JPH01172070A - Auxiliary steering device for car - Google Patents

Auxiliary steering device for car

Info

Publication number
JPH01172070A
JPH01172070A JP33103387A JP33103387A JPH01172070A JP H01172070 A JPH01172070 A JP H01172070A JP 33103387 A JP33103387 A JP 33103387A JP 33103387 A JP33103387 A JP 33103387A JP H01172070 A JPH01172070 A JP H01172070A
Authority
JP
Japan
Prior art keywords
brake pressure
wheels
solenoid valve
steering angle
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33103387A
Other languages
Japanese (ja)
Other versions
JP2596030B2 (en
Inventor
Shinji Hiraiwa
平岩 伸次
Tetsushi Haseda
長谷田 哲志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62331033A priority Critical patent/JP2596030B2/en
Priority to DE3826982A priority patent/DE3826982C2/en
Publication of JPH01172070A publication Critical patent/JPH01172070A/en
Priority to US07/569,579 priority patent/US5089967A/en
Application granted granted Critical
Publication of JP2596030B2 publication Critical patent/JP2596030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1764Regulation during travel on surface with different coefficients of friction, e.g. between left and right sides, mu-split or between front and rear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • B60T2260/024Yawing moment compensation during mu-split braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To enhance the safety in braking a car equipped with an anti-skid system by steering the rear wheels in a minute angle when control is made on a crossover road with different coefficients of friction of the left and right grounding wheels with the road surface. CONSTITUTION:The left and right wheel speeds at the front and rear of a car are sensed by sensors S1-S4. The brake pressure applied to each wheel is controlled by a solenoid valve A1. When brakes are applied, this solenoid valve A1 is controlled by a brake pressure control means U1 on the basis of detection signals given by the sensors S1-S4. On the other hand, the brake pressure presumed values on the left and right wheels are calculated by a presuming means U2 on the basis of signals controlling the solenoid valve A1. The correctional steering angle is calculated by a steering angle calculating means U3 on the basis of the difference between the brake pressure presumed values on the left and light wheels. According to the correctional steering angle the rear wheels are steered by a rear wheel steering means A2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アンチスキッドシステム搭載車両において制
動時の車両進路を補正する補助操舵装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an auxiliary steering device for correcting a vehicle course during braking in a vehicle equipped with an anti-skid system.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭58−164460号公報に示され
るように、左右の各車輪の回転速度を検出して、左右輪
のブレーキ圧を制御してスキッドを防止するアンチスキ
ッドシステム搭載車両において、急制動時等のアンチス
キッド制御時には、左右輪の接地する路面の摩擦係数μ
の違いにより、左右輪にかかるブレーキ圧が異なってく
る。これは路面μの低い(低μ路)側の車輪はロックし
やすいためブレーキ圧を下げて車輪を転動させてロック
を防ぐためである。逆に路面のμの高い(高μ路)側車
輪は低μ路側に比べ車輪ロックが発生しにくいため低μ
路側車輪より高いブレーキ圧で制御されている。
Conventionally, as shown in Japanese Patent Application Laid-Open No. 58-164460, vehicles equipped with an anti-skid system detect the rotational speed of each left and right wheel and control the brake pressure of the left and right wheels to prevent skidding. During anti-skid control such as during braking, the coefficient of friction μ of the road surface that the left and right wheels touch is
Due to this difference, the brake pressure applied to the left and right wheels will be different. This is because the wheels on the side with a low road surface μ (low μ road) tend to lock, so the brake pressure is lowered to allow the wheels to roll and prevent them from locking. Conversely, wheels on the side of the road with a high μ (high μ road) are less likely to lock up than those on the low μ road.
It is controlled with higher brake pressure than the roadside wheels.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

その結果、従来のアンチスキッドシステムでは左右輪の
接地する路面のμが異なる路面(いわゆるまたぎ路等)
で急制動した際、左右輪にブレーキ力差が生じ、ヨーモ
ーメントが発生して車両進路が高μ路側に偏向しやすい
という問題がある。
As a result, in conventional anti-skid systems, the left and right wheels contact the road surface with different μ (so-called straddling roads, etc.).
When braking suddenly, there is a difference in braking force between the left and right wheels, creating a yaw moment that tends to cause the vehicle's course to deviate toward a high-μ road.

