを一体化させる必要がない分、エンジンルーム内に設置した際の放熱コア1を大きくでき、冷却性能を高めることができる。   As described above, according to the present embodiment, the cylindrical partition member 17 is accommodated in the upstream radiator tank 3 to provide the gas-liquid separation function. Therefore, a reservoir tank for performing the gas-liquid separation is separately provided. The external cooling water storage tank 35 provided separately does not need to be provided integrally with the heat dissipating core 1 and does not need to have a gas-liquid separation function. Since it suffices to supply it to the system, the size can be reduced, and accordingly, the heat dissipating core 1 when installed in the engine room can be enlarged and the cooling performance can be increased because the reservoir tank does not need to be integrated.

また、気液分離機能を備えた円筒形状の仕切り部材17内の気液分離空間25に流入する冷却水も、冷却水放出口17bから放出後は、上流側ラジエータタンク3内から放熱コア1に流れ、このため上流側ラジエータタンク3に流入した冷却水は、すべて放熱コア1を通過することになるので、放熱コア1への冷却水の通流量低下を防止でき、冷却性能を高めることができる。   In addition, after the cooling water flowing into the gas-liquid separation space 25 in the cylindrical partition member 17 having a gas-liquid separation function is discharged from the cooling water discharge port 17 b, the cooling water is transferred from the upstream radiator tank 3 to the heat radiating core 1. Therefore, since all the cooling water flowing into the upstream radiator tank 3 passes through the heat radiating core 1, a decrease in the flow rate of the cooling water to the heat radiating core 1 can be prevented, and the cooling performance can be improved. .

さらに本実施形態は、ラジエータとは別に、ラジエータと直列に気液分離器を設置する場合に比較して、通水抵抗を低減できるので、冷却水を冷却システムの系内に循環させる図示しない冷却水循環ポンプの動力を削減することができる。   Furthermore, this embodiment can reduce the water flow resistance as compared to the case where a gas-liquid separator is installed in series with the radiator separately from the radiator, so that the cooling water (not shown) that circulates the cooling water in the system of the cooling system. The power of the water circulation pump can be reduced.

また、気液分離空間入口19を仕切り部材17の上部に設ける一方、冷却水放出口17bを仕切り部材17の下部に設けたことで、気液分離後の冷却水は下方に向けて流下して冷却水放出口17bから効率よく冷却水分配空間11に流出する。   Further, the gas-liquid separation space inlet 19 is provided in the upper part of the partition member 17, and the cooling water discharge port 17 b is provided in the lower part of the partition member 17, so that the cooling water after the gas-liquid separation flows downward. It efficiently flows out from the cooling water discharge port 17b into the cooling water distribution space 11.

さらに、冷却水放出口17bを、気液分離空間入口19から導入した冷却水が仕切り部材17の円筒形状内を旋回してその旋回流の流れ方向前方の仕切り部材17外部に流出するよう仕切り部材17の円筒形状の接線方向に開口させているので、気液分離空間25の冷却水は、冷却水分配空間11に効率よく流出することになる。   Furthermore, the cooling water discharge port 17b is divided so that the cooling water introduced from the gas-liquid separation space inlet 19 swirls within the cylindrical shape of the partition member 17 and flows out of the partition member 17 forward in the flow direction of the swirling flow. Since the 17 cylindrical openings are opened in the tangential direction, the cooling water in the gas-liquid separation space 25 efficiently flows out into the cooling water distribution space 11.

また、円筒形状の仕切り部材17を、上流側ラジエータタンク3の上部に配置することで、気液分離空間25での気液分離後の空気を、空気抜き用配管33を通して外部冷却水貯留タンク35に効率よく放出することができる。   Further, by arranging the cylindrical partition member 17 on the upper side of the upstream radiator tank 3, the air after gas-liquid separation in the gas-liquid separation space 25 is transferred to the external cooling water storage tank 35 through the air vent pipe 33. It can be released efficiently.

図3は、本発明の第2の実施形態を示すラジエータの一部を省略した斜視図、図4は、図3の要部の平面図である。この実施形態は、放熱コア1の車両前方側に、放熱コア1と同様の構造の下流側放熱コア39を設けるとともに、放熱コア1の上流側ラジエータタンク3と反対側の下流側と、下流側放熱コア39の上流側とを中間ラジエータタンク40によって接続している。下流側放熱コア39の中間ラジエータタンク40と反対側の下流側には、最下流側ラジエータタンク41を設けている。   FIG. 3 is a perspective view in which a part of the radiator showing the second embodiment of the present invention is omitted, and FIG. 4 is a plan view of the main part of FIG. In this embodiment, a downstream side heat radiation core 39 having the same structure as that of the heat radiation core 1 is provided on the vehicle front side of the heat radiation core 1, and a downstream side and a downstream side of the heat radiation core 1 opposite to the upstream radiator tank 3. The intermediate radiator tank 40 connects the upstream side of the heat radiating core 39. A most downstream side radiator tank 41 is provided on the downstream side of the downstream side heat radiation core 39 opposite to the intermediate radiator tank 40.

最下流側ラジエータタンク41の下部における車両後方側の上流側ラジエータタンク3側には、図示しない熱源に向けて冷却水を流す冷却水排出管45を接続している。この冷却水排出管45は、上流側ラジエータタンク3の下部に設けた切欠部47に配置し、車両後方に向けて延びている。その他、上流側ラジエータタンク3内に円筒形状の仕切り部材17を設けて気液分離機能を持たせるなどの構成は、第1の実施形態と同様である。   A cooling water discharge pipe 45 for flowing cooling water toward a heat source (not shown) is connected to the upstream radiator tank 3 side on the vehicle rear side at the lower part of the most downstream radiator tank 41. The cooling water discharge pipe 45 is disposed in a notch 47 provided in the lower part of the upstream radiator tank 3 and extends toward the rear of the vehicle. In addition, the configuration in which a cylindrical partition member 17 is provided in the upstream radiator tank 3 to provide a gas-liquid separation function is the same as in the first embodiment.

上記図3,4に示したように、放熱コア1に加え下流側放熱コア39設けた冷却システムにおいても、上流側ラジエータタンク3内に、気液分離機能を備える円筒形状の仕切り部材17を設けることで、第1の実施形態による冷却システムと同様の効果を得ることができる。   As shown in FIGS. 3 and 4, in the cooling system provided with the downstream heat radiating core 39 in addition to the heat radiating core 1, a cylindrical partition member 17 having a gas-liquid separation function is provided in the upstream radiator tank 3. Thus, the same effect as that of the cooling system according to the first embodiment can be obtained.

図5は、本発明の第3の実施形態を示すラジエータの一部を省略した斜視図、図6は、図5の要部の平面図である。この実施形態は、前記図3,4に示した第2の実施形態におけるものと同様に、放熱コア1に加え下流側放熱コア39を設けた上で、上流側ラジエータタンク3を、車両前方側に延ばして最下流側ラジエータタンク41に接触させ、上流側ラジエータタンク3と最下流側ラジエータタンク41とを、1枚の隔壁49を介して一体化し、これにより上流側ラジエータタンク3を第2の実施形態のものより大きく形成している。   FIG. 5 is a perspective view in which a part of a radiator showing a third embodiment of the present invention is omitted, and FIG. 6 is a plan view of a main part of FIG. In this embodiment, in the same manner as in the second embodiment shown in FIGS. 3 and 4, the downstream radiator core 39 is provided in addition to the radiator core 1, and the upstream radiator tank 3 is connected to the vehicle front side. The upstream radiator tank 3 and the most downstream radiator tank 41 are integrated through a single partition wall 49, whereby the upstream radiator tank 3 is integrated with the second radiator tank 41. It is formed larger than that of the embodiment.

上流側ラジエータタンク3を、第2の実施形態のものより大きくするに伴って、内部に設置する円筒形状の仕切り部材17についても、第2の実施形態のものに比較して大きく形成している。その他の構成は、第2の実施形態と同様である。   As the upstream radiator tank 3 is made larger than that of the second embodiment, the cylindrical partition member 17 installed therein is also made larger than that of the second embodiment. . Other configurations are the same as those of the second embodiment.

このように、第3の実施形態においては、上流側ラジエータタンク3と最下流側ラジエータタンク41とを一体化させることによって、上流側ラジエータタンク3をより大きくし、これに伴い仕切り部17も大きくして気液分離空間25の容積を大きくしているので、第2の実施形態に比較して気液分離機能を高めることができる。   Thus, in the third embodiment, by integrating the upstream radiator tank 3 and the most downstream radiator tank 41, the upstream radiator tank 3 is made larger, and the partition portion 17 is also enlarged accordingly. And since the volume of the gas-liquid separation space 25 is enlarged, a gas-liquid separation function can be improved compared with 2nd Embodiment.

なお、上記した第2の実施形態および第3の実施形態にいては、放熱コアを車両前後方向に二つ設けた例を示したが、これに限ることはなく、三つ以上の放熱コアを、冷却水が直列に流れるように、車両前後方向に配列してもよい。   In the second embodiment and the third embodiment described above, the example in which two heat dissipating cores are provided in the vehicle front-rear direction is shown, but the present invention is not limited to this, and three or more heat dissipating cores are provided. The cooling water may be arranged in the vehicle front-rear direction so that the cooling water flows in series.

本発明の第1の実施形態を示すラジエータの一部を省略した斜視図である。It is the perspective view which abbreviate | omitted a part of radiator which shows the 1st Embodiment of this invention. 図1の要部の平面図である。It is a top view of the principal part of FIG. 本発明の第2の実施形態を示すラジエータの一部を省略した斜視図である。It is the perspective view which abbreviate | omitted a part of radiator which shows the 2nd Embodiment of this invention. 図3の要部の平面図である。It is a top view of the principal part of FIG. 本発明の第3の実施形態を示すラジエータの一部を省略した斜視図である。It is the perspective view which abbreviate | omitted a part of radiator which shows the 3rd Embodiment of this invention. 図5の要部の平面図である。It is a top view of the principal part of FIG.

符号の説明Explanation of symbols

1 放熱コア
3 上流側ラジエータタンク
5 下流側ラジエータタンク
17 円筒形状の仕切り部材
17b 冷却水放出口(冷却媒体放出口)
19 気液分離空間入口(冷却媒体導入口)
33 空気抜き用配管
35 外部冷却水貯留タンク(外部冷却媒体貯留タンク)
39 下流側放熱コア
40 中間ラジエータタンク
41 最下流側ラジエータタンク
DESCRIPTION OF SYMBOLS 1 Radiation core 3 Upstream radiator tank 5 Downstream radiator tank 17 Cylindrical partition member 17b Cooling water discharge port (cooling medium discharge port)
19 Gas-liquid separation space inlet (cooling medium inlet)
33 Air venting pipe 35 External cooling water storage tank (external cooling medium storage tank)
39 Downstream heat radiation core 40 Intermediate radiator tank 41 Downstream radiator tank

Claims (6)

冷却媒体を通流させることにより熱源から熱を奪って外気へ放熱させる冷却システムに設けたラジエータにおいて、前記冷却媒体が通流する放熱コアと、この放熱コアの冷却媒体入口側に連通する上流側ラジエータタンクと、前記放熱コアの冷却媒体出口側に連通する下流側ラジエータタンクとをそれぞれ有し、前記上流側ラジエータタンク内に、円筒形状の仕切り部材を収容して、この上流側ラジエータタンク内を2つの空間に区画し、前記上流側ラジエータタンク内に流入する冷却媒体の一部を前記仕切り部材内に導入する冷却媒体導入口を、前記上流側ラジエータタンクへの冷却媒体流入方向の延長線上でかつ前記仕切り部材の円筒形状の接線方向に開口させる一方、前記仕切り部材内に導入した冷却媒体をその外部の上流側ラジエータタンク内に放出する冷却媒体放出口を、前記上流側ラジエータタンクへの冷却媒体流入方向の延長線上から外れた位置に開口させるとともに、前記仕切り部材の上部に、外部に設置した外部冷却媒体貯留タンクに連通する空気抜き用配管を接続したことを特徴とするラジエータ。   In a radiator provided in a cooling system that draws heat from a heat source by passing a cooling medium and dissipates heat to the outside air, a heat dissipating core through which the cooling medium flows, and an upstream side communicating with the cooling medium inlet side of the heat dissipating core Each having a radiator tank and a downstream radiator tank communicating with the cooling medium outlet side of the heat dissipating core. A cylindrical partition member is accommodated in the upstream radiator tank, and the inside of the upstream radiator tank is accommodated. A cooling medium introduction port that divides into two spaces and introduces a part of the cooling medium flowing into the upstream radiator tank into the partition member on an extension line in the cooling medium inflow direction to the upstream radiator tank. The partition member is opened in a tangential direction of the cylindrical shape, and the cooling medium introduced into the partition member is disposed outside the upstream side radiator. The cooling medium discharge port for discharging into the tank is opened at a position deviated from the extended line in the cooling medium inflow direction to the upstream radiator tank, and an external cooling medium storage tank installed outside at the upper part of the partition member A radiator that is connected to a piping for venting air that communicates with the radiator. 前記下流側ラジエータタンクに、この下流側ラジエータタンクから冷却媒体が流入する下流側放熱コアを設けるとともに、この下流側放熱コアから冷却媒体が流入する最下流側ラジエータタンクを設け、この最下流側ラジエータタンクと前記上流側ラジエータタンクとを隔壁を介して一体化したことを特徴とする請求項1に記載のラジエータ。   The downstream radiator tank is provided with a downstream heat radiating core into which a cooling medium flows from the downstream radiator tank, and a most downstream radiator tank into which the cooling medium flows from the downstream heat radiating core is provided. The radiator according to claim 1, wherein the tank and the upstream radiator tank are integrated via a partition wall. 前記冷却媒体導入口を前記仕切り部材の上部に設ける一方、前記冷却媒体放出口を前記仕切り部材の下部に設けたことを特徴とする請求項1または2に記載のラジエータ。   3. The radiator according to claim 1, wherein the cooling medium introduction port is provided at an upper portion of the partition member, and the cooling medium discharge port is provided at a lower portion of the partition member. 前記冷却媒体放出口を、前記冷却媒体導入口から導入した冷却媒体が前記仕切り部材の円筒形状内を旋回してその旋回流の流れ方向前方の仕切り部材外部に流出するよう前記仕切り部材の円筒形状の接線方向に開口させることを特徴とする請求項3に記載のラジエータ。   The cylindrical shape of the partition member is such that the cooling medium introduced from the cooling medium inlet through the cooling medium discharge port swirls within the cylindrical shape of the partition member and flows out of the partition member forward in the flow direction of the swirling flow. The radiator according to claim 3, wherein the radiator is opened in a tangential direction. 前記円筒形状の仕切り部材を、前記上流側ラジエータタンクの上部に配置したことを特徴とする請求項1ないし4のいずれか1項に記載のラジエータ。   The radiator according to any one of claims 1 to 4, wherein the cylindrical partition member is disposed on an upper portion of the upstream radiator tank. 前記仕切り部材の円筒形状内を旋回する旋回流により、前記仕切り部材内に導入した冷却媒体を気液分離し、そのうち液分を前記冷却媒体放出口から仕切り部材外部の前記上流側ラジエータタンク内に放出する一方、空気を前記空気抜き用配管を介して前記外部冷却媒体貯留タンクに放出することを特徴とする請求項4または5に記載のラジエータ。   The cooling medium introduced into the partition member is separated into gas and liquid by a swirling flow that swirls within the cylindrical shape of the partition member, and the liquid content is separated from the cooling medium discharge port into the upstream radiator tank outside the partition member. 6. The radiator according to claim 4, wherein air is discharged to the external cooling medium storage tank through the air vent pipe.
JP2005164144A 2005-06-03 2005-06-03 Radiator Pending JP2006336575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005164144A JP2006336575A (en) 2005-06-03 2005-06-03 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005164144A JP2006336575A (en) 2005-06-03 2005-06-03 Radiator

Publications (1)

Publication Number Publication Date
JP2006336575A true JP2006336575A (en) 2006-12-14

Family

ID=37557334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005164144A Pending JP2006336575A (en) 2005-06-03 2005-06-03 Radiator

Country Status (1)

Country Link
JP (1) JP2006336575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092751A (en) * 2010-10-27 2012-05-17 Toyota Motor Corp Engine cooling system
CN103144532A (en) * 2011-12-07 2013-06-12 现代自动车株式会社 Radiator for vehicle
JP2015229144A (en) * 2014-06-05 2015-12-21 マツダ株式会社 Gas-liquid separator
WO2020022104A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Vehicle cooling system
JP2020023965A (en) * 2018-07-25 2020-02-13 株式会社デンソー Cooling system of vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092751A (en) * 2010-10-27 2012-05-17 Toyota Motor Corp Engine cooling system
CN103144532A (en) * 2011-12-07 2013-06-12 现代自动车株式会社 Radiator for vehicle
JP2013119851A (en) * 2011-12-07 2013-06-17 Hyundai Motor Co Ltd Vehicle radiator
CN103144532B (en) * 2011-12-07 2016-12-21 现代自动车株式会社 Radiator for Vehicle
JP2015229144A (en) * 2014-06-05 2015-12-21 マツダ株式会社 Gas-liquid separator
WO2020022104A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Vehicle cooling system
JP2020023965A (en) * 2018-07-25 2020-02-13 株式会社デンソー Cooling system of vehicle

Similar Documents

Publication Publication Date Title
JP4450066B2 (en) Vehicle front structure
JP5869517B2 (en) Heat exchanger
JP6802133B2 (en) Reserve tank
US8584735B2 (en) Cooling device and method with synthetic jet actuator
JP2006336575A (en) Radiator
KR20100085999A (en) Liquid-cooled cooling device
JP2015028336A (en) Reservoir tank for engine cooling water
CN210181547U (en) Water-cooling radiator
JP2009231677A (en) Liquid-cooled type cooling device
JP2007103336A (en) Cooling water tank for fuel cell, and fuel cell system including it
US11459937B2 (en) Reservoir tank
JP7016844B2 (en) Battery pack
JP7255215B2 (en) Heat exchanger
JPH09250894A (en) Heat exchanger
CN213210681U (en) Control box
JP7306342B2 (en) cooling unit
JP7227865B2 (en) reservoir tank
JP2005120906A (en) Air-liquid separation structure for reserving tank
JP4731212B2 (en) Heat exchanger
CN107630744A (en) Automobile radiators and automobile
JP5123834B2 (en) Shell and tube heat exchanger
JP2005055087A (en) Laminated type heat exchanger
KR20200057857A (en) Cooling device for vehicle
CN217817330U (en) Automatically controlled box and air conditioning equipment
JP2015155672A (en) Engine cooling circuit