JP4007508B2 - Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process - Google Patents

Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process Download PDF

Info

Publication number
JP4007508B2
JP4007508B2 JP2004059913A JP2004059913A JP4007508B2 JP 4007508 B2 JP4007508 B2 JP 4007508B2 JP 2004059913 A JP2004059913 A JP 2004059913A JP 2004059913 A JP2004059913 A JP 2004059913A JP 4007508 B2 JP4007508 B2 JP 4007508B2
Authority
JP
Japan
Prior art keywords
powder
added
mixing
producing
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059913A
Other languages
Japanese (ja)
Other versions
JP2004325437A (en
Inventor
ホ ナ、サング
ウオオ リー、ヨウング
ヒュング キム、シ
スング ソーン、ドング
シャエオル リ、ス
ジュン ヨ、ミュング
Original Assignee
コリア アトミック エナージィ リサーチ インスチチュート
コリア アトミック アンド ヌクリアー カンパニィ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア アトミック エナージィ リサーチ インスチチュート, コリア アトミック アンド ヌクリアー カンパニィ リミテッド filed Critical コリア アトミック エナージィ リサーチ インスチチュート
Publication of JP2004325437A publication Critical patent/JP2004325437A/en
Application granted granted Critical
Publication of JP4007508B2 publication Critical patent/JP4007508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明はGd2O3添加UO2ペレットの製造方法に関する。より詳しくはUO2ペレットの焼結密度と結晶粒サイズを効果的に制御できる共粉砕後球状化(SACAM)工程を利用したペレットの製造方法に関する。 The present invention relates to a method for producing a Gd 2 O 3 -added UO 2 pellet. More specifically, the present invention relates to a method for producing a pellet using a co-grinding spheroidization (SACAM) process capable of effectively controlling the sintered density and grain size of UO 2 pellets.

酸化ガドリニウム(Gd2O3)を添加してUO2ペレットを製造する従来の一般的な製造工程を図1.1に示してある。図1.1のように、従来にはUO2粉末とGd2O3粉末とを機械的に混合した後、予備成形、 造粒、成形、及び焼結する工程を経てUO2ペレットを製造し、この際、UO2粉末とGd2O3粉末とを機械的に混合する方法としては図2.1と図2.2に夫々示したV型混合方式や円錐型混合方式などを用いるのが一般であった。 FIG. 1.1 shows a conventional general manufacturing process in which gadolinium oxide (Gd 2 O 3 ) is added to manufacture UO 2 pellets. As in Figure 1.1, the conventional after mechanically mixing a UO 2 powder and Gd 2 O 3 powder, preformed, granulation, molding, and to produce UO 2 pellets through a step of sintering In this case, as a method of mechanically mixing the UO 2 powder and the Gd 2 O 3 powder, the V-type mixing method or the conical mixing method shown in FIGS. 2.1 and 2.2, respectively, may be used. It was general.

Gd2O3粉末が添加されたUO2ペレットの焼結密度と結晶粒サイズを制御する因子としては成形圧力、焼結温度、及び焼結雰囲気が挙げられる。しかし、成形圧力と焼結温度の因子のみでは粉末特性や混合状態自体に因る焼結特性を変化させるのがほぼ不可能であり微細組織が良好な焼結ペレットの製造も困難である。したがって、これを解決すべく一部では焼結雰囲気を、乾燥した水素雰囲気から水分の含まれた雰囲気に変えて焼結を行っている。 Factors controlling the sintering density and grain size of UO 2 pellets to which Gd 2 O 3 powder has been added include molding pressure, sintering temperature, and sintering atmosphere. However, it is almost impossible to change the powder characteristics and the sintering characteristics due to the mixing state itself only by the factors of the molding pressure and the sintering temperature, and it is difficult to produce sintered pellets having a fine microstructure. Therefore, in order to solve this problem, in some cases, the sintering atmosphere is changed from a dry hydrogen atmosphere to a moisture-containing atmosphere.

このように成形圧力と焼結因子(温度及び雰囲気)を制御して焼結密度及び結晶粒サイズを制御するのには一定の制約が伴われ、同時に利用する機器の使用上の限界点が問題となりかねない。したがって、Gd2O3が添加されたUO2ペレットの製造にあたって制限された範囲の成形圧力及び焼結条件しか利用できず、品質上の制限も受けるようになる。 In this way, controlling the molding pressure and sintering factor (temperature and atmosphere) to control the sintering density and grain size is accompanied by certain restrictions, and there is a problem in using the equipment used at the same time. It can be. Therefore, only a limited range of molding pressure and sintering conditions can be used in the manufacture of UO 2 pellets to which Gd 2 O 3 has been added, and quality is also limited.

そしてGd2O3とUO2との混合酸化物はUO2に比して焼結性が低く、同一焼結条件下においては焼結ペレットの密度、結晶粒サイズ全てがUO2焼結ペレットに比して小さいことが分かっている。また、水素気流中で焼結した場合には、焼結ペレットに多数の微細亀裂が発生したり、微細組織が不均一であるとの問題が生じる。したがって、かかる問題を解決すべくGd2O3を添加したUO2においては通常水分の含まれた水素雰囲気や二酸化炭素と一酸化炭素との混合ガス雰囲気下で焼結を行う。 The mixed oxide of Gd 2 O 3 and UO 2 has lower sinterability than UO 2 and under the same sintering conditions, the density and grain size of the sintered pellets are all converted into UO 2 sintered pellets. It is known to be smaller than that. In addition, when sintered in a hydrogen stream, there are problems that a large number of fine cracks are generated in the sintered pellet and that the microstructure is not uniform. Therefore, in order to solve such a problem, UO 2 to which Gd 2 O 3 is added is usually sintered in a hydrogen atmosphere containing moisture or a mixed gas atmosphere of carbon dioxide and carbon monoxide.

したがって、本発明は上述した従来技術の問題を解決すべく案出されたものとして、Gd2O3を添加してUO2ペレットを製造する工程において、その焼結密度と結晶粒サイズを制御する因子として成形圧力、焼結温度、及び雰囲気の他にその混合方法を最適化することにより均一な焼結密度と結晶粒サイズを有するUO2ペレットの製造方法を提供することに目的がある。 Therefore, the present invention has been devised to solve the above-described problems of the prior art, and in the process of manufacturing UO 2 pellets by adding Gd 2 O 3 , the sintering density and the grain size are controlled. The objective is to provide a method for producing UO 2 pellets having a uniform sintering density and grain size by optimizing the mixing method as well as the molding pressure, sintering temperature, and atmosphere as factors.

上記目的を成し遂げるための本発明は、Gd2O3を添加したUO2ペレットの製造工程において、UO2粉末に1〜10重量%のGd2O3粉末を円筒状容器が装填された混合機でその粉末自体の流動性を利用して予備的に混合する段階;上記混合粉末を一段多回通過方式または多段1回通過方式の連続型アトリッションミル混合粉砕機に装入して混合粉砕する段階;粉砕された粉末を混合機の円筒状容器に装入して該粉末粒子を球状化させる段階;及び、上記球状化された粉末を用いて成形体を製造した後焼結する段階;を含む共粉砕後球状化(SACAM)工程を利用したGd2O3添加UO2ペレットの製造方法に関する。



In order to achieve the above object, the present invention provides a mixer in which a cylindrical container is loaded with 1 to 10% by weight of Gd 2 O 3 powder in UO 2 powder in the manufacturing process of UO 2 pellets to which Gd 2 O 3 is added. In the preliminary mixing using the fluidity of the powder itself, the mixed powder is charged into a single-stage multi-pass or multi-stage single-pass continuous attrition mill mixing and grinding machine and mixed and ground. stages; stage to spheroidizing the powder particles charged with milled powder in a cylindrical vessel mixed-machine; and the step of sintering after producing a molded body by using the spheroidized powder A co-grinding and spheroidizing (SACAM) process including a Gd 2 O 3 added UO 2 pellet.



上述したように、本発明はGd2O3を添加してUO2ペレットを製造する工程において、粉末を連続型アトリッションミル混合粉砕機を用いて粉砕混合することによりミーリング回数の調整及び後続する球状化処理により粉末の均質混合と流動性が向上され、予備成形及び 造粒工程無しで潤滑剤を添加して直接Gd2O3添加UO2ペレットを焼結成形することができる。また、小さい成形圧力及び乾いた還元性焼結雰囲気においても微細亀裂が無く均質で結晶粒の大きい焼結体を得られ、所望の焼結密度を得たければ、気孔形成剤などを添加すると焼結体製造に対する余裕度を高めることができる。したがって、かかる余裕度によりGd2O3添加UO2ペレットの品質が改善され生産性も向上された。さらに、本発明法により製造された混合粉末は、成形時潤滑剤を添加せずダイ壁潤滑により直接成形する場合にも欠陥の無い焼結体を製造させることができる。 As described above, the present invention is in a process of manufacturing the UO 2 pellets with the addition of Gd 2 O 3, to adjust and subsequent milling times by mixing ground using a continuous-type Atorisshonmi Le mixing grinder powder spherical The homogenization of the powder and fluidity can be improved by the conversion treatment, and the lubricant can be added and the Gd 2 O 3 added UO 2 pellets can be directly sintered and molded without pre-forming and granulating steps. In addition, in order to obtain a homogeneous sintered body with large crystal grains without microcracks even in a small molding pressure and a dry reducing sintering atmosphere, if a desired sintering density is to be obtained, a pore forming agent or the like is added. It is possible to increase the margin for manufacturing the bonded body. Therefore, this margin improved the quality of the Gd 2 O 3 added UO 2 pellets and improved the productivity. Furthermore, the mixed powder produced by the method of the present invention can produce a sintered body having no defects even when it is directly molded by die wall lubrication without adding a lubricant during molding.

以下、添付の図を参照しながら本発明を説明する。図1.2は本発明の共粉砕後球状化(SACAM:Spheroidizing After Continuous Attrition Co-Milling)工程のGd2O3添加UO2ペレットの製造工程図である。Gd2O3の添加されたUO2ペレットは固溶体を形成し、Gd2O3のUO2に対する固溶状態の変化に応じてその焼結密度と結晶粒サイズが変化する。固溶状態を変化させる要素としては成形圧力、即ち成形密度、焼結温度、及び雰囲気、粉末(UO2とGd2O3)粒子サイズ、UO2粉末とGd2O3粉末との混合状態などが挙げられる。 Hereinafter, the present invention will be described with reference to the accompanying drawings. FIG. 1.2 is a production process diagram of Gd 2 O 3 added UO 2 pellets in the SACAM (Spheroidizing After Continuous Attrition Co-Milling) process of the present invention. The UO 2 pellet to which Gd 2 O 3 is added forms a solid solution, and the sintering density and the grain size change according to the change in the solid solution state of Gd 2 O 3 with respect to UO 2 . Factors that change the solid solution state include molding pressure, that is, molding density, sintering temperature, atmosphere, powder (UO 2 and Gd 2 O 3 ) particle size, mixed state of UO 2 powder and Gd 2 O 3 powder, etc. Is mentioned.

本発明者らは、Gd2O3の添加されたUO2ペレットの焼結密度を制御するために、従来用いられてきた成形圧力、焼結温度、及び雰囲気条件の他に粉末(UO2とGd2O3)特性、そしてUO2粉末とGd2O3粉末との粉砕混合状態を制御因子に用いられることに着目した。とりわけ、UO2粉末とGd2O3粉末とを混合する方法として、従来用いられていたV型混合方式や円錐型混合方式などの機械的混合方式の代わりに、単に粉末の流動性を利用して混合した後連続型アトリッションミル方式を利用すると焼結密度及び結晶粒サイズの制御がより向上されることを発見し、本発明を提示するまでに至ったのである。
先ず、本発明においてはUO2粉末とGd2O3粉末とを粉末の流動性を利用して予備的に混合する。この際、添加されるGd2O3粉末を1〜10重量%範囲に制限することが好ましい。その添加量が1重量%未満であるとその添加による効果が微々しく、10重量%を超過するとUO2固溶限界を外れかねないからである。より好ましくは、2〜8重量%の範囲で添加する。
In order to control the sintering density of the UO 2 pellets to which Gd 2 O 3 is added, the present inventors have used powders (UO 2 and UO 2) in addition to conventionally used molding pressure, sintering temperature, and atmospheric conditions. We focused on Gd 2 O 3 ) characteristics and the pulverized and mixed state of UO 2 powder and Gd 2 O 3 powder as control factors. In particular, as a method of mixing UO 2 powder and Gd 2 O 3 powder, the fluidity of the powder is simply used instead of the conventional mechanical mixing method such as V-type mixing method and conical type mixing method. After mixing, the continuous attrition mill method was found to improve the control of the sintering density and the crystal grain size, and the present invention has been presented.
First, in the present invention, UO 2 powder and Gd 2 O 3 powder are preliminarily mixed using the fluidity of the powder. At this time, it is preferable to limit the added Gd 2 O 3 powder to a range of 1 to 10% by weight. This is because if the addition amount is less than 1% by weight, the effect of the addition is insignificant, and if it exceeds 10% by weight, the UO 2 solid solution limit may be exceeded. More preferably, it is added in the range of 2 to 8% by weight.

本発明においては、かかる2種の粉末を該粉末の流動性のみ利用して混合機で予備混合する。言い換えると、如何なる媒介物質も用いずに2種の粉末の流れを利用して粉末同士を混合させるもので、通常円筒形の容器に2種の粉末を装入した後、一定時間該容器を混合機で回転させ混合することによって容易に成し遂げることができる。   In the present invention, such two kinds of powders are premixed by a mixer using only the fluidity of the powders. In other words, the powders are mixed using the flow of the two types of powders without using any mediator. Usually, the two types of powders are charged into a cylindrical container and then mixed for a certain period of time. It can be easily accomplished by rotating and mixing in the machine.

UO2とGd2O3粉末の初期粒度範囲は夫々0.5〜103μmと1.16〜93.6μmの範囲にあり、その平均粒子サイズも夫々4.75μmと9.8μmほどと大変不均一である。したがって、かかる粒度分布を有するUO2 とGd2O3粉末を上述した混合比で混合し従来の機械的方式により混合すると、粒子サイズの不均一及び混合比率差により均一性の良くない粉末ができ、かかる混合粉末から製造されたペレットでは結晶粒が均一な微細組織が得難い。図2は従来の機械的方式の混合機として、図2.1はV型混合機、図2.2は円錐型混合機を示す。 The initial particle size ranges of UO 2 and Gd 2 O 3 powders are in the range of 0.5 to 103 μm and 1.16 to 93.6 μm, respectively, and the average particle sizes are also very uneven, such as 4.75 μm and 9.8 μm, respectively. Therefore, when UO 2 and Gd 2 O 3 powder having such a particle size distribution are mixed at the mixing ratio described above and mixed by the conventional mechanical method, a powder having poor uniformity due to non-uniform particle size and mixing ratio difference can be obtained. In a pellet produced from such a mixed powder, it is difficult to obtain a fine structure with uniform crystal grains. FIG. 2 shows a conventional mechanical mixer, FIG. 2.1 shows a V-type mixer, and FIG. 2.2 shows a conical mixer.

したがって、本発明においては、上記問題に鑑みて、上記のように混合されたUO2とGd2O3粉末を図3のような連続型アトリッションミル混合粉砕機を用いて混合粉砕することを特徴とする。かかる連続型アトリッションミル混合粉砕機を用いると、図3.1の設備でミーリング回数を変化させたり、または図3.2の多段一回設備を用いることで、粉末の粒子サイズ及び混合状態を微細制御でき、また焼結密度及び結晶粒サイズを幅広く所望の範囲内に制御することができる。なお、所望のサイズの結晶粒を有する状態で気孔形成剤などを添加し焼結密度を制御するのも可能である。 Therefore, in the present invention, in view of the above problems, a mixing ground using a continuous-type Atorisshonmi Le mixed-grinding machine as shown in FIG. 3 UO 2 and Gd 2 O 3 powder mixed as above Features. Using such continuous Atorisshonmi Le mixed-grinder, or by changing the milling times in the equipment of FIG. 3.1, or by using a multi-stage single equipment in Figure 3.2, the particle size and mixed state of powder Fine control can be performed, and the sintered density and crystal grain size can be controlled within a wide range within a desired range. It is also possible to control the sintering density by adding a pore forming agent or the like in a state having crystal grains of a desired size.

この際、混合粉砕のために上記アトリッションミル混合粉砕機に装入される粉末装入量は混合容器内容積の10〜30%、そして装入されたボール装入量を50〜70%に夫々制限することが好ましい。粉末装入量をこのように設定する理由は混合粉砕効果を最大化させるためである。詳述すると、ボール装入量が多くなると混合粉砕効果は増大するが投入される粉末量は少なくなり、逆にボール装入量が少なくなると投入される粉末量は多くなるが混合粉砕効果は低下する為である。より好ましくは上記ボールのサイズを直径3mm〜10mm範囲に制限することである。 In this case, powder charging amount charged to the Atorisshonmi Le mixed-grinding machine for mixing and grinding 10 to 30% of the mixing vessel volume, and a charged by ball charging amount to 50% to 70% Each is preferably restricted. The reason for setting the powder charge in this way is to maximize the mixing and grinding effect. More specifically, the mixing and grinding effect increases as the ball charge increases, but the amount of powder to be charged decreases. Conversely, when the ball charge decreases, the amount of powder to be charged increases but the mixing and grinding effect decreases. It is to do. More preferably, the size of the ball is limited to a range of 3 mm to 10 mm in diameter.

かかる効果は回転羽の回転数とも相関関係があるので、ボール及び粉末装入量そして回転羽の回転数などの組合により粉砕効果を極大化することができる。本発明においては上記混合粉砕機の回転羽の回転数を30〜200rpmに制限することが好ましい。   Since this effect has a correlation with the number of rotations of the rotating blades, the pulverization effect can be maximized by a combination of the amount of charged balls and powder and the number of rotations of the rotating blades. In the present invention, it is preferable to limit the rotational speed of the rotary blade of the mixing and grinding machine to 30 to 200 rpm.

また、アトリッションミルは連続型なので通過時間が即ち混合粉砕時間であり、一般に投入量がほぼ100%排出されるまでには2〜5分かかる。   Further, since the attrition mill is a continuous type, the passing time is the mixing and pulverizing time, and generally it takes 2 to 5 minutes to discharge almost 100% of the input amount.

一方、通常の機械的方式のミル工程を経た粉末は、粉末が微粉砕されながら粉末の流動性が良くなくなり、これにより粉末の流動性を向上させるべく次のような粉末処理作業を行った。即ち、先ず流動性の良くない粉末を装入させた後約50〜200MPaの成形圧力で予備成形体(slug)を製造した(この際、成形密度(green density)は理論密度の約30〜50%)。そして、かかる予備成形体を造粒機(granulator)においてローター(rotar)と直径約1mmの打孔篩(sieve)との間に挟ませ衝撃と摩擦により造粒した。こうして出来上がった顆粒は該粉末流動性に優れ後続する成形工程においてプレス成形すると、長さが一定な成形体(green pellet)(直径10mm、長さ10mm)を素早く製造することができた。   On the other hand, the powder that has been subjected to a normal mechanical milling process is not finely pulverized while the powder is pulverized. As a result, the following powder processing operation was performed to improve the powder fluidity. That is, first, a powder having poor fluidity was charged, and then a preform (slug) was produced at a molding pressure of about 50 to 200 MPa (in this case, the green density was about 30 to 50 of the theoretical density). %). Then, the preform was sandwiched between a rotor and a sieve having a diameter of about 1 mm and granulated by impact and friction in a granulator. The granule thus obtained was excellent in powder flowability and was press-molded in the subsequent molding process, so that a green pellet having a constant length (diameter 10 mm, length 10 mm) could be quickly produced.

しかし、混合されたUO2とGd2O3粉末を図3のような連続型アトリッションミル混合粉砕機を用いて粉砕する本発明においては、上述した予備成形や造粒工程が不要になる。 However, in the present invention for grinding the UO 2 and Gd 2 O 3 powder were mixed using a continuous Atorisshonmi Le mixed-grinding machine such as a 3, preforming and granulation process described above is not required.

その代わりに、上記連続型アトリッションミル混合粉砕機において粉砕された粉末を所定の混合機に装入して回転させることにより、効果的にその粉末粒子を顆粒形態に球状化させることを特徴とする。かかる球状化工程は、上述した粉末の流動性のみ利用して粉末同士を混合させる工程と同様に、通常円筒形の容器に混合粉砕された粉末を装入した後一定時間該容器を回転させることにより容易に成し遂げられる。
Alternatively, by rotating by charging the powder was ground in the continuous Atorisshonmi Le mixed-grinding machine in a predetermined mixer, and wherein effectively be spheroidized the powder particles in granular form To do. In the spheroidizing step, the powder is mixed and pulverized into a generally cylindrical container, and then the container is rotated for a certain period of time, similar to the process of mixing powders using only the fluidity of the powder described above. Is more easily accomplished.

一般に回転時間が短いと球状化が良からず、回転時間が長すぎると粒子が大きくなり過ぎて後続する成形工程において装入が困難となり長さが均一な成形体を製造し難くなる。したがって、本発明においては上記容器内容積の30〜50%粉末を容器に装入した後、30〜90分間該容器を回転させることが好ましい。   In general, if the rotation time is short, the spheroidization is not good, and if the rotation time is too long, the particles become too large, making it difficult to charge in the subsequent molding process, making it difficult to produce a molded body having a uniform length. Therefore, in the present invention, it is preferable to rotate the container for 30 to 90 minutes after charging the powder of 30 to 50% of the internal volume of the container.

このように本発明において従来法と異なって予備成形工程や別途の造粒工程を必要とせず、上述した球状化工程を通して微粉末を顆粒化できるのは、粉末がボールの衝撃と摩擦により微粉砕されながら、あられのように硬くなり表面が活性化される為である。したがって、かかる粉末を通常使用する円筒形の容器に装入して予備混合において使用する混合機に装填した後一定時間回転させると所望のサイズの顆粒を得られるのである。   Thus, unlike the conventional method, the present invention does not require a preforming step or a separate granulation step, and the fine powder can be granulated through the above-described spheronization step. This is because it becomes hard like that and the surface is activated. Therefore, when the powder is charged into a commonly used cylindrical container and loaded into a mixer used for premixing, it is rotated for a certain period of time to obtain granules of a desired size.

上記のように球状化処理されたUO2とGd2O3混合粉末は流動性が大変優れている。したがって、本発明においてはかかる流動性が優れた顆粒を用いることにより、後続する成形体製造時、従前の潤滑剤を添加する方法の代わりに潤滑剤を添加せずダイ壁への潤滑剤塗布のみで良好な成形体を製造可能な直接成形工程(direct compacting)を実現することができる。 The spheroidized UO 2 and Gd 2 O 3 mixed powder as described above has very good fluidity. Therefore, in the present invention, by using the granules having excellent fluidity, only the lubricant is applied to the die wall without adding the lubricant instead of the conventional method of adding the lubricant during the production of the subsequent molded body. Thus, a direct compacting process capable of producing a good molded body can be realized.

そして、このように製造された成形体に通常の焼結工程を施すと物性の優れたUO2ペレットを製造することができる。この際、本発明は具体的な焼結条件に制限されるわけではないが、好ましくは上記成形体を1650〜1750℃の還元雰囲気(一般的に水素雰囲気)下で2〜6時間焼結する。 Then, when a normal sintering process is performed on the molded body thus manufactured, UO 2 pellets having excellent physical properties can be manufactured. At this time, the present invention is not limited to specific sintering conditions, but preferably the above molded body is sintered in a reducing atmosphere (generally a hydrogen atmosphere) at 1650 to 1750 ° C. for 2 to 6 hours. .

以下、実施例を通して本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail through examples.

UO2粉末にGd2O3粉末8重量%を粉末の流動性を利用して予備的に混合した。そしてかかる混合粉末を連続型アトリッションミル方式による混合粉砕機で混合粉砕し、この際、ミーリング回数を0、3、5、7及び10回の5段階に変化させた。ここで、ミーリング回数は連続型アトリッションミルを通過した回数を示し、ミーリング回数5回の意味は同一試料が連続型アトリッションミルで5回繰り返しミーリングされたことを意味する。そして、この際の連続型アトリッションミルの回転羽の回転数は150rpm、装入されるボールは直径8mmのジルコニアボールであり、ボール装入量は70vol.%、粉末試料の量は20vol.%にした。 8% by weight of Gd 2 O 3 powder was preliminarily mixed with UO 2 powder using the flowability of the powder. Then, the mixed powder was mixed and pulverized by a mixing and pulverizing machine using a continuous attrition mill method. At this time, the number of milling was changed to five stages of 0, 3, 5, 7 and 10. Here, the number of milling times indicates the number of times of passing through the continuous attrition mill, and the meaning of 5 times of milling means that the same sample was repeatedly milled 5 times in the continuous attrition mill. At this time, the rotation speed of the rotary blade of the continuous attrition mill is 150 rpm, the ball to be charged is a zirconia ball having a diameter of 8 mm, the ball charging amount is 70 vol.%, And the amount of the powder sample is 20 vol. %.

このように微粉砕された粉末を混合機を使って一定時間粉末同士の自体流動性を利用して回転させ粒子を粗大化させながら球形化させ、この際球状化処理時間は60分にした。   The finely pulverized powder was rotated by using the fluidity of the powders themselves for a certain period of time using a mixer to spheroidize the particles while coarsening the particles. At this time, the spheronization time was 60 minutes.

これら試料に対して、即ちミーリング回数及び球状化処理による見かけ密度、成形圧力による成形密度及び焼結密度、そして焼結体微細組織を調べた。その結果を焼結特性試験結果として図4〜6に示した。   For these samples, the number of milling times, the apparent density by the spheroidizing treatment, the molding density and the sintering density by the molding pressure, and the microstructure of the sintered body were examined. The results are shown in FIGS. 4 to 6 as the results of the sintering characteristic test.

図4はアトリッションミーリング回数及びミーリング後の球状化処理による粉末の見かけ密度を示したグラフである。図4に示したように、UO2粉末にGd2O3粉末を8重量%添加して予備混合する際、粉末粒子の平均寸法は4.7μmであるが連続型アトリッションミルにおいて5回混合粉砕した後の混合粉末の粒子寸法は3.7μmとして、混合粉砕性が向上することがわかる。即ち、本発明法によると、連続型アトリッションミルのミーリング回数及び球状化処理により粉末の見かけ密度は増加することがわかり、これにより粉末の流動性が増大して予備成形及び造粒工程を省略して直に成形体を製造できることがわかる。 FIG. 4 is a graph showing the number of attrition milling and the apparent density of the powder obtained by spheroidization after milling. As shown in Fig. 4, when 8% by weight of Gd 2 O 3 powder is added to UO 2 powder and premixed, the average size of the powder particles is 4.7μm, but mixed 5 times in a continuous attrition mill It can be seen that the mixed pulverization property is improved by setting the particle size of the mixed powder after pulverization to 3.7 μm. That is, according to the method of the present invention, it can be seen that the apparent density of the powder is increased by the number of milling times and the spheroidizing treatment of the continuous attrition mill, thereby increasing the fluidity of the powder and thereby performing the preforming and granulating steps. It can be seen that the molded body can be manufactured directly without the omission.

図5は夫々の連続型アトリッションミーリング回数(milling cycles)及び球状化処理を施した粉末に潤滑剤を0.3重量%添加混合した後、成形圧力(150MPa、300MPa)による成形密度(green density)、そしてかかる条件下で製造された成形体を乾気流の水素雰囲気下において1750℃で4時間焼結したペレットの焼結密度(sintered density)を示したものである。図5から分かるように、ミーリング回数が増加し成形圧力が増加すると成形密度は増加する一般的な傾向があらわれる。それに比して、焼結密度は成形密度が増加しても3回以上のミーリング回数においては飽和になる傾向をあらわす。即ち、低い成形圧力でも高い焼結密度を得られることがわかる。   Fig. 5 shows the green density by molding pressure (150MPa, 300MPa) after adding 0.3% by weight of lubricant to each continuous type milling cycles and spheroidized powder. 3 shows the sintered density of a pellet obtained by sintering a molded body manufactured under such conditions at 1750 ° C. for 4 hours in a dry air hydrogen atmosphere. As can be seen from FIG. 5, there is a general tendency for the molding density to increase as the number of milling increases and the molding pressure increases. In contrast, the sintered density tends to saturate after 3 or more milling cycles even if the molding density increases. That is, it can be seen that a high sintered density can be obtained even at a low molding pressure.

一方、図6は本発明の製造法により製造された(ミーリング回数:5)UO2-8wt%Gd2O3焼結体の微細組織写真として、図6.1は混合酸化物核燃料の均質度を、図6.2は結晶粒サイズを示す。図6.1から分かるように、一部に遊離UO2(白部分)があらわれるが、全体的に遊離UO2や遊離Gd2O3がほぼ無い均質な固溶体を形成することが分かり、微細亀裂もまた存在しないことが分かる。また、図6.2において、結晶粒サイズは約15μmと測定され、その寸法がほぼ均質なことが分かる。 On the other hand, FIG. 6 is a microstructure photograph of a UO 2 -8 wt% Gd 2 O 3 sintered body manufactured by the manufacturing method of the present invention (number of milling times: 5), and FIG. 6.1 shows the homogeneity of the mixed oxide nuclear fuel. Fig. 6.2 shows the grain size. As can be seen from Fig. 6.1, free UO 2 (white part) appears in part, but it turns out that a homogeneous solid solution almost free of free UO 2 and free Gd 2 O 3 is formed, and microcracks are formed. Is also absent. In FIG. 6.2, the crystal grain size is measured to be about 15 μm, and it can be seen that the dimensions are almost uniform.