そこで本発明は、アンチスキッドシステムを搭載した車
両が、左右輪の接地する路面のμが異なる路面(またぎ
路等)で急制動を行った場合においても、車両の進路を
偏向させることなく、安全に制動できるようにすること
を目的とするものである。
Therefore, the present invention aims to provide a safe system that does not deviate the course of the vehicle even when a vehicle equipped with an anti-skid system brakes suddenly on a road surface (straddle road, etc.) where the road surfaces on which the left and right wheels contact differ in μ. The purpose of this is to enable braking.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は第1図に示すよう
に車両の左右の車輪速度を検出する車輪速センサS1〜
S4と、 車輪に加わるブレーキ圧を制御する電磁弁AIと、 車両のブレーキ時に車輪速センサS1〜S4の検出信号
に基づいて、電磁弁A1を制御し、スキッドを防止する
ブレーキ圧制御手段U1と、電磁弁AIを制御する信号
に基づいて左右の車輪のブレーキ圧推定値を算出する推
定手段U2と、左右の車輪の前記ブレーキ圧推定値の差
から後輪の補正操舵角を算出する操舵角算出手段U3と
、補正操舵角に応じて後輪を操舵する後輪操舵手段A2
と を備えるという技術的手段を採用する。
In order to achieve the above object, the present invention provides wheel speed sensors S1 to S1 for detecting the left and right wheel speeds of a vehicle as shown in FIG.
S4, a solenoid valve AI that controls the brake pressure applied to the wheels, and a brake pressure control means U1 that controls the solenoid valve A1 to prevent skidding based on the detection signals of the wheel speed sensors S1 to S4 when braking the vehicle. , an estimating means U2 that calculates estimated brake pressure values for the left and right wheels based on a signal that controls the solenoid valve AI; and a steering angle that calculates a corrected steering angle for the rear wheels from the difference between the estimated brake pressure values for the left and right wheels. Calculation means U3 and rear wheel steering means A2 that steers the rear wheels according to the corrected steering angle
Adopt technical means to provide

〔作用〕[Effect]

本発明はまたぎ路で急制動した際、ブレーキ圧制御用電
磁弁の制御信号から左右輪のブレーキ圧を推定し、左右
輪のブレーキ圧推定値の差からまたぎ路であることを判
定し、これに基づいて後輪を微少角だけ操舵する。これ
により、左右輪の制動ノコ差によるヨーモーメントが打
ち消され、車両は進路が偏向することなく、安全に制動
される。
When suddenly braking on a straddling road, the present invention estimates the brake pressure of the left and right wheels from the control signal of the solenoid valve for brake pressure control, and determines that the road is a straddle road from the difference in the estimated brake pressure values of the left and right wheels. Based on this, the rear wheels are steered by a small angle. As a result, the yaw moment caused by the difference between the left and right wheels is canceled out, and the vehicle is braked safely without being deflected.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例につき説明する。 The present invention will be explained below with reference to embodiments shown in the drawings.

第2図に4輪アンチスキッドシステム用電子制御回路E
CUI及び後輪操舵システム用電子制御回路ECU2の
構成を示す。
Figure 2 shows the electronic control circuit E for the 4-wheel anti-skid system.
The configuration of the CUI and rear wheel steering system electronic control circuit ECU2 is shown.

回路ECU 1及びECU2はマイクロコンピュータシ
ステムで、それぞれCPU、  RoM、RAM、l1
0(入出力)ユニットを備えている。ECUIのI10
ユニットには、車両の車輪回転速度に比例した周波数の
パルス信号を発生ずる車輪速センサS1〜S4が接続さ
れている。ここで、センサS1は左前輪用、センサS2
は右前輪用、センサS3は左後輪用、センサS4は右後
輪用である。
Circuits ECU 1 and ECU 2 are microcomputer systems, each including a CPU, RoM, RAM, and l1.
Equipped with 0 (input/output) units. ECUI I10
Connected to the unit are wheel speed sensors S1 to S4 which generate pulse signals with a frequency proportional to the wheel rotation speed of the vehicle. Here, sensor S1 is for the left front wheel, and sensor S2 is for the left front wheel.
is for the right front wheel, sensor S3 is for the left rear wheel, and sensor S4 is for the right rear wheel.

ECUlのI10ユニットには、各車輪に加わるブレー
キ圧を制御する4個の2位置(開・閉)電磁弁11〜1
4からなる電磁弁ユニッ)Alが接続されている。なお
、弁11は左前輪用、弁12は右前輪用、弁13は左後
輪用、弁14は右後輪用である。
The I10 unit of the ECU1 has four 2-position (open/close) solenoid valves 11 to 1 that control the brake pressure applied to each wheel.
A solenoid valve unit consisting of 4) Al is connected. The valve 11 is for the left front wheel, the valve 12 is for the right front wheel, the valve 13 is for the left rear wheel, and the valve 14 is for the right rear wheel.

これらによりアンチスキッドシステムが構成され、EC
Ulが所望のデユーティ比のパルス信号を2位置電磁弁
11〜14に出ツノする。各電磁弁はこのパルス信号に
したがって開位置又は閉位置となる。こうして車輪のブ
レーキ圧をこれら2位置電磁弁により制御してブレーキ
時のスリップ率を最適な値とし、スキッドを防止するが
、これについては例えば欧州公開特許明細書23111
3号に示されるように公知であるため、詳細な説明は省
略する。
These constitute an anti-skid system, and the EC
Ul outputs a pulse signal with a desired duty ratio to the two-position solenoid valves 11-14. Each electromagnetic valve assumes an open position or a closed position according to this pulse signal. In this way, the brake pressure of the wheels is controlled by these two-position electromagnetic valves, and the slip rate during braking is set to an optimal value, thereby preventing skids.
Since it is well known as shown in No. 3, detailed explanation will be omitted.

ECU2のI10ユニットには、電磁弁11゜12の駆
動状態(実際の駆動電圧又は駆動電流)を検出する電圧
センサS5.S6、後輪の操舵角を検出する後輪操舵角
センサ37.S8及び前輪を操舵するステアリングホイ
ールの切り角を検出する前輪操舵角センサS9が接続さ
れている。
The I10 unit of the ECU 2 includes a voltage sensor S5. S6, rear wheel steering angle sensor 37 that detects the steering angle of the rear wheels. S8 and a front wheel steering angle sensor S9 that detects the turning angle of a steering wheel that steers the front wheels are connected.

そして、ECU2のI10ユニットは、電磁弁の電圧セ
ンサS5.S6の信号、後輪操舵角センサ37.S8の
信号、及び前輪操舵角センサS9の信号をアナログバッ
ファ(図示略)を介して入力し、A/D変換するA/D
コンバータ(図示略)を備える。
The I10 unit of the ECU2 is connected to the solenoid valve voltage sensor S5. S6 signal, rear wheel steering angle sensor 37. A/D which inputs the signal of S8 and the signal of front wheel steering angle sensor S9 via an analog buffer (not shown) and converts it from analog to digital.
A converter (not shown) is provided.

また、ECU2のI10ユニットは後輪操舵用3位置(
開・保持・閉)電磁弁15〜18が接続されており、電
磁弁15〜18は後輪操舵機構の油圧を制御して操舵を
行う。なお、電磁弁15゜16は右後輪用、電磁弁17
.IE(は左後輪用のものである。
In addition, the I10 unit of ECU2 has 3 positions for rear wheel steering (
(Open/Hold/Close) solenoid valves 15 to 18 are connected, and the solenoid valves 15 to 18 perform steering by controlling the hydraulic pressure of the rear wheel steering mechanism. In addition, solenoid valves 15 and 16 are for the right rear wheel, and solenoid valves 17 and 16 are for the right rear wheel.
.. IE (is for the left rear wheel.

次に、第3図に後輪の操舵装置の構成を右後輪を例とし
て概略的に示す。この装置は、モータ31により駆動さ
れる油圧ポンプ32が発生する高圧を蓄圧するアキュム
レータ34を備え、アキュムレータ34の高圧油は2つ
の3ポ一ト3位置電磁弁(後輪操舵制御用電磁弁)15
.16を介しく7) て後輪操舵用アクチュエータ35の2つのシリンダに供
給される。2つの電磁弁15.16の状態でアクチュエ
ータ35のピストン36を左右にスライド、あるいは保
持する。ピストン36はナックルアーム37と連結され
ており、ピストン36の直線運動により車輪38が左右
に回動する。S7はアクチュエータのピストン36の位
置を検出して、後輪の操舵角を検出する操舵角センサで
ある。
Next, FIG. 3 schematically shows the configuration of the rear wheel steering device, taking the right rear wheel as an example. This device includes an accumulator 34 that accumulates high pressure generated by a hydraulic pump 32 driven by a motor 31, and the high pressure oil in the accumulator 34 is controlled by two 3-point, 3-position solenoid valves (solenoid valves for rear wheel steering control). 15
.. 16 and 7) to the two cylinders of the rear wheel steering actuator 35. The piston 36 of the actuator 35 is slid or held left and right in the state of the two solenoid valves 15 and 16. The piston 36 is connected to a knuckle arm 37, and the linear movement of the piston 36 causes the wheels 38 to rotate left and right. S7 is a steering angle sensor that detects the position of the piston 36 of the actuator and detects the steering angle of the rear wheels.

なお、51g3,4は電磁弁15.16の励磁コイルを
駆動する信号で、電子制御回路ECU2より出力され、
また51g5は後輪の操舵角を示す信号で、ECU2へ
入力される。なお、左後輪も同様の構成で操舵される。
Note that 51g3 and 4 are signals that drive the excitation coils of the solenoid valves 15 and 16, and are output from the electronic control circuit ECU2.
Further, 51g5 is a signal indicating the steering angle of the rear wheels, and is input to the ECU 2. Note that the left rear wheel is also steered with a similar configuration.

次に第4図に示すフローチャートにしたがってECU2
による後輪操舵制御について説明する。
Next, according to the flowchart shown in Fig. 4, the ECU 2
The rear wheel steering control will be explained below.

フローチャートに示したステップ501〜509を一定
周期、例えば8ms毎に行う。以下、一周期分の処理動
作を順に説明する。まずステップ501で、電磁弁の電
圧センサS5.S6からの信号によりブレーキ制御中(
4輪アンチスキッド制御)かどうかを判定する。ブレー
キ制御中であればステップ503へ進み、そうでなけれ
ばステップ5(12へ進む。ステップ502では後輪操
舵角指令値をOにしてステップ506に進む。一方、ス
テップ503では前輪操舵角センサの信号、つまり前輪
の切り角θ、の絶対値1θF1が定数K。
Steps 501 to 509 shown in the flowchart are performed at regular intervals, for example, every 8 ms. Hereinafter, the processing operations for one cycle will be explained in order. First, in step 501, the voltage sensor S5 of the solenoid valve. The brake is being controlled by the signal from S6 (
4-wheel anti-skid control). If brake control is in progress, the process advances to step 503; otherwise, the process proceeds to step 5 (12). In step 502, the rear wheel steering angle command value is set to O and the process proceeds to step 506. On the other hand, in step 503, the front wheel steering angle sensor is The absolute value 1θF1 of the signal, that is, the turning angle θ of the front wheels, is a constant K.

より小さいかどうか判断する。K、はROMにあらかじ
め記憶された定数値で、この値より1θF1が小さい時
、前輪ステアリングは操舵されていないと判断されるよ
う、設定されている。ステップ503で1θFl<Kl
の時はステップ504へ進み、そうでないときはステッ
プ502へ進む。
Determine whether it is smaller than K is a constant value stored in advance in the ROM, and is set so that when 1θF1 is smaller than this value, it is determined that the front wheels are not being steered. In step 503, 1θFl<Kl
If so, the process proceeds to step 504; otherwise, the process proceeds to step 502.

このステップ504を第5図により詳しく説明する。ス
テップ601では左右前輪のブレーキ圧制御用電磁弁1
1.12の電圧信号を取り込み、電圧値から電磁弁11
,1.2の開閉を判定し、電磁弁11.12の開時間t
c、tRを求める。次にステップ602において左右ブ
レーキ圧の推定値PF1.1PFRを以下のようにして
求める。すなわちアンチスキッドシステムにおいては欧
州公開時許明細書231113号に示されるように、算
出した目標油圧と現在の油圧が一致するように2位置電
磁弁を開閉させる。この様子を左前輪を例にとり第6回
に示す。ブレーキ油圧の増圧、減圧特性はそれぞれ次の
(1)、 (2)式のように表される。
This step 504 will be explained in detail with reference to FIG. In step 601, the solenoid valve 1 for brake pressure control of the left and right front wheels is
1.12 voltage signal is taken in, and the solenoid valve 11 is set based on the voltage value.
, 1.2 is determined, and the opening time t of the solenoid valve 11.12 is determined.
c, find tR. Next, in step 602, the estimated value PF1.1PFR of the left and right brake pressures is determined as follows. That is, in the anti-skid system, as shown in European Patent Publication No. 231113, a two-position solenoid valve is opened and closed so that the calculated target oil pressure and the current oil pressure match. This situation will be shown in Part 6 using the left front wheel as an example. The pressure increase and decrease characteristics of the brake hydraulic pressure are expressed by the following equations (1) and (2), respectively.

P” P o +a−t       ・・・・・・・
・・(1)増圧F=P、e−’°1・・・・・・・・・
(2)減圧(a’、bは定数、Lは時間である) よって、油圧の増・滅の一周期をTとすると、初期値P
、。から−周期後の油圧は pL、−(Pto+a Htt)  He−bn−tH
・、、、’、・(3)によって求められる。よって、電
磁弁の開時間tLを一周期毎に求めておけば(3)式を
逐次計算することにより任意の時刻おけるブレーキ圧推
定値PLが得られる。
P” P o +a-t ・・・・・・・・・
...(1) Pressure increase F=P, e-'°1...
(2) Pressure reduction (a', b are constants, L is time) Therefore, if one cycle of increase/decrease in oil pressure is T, then the initial value P
,. The oil pressure after - period is pL, -(Pto+a Htt) He-bn-tH
・,,,',・It is obtained by (3). Therefore, if the opening time tL of the solenoid valve is determined for each period, the estimated brake pressure value PL at any time can be obtained by successively calