JP2006335229A - Vehicle with suppressed driving slip of wheel on split road surface - Google Patents

Vehicle with suppressed driving slip of wheel on split road surface Download PDF

Info

Publication number
JP2006335229A
JP2006335229A JP2005162826A JP2005162826A JP2006335229A JP 2006335229 A JP2006335229 A JP 2006335229A JP 2005162826 A JP2005162826 A JP 2005162826A JP 2005162826 A JP2005162826 A JP 2005162826A JP 2006335229 A JP2006335229 A JP 2006335229A
Authority
JP
Japan
Prior art keywords
wheel
friction coefficient
road surface
driving force
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005162826A
Other languages
Japanese (ja)
Other versions
JP4600161B2 (en
Inventor
Makoto Nomura
真 能村
Yuichi Mizuta
祐一 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005162826A priority Critical patent/JP4600161B2/en
Publication of JP2006335229A publication Critical patent/JP2006335229A/en
Application granted granted Critical
Publication of JP4600161B2 publication Critical patent/JP4600161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle capable of suppressing large slip of wheels on a side with low friction coefficient on a split road surface, which is caused by increase in ground contact load on a side with high friction coefficient, whereas the total of the product of grounding load and friction coefficient is increased thereby, but the radius of friction circle is further minimized on the side with low friction coefficient due to the low friction coefficient and the reduced ground contact load. <P>SOLUTION: Based on friction coefficients of the road surface to left wheels and right wheels, the ground contact load is distributed between the left wheels and the right wheels by a ground contact load distribution means, and a driving force is distributed between the left wheels and the right wheels by a driving force distribution means, whereby a steering means is steered in a direction of canceling a moment caused in the vehicle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車等の4輪またはそれ以上の複数輪にて一般の路面を走行する車輌に係る。   The present invention relates to a vehicle traveling on a general road surface with four or more wheels such as an automobile.

路面と車輪の間に伝達可能な路面に沿う方向の力は、車輪を路面に対し押し付ける力(接地荷重)に路面と車輪の間の摩擦係数を乗じた値により制限され、この値を半径として路面と車輪の接触点の回りに描かれたほぼ円形をなす輪郭形状が「摩擦円」と称されており、その半径の大きさは該半径に沿う方向に得られる路面と車輪の間の伝達力の最大値を示す。   The force in the direction along the road surface that can be transmitted between the road surface and the wheel is limited by the force that pushes the wheel against the road surface (ground load) multiplied by the coefficient of friction between the road surface and the wheel. An almost circular contour shape drawn around the contact point between the road surface and the wheel is called a “friction circle”, and the size of the radius is the transmission between the road surface and the wheel obtained in the direction along the radius. Indicates the maximum force.

ところで、自動車等の4輪またはそれ以上の複数輪が左右に分かれて配置され、一般の路面を走行する自動車等の車輌に於いては、路面の状況に応じて左輪と右輪に対する路面の摩擦係数が異なることが起こる。そのように左輪と右輪に対し異なる摩擦係数を呈する路面は、スプリット路面と称されている。車輪に対する路面の摩擦係数が下がれば、同じ接地荷重の下でも摩擦円の半径は小さくなり、車輪の駆動力の最大値が低下する。   By the way, four or more wheels such as automobiles are arranged separately on the left and right, and in a vehicle such as an automobile traveling on a general road surface, the friction of the road surface against the left wheel and the right wheel according to the road surface condition. It happens that the coefficients are different. Such a road surface exhibiting a different friction coefficient with respect to the left wheel and the right wheel is called a split road surface. If the friction coefficient of the road surface with respect to the wheels decreases, the radius of the friction circle decreases even under the same ground load, and the maximum value of the driving force of the wheels decreases.

左右の車輪の接地荷重は、その合計が車体重量に対応し、一方の側に於ける車輪の接地荷重が増大されれば他方の側に於ける車輪の接地荷重はその分減小するが、左右の車輪に於ける接地荷重と摩擦係数の積についてみれば、摩擦係数の高い側の接地荷重を大きくした方が左右輪に於ける接地荷重と摩擦係数の積の合計は大きくなるので、スプリット路面に於いてアクティブサスペンションを作動させて路面の摩擦係数の高い側の接地荷重を増大させることが下記の特許文献1に記載されている。また下記の特許文献2には、前後左右の各車輪の接地荷重を変更する制御手段を有し、何れか一方の組の対角輪の各接地荷重と他方の組の対角輪の各接地荷重とを互いに反対の増減方向に変更し、且つ各対角輪での各接地荷重を同じ増減方向で変更することが可能な車輌に於いて、制動時に左右輪が接地している路面の摩擦係数を推定し、高摩擦係数側前輪と低摩擦係数側後輪の接地荷重を増加させ、低摩擦係数側前輪と高摩擦係数側後輪の接地荷重を減小させることが記載されている。
特開平3-109115 特開2004-66996
The ground contact load of the left and right wheels corresponds to the weight of the vehicle body, and if the ground contact load of the wheel on one side is increased, the ground load of the wheel on the other side is reduced accordingly. If you look at the product of the contact load and the friction coefficient on the left and right wheels, the sum of the product of the contact load and the friction coefficient on the left and right wheels will increase when the contact load on the side with the higher friction coefficient is increased. Patent Document 1 below describes that an active suspension is operated on a road surface to increase a ground contact load on a road surface having a higher coefficient of friction. Further, the following Patent Document 2 has a control means for changing the grounding load of each of the front, rear, left and right wheels, and each grounding load of one of the diagonal wheels and each grounding of the other pair of diagonal wheels. Friction of the road surface where the left and right wheels are grounded during braking in a vehicle in which the load can be changed in the opposite direction of increase and decrease and the ground contact load on each diagonal wheel can be changed in the same increase and decrease direction It is described that the coefficient is estimated, the ground load on the high friction coefficient side front wheel and the low friction coefficient side rear wheel is increased, and the ground load on the low friction coefficient side front wheel and the high friction coefficient side rear wheel is decreased.
JP-A-3-109115 JP2004-66996A