Gd2O3添加UO2ペレットの製造工程図として、従来の製造工程を示した説明図である。As a production process diagram gd 2 O 3 added UO 2 pellets is an explanatory view showing a conventional manufacturing process. 本発明の製造工程である共粉砕後球状化(SACAM)工程を示した説明図である。It is explanatory drawing which showed the spheroidization after a co-grinding (SACAM) process which is a manufacturing process of this invention. V型混合方式の説明図である。It is explanatory drawing of a V-type mixing system. 円錐型混合方式の説明図である。It is explanatory drawing of a cone type mixing system. 本発明法に利用された一段多回通過方式を示す連続型アトリッションミル混合粉砕方式の説明図である。It is explanatory drawing of the continuous attrition mill mixing pulverization system which shows the one step multipass system utilized for this invention method. 本発明法に利用された多段一回通過方式を示す連続型アトリッションミル混合粉砕方式の説明図である。It is explanatory drawing of the continuous attrition mill mixing pulverization system which shows the multistage one-pass system utilized for this invention method. 本発明法に係る混合粉砕機のミーリング回数及び球状化処理に応じて変化する粉末の見かけ密度を示したグラフである。It is the graph which showed the apparent density of the powder which changes according to the frequency | count of milling and the spheroidization process of the mixing grinder which concerns on this invention method. 本発明法により製造された粉末の成形圧力に応じた成形密度と焼結密度との相関関係を示したグラフである。It is the graph which showed the correlation with the shaping | molding density according to the shaping | molding pressure of the powder manufactured by this invention method, and a sintered density. 本発明法により製造された(ミーリング回数:5回)UO2-8wt%Gd2O3の微細組織において混合酸化物核燃料の均質度を示す写真である。6 is a photograph showing the homogeneity of a mixed oxide nuclear fuel in a fine structure of UO 2 -8 wt% Gd 2 O 3 produced by the method of the present invention (number of milling times: 5 times). 本発明法により製造された(ミーリング回数:5回)UO2-8wt%Gd2O3の微細組織において混合酸化物核燃料の結晶粒サイズを示す写真である。6 is a photograph showing the crystal grain size of a mixed oxide nuclear fuel in a microstructure of UO 2 -8 wt% Gd 2 O 3 produced by the method of the present invention (number of milling times: 5 times).

Claims (6)

Gd2O3を添加したUO2ペレットの製造工程において、
UO2粉末に1〜10重量%のGd2O3粉末を円筒状容器が装填された混合機で該粉末自体の流動性のみ利用して予備的に混合する段階;
上記混合粉末を一段多回通過方式または多段1回通過方式の連続型アトリッションミル混合粉砕機に装入して混合粉砕する段階;
粉砕された粉末を混合機の円筒状容器に装入して該粉末粒子を球状化させる段階;及び、
上記球状化された粉末を用いて成形体を製造した後焼結する段階;
を含む共粉砕後球状化(SACAM)工程を利用したGd2O3添加UO2ペレットの製造方法。
In the manufacturing process of UO 2 pellets with Gd 2 O 3 added,
Preliminarily mixing UO 2 powder with 1 to 10% by weight of Gd 2 O 3 powder in a mixer equipped with a cylindrical container using only the fluidity of the powder itself;
Charging and mixing the mixed powder into a continuous attrition mill mixing and grinding machine of a single-stage multi-pass system or a multi-stage single-pass system;
Step to the milled powder the powder particles are charged into a cylindrical container of mixed-machine spheroidized; and,
Producing a molded body using the spheroidized powder and then sintering it;
A method for producing Gd 2 O 3 -added UO 2 pellets using a co-grinding spheroidization (SACAM) process including:
UO2粉末に2〜8重量%のGd2O3粉末を予備的に混合させることを特徴とする請求項1に記載のGd2O3添加UO2ペレットの製造方法。 2. The method for producing Gd 2 O 3 -added UO 2 pellets according to claim 1, wherein 2 to 8% by weight of Gd 2 O 3 powder is preliminarily mixed with the UO 2 powder. 上記アトリッションミル混合粉砕機に装入される混合粉末の量とボールの量とを混合粉砕機内容積の10〜30%と50〜70%とに夫々制御することを特徴とする請求項1に記載のGd2O3添加 UO2ペレットの製造方法。 To claim 1, characterized in that respectively control the 10 to 30 percent and 50% to 70% of the amount and the mixing pulverizer volume of the amount and the ball of the mixed powder to be charged into the Atorisshonmi Le mixed-crusher Gd 2 O 3 added UO 2 method for producing pellets according. 上記粉砕された粉末を上記混合機に装入する際、混合機内容積の30〜50%で装入することを特徴とする請求項1に記載のGd2O3添加UO2ペレットの製造方法。 2. The method for producing a Gd 2 O 3 -added UO 2 pellet according to claim 1, wherein when the pulverized powder is charged into the mixer, the powder is charged at 30 to 50% of the internal volume of the mixer. 上記成形体を1650〜1750℃の還元雰囲気において焼結することを特徴とする請求項1に記載のGd2O3添加UO2ペレットの製造方法。 2. The method for producing a Gd 2 O 3 added UO 2 pellet according to claim 1, wherein the molded body is sintered in a reducing atmosphere of 1650 to 1750 ° C. 上記連続型アトリッションミル混合粉砕機が、粉末の粒子サイズ及び混合状態の微細制御にしたがって、一台のアトリッションミル混合粉砕機でミーリング回数を変化させる一段多回通過方式または複数台のアトリッションミル混合粉砕機が順次直列に接続された多段一回通過方式に適応すべく構成されていることを特徴とする請求項1記載のGd2O3添加 UO2ペレットの製造方法。 The above-mentioned continuous attrition mill mixing and pulverizing machine is a one-stage multi-pass system in which the number of milling is changed by one attrition mill mixing and pulverizing machine in accordance with fine control of powder particle size and mixing state, or a plurality of units The method for producing a Gd 2 O 3 -added UO 2 pellet according to claim 1, wherein the attrition mill mixing and grinding machine is adapted to be adapted to a multi-stage single-pass system in which serially connected in series.
JP2004059913A 2003-04-28 2004-03-04 Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process Expired - Fee Related JP4007508B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030026831A KR100577469B1 (en) 2003-04-28 2003-04-28 Method for manufacturing UO2 pellet by adding Gd2O3

Publications (2)

Publication Number Publication Date
JP2004325437A JP2004325437A (en) 2004-11-18
JP4007508B2 true JP4007508B2 (en) 2007-11-14

Family

ID=33509587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059913A Expired - Fee Related JP4007508B2 (en) 2003-04-28 2004-03-04 Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process

Country Status (2)

Country Link
JP (1) JP4007508B2 (en)
KR (1) KR100577469B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364016C (en) * 2004-12-02 2008-01-23 中国核动力研究设计院 Material mixing process and device for preparing (U, Gd) 02 combustible poisonous core block
KR100793282B1 (en) * 2006-12-28 2008-01-10 한국원자력연구원 A dry preparation method of solid solution fuel powder with highly-concentrated burnable poison
CN107837761A (en) * 2016-09-20 2018-03-27 中核四〇四有限公司 A kind of MOX powder rolls spheronization process

Also Published As

Publication number Publication date
JP2004325437A (en) 2004-11-18
KR100577469B1 (en) 2006-05-10
KR20040095842A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
CN101197199B (en) Mehtod of preparation of sintering activity U308 powder and production method of nuclear fuel pellet by using U308 powder
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
CN107937716A (en) A kind of iron ore pellets raw materials for production preparation method for being conducive to efficient pelletizing
CN109467436A (en) A kind of boron carbide ceramics ball and preparation method thereof
CN111266162A (en) Preparation method of nano silicon powder
CN105924140A (en) Method for preparing high-pressure-resistance alumina grinding medium through roll forming
JPH01148994A (en) Manufacture of nuclear fuel pellet for mixed oxide (u,pu)o2 base
JP4007508B2 (en) Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process
CN108274011B (en) Preparation method of metal powder with bimodal distribution suitable for 3D printing
JP4191138B2 (en) Method for crushing ceramic powder, crushing mill used therefor, and method for producing highly dispersed slurry using crushed ceramic powder
CN112647004A (en) Preparation method of non-uniform structure sphere-like hard alloy
CN108329017B (en) Isometric spherical magnesium material, preparation method thereof and application thereof in producing dispersed magnesium air-permeable plug
EP0277708B1 (en) Pellet fabrication
JP2005294330A (en) Method of manufacturing ferrite magnet
JPH08333107A (en) Production of powder of titanium carbide nitride
CN114105134B (en) Matrix graphite powder for high-temperature gas cooled reactor fuel element and preparation method thereof
JPH09278534A (en) Production of ceramic granule
RU2253913C2 (en) Mode of receiving fuel pellets for heat-generating elements out of uranium dioxide
KR100424331B1 (en) Property control technique of the mixed oxide fuel pellet by the addition method of M3O8 scrap powder and the sintering process
CN115121353B (en) Mixing method
WO2022210214A1 (en) Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact
JPH0915365A (en) Manufacture of gd2o3-added uo2 pellet
JP7354783B2 (en) Method for manufacturing ceramic spherical bodies
JPH0681076A (en) Production of betafesi2
RU2199161C2 (en) Method for producing nuclear fuel pellets primarily for fast reactors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees