JP2006336042A - Metal powder, and method for producing the same - Google Patents

Metal powder, and method for producing the same Download PDF

Info

Publication number
JP2006336042A
JP2006336042A JP2005159310A JP2005159310A JP2006336042A JP 2006336042 A JP2006336042 A JP 2006336042A JP 2005159310 A JP2005159310 A JP 2005159310A JP 2005159310 A JP2005159310 A JP 2005159310A JP 2006336042 A JP2006336042 A JP 2006336042A
Authority
JP
Japan
Prior art keywords
powder
tantalum
niobium
raw material
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159310A
Other languages
Japanese (ja)
Other versions
JP5065580B2 (en
JP2006336042A5 (en
Inventor
Yujiro Mizusaki
雄二郎 水崎
Hitoshi Iijima
均 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Supermetals KK
Original Assignee
Cabot Supermetals KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Supermetals KK filed Critical Cabot Supermetals KK
Priority to JP2005159310A priority Critical patent/JP5065580B2/en
Priority to PCT/JP2006/311350 priority patent/WO2006129850A1/en
Priority to CN200680018716.8A priority patent/CN101184568B/en
Priority to US11/919,464 priority patent/US8657915B2/en
Publication of JP2006336042A publication Critical patent/JP2006336042A/en
Publication of JP2006336042A5 publication Critical patent/JP2006336042A5/ja
Application granted granted Critical
Publication of JP5065580B2 publication Critical patent/JP5065580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal powder composed of tantalum or niobium which has the compatibility of sinterability and fluidity, and to provide a method for producing the same. <P>SOLUTION: The method for producing metal powder comprises: a thermal flocculation stage where raw material powder composed of tantalum or niobium is subjected to thermal flocculation to obtain flocculated powder; and a cracking stage where the flocculated powder is cracked by a cracking machine (roll granulator 20) provided with differential rolls 21. The metal powder is composed of tantalum or niobium, and multiface grains, wherein flat faces are formed at three or more positions on the surface and the ratio of the flat faces is 30 to 70% of the whole surface area. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンタルまたはニオブからなる金属粉末およびその製造方法に関する。   The present invention relates to a metal powder comprising tantalum or niobium and a method for producing the same.

タンタル粉末またはニオブ粉末は固体電解コンデンサのアノード電極の材料として広く使用されている。固体電解コンデンサのアノード電極用のタンタル粉末およびニオブ粉末を製造するためには、例えば、まず、タンタル塩またはニオブ塩を希釈塩中でナトリウム還元する方法や、タンタル塩化物またはニオブ塩化物を水素還元する方法などによってタンタル微粉末またはニオブ微粉末を得る。次いで、そのタンタル微粉末またはニオブ微粉末を原料粉としてパン型造粒機などにより造粒して造粒粉を形成し、その造粒粉を熱凝集した後、それにより得られた凝集粉をチョッパーミル等の粉砕機により粉砕する。次いで、その粉砕により得られた粉砕粉を篩い分けて所定の粒径範囲の粉末を回収し、これを製品としている(例えば特許文献1参照。)。
特開平4−362101号公報
Tantalum powder or niobium powder is widely used as a material for anode electrodes of solid electrolytic capacitors. In order to produce tantalum powder and niobium powder for anode electrodes of solid electrolytic capacitors, for example, first, tantalum salt or niobium salt is sodium-reduced in diluted salt, or tantalum chloride or niobium chloride is reduced with hydrogen. A tantalum fine powder or a niobium fine powder is obtained by a method such as Next, the tantalum fine powder or niobium fine powder is granulated with a bread type granulator or the like as a raw material powder to form a granulated powder, the granulated powder is thermally agglomerated, and the agglomerated powder obtained thereby is Grind with a crusher such as a chopper mill. Next, the pulverized powder obtained by the pulverization is sieved to recover a powder having a predetermined particle size range, which is used as a product (see, for example, Patent Document 1).
JP-A-4-362101

従来の製造方法により得られるタンタル粉末およびニオブ粉末は、表面に凹凸が多く形成され、かつ、凹凸の高さの差が大きいものであった。このような形状の粉末は、粉末同士の接触面積が大きくなるため、アノード電極用の粉末に要求される焼結性を確保できるものの、流動抵抗が大きいため、流動性が低いという問題があった。
一方、流動性を高めるためには略球体の粉末を用いることが考えられるが、その場合には、粉末同士の接触面積が低下するため、焼結性が低下する。すなわち、従来では、焼結性と流動性を両立したタンタル粉末およびニオブ粉末を得ることは困難であった。
本発明は、前記事情を鑑みてなされたものであり、焼結性と流動性とを両立したタンタルまたはニオブからなる金属粉末およびその製造方法を提供することを目的とする。
The tantalum powder and niobium powder obtained by the conventional manufacturing method have many irregularities formed on the surface and a large difference in the height of the irregularities. The powder having such a shape has a problem that the flow area is low because the contact area between the powders is large and the sinterability required for the powder for the anode electrode can be secured, but the flow resistance is large. .
On the other hand, in order to improve fluidity, it is conceivable to use a substantially spherical powder. In this case, however, the contact area between the powders decreases, so that the sinterability decreases. That is, conventionally, it has been difficult to obtain tantalum powder and niobium powder having both sinterability and fluidity.
This invention is made | formed in view of the said situation, and it aims at providing the metal powder which consists of a tantalum or niobium which was compatible in sinterability and fluidity | liquidity, and its manufacturing method.

本発明の金属粉末の製造方法は、タンタルまたはニオブからなる原料粉を熱凝集して凝集粉を得る熱凝集工程と、
前記凝集粉を、差動ロールを備えた解砕機により解砕する解砕工程とを有することを特徴とする。
本発明の金属粉末の製造方法においては、解砕工程前に、凝集粉を予備粉砕する予備粉砕工程を有してもよい。
また、本発明の金属粉末の製造方法においては、原料粉が、タンタル微粉末またはニオブ微粉末を圧縮成形し、差動ロールを備えた解砕機により解砕して得た解砕原料粉であってもよい。
本発明の金属粉末は、タンタルまたはニオブからなり、表面に平坦面が3カ所以上形成され、その平坦面の割合が全表面積の30〜70%である多面粒子であることを特徴とする。
The method for producing a metal powder of the present invention includes a thermal aggregation step of thermally aggregating raw material powder made of tantalum or niobium to obtain an aggregated powder,
A crushing step of crushing the agglomerated powder with a crusher equipped with a differential roll.
In the manufacturing method of the metal powder of this invention, you may have the preliminary pulverization process of pre-pulverizing agglomerated powder before a crushing process.
In the metal powder production method of the present invention, the raw material powder is a pulverized raw material powder obtained by compression-molding tantalum fine powder or niobium fine powder and pulverizing with a pulverizer equipped with a differential roll. May be.
The metal powder of the present invention is made of tantalum or niobium, and is characterized in that it is a polyhedral particle having three or more flat surfaces formed on the surface, and the ratio of the flat surfaces is 30 to 70% of the total surface area.

本発明の金属粉末の製造方法によれば、焼結性と流動性とを両立したタンタルまたはニオブからなる金属粉末を製造することができる。
本発明の金属粉末は、タンタルまたはニオブからなり、焼結性と流動性とを両立したものである。
According to the method for producing a metal powder of the present invention, a metal powder made of tantalum or niobium having both sinterability and fluidity can be produced.
The metal powder of the present invention is made of tantalum or niobium and has both sinterability and fluidity.

本発明の金属粉末の製造方法の一実施形態について説明する。
本実施形態の金属粉末の製造方法は、タンタルからなる原料粉(以下、タンタル原料粉という。)を熱凝集して凝集粉を得る熱凝集工程と、凝集粉を予備粉砕する予備粉砕工程と、予備粉砕により得られた粉砕粉を解砕する解砕工程と、解砕工程にて得た解砕粉を篩分して所定の粒径範囲の粉末を回収する回収工程とを有する方法である。
以下、各工程について詳細に説明する。
An embodiment of the method for producing a metal powder of the present invention will be described.
The method for producing the metal powder of the present embodiment includes a thermal aggregation step of thermally aggregating raw material powder made of tantalum (hereinafter referred to as tantalum raw material powder) to obtain an agglomerated powder, a preliminary pulverization step of pre-pulverizing the agglomerated powder, It is a method having a pulverization step of pulverizing the pulverized powder obtained by preliminary pulverization, and a recovery step of sieving the pulverized powder obtained in the pulverization step and collecting powder in a predetermined particle size range .
Hereinafter, each step will be described in detail.

熱凝集工程における熱凝集の方法としては、例えば、タンタル原料粉を加熱炉内で加熱する方法などが挙げられる。熱凝集温度としては、900〜1200℃であることが好ましく、1050℃程度であることがより好ましい。
この熱凝集工程によって、45〜5000μmの凝集粉を得ることが好ましく、さらには、予備粉砕を簡略化または省略できることから、45〜3000μmの凝集粉を得ることがより好ましい。
Examples of the thermal aggregation method in the thermal aggregation process include a method of heating tantalum raw material powder in a heating furnace. The heat aggregation temperature is preferably 900 to 1200 ° C, more preferably about 1050 ° C.
It is preferable to obtain an agglomerated powder of 45 to 5000 μm by this thermal agglomeration step. Further, since preliminary pulverization can be simplified or omitted, it is more preferable to obtain an agglomerated powder of 45 to 3000 μm.

タンタル原料粉としては、例えば、フッ化タンタル酸ナトリウムなどのタンタル塩を希釈塩中でナトリウム還元して得た3〜5μm程度のタンタル微粉末、3〜5μmのタンタル酸化物を固体還元剤で還元して得たタンタル微粉末などが挙げられる。また、タンタル原料粉は、あらかじめ予備熱凝集処理が施されたものでも構わないし、水をバインダとして造粒して造粒粉であっても構わない。   As the tantalum raw material powder, for example, tantalum fine powder of about 3 to 5 μm obtained by sodium reduction of tantalum salt such as sodium fluorinated tantalate in diluted salt, and 3 to 5 μm of tantalum oxide are reduced with a solid reducing agent. Examples thereof include fine tantalum powder obtained as described above. Further, the tantalum raw material powder may be preliminarily heat-aggregated or may be granulated powder by granulating water as a binder.

また、タンタル原料粉としては、タンタル微粉末を圧縮成形して成形体を得た後、その成形体を、解砕工程にて使用する解砕機と同様のものにより解砕して得た解砕原料粉であってもよい。原料粉として解砕原料粉を用いれば、目的の粒径範囲にするのに予備粉砕を簡略化または省略でき、また、解砕工程で使用するロールの段数を少なくできる。
その際の圧縮成形では、例えば、プレス装置を用いる周知の方法を採用できる。
プレス装置としては、例えば、図1に示すような、断面円形の貫通孔11aが鉛直方向に形成された矩形状の金型11と、金型11の貫通孔11aに下方から挿入される円筒状の支持体12と、金型11の貫通孔11aに上方から挿入される円筒状の加圧体13とを具備するプレス装置10が挙げられる。このプレス装置10においては、貫通孔11aの内径と支持体12および加圧体13の外径とが略同等になっている。
このプレス装置10を用いた圧縮成形では、図2に示すように、まず、支持体12を上昇させて、金型11の貫通孔11aの下側に支持体12を僅かに挿入し、円筒形状の型枠を形成する。次いで、図3に示すように、貫通孔11aの上側からタンタル微粉末14を所定量充填した後、図4に示すように、加圧体13を下降させて貫通孔11aに挿入し、貫通孔11a内に充填されたタンタル微粉末14を圧縮成形して成形体を得る。その成形体は、支持体12を下降させてから、加圧体13により突き出して、あるいは、加圧体13を上昇させてから、支持体12により突き出して金型11から取り出す。
圧縮成形においては、得られる成形体の嵩密度を4〜5g/cm程度にすることが好ましい。
In addition, as the tantalum raw material powder, after compacting tantalum fine powder to obtain a compact, the compact is crushed by the same pulverizer as that used in the pulverization step. Raw material powder may be sufficient. If the pulverized raw material powder is used as the raw material powder, the preliminary pulverization can be simplified or omitted to obtain the target particle size range, and the number of rolls used in the pulverization step can be reduced.
In the compression molding at that time, for example, a known method using a press apparatus can be adopted.
As a pressing device, for example, as shown in FIG. 1, a rectangular mold 11 in which a through hole 11 a having a circular cross section is formed in the vertical direction, and a cylindrical shape inserted into the through hole 11 a of the mold 11 from below. And a pressing device 10 including a cylindrical pressure body 13 inserted into the through hole 11a of the mold 11 from above. In the press device 10, the inner diameter of the through hole 11a and the outer diameters of the support body 12 and the pressure body 13 are substantially equal.
In the compression molding using this press apparatus 10, as shown in FIG. 2, first, the support body 12 is raised, and the support body 12 is inserted slightly below the through hole 11a of the mold 11 to form a cylindrical shape. Form a mold. Next, as shown in FIG. 3, after filling a predetermined amount of fine tantalum powder 14 from the upper side of the through hole 11a, the pressurizing body 13 is lowered and inserted into the through hole 11a as shown in FIG. A compact is obtained by compression molding the fine tantalum powder 14 filled in 11a. The molded body is lowered by the support body 12 and then protruded by the pressure body 13, or the pressure body 13 is raised and then protruded by the support body 12 and taken out from the mold 11.
In compression molding, the bulk density of the obtained molded body is preferably about 4 to 5 g / cm 3 .

予備粉砕工程においては、粉砕機により凝集粉を粉砕する。粉砕機としては、例えば、チョッパーミル、スピードミル、ジョークラッシャー、カッターミル、スクリーンミルなどの粗砕用粉砕機が挙げられる。
この予備粉砕工程により、凝集粉を好ましくは45〜5000μm、より好ましくは45〜3000μm程度に粉砕するとよい。
In the preliminary pulverization step, the agglomerated powder is pulverized by a pulverizer. Examples of the pulverizer include crushing pulverizers such as a chopper mill, a speed mill, a jaw crusher, a cutter mill, and a screen mill.
By this preliminary pulverization step, the agglomerated powder is preferably pulverized to 45 to 5000 μm, more preferably about 45 to 3000 μm.

解砕工程においては、差動ロールを備えた解砕機により粉砕粉を解砕する。差動ロールを備えた解砕機としては、例えば、図5に示すような、差動ロール21を3段で備えたロールグラニュレータ20などが挙げられる。ここで、差動ロール21とは、2本のロール21a,21bが間隔を有して配置され、これらが互いに逆回転し、その回転数が異なるものである。また、図6に示すように、ロール21a,21bの各周面には、凹凸が同一の周期で形成されており、2本のロール21a,21bは、一方のロール21aの凸部21cが他方のロール21bの凹部21dに対向するように配置されている。
差動ロール21における2本のロール21a,21bの周速度の差は、所定の粒径範囲の粉末がより高い収率で得られることから、一方のロール21aの周速度が他方のロール21bの周速度より20%以上速いことが好ましい。
In the crushing step, the pulverized powder is crushed by a crusher equipped with a differential roll. Examples of the crusher provided with the differential roll include a roll granulator 20 provided with the differential roll 21 in three stages as shown in FIG. Here, with the differential roll 21, two rolls 21a and 21b are arranged at intervals, and these rolls rotate in reverse to each other and have different rotational speeds. Moreover, as shown in FIG. 6, the unevenness | corrugation is formed in each peripheral surface of the rolls 21a and 21b with the same period, and the convex part 21c of one roll 21a is the other of the two rolls 21a and 21b. It arrange | positions so as to oppose the recessed part 21d of the roll 21b.
The difference between the peripheral speeds of the two rolls 21a and 21b in the differential roll 21 is that a powder having a predetermined particle size range is obtained with a higher yield, so that the peripheral speed of one roll 21a is the same as that of the other roll 21b. It is preferably 20% or more faster than the peripheral speed.

また、ロールグラニュレータ20において、3段の差動ロールは、上から順にロール21a,21b間の間隔が狭くなっていることが好ましい。3段の差動ロールが上から順にロール21a,21b間の間隔が狭くなっていれば、徐々に粒径を小さくすることができるため、所定の粒径範囲の粉末の収率をより高くすることができる。   Moreover, in the roll granulator 20, it is preferable that the three-stage differential roll has a narrower interval between the rolls 21a and 21b in order from the top. If the gap between the rolls 21a and 21b is reduced in order from the top of the three-stage differential rolls, the particle size can be gradually reduced, so that the yield of powder in a predetermined particle size range is increased. be able to.

上記のようなロールグラニュレータ20を用いた粉砕粉の解砕では、上部入口22から粉砕粉を、重力を利用して投入し、上から順に各差動ロール21を通して粒径を小さくし、下部出口23から解砕粉を排出し、次工程に移送する。   In the pulverization of the pulverized powder using the roll granulator 20 as described above, the pulverized powder is introduced from the upper inlet 22 using gravity, and the particle diameter is reduced through the differential rolls 21 in order from the top, and the lower part. The crushed powder is discharged from the outlet 23 and transferred to the next step.

なお、解砕機としては、差動ロールを具備するものであれば、ロールグラニュレータ以外のものも使用でき、例えば、差動型のスリットロールが挙げられる。差動型のスリットロールとは、周面が平滑な2本のロールが間隔を有して配置され、互いに逆回転し、その回転数が異なるものである。   In addition, as a crusher, if it has a differential roll, things other than a roll granulator can also be used, for example, a differential type slit roll is mentioned. The differential type slit roll is one in which two rolls having a smooth peripheral surface are arranged with a gap therebetween and rotate in the opposite directions and have different rotational speeds.

回収工程における篩い分けとしては、例えば、目開きが異なる2つの篩を積み重ねて解砕粉を篩い分ける方法などが挙げられる。ここで、2つの篩の一方は、所定の粒径範囲の上限以下の粉末を通すが、所定の粒径範囲の上限を超える粉末を通さないものであり、他方は、所定の粒径範囲の下限未満の粉末を通すが、所定の粒径範囲の下限以上の粉末を通さないものである。そして、前者の篩を上に、後者を下に配置して使用する。
また、篩い分けの方法としては、例えば、振動法または周動法などを適用できる。ここで、振動法とは、積み重ねた篩を上下に動かす方法のことであり、周動法とは、積み重ねた篩を水平方向に円運動させる方法のことである。これらのうち、衝撃が小さく、所定の粒子径範囲より小さい粉末の量が少なくなる上に、騒音が少ないことから、周動法が好ましい。
Examples of sieving in the collection step include a method of sieving crushed powder by stacking two sieves having different openings. Here, one of the two sieves passes the powder below the upper limit of the predetermined particle size range, but does not pass the powder exceeding the upper limit of the predetermined particle size range, the other of the predetermined particle size range The powder below the lower limit is passed, but the powder above the lower limit of the predetermined particle size range is not passed. Then, the former sieve is used on the top and the latter on the bottom.
As a sieving method, for example, a vibration method or a circumferential motion method can be applied. Here, the vibration method is a method of moving the stacked sieves up and down, and the circumferential motion method is a method of causing the stacked sieves to circularly move in the horizontal direction. Of these, the circumferential method is preferred because the impact is small, the amount of powder smaller than the predetermined particle size range is reduced, and the noise is low.

回収工程後に残存した所定の粒径範囲外の粉末のうち、所定の粒径範囲より小さな粉末を熱凝集工程へと戻し、また、所定の粒径範囲より大きな粉末を解砕工程へと戻すことが好ましい。このように、所定の粒径範囲外の粉末を再利用することにより所定の粒径範囲の粉末の収率を高くすることができる。   Of the powder outside the predetermined particle size range remaining after the recovery step, powder smaller than the predetermined particle size range is returned to the thermal aggregation step, and powder larger than the predetermined particle size range is returned to the crushing step. Is preferred. Thus, by reusing powder outside the predetermined particle size range, the yield of powder within the predetermined particle size range can be increased.

以上説明したタンタル粉末の製造方法では、タンタル原料粉を熱凝集し、予備粉砕した粉砕粉を、差動ロールである回転数の異なる2本のロール間を通すことにより、引き延ばす力を付与して解砕することができる。この解砕方法によれば、強い衝撃を付与せずに粉砕粉を解砕できるので、引き延ばされる力によって表面に平坦面が形成されつつも、差動による転がり効果で扁平化を防ぎ、球体に近い形状を維持したタンタル粉末を得ることができる。表面に平坦面が形成された粉末は、粉末同士の接触面積が大きくなるので、焼結性が高い。また、球体に近い形状の粉末は、流動抵抗が小さいため、流動性が高い。すなわち、上述した製造方法により得られるタンタル粉末は、焼結性と流動性とを両立したものである。   In the tantalum powder manufacturing method described above, the tantalum raw material powder is thermally agglomerated, and the pulverized powder that has been preliminarily pulverized is passed between two rolls having different rotational speeds, which are differential rolls. Can be crushed. According to this crushing method, since the pulverized powder can be crushed without giving a strong impact, a flat surface is formed on the surface by the extended force, but flattening is prevented by a differential rolling effect, and the sphere A tantalum powder maintaining a shape close to that can be obtained. The powder having a flat surface formed on the surface has a high sinterability because the contact area between the powders becomes large. In addition, a powder having a shape close to a sphere has high flowability because of low flow resistance. That is, the tantalum powder obtained by the manufacturing method described above has both sinterability and fluidity.

特に、上記製造方法によれば、表面に平坦面が3カ所以上形成され、その平坦面の割合が全表面積の30〜70%である多面粒子を得ることができる。ここで、平坦面とは、球面が欠けて曲率が略0になっており、粒子全表面積に対して3〜10%の面積を有する面のことである。平坦面の割合が30%以上であれば、焼結性が高くなり、70%以下であれば、流動性が高くなる。なお、曲率が略0であって、粒子全表面積に対して10%を超える面積の面が形成されている場合には、流動性が低くなる。
平坦面の割合は走査型電子顕微鏡写真を画像解析することにより求めることができる。
In particular, according to the above production method, it is possible to obtain polyhedral particles having three or more flat surfaces formed on the surface and the ratio of the flat surfaces being 30 to 70% of the total surface area. Here, the flat surface is a surface that has a spherical surface lacking and has a curvature of approximately 0, and has an area of 3 to 10% with respect to the total surface area of the particles. When the ratio of the flat surface is 30% or more, the sinterability is high, and when it is 70% or less, the fluidity is high. In addition, when the curvature is substantially 0 and a surface having an area exceeding 10% with respect to the total surface area of the particles is formed, the fluidity is lowered.
The ratio of the flat surface can be obtained by image analysis of a scanning electron micrograph.

なお、本発明は上述した実施形態に限定されない。
例えば、上述した実施形態の製造方法では、予備粉砕工程を有していたが、予備粉砕工程を省略してもよい。ただし、予備粉砕工程を有していれば、解砕工程の効率が向上する。
また、上述した実施形態では、解砕機の差動ロールは多段で備えられていたが、解砕しようとする粉末の粒径が小さければ、一段であっても構わない。ただし、多段である方が、所定の粒径範囲内の粉末を高い収率で得ることができるため、好ましい。
In addition, this invention is not limited to embodiment mentioned above.
For example, in the manufacturing method of the embodiment described above, the preliminary pulverization step is included, but the preliminary pulverization step may be omitted. However, if the preliminary pulverization step is included, the efficiency of the pulverization step is improved.
In the embodiment described above, the differential rolls of the crusher are provided in multiple stages, but may be one stage as long as the particle size of the powder to be crushed is small. However, a multi-stage is preferable because a powder having a predetermined particle size range can be obtained with a high yield.

さらに、上述した実施形態では、凝集粉の原料粉としてタンタル原料粉を用いたが、ニオブからなる原料粉(以下、ニオブ原料粉という。)を用いてもよい。ニオブ原料粉を用いてもタンタル原料粉を用いた場合と同じ効果が得られる。   Furthermore, in the embodiment described above, the tantalum raw material powder is used as the raw material powder of the aggregated powder, but a raw material powder made of niobium (hereinafter referred to as niobium raw material powder) may be used. Even when niobium raw material powder is used, the same effect as that obtained when tantalum raw material powder is used can be obtained.

(実施例1)
まず、100gのタンタル微粉末を1100℃で熱凝集して凝集粉を得た後、その凝集粉をチョッパーミルにより予備粉砕した。次いで、解砕工程にて、予備粉砕した粉砕粉を、全長100mmの差動ロールを3段備えたロールグラニュレータで解砕してタンタル粉末を得た。ここで、各差動ロールは、一段目のロール間の間隔を0.6mm、二段目のロール間の間隔を0.3mm、三段目のロール間の間隔を0.2mmとした。また、それぞれ一方のロールの周速度が他方のロールの周速度より30%速くなるように設定した。
Example 1
First, 100 g of tantalum fine powder was thermally aggregated at 1100 ° C. to obtain an aggregated powder, and then the aggregated powder was pre-ground by a chopper mill. Next, the pulverized powder preliminarily pulverized in the pulverization step was pulverized with a roll granulator having three stages of differential rolls having a total length of 100 mm to obtain tantalum powder. Here, in each differential roll, the distance between the first-stage rolls was 0.6 mm, the distance between the second-stage rolls was 0.3 mm, and the distance between the third-stage rolls was 0.2 mm. The peripheral speed of one roll was set to be 30% faster than the peripheral speed of the other roll.

(比較例1)
実施例1における解砕工程の代わりに、直径250mm、目開き0.5mmのスクリーンと、3段のカッターとを備えたスピードミルを用い、カッター回転速度300rpmで凝集粉を粉砕したこと以外は実施例1と同様にしてタンタル粉末を得た。
(Comparative Example 1)
Instead of the crushing step in Example 1, a speed mill equipped with a screen with a diameter of 250 mm, a mesh opening of 0.5 mm, and a three-stage cutter was used except that the agglomerated powder was pulverized at a cutter rotation speed of 300 rpm. In the same manner as in Example 1, tantalum powder was obtained.

実施例1および比較例1で得られたタンタル粉末について、100メッシュ(目開き150μm)と400メッシュ(目開き38μm)の篩で篩い分けて粒度分布を調べた。また、走査型電子顕微鏡写真から、各タンタル粉末の平坦面の割合を求めた。それらの結果を表1に示す。   About the tantalum powder obtained in Example 1 and Comparative Example 1, the particle size distribution was examined by sieving with 100 mesh (aperture 150 μm) and 400 mesh (aperture 38 μm) sieves. Moreover, the ratio of the flat surface of each tantalum powder was calculated | required from the scanning electron micrograph. The results are shown in Table 1.

Figure 2006336042
Figure 2006336042

差動ロールを備えた解砕機により凝集粉を解砕した実施例1のタンタル粉末は、粒度分布が狭く、平坦面の割合が30〜70%の範囲にあった。
これに対し、粉砕機により凝集粉を粉砕した比較例1のタンタル粉末は、粒度分布が広く、平坦面の割合が70%を超えていた。
The tantalum powder of Example 1 in which the agglomerated powder was crushed by a crusher equipped with a differential roll had a narrow particle size distribution and a flat surface ratio in the range of 30 to 70%.
On the other hand, the tantalum powder of Comparative Example 1 in which the aggregated powder was pulverized by a pulverizer had a wide particle size distribution and the flat surface ratio exceeded 70%.

(実施例2)
フッ化タンタル酸ナトリウムを溶融塩中でナトリウム還元して得た100gのタンタル微粉末を、水をバインダとして造粒して造粒粉を得た後、その造粒粉を1000℃で熱凝集して凝集粉を得た。次いで、解砕工程にて、その凝集粉を、実施例1と同様のロールグラニュレータで解砕してタンタル粉末を得た。
(Example 2)
100 g of tantalum fine powder obtained by sodium reduction of sodium fluorinated tantalate in molten salt is granulated using water as a binder to obtain a granulated powder, and then the granulated powder is thermally aggregated at 1000 ° C. Thus, agglomerated powder was obtained. Next, in the crushing step, the agglomerated powder was crushed with the same roll granulator as in Example 1 to obtain tantalum powder.

(比較例2)
325メッシュパス(粒径45μm未満)の酸化タンタル粉を固体マグネシウムにより還元してタンタル粉末を得た。
(Comparative Example 2)
A tantalum powder having a 325 mesh pass (particle size of less than 45 μm) was reduced with solid magnesium to obtain a tantalum powder.

(比較例3)
実施例2における解砕工程の代わりに、比較例1と同様のスピードミルを用い、カッター回転速度300rpmで凝集粉を粉砕したこと以外は実施例2と同様にしてタンタル粉末を得た。
(Comparative Example 3)
Instead of the crushing step in Example 2, a tantalum powder was obtained in the same manner as in Example 2 except that the agglomerated powder was pulverized at a cutter rotation speed of 300 rpm using the same speed mill as in Comparative Example 1.

実施例2および比較例2,3で得られたタンタル粉末について、JIS Z 2505−1960に準拠して流動性を評価した。
また、6mgのタンタル粉末から直径1mmのペレットを成形し、そのペレットを1300℃、20分間で焼結して焼結体を得た。そして、その焼結体を径方向に荷重をかけて引き抜け強度を測定した。この引き抜け強度が高いほど焼結性が高いといえる。
また、走査型電子顕微鏡写真から、各タンタル粉末の平坦面の割合を求めた。
これらの結果を表2に示す。
About the tantalum powder obtained in Example 2 and Comparative Examples 2 and 3, fluidity was evaluated in accordance with JIS Z 2505-1960.
Moreover, a pellet having a diameter of 1 mm was formed from 6 mg of tantalum powder, and the pellet was sintered at 1300 ° C. for 20 minutes to obtain a sintered body. And the pull-out strength was measured by applying a load to the sintered body in the radial direction. It can be said that the higher the pull-out strength, the higher the sinterability.
Moreover, the ratio of the flat surface of each tantalum powder was calculated | required from the scanning electron micrograph.
These results are shown in Table 2.

Figure 2006336042
Figure 2006336042

差動ロールを備えた解砕機により凝集粉を解砕した実施例2のタンタル粉末は、平坦面の割合が30〜70%の範囲にあり、流動性が高かった。また、引き抜け強度が高く、焼結性が高かった。
これに対し、325メッシュパスの酸化タンタル粉を固体マグネシウムにより還元して得た比較例2のタンタル粉末は、平坦面の割合が30%未満であり、焼結性が低かった。
また、粉砕機により凝集粉を粉砕した比較例3のタンタル粉末は、平坦面の割合が70%を超えており、流動性が低かった。
The tantalum powder of Example 2 in which the agglomerated powder was crushed by a pulverizer equipped with a differential roll had a flat surface ratio in the range of 30 to 70% and high fluidity. Moreover, the pull-out strength was high and the sinterability was high.
In contrast, the tantalum powder of Comparative Example 2 obtained by reducing 325 mesh pass tantalum oxide powder with solid magnesium had a flat surface ratio of less than 30% and low sinterability.
Moreover, the ratio of the flat surface of the tantalum powder of Comparative Example 3 in which the agglomerated powder was pulverized by a pulverizer was over 70%, and the fluidity was low.

本発明の金属粉末の製造方法の一実施形態における圧縮成形工程に使用されるプレス装置の一例を示す斜視図である。It is a perspective view which shows an example of the press apparatus used for the compression molding process in one Embodiment of the manufacturing method of the metal powder of this invention. 図1のプレス装置を用いた圧縮成形の一工程を示す断面図である。It is sectional drawing which shows 1 process of the compression molding using the press apparatus of FIG. 図1のプレス装置を用いた圧縮成形の一工程を示す断面図である。It is sectional drawing which shows 1 process of the compression molding using the press apparatus of FIG. 図1のプレス装置を用いた圧縮成形の一工程を示す断面図である。It is sectional drawing which shows 1 process of the compression molding using the press apparatus of FIG. 本発明の金属粉末の製造方法の一実施形態における解砕工程に使用される解砕機の一例を示す模式図である。It is a schematic diagram which shows an example of the crusher used for the crushing process in one Embodiment of the manufacturing method of the metal powder of this invention. 図5の解砕機の要部拡大図である。It is a principal part enlarged view of the crusher of FIG.

符号の説明Explanation of symbols

14 タンタル微粉末、20 ロールグラニュレータ(解砕機)、21 差動ロール   14 fine powder of tantalum, 20 roll granulator (crusher), 21 differential roll

Claims (5)

タンタルまたはニオブからなる原料粉を熱凝集して凝集粉を得る熱凝集工程と、
前記凝集粉を、差動ロールを備えた解砕機により解砕する解砕工程とを有することを特徴とする金属粉末の製造方法。
A thermal aggregation process of thermally aggregating raw material powder made of tantalum or niobium to obtain agglomerated powder;
And a crushing step of crushing the agglomerated powder with a crusher equipped with a differential roll.
解砕工程前に、凝集粉を予備粉砕する予備粉砕工程を有する請求項1に記載の金属粉末の製造方法。   The method for producing a metal powder according to claim 1, further comprising a preliminary pulverization step of pre-pulverizing the agglomerated powder before the pulverization step. 原料粉が、タンタル微粉末またはニオブ微粉末を圧縮成形し、差動ロールを備えた解砕機により解砕して得た解砕原料粉である請求項1または2に記載の金属粉末の製造方法。   The method for producing a metal powder according to claim 1 or 2, wherein the raw material powder is a pulverized raw material powder obtained by compression molding tantalum fine powder or niobium fine powder and pulverizing with a pulverizer equipped with a differential roll. . タンタルまたはニオブからなり、表面に平坦面が3カ所以上形成され、その平坦面の割合が全表面積の30〜70%である多面粒子であることを特徴とする金属粉末。   A metal powder comprising tantalum or niobium, and having three or more flat surfaces on the surface, and the ratio of the flat surfaces is 30 to 70% of the total surface area. コンデンサのアノード電極材料に用いられる請求項4に記載の金属粉末。   The metal powder according to claim 4, which is used as an anode electrode material for a capacitor.
JP2005159310A 2005-05-31 2005-05-31 Method for producing metal powder Active JP5065580B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005159310A JP5065580B2 (en) 2005-05-31 2005-05-31 Method for producing metal powder
PCT/JP2006/311350 WO2006129850A1 (en) 2005-05-31 2006-05-31 Metal powder and manufacturing methods thereof
CN200680018716.8A CN101184568B (en) 2005-05-31 2006-05-31 Metal powder and manufacturing methods thereof
US11/919,464 US8657915B2 (en) 2005-05-31 2006-05-31 Metal powder and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159310A JP5065580B2 (en) 2005-05-31 2005-05-31 Method for producing metal powder

Publications (3)

Publication Number Publication Date
JP2006336042A true JP2006336042A (en) 2006-12-14
JP2006336042A5 JP2006336042A5 (en) 2008-07-10
JP5065580B2 JP5065580B2 (en) 2012-11-07

Family

ID=37556856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159310A Active JP5065580B2 (en) 2005-05-31 2005-05-31 Method for producing metal powder

Country Status (2)

Country Link
JP (1) JP5065580B2 (en)
CN (1) CN101184568B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500962A (en) * 2007-10-15 2011-01-06 ハイ−テンプ・スペシャルティー・メタルス・インコーポレーテッド Production method of tantalum powder using recycled scrap as raw material
EP3089180A4 (en) * 2013-12-25 2017-08-23 Ningxia Orient Tantalum Industry Co., Ltd. Capacitor grade high specific volume tantalum powder improving electrical performance and preparation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042598A1 (en) * 2009-09-23 2011-03-24 Gkn Sinter Metals Holding Gmbh Process for producing a green body
JP2016516124A (en) * 2013-02-26 2016-06-02 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Powder material for capacitor grade tantalum-niobium alloy wire and preparation method thereof
WO2016024947A1 (en) * 2014-08-12 2016-02-18 Global Advanced Metals Usa, Inc. A method of making a capacitor grade powder and capacitor grade powder from said process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601443U (en) * 1983-06-18 1985-01-08 株式会社クボタ crusher
JPH0234701A (en) * 1988-07-22 1990-02-05 Showa Kiyabotsuto Suupaa Metal Kk Tantalum powder granulated body
JPH03291301A (en) * 1990-04-09 1991-12-20 Kawasaki Steel Corp Improvement of fillability of fine metal powder
JPH04364858A (en) * 1991-06-11 1992-12-17 Ishikawajima Harima Heavy Ind Co Ltd Porous implant material
JP2003147402A (en) * 2001-11-08 2003-05-21 Sumitomo Metal Mining Co Ltd Niobium powder
JP2004122121A (en) * 2002-09-12 2004-04-22 Toho Titanium Co Ltd Crushing method and crushing and particle-size sorting device of titanium sponge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601443U (en) * 1983-06-18 1985-01-08 株式会社クボタ crusher
JPH0234701A (en) * 1988-07-22 1990-02-05 Showa Kiyabotsuto Suupaa Metal Kk Tantalum powder granulated body
JPH03291301A (en) * 1990-04-09 1991-12-20 Kawasaki Steel Corp Improvement of fillability of fine metal powder
JPH04364858A (en) * 1991-06-11 1992-12-17 Ishikawajima Harima Heavy Ind Co Ltd Porous implant material
JP2003147402A (en) * 2001-11-08 2003-05-21 Sumitomo Metal Mining Co Ltd Niobium powder
JP2004122121A (en) * 2002-09-12 2004-04-22 Toho Titanium Co Ltd Crushing method and crushing and particle-size sorting device of titanium sponge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500962A (en) * 2007-10-15 2011-01-06 ハイ−テンプ・スペシャルティー・メタルス・インコーポレーテッド Production method of tantalum powder using recycled scrap as raw material
EP3089180A4 (en) * 2013-12-25 2017-08-23 Ningxia Orient Tantalum Industry Co., Ltd. Capacitor grade high specific volume tantalum powder improving electrical performance and preparation method therefor

Also Published As

Publication number Publication date
CN101184568B (en) 2012-12-26
CN101184568A (en) 2008-05-21
JP5065580B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US10373764B2 (en) Process for manufacturing agglomerated particles of tantalum, mixed tantalum powder and process for manufacturing same, tantalum pellet and process for manufacturing same, and capacitor
TWI394726B (en) Silica glass granule
CN207493852U (en) A kind of concrete multistage grinder
JP4267699B2 (en) Deagglomerated tantalum powder and method for preparing the same, and agglomerated tantalum powder
US8025710B2 (en) Tungsten alloy grains, processing method using the same, and method for manufacturing the same
JP5065580B2 (en) Method for producing metal powder
JP3584793B2 (en) Adsorbent granulation method
US8657915B2 (en) Metal powder and manufacturing methods thereof
WO2017043449A1 (en) Titanium oxide agglomerate, method for producing titanium oxide agglomerate, titanium oxide powder, titanium oxide molded body, battery electrode catalyst, battery electrode conductive material, and microwave and millimeter wave dieletric
CN206404870U (en) A kind of double-roll type reducing mechanism for Chemical Manufacture
JP5663895B2 (en) Nickel powder and method for producing the same
CN100339172C (en) Method for spheroidizing and pelletizing to coagulate metal powder, metal powder and electrolytic capacitor anode
CN101523531B (en) Powder modification in the manufacture of solid state capacitor anodes
JP2005507841A (en) Method for producing niobium oxide
CN109485040B (en) Method for preparing graphite microspheres by using graphite tailings
JP3094684B2 (en) Method for producing dipeptide sweetener granules
JP5183021B2 (en) Metal powder and method for producing the same
JP2006336042A5 (en)
KR20140015942A (en) Method to change of the particle morphology of cupper powder by a planetary ball milling process
JP2007077461A (en) Tantalum powder or niobium powder, and anode for solid electrolytic capacitor
JP5654213B2 (en) Method for producing tantalum aggregated particles, tantalum pellet and capacitor
JP7364128B2 (en) Method for crushing ore and manufacturing method for pellets
CN213854958U (en) Raw materials crushing apparatus of probiotic chewable tablet
JP4007508B2 (en) Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process
JP2016136451A (en) Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250