上記の通りスプリット路面上では摩擦係数の高い側の接地荷重を大きくした方が左右輪に於ける接地荷重と摩擦係数の積の合計は大きくなるが、このとき路面の摩擦係数の低い側では、低い摩擦係数と接地荷重の減小とが相俟って摩擦円の半径は一層小さくなり、摩擦係数の低い側にて車輪に大きな滑りが生じる虞れがある。   As described above, on the split road surface, increasing the contact load on the side with the higher friction coefficient increases the sum of the product of the contact load and the friction coefficient on the left and right wheels, but at this time, on the side with the lower friction coefficient on the road surface, A combination of the low friction coefficient and the reduction of the ground contact load may further reduce the radius of the friction circle, which may cause a large slip on the wheel on the low friction coefficient side.

本発明は、上記の事情に着目し、車輪の滑りを抑制しつつ自動車等の車輌のスプリット路面上での駆動能力を高める車輌を提供することを課題としている。   This invention pays attention to said situation, and makes it a subject to provide the vehicle which improves the drive capability on the split road surfaces of vehicles, such as a motor vehicle, suppressing the slip of a wheel.

上記の課題を解決するものとして、本発明は、左輪と右輪に対する路面の摩擦係数を個別に検出する摩擦係数検出手段と、左輪と右輪の間で接地荷重を配分する接地荷重配分手段と、左輪と右輪の間で駆動力を配分する駆動力配分手段と、操舵手段とを備え、前記摩擦係数検出手段により検出された左輪と右輪に対する路面の摩擦係数に基づいて前記接地荷重配分手段により左輪と右輪の間で接地荷重を配分すると共に前記駆動力配分手段により左輪と右輪の間で駆動力を配分し且つそれによって車輌に生じるモーメントを打ち消す方向に前記操舵手段が操舵されるようになっていることを特徴とする車輌を提案するものである。   In order to solve the above problems, the present invention includes a friction coefficient detection unit that individually detects a friction coefficient of a road surface with respect to the left wheel and the right wheel, and a ground load distribution unit that distributes a ground load between the left wheel and the right wheel. Driving force distribution means for distributing drive force between the left wheel and the right wheel, and steering means, and the contact load distribution based on the friction coefficient of the road surface with respect to the left wheel and the right wheel detected by the friction coefficient detection means The steering means is steered in such a direction that the grounding load is distributed between the left wheel and the right wheel by the means, and the driving force is distributed between the left wheel and the right wheel by the driving force distribution means, thereby canceling the moment generated in the vehicle. The present invention proposes a vehicle that is characterized by the above.

前記接地荷重配分手段はアクティブサスペンションまたはアクティブスタビライザの少なくとも一つを含むものであってよい。   The ground load distribution means may include at least one of an active suspension or an active stabilizer.

前記駆動力配分手段は左輪と右輪の間に作用する差動手段と該差動手段の差動作用を制限する差動制限手段とを含んでいてよい。   The driving force distribution means may include differential means acting between the left wheel and the right wheel, and differential limiting means for restricting the differential action of the differential means.

左輪と右輪に対する路面の摩擦係数に基づく前記接地荷重配分手段による左輪と右輪の間の接地荷重の配分と前記駆動力配分手段による左輪と右輪の間の駆動力の配分とは、車輪に対する路面の摩擦係数が低い側にて車輪駆動力が接地荷重と摩擦係数の積を越えなくなるまで行われてよい。   The distribution of the ground load between the left wheel and the right wheel by the ground load distribution means based on the friction coefficient of the road surface with respect to the left wheel and the right wheel and the distribution of the driving force between the left wheel and the right wheel by the driving force distribution means are wheels. May be performed until the wheel driving force does not exceed the product of the ground load and the friction coefficient on the side where the friction coefficient of the road surface is low.

車輌が、左輪と右輪に対する路面の摩擦係数を個別に検出する摩擦係数検出手段と、左輪と右輪の間で接地荷重を配分する接地荷重配分手段と、左輪と右輪の間で駆動力を配分する駆動力配分手段と、操舵手段とを備え、前記摩擦係数検出手段により検出された左輪と右輪に対する路面の摩擦係数に基づいて前記接地荷重配分手段により左輪と右輪の間で接地荷重を配分すると共に前記駆動力配分手段により左輪と右輪の間で駆動力を配分し且つそれによって車輌に生じるモーメントを打ち消す方向に前記操舵手段が操舵されるようになっていれば、スプリット路面上に於いて摩擦係数の高い側の車輪に接地荷重をより多く配分することにより摩擦係数が高い側に於ける摩擦円の半径と摩擦係数が低い側に於ける摩擦円の半径との間に大きな差が生じても、それに対応して車輪駆動力にも摩擦円が大きい側にて摩擦円が小さい側より駆動力が大きくなるよう差をつけられるので、摩擦円が小さくなった側にても車輪に滑りが生ずることを抑制することができ、またそれによって車輌にモーメントが生じても操舵手段の操舵によりこれを打ち消すことができる。   The vehicle has a friction coefficient detecting means for individually detecting a friction coefficient of the road surface with respect to the left wheel and the right wheel, a ground load distributing means for distributing a ground load between the left wheel and the right wheel, and a driving force between the left wheel and the right wheel. A driving force distribution means for distributing the power and a steering means, and the grounding load distribution means makes contact between the left wheel and the right wheel based on the friction coefficient of the road surface with respect to the left wheel and the right wheel detected by the friction coefficient detection means. If the steering means is steered in such a direction that the load is distributed and the driving force is distributed between the left wheel and the right wheel by the driving force distributing means and the moment generated in the vehicle is thereby canceled, the split road surface By allocating more contact load to the wheel with the higher friction coefficient, the friction circle radius on the higher friction coefficient side and the friction circle radius on the lower friction coefficient side big Even if the friction circle occurs, the wheel driving force can be differentiated so that the driving force is larger on the side where the friction circle is larger than on the side where the friction circle is smaller. Thus, even if a moment is generated in the vehicle, this can be canceled by the steering of the steering means.

前記接地荷重配分手段がアクティブサスペンションまたはアクティブスタビライザの少なくとも一つを含むものとされれば、左右輪間の接地荷重の配分を迅速に変化させることができ、車輌のスプリット路面への進入およびスプリット路面からの脱出並びにスプリット路面に沿った摩擦係数の変化に遅れ無く追従して左右輪間の接地荷重の配分を制御することができる。   If the ground load distribution means includes at least one of an active suspension or an active stabilizer, the distribution of the ground load between the left and right wheels can be quickly changed, and the vehicle enters the split road surface and the split road surface. The distribution of the ground load between the left and right wheels can be controlled by following the escape from the vehicle and the change in the friction coefficient along the split road surface without delay.

前記駆動力配分手段が左輪と右輪の間に作用する差動手段と該差動手段の差動作用を制限する差動制限手段とを含んでいれば、接地荷重配分手段による左右輪間の接地荷重の配分に応じて左右輪間の駆動力配分を的確に行うことができる。   If the driving force distribution means includes differential means acting between the left wheel and the right wheel and differential limiting means for restricting the differential action of the differential means, the ground load distribution means between the left and right wheels The driving force distribution between the left and right wheels can be accurately performed according to the distribution of the ground load.

左輪と右輪に対する路面の摩擦係数に基づく接地荷重配分手段による左輪と右輪の間の接地荷重の配分と駆動力配分手段による左輪と右輪の間の駆動力の配分とを、車輪に対する路面の摩擦係数が低い側にて車輪駆動力が接地荷重と摩擦係数の積を越えなくなるまで行うことにより、上記の如きスプリット路面対応制御の中止時期を的確に定めることができる、   The distribution of the contact load between the left wheel and the right wheel by the contact load distribution means based on the friction coefficient of the road surface with respect to the left wheel and the right wheel and the distribution of the driving force between the left wheel and the right wheel by the drive force distribution means By performing until the wheel driving force does not exceed the product of the ground load and the friction coefficient on the low friction coefficient side, it is possible to accurately determine the stop timing of the split road surface control as described above.

添付の図1は、本発明による車輌の本発明に係る機能的構成を解図的に示す概略図である。図に於いて、10FL,10FR,10RL,10RRは4輪車の左前輪、右前輪、左後輪、右後輪であり、それぞれ図には示されていない車体よりアクティブサスペンション12FL,12FR,12RL,12RRにより懸架されている。左前輪10FLと右前輪10FRの間には前輪側アクティブスタビライザ14Fが装備されており、また左後輪10RLと右後輪10RRの間には後輪側アクティブスタビライザ14Rが装備されている。左前輪10FLおよび右前輪10FRは、左右のキングピン16L,16R、左右のナックルアーム18L,18R、操舵用タイロッド20、ステアリングギア22、ステアリングホイール24等よりなる操舵装置26により操舵されるようになっている。   FIG. 1 attached herewith is a schematic diagram schematically illustrating a functional configuration according to the present invention of a vehicle according to the present invention. In the figure, 10FL, 10FR, 10RL, and 10RR are the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel of the four-wheeled vehicle, and the active suspensions 12FL, 12FR, and 12RL are respectively shown from the vehicle body not shown in the figure. , 12RR. A front wheel side active stabilizer 14F is provided between the left front wheel 10FL and the right front wheel 10FR, and a rear wheel side active stabilizer 14R is provided between the left rear wheel 10RL and the right rear wheel 10RR. The left front wheel 10FL and the right front wheel 10FR are steered by a steering device 26 including left and right king pins 16L and 16R, left and right knuckle arms 18L and 18R, a steering tie rod 20, a steering gear 22, a steering wheel 24, and the like. Yes.

図示の車輌は4輪駆動車であり、前輪10FLおよび10FRは前輪用差動歯車装置28を経て、また後輪10RLおよび10RRは後輪用差動歯車装置30を経て、図には示されていない内燃機関より図には示されていない変速装置を経て駆動されるようになっている。   The illustrated vehicle is a four-wheel drive vehicle, front wheels 10FL and 10FR are passed through a front wheel differential gear device 28, and rear wheels 10RL and 10RR are passed through a rear wheel differential gear device 30 and are shown in the figure. It is driven by a non-internal combustion engine through a transmission not shown in the figure.

32はマイクロコンピュータを組み込んだ車輌の電気式制御装置(ECU)であり、図には電気式制御装置により機能的に提供される本発明に係る演算手段や制御手段が解図的に示されている。   Reference numeral 32 denotes an electric control device (ECU) for a vehicle incorporating a microcomputer. The figure shows an arithmetic means and a control means according to the present invention functionally provided by the electric control device. Yes.

その一つである目標ヨーレート算出手段34には、操舵センサ36より操舵角を示す信号、図には示されていない車速センサより車速を示す信号、図には示されていない横加速度センサより車輌に作用する横加速度を示す信号が供給されており、目標ヨーレート算出手段34は、これらの信号に基づいて目標ヨーレートγtを算出するようになっている。算出された目標ヨーレートγtは図には示されていないヨーレートセンサにより検出された実ヨーレートγと比較され、目標ヨーレートγtと実ヨーレートγの差がヨーレート偏差として左右の車輪に対する路面の摩擦係数μを算出する左右μ推定手段38へ供給されるようになっている。   One of the target yaw rate calculation means 34 is a signal indicating a steering angle from a steering sensor 36, a signal indicating a vehicle speed from a vehicle speed sensor not shown in the figure, and a vehicle from a lateral acceleration sensor not shown in the figure. The target yaw rate calculation means 34 calculates a target yaw rate γt based on these signals. The calculated target yaw rate γt is compared with the actual yaw rate γ detected by a yaw rate sensor not shown in the figure, and the difference between the target yaw rate γt and the actual yaw rate γ is used as the yaw rate deviation to determine the friction coefficient μ of the road surface with respect to the left and right wheels. The left and right μ estimation means 38 to be calculated is supplied.

左右μ推定手段38には、その他に車速を示す信号、横加速度を示す信号、実ヨーレートを示す信号、左右の前輪および後輪の加速度を示す信号が供給されている。尚、車輌が後輪または前輪の2輪駆動であるときには、駆動されない前輪または後輪に対する加速度の検出は省略されてよい。左右μ推定手段38はこれらの信号に基づいて左輪に対する路面の摩擦係数μlおよび右輪に対する路面の摩擦係数μrを推定算出するようになっている。算出された左輪および右輪に対する路面の摩擦係数μlおよびμrは横滑り角推定手段40に供給されと共に、アクティブサスペンション制御手段42、アクティブスタビライザ制御手段44、操舵装置制御手段46、差動装置制御手段48へ供給される。   In addition, the left and right μ estimating means 38 are supplied with a signal indicating the vehicle speed, a signal indicating the lateral acceleration, a signal indicating the actual yaw rate, and a signal indicating the acceleration of the left and right front wheels and the rear wheels. When the vehicle is a two-wheel drive of the rear wheel or the front wheel, detection of acceleration for the front wheel or the rear wheel that is not driven may be omitted. The left and right μ estimation means 38 estimates and calculates the road surface friction coefficient μl for the left wheel and the road surface friction coefficient μr for the right wheel based on these signals. The calculated friction coefficients μl and μr of the road surface with respect to the left wheel and the right wheel are supplied to the side slip angle estimating means 40, and also active suspension control means 42, active stabilizer control means 44, steering device control means 46, and differential device control means 48. Supplied to.

横滑り角推定手段40には、その他に操舵角を示す信号、車速を示す信号、横加速度を示す信号、ヨーレート偏差を示す信号、実ヨーレートを示す信号、各車輪の加速度を示す信号が供給されている。横滑り角推定手段40はこれらの信号に基づいて横滑り角を推定算出し、算出された横滑り角を示す信号はアクティブサスペンション制御手段42、アクティブスタビライザ制御手段44、操舵装置制御手段46、差動装置制御手段48へ供給される。   In addition, the side slip angle estimating means 40 is supplied with a signal indicating the steering angle, a signal indicating the vehicle speed, a signal indicating the lateral acceleration, a signal indicating the yaw rate deviation, a signal indicating the actual yaw rate, and a signal indicating the acceleration of each wheel. Yes. The side slip angle estimating means 40 estimates and calculates the side slip angle based on these signals, and the signals indicating the calculated side slip angle are the active suspension control means 42, the active stabilizer control means 44, the steering device control means 46, and the differential device control. Supplied to means 48.

アクティブサスペンション制御手段42、アクティブスタビライザ制御手段44、操舵装置制御手段46、差動装置制御手段48は、それぞれ供給された左輪および右輪に対する路面の摩擦係数μlおよびμr、横滑り角を示す信号、各車輪の加速度を示す信号に基づいてアクティブサスペンション12FL,12FR,12RL,12RR、前輪側アクティブスタビライザ14Fおよび後輪側アクティブスタビライザ14R、操舵装置26、差動装置28および30を制御する。   The active suspension control means 42, the active stabilizer control means 44, the steering device control means 46, and the differential control means 48 are respectively supplied with the friction coefficient μl and μr of the road surface for the left wheel and the right wheel, signals indicating the sideslip angle, The active suspensions 12FL, 12FR, 12RL, and 12RR, the front wheel side active stabilizer 14F and the rear wheel side active stabilizer 14R, the steering device 26, and the differential devices 28 and 30 are controlled based on a signal indicating the acceleration of the wheel.

図2は、車輌のスプリット路面走行に対し本発明の車輌に於いて行われる車輪の駆動滑り抑制制御をその一つの実施の形態について示すフローチャートである。このフローチャートは駆動輪である一対の前輪または後輪に対する制御として示されている。前輪および後輪が共に駆動される4輪駆動の場合には、図示の如き一連の制御を一対の前輪と一対の後輪に対し交互に実施すればよい。かかるフローチャートに沿う制御は数10〜数100ミリセカンドの周期にて繰り返されるようになっていてよい。   FIG. 2 is a flowchart showing one embodiment of the wheel drive slip suppression control performed in the vehicle of the present invention for the split road surface traveling of the vehicle. This flowchart is shown as control for a pair of front wheels or rear wheels as drive wheels. In the case of four-wheel drive in which both the front wheels and the rear wheels are driven, a series of controls as shown in the figure may be performed alternately on the pair of front wheels and the pair of rear wheels. Control along such a flowchart may be repeated in a cycle of several tens to several hundreds of milliseconds.

制御が開始されると、ステップ10に於いて、図1に於ける左右μ推定手段38の如き手段により左輪および右輪に対する路面の摩擦係数μlおよびμrが推定算出される。次いで制御はステップ20へ進み、左輪に対する摩擦係数μlが右輪に対する摩擦係数μrより或る適当な偏差Δμ以上大きいか否かが判断される。答がイエス(Y)であることは、路面が本発明による制御の対象となる程度以上のスプリット路面であって、右輪に対する路面の摩擦係数が左輪に対するそれより低い状態にあることを示す。このとき制御はステップ30へ進み、右側駆動輪の駆動力Fdrが右輪に対する摩擦係数μrと右側駆動輪の接地荷重Wrの積より大きいか否か、即ち、右側駆動輪の駆動力Fdrが右側駆動輪に対する摩擦円を越えているか否かが判断される。答がノー(N)であれば、路面の摩擦係数が低い右輪側に於いても、車輪駆動による滑りが生ずることはないので、この回の制御はこれにて終了する。   When the control is started, in step 10, the friction coefficients μl and μr of the road surface with respect to the left wheel and the right wheel are estimated and calculated by means such as the left and right μ estimating means 38 in FIG. Control then proceeds to step 20 where it is determined whether the friction coefficient μl for the left wheel is greater than a suitable deviation Δμ over the friction coefficient μr for the right wheel. If the answer is yes (Y), it indicates that the road surface is a split road surface that is equal to or greater than the control target according to the present invention, and the friction coefficient of the road surface with respect to the right wheel is lower than that with respect to the left wheel. At this time, the control proceeds to step 30, and whether or not the driving force Fdr of the right driving wheel is larger than the product of the friction coefficient μr for the right wheel and the ground load Wr of the right driving wheel, that is, the driving force Fdr of the right driving wheel is It is determined whether the friction circle for the drive wheel is exceeded. If the answer is no (N), no slip occurs due to wheel driving even on the right wheel side where the friction coefficient of the road surface is low, so this control is finished.

ステップ30の答がイエスであれば、制御はステップ40へ進む。ステップ40に於いては、車輪の接地荷重を右輪側から左輪側へ移すための1サイクル当りの接地荷重変分ΔWが、一例として、左右の車輪に対する路面の摩擦係数μlとμrの差の関数fw(μl−μr)として算出され、それに基づいて左輪の接地荷重目標値WlはΔWだけ増大され、右輪の接地荷重目標値WrはΔWだけ低減される。関数ΔW=fw(μl−μr)は,μl−μrとΔWの関係を示す適当なマップの形にて電気式制御装置32のマイクロコンピュータに記憶されていてよい。   If the answer to step 30 is yes, control proceeds to step 40. In step 40, the ground load variation ΔW per cycle for shifting the wheel ground load from the right wheel side to the left wheel side is, for example, the difference between the friction coefficient μl and μr of the road surface for the left and right wheels. Calculated as a function fw (μl−μr), based on this, the ground load target value Wl for the left wheel is increased by ΔW, and the ground load target value Wr for the right wheel is decreased by ΔW. The function ΔW = fw (μl−μr) may be stored in the microcomputer of the electric controller 32 in the form of an appropriate map showing the relationship between μl−μr and ΔW.

次いで制御はステップ50へ進み、車輪駆動力の配分を右輪側から左輪側へ移すための1サイクル当りの車輪駆動力変分ΔFdが、一例として、左右の車輪の接地加重WlとWrの差の関数fd(Wl−Wr)として算出され、それに基づいて左輪の駆動力目標値FdlはΔFdだけ増大され、右輪の駆動力目標値FdrはΔFdだけ低減される。関数ΔFd=fd(Wl−Wr)もまた,Wl−WrとΔFdの関係を示す適当なマップの形にて電気式制御装置32のマイクロコンピュータに記憶されていてよい。   Next, the control proceeds to step 50, where the wheel driving force variation ΔFd per cycle for shifting the wheel driving force distribution from the right wheel side to the left wheel side is, for example, the difference between the ground load Wl and Wr of the left and right wheels. The left wheel driving force target value Fdl is increased by ΔFd, and the right wheel driving force target value Fdr is decreased by ΔFd based on the calculated function fd (Wl−Wr). The function ΔFd = fd (W1−Wr) may also be stored in the microcomputer of the electric controller 32 in the form of an appropriate map showing the relationship between W1−Wr and ΔFd.

次いで制御はステップ60へ進み、車輪駆動力の配分が右輪から左輪へ移されたことにより車輌に作用するモーメント(主としてヨーモーメント)を打ち消すための操舵制御の操舵角変化の1サイクル当りの変分Δαが、一例として、左右の車輪に対する車輪駆動力FdlとFdrの差の関数fs(Fdl−Fdr)として算出される。関数Δα=fs(Fdl−Fdr)もまた、Fdl−FdrとΔαの関係を示す適当なマップの形にて電気式制御装置32のマイクロコンピュータに記憶されていてよい。   Next, the control proceeds to step 60, where the change in the steering angle of the steering control for canceling the moment (mainly the yaw moment) acting on the vehicle due to the shift of the wheel driving force distribution from the right wheel to the left wheel is changed per cycle. For example, the minute Δα is calculated as a function fs (Fdl−Fdr) of the difference between the wheel driving forces Fdl and Fdr for the left and right wheels. The function Δα = fs (Fdl−Fdr) may also be stored in the microcomputer of the electric controller 32 in the form of an appropriate map showing the relationship between Fdl−Fdr and Δα.

以上の制御目標値の算出に続き、ステップ70に於いて、上に算出されたWl,ΔWに基づき、左輪の接地荷重Wlのうち左輪アクティブサスペンションにより達成すべき分を左輪アクティブサスペンションにより達成するよう、左輪アクティブサスペンションがアクティブサスペンション制御手段42により制御され、またステップ80に於いて、上に算出されたWr,ΔWに基づき、右輪の接地荷重Wrのうち右輪アクティブサスペンションにより達成すべき分を右輪アクティブサスペンションにより達成するよう、右輪のアクティブサスペンションがアクティブサスペンション制御手段42により制御される。   Following the above calculation of the control target value, at step 70, the left wheel active suspension is used to achieve the amount to be achieved by the left wheel active suspension out of the left wheel ground load Wl based on the above calculated Wl and ΔW. The left wheel active suspension is controlled by the active suspension control means 42, and the amount to be achieved by the right wheel active suspension out of the right wheel ground load Wr is determined based on Wr and ΔW calculated above in step 80. The active suspension control means 42 controls the active suspension of the right wheel so that it can be achieved by the active suspension of the right wheel.

更に、ステップ90に於いて、上に算出されたWl,Wr、ΔWに基づき、左輪の接地荷重Wlおよび右輪の接地荷重Wrのうちアクティブスタビライザにより達成すべき分をアクティブスタビライザにより達成するよう、アクティブスタビライザがアクティブスタビライザ制御手段44により制御される。   Furthermore, in step 90, based on Wl, Wr, and ΔW calculated above, the amount to be achieved by the active stabilizer among the ground load Wl of the left wheel and the ground load Wr of the right wheel is achieved by the active stabilizer. The active stabilizer is controlled by the active stabilizer control means 44.

次いで、ステップ100に於いて、上に算出されたFdl,Fdr,ΔFdに基づき左右の車輪の車輪駆動力をそれぞれFdlおよびFdrとするよう差動装置制御手段48により差動装置28または30が制御される。これは、差動装置28または30に設けられている図には示されていない差動制限装置を作動させて差動装置の差動作用を適宜制限することにより達成される。尚、図示の実施の形態に於いては、左右輪間に於ける車輪駆動力の配分或は移転は左右輪間に設けられた差動装置とその差動を制限する差動制限装置により行われるようになっているが、左右輪間に於ける車輪駆動力の配分或は移転はトラクション制御装置を利用して行われてもよく、また各車輪を各電動機により個別に直接駆動するインホイールモータ式の車輌では、各車輪に対する電動機の出力制御によって行われてよい。   Next, in step 100, the differential device 28 or 30 is controlled by the differential device control means 48 so that the wheel driving forces of the left and right wheels are set to Fdl and Fdr, respectively, based on Fdl, Fdr and ΔFd calculated above. Is done. This is achieved by actuating a differential limiting device not shown in the figure provided in the differential device 28 or 30 to appropriately limit the differential action of the differential device. In the illustrated embodiment, the distribution or transfer of the wheel driving force between the left and right wheels is performed by a differential device provided between the left and right wheels and a differential limiting device for limiting the differential. However, the distribution or transfer of the wheel driving force between the left and right wheels may be performed using a traction control device, and each wheel is directly driven individually by each motor. In a motor-type vehicle, it may be performed by output control of an electric motor for each wheel.

更に、ステップ110に於いて、上に算出されたΔαに基づき操舵装置36が操舵装置制御手段46により1フローサイクル当り操舵角変分Δαだけ操舵される。   Further, in step 110, the steering device 36 is steered by the steering angle variation Δα per one flow cycle by the steering device control means 46 based on Δα calculated above.

以上の如きステップ40〜110によるスプリット路面対応制御により路面の摩擦係数が低い側より高い側への車輪接地荷重の移転と車輪駆動力の移転とが微小サイクルタイムにて微小制御量ずつ繰り返し行われるに当たって、後者の移転割合が前者の移転割合に対比して適当に大きくされていれば、やがてステップ30の答はイエスからノーに転じるので、ここでスプリット路面に対応した車輪接地荷重の移転と車輪駆動力の移転が中止されればよい。その後、車輌の走行に伴って車輌がスプリット路面外へ出れば、ステップ20の答はノーとなり、制御はステップ120へ進む。ステップ120に於いては、右輪に対する摩擦係数μrが左輪に対する摩擦係数μlより或る適当な偏差Δμ以上大きいか否かが判断される。車輌がスプリット路面外へ出たときには、ステップ120の答はノーであり、このとき制御はステップ130へ進み、スプリット対応制御は解除され、左輪のアクティブサスペンション、右輪のアクティブサスペンション、アクティブスタビライザ、差動装置、操舵装置の作動状態はスプリット対応制御開始前の元の状態にリセットされる。尚、始からステップ20の答もステップ120の答もノーであるときにも制御はステップ130へ進み、各装置はスプリット対応制御に関する限りリセットされた状態に留まる。   By the split road surface correspondence control in steps 40 to 110 as described above, the transfer of the wheel contact load and the transfer of the wheel driving force to the higher side than the lower friction coefficient of the road surface are repeatedly performed for each minute control amount at a minute cycle time. At this time, if the latter transfer ratio is appropriately increased compared to the former transfer ratio, the answer to step 30 will eventually turn from yes to no, so that the wheel ground load transfer corresponding to the split road surface and the wheel It suffices if the transfer of driving force is stopped. Thereafter, if the vehicle goes out of the split road surface as the vehicle travels, the answer to step 20 is no and the control proceeds to step 120. In step 120, it is determined whether or not the friction coefficient μr for the right wheel is greater than a certain appropriate deviation Δμ than the friction coefficient μl for the left wheel. When the vehicle goes out of the split road surface, the answer to step 120 is no. At this time, the control proceeds to step 130, the split correspondence control is canceled, the left wheel active suspension, the right wheel active suspension, the active stabilizer, the difference. The operating state of the moving device and the steering device is reset to the original state before the start of the split correspondence control. Even if the answer to step 20 and the answer to step 120 are no from the beginning, the control proceeds to step 130, and each device remains in a reset state as far as the split correspondence control is concerned.

車輌が本発明による制御の対象となる程度以上に左輪に対する路面の摩擦係数が右輪に対するそれより低い状態にあるスプリット路面上にさしかかると、制御がステップ120に至ったとき答がイエスとなる。このときには、左輪と右輪を反対にして、ステップ30〜110について上に説明した制御と同様の制御がステップ140〜220として行われる。その制御態様は、ステップ30〜110についての上の説明より明らかであると思われるので、ステップ140〜220についての同様の詳細な説明は、明細書の冗長化を避けるため省略する。   If the vehicle approaches a split road surface where the coefficient of friction of the road surface with respect to the left wheel is lower than that with respect to the right wheel, the answer is yes when the control reaches step 120. At this time, the left wheel and the right wheel are reversed, and control similar to the control described above for steps 30 to 110 is performed as steps 140 to 220. Since the control mode seems to be clear from the above description for steps 30-110, the same detailed description for steps 140-220 is omitted to avoid redundancy of the specification.

以上に於いては本発明を一つの実施の形態について詳細に説明したが、かかる実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。   While the present invention has been described in detail with respect to one embodiment thereof, it will be apparent to those skilled in the art that various modifications can be made within the scope of the present invention.

本発明による車輌の本発明に係る機能的構成を解図的に示す概略図。1 is a schematic diagram illustrating a functional configuration according to the present invention of a vehicle according to the present invention. 車輌のスプリット路面走行に対し本発明の車輌に於いて行われる車輪の駆動滑り抑制制御をその一つの実施の形態について示すフローチャート。The flowchart which shows the driving slip suppression control of the wheel performed in the vehicle of this invention with respect to the split road surface driving | running | working of the vehicle about the one embodiment.

符号の説明Explanation of symbols

10FL,10FR,10RL,10RR…左前輪、右前輪、左後輪、右後輪、12FL,12FR,12RL,12RR…アクティブサスペンション、14F,14R…アクティブスタビライザ、16L,16R…キングピン、18L,18R…ナックルアーム、20…操舵用タイロッド、22…ステアリングギア、24…ステアリングホイール、26…操舵装置、28…前輪用差動歯車装置、30…後輪用作動歯車装置、32…電気式制御装置(ECU)、34…目標ヨーレート算出手段、36…操舵センサ、38…左右μ推定手段、40…横滑り角推定手段、42…アクティブサスペンション制御手段、44…アクティブスタビライザ制御手段、46…操舵装置制御手段、46…差動装置制御手段   10FL, 10FR, 10RL, 10RR ... Left front wheel, Right front wheel, Left rear wheel, Right rear wheel, 12FL, 12FR, 12RL, 12RR ... Active suspension, 14F, 14R ... Active stabilizer, 16L, 16R ... King pin, 18L, 18R ... Knuckle arm, 20 ... Steering tie rod, 22 ... Steering gear, 24 ... Steering wheel, 26 ... Steering device, 28 ... Front wheel differential gear device, 30 ... Rear wheel operating gear device, 32 ... Electric control device (ECU) 34... Target yaw rate calculating means 36. Steering sensor 38... Right and left .mu. Estimating means 40 .. side slip angle estimating means 42... Active suspension control means 44... Active stabilizer control means 46. ... Differential device control means

Claims (4)

左輪と右輪に対する路面の摩擦係数を個別に検出する摩擦係数検出手段と、左輪と右輪の間で車輪の接地荷重を配分する接地荷重配分手段と、左輪と右輪の間で駆動力を配分する駆動力配分手段と、操舵手段とを備え、前記摩擦係数検出手段により検出された左輪と右輪に対する路面の摩擦係数に基づいて前記接地荷重配分手段により左輪と右輪の間で接地荷重を配分すると共に前記駆動力配分手段により左輪と右輪の間で駆動力を配分し且つそれによって車輌に生じるモーメントを打ち消す方向に前記操舵手段が操舵されるようになっていることを特徴とする車輌。   Friction coefficient detection means for individually detecting the friction coefficient of the road surface with respect to the left wheel and the right wheel, contact load distribution means for distributing the wheel contact load between the left wheel and the right wheel, and driving force between the left wheel and the right wheel A driving force distribution means for distributing, and a steering means, and a ground load between the left wheel and the right wheel by the ground load distribution means based on a friction coefficient of a road surface with respect to the left wheel and the right wheel detected by the friction coefficient detection means. And the steering means is steered in such a direction that the driving force is distributed between the left wheel and the right wheel by the driving force distribution means and thereby cancels out the moment generated in the vehicle. Vehicle. 前記接地荷重配分手段はアクティブサスペンションまたはアクティブスタビライザの少なくとも一つを含むことを特徴とする請求項1に記載の車輌。   The vehicle according to claim 1, wherein the ground load distribution means includes at least one of an active suspension or an active stabilizer. 前記駆動力配分手段は左輪と右輪の間に作用する差動手段と該差動手段の差動作用を制限する差動制限手段とを含んでいることを特徴とする請求項1または2に記載の車輌。   3. The driving force distribution means includes differential means acting between a left wheel and a right wheel, and differential limiting means for restricting the differential action of the differential means. The listed vehicle. 左輪と右輪に対する路面の摩擦係数に基づく前記接地荷重配分手段による左輪と右輪の間の接地荷重の配分と前記駆動力配分手段による左輪と右輪の間の駆動力の配分とは、車輪に対する路面の摩擦係数が低い側にて車輪駆動力が接地荷重と摩擦係数の積を越えなくなるまで行われるようになっていることを特徴とする請求項1〜3のいずれかに記載の車輌。
The distribution of the ground load between the left wheel and the right wheel by the ground load distribution means based on the friction coefficient of the road surface with respect to the left wheel and the right wheel, and the distribution of the driving force between the left wheel and the right wheel by the driving force distribution means are: The vehicle according to any one of claims 1 to 3, wherein the vehicle is driven until the wheel driving force does not exceed the product of the ground load and the friction coefficient on the side where the friction coefficient of the road surface is low.
JP2005162826A 2005-06-02 2005-06-02 Vehicle that suppresses driving slip of wheels on split road surface Expired - Fee Related JP4600161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162826A JP4600161B2 (en) 2005-06-02 2005-06-02 Vehicle that suppresses driving slip of wheels on split road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162826A JP4600161B2 (en) 2005-06-02 2005-06-02 Vehicle that suppresses driving slip of wheels on split road surface

Publications (2)

Publication Number Publication Date
JP2006335229A true JP2006335229A (en) 2006-12-14
JP4600161B2 JP4600161B2 (en) 2010-12-15

Family

ID=37556140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162826A Expired - Fee Related JP4600161B2 (en) 2005-06-02 2005-06-02 Vehicle that suppresses driving slip of wheels on split road surface

Country Status (1)

Country Link
JP (1) JP4600161B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195386A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Vehicle control device
JP2010195385A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Vehicle with low fuel consumption
WO2013183349A1 (en) * 2012-06-06 2013-12-12 日産自動車株式会社 Vehicle control device and vehicle control method
JP2016050633A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Vehicle control unit
KR20170098438A (en) * 2016-02-22 2017-08-30 현대자동차주식회사 Apparatus and method for suspension system control of asymmetric road
JP7398906B2 (en) 2019-09-10 2023-12-15 株式会社Subaru Vehicle control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172070A (en) * 1987-12-26 1989-07-06 Nippon Denso Co Ltd Auxiliary steering device for car
JPH03109115A (en) * 1989-09-20 1991-05-09 Mazda Motor Corp Comprehensive controller for vehicle
JPH0516690A (en) * 1991-07-18 1993-01-26 Honda Motor Co Ltd Torque controller for driving wheel of vehicle
JPH0550940A (en) * 1991-08-26 1993-03-02 Fuji Heavy Ind Ltd Steering control method of vehicle provided with differential limiting device
JP2004175192A (en) * 2002-11-26 2004-06-24 Toyota Motor Corp Steering control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172070A (en) * 1987-12-26 1989-07-06 Nippon Denso Co Ltd Auxiliary steering device for car
JPH03109115A (en) * 1989-09-20 1991-05-09 Mazda Motor Corp Comprehensive controller for vehicle
JPH0516690A (en) * 1991-07-18 1993-01-26 Honda Motor Co Ltd Torque controller for driving wheel of vehicle
JPH0550940A (en) * 1991-08-26 1993-03-02 Fuji Heavy Ind Ltd Steering control method of vehicle provided with differential limiting device
JP2004175192A (en) * 2002-11-26 2004-06-24 Toyota Motor Corp Steering control device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195386A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Vehicle control device
JP2010195385A (en) * 2009-01-30 2010-09-09 Equos Research Co Ltd Vehicle with low fuel consumption
WO2013183349A1 (en) * 2012-06-06 2013-12-12 日産自動車株式会社 Vehicle control device and vehicle control method
JP2016050633A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Vehicle control unit
KR20170098438A (en) * 2016-02-22 2017-08-30 현대자동차주식회사 Apparatus and method for suspension system control of asymmetric road
KR102347655B1 (en) 2016-02-22 2022-01-05 현대자동차주식회사 Apparatus and method for suspension system control of asymmetric road
JP7398906B2 (en) 2019-09-10 2023-12-15 株式会社Subaru Vehicle control device

Also Published As

Publication number Publication date
JP4600161B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
EP1418104B1 (en) Vehicle braking control device
JP4821490B2 (en) Driving control device and driving control method during straight braking of vehicle
CN104417564B (en) Vehicle behavior control device
JP2009051369A (en) Behavior control device of vehicle
JP2008126889A (en) Vehicle steering angle control device
KR20120126071A (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
JP2002114140A (en) Vehicular rolling behavior control system
JP4600161B2 (en) Vehicle that suppresses driving slip of wheels on split road surface
JPH10138785A (en) Yaw moment control device for vehicle
JP2007131297A (en) Vehicle suppressing os or us with different means by stages
JP4193706B2 (en) Road surface friction coefficient detector
US11325599B2 (en) Vehicle control system for adjusting longtitudinal motion to reduce deviation of lateral motion
KR20210071133A (en) Electronic stability control method for vehicle
JP2010241430A (en) Vehicle integration controller
JP5333245B2 (en) Vehicle behavior control device
JP4412476B2 (en) Travel control device for a four-wheel independent drive vehicle
JP2016141221A (en) Vehicle traveling control device
JP4442092B2 (en) Vehicle motion control device
JP4379039B2 (en) Vehicle motion control device
JP3817922B2 (en) Vehicle motion control device
JPH08142841A (en) Vehicle stability control device
JPH0569845A (en) Vehicle turning limit judging device
JP4353011B2 (en) Vehicle steering control device
JP4685407B2 (en) Vehicle behavior control device
JPH08244588A (en) Stability control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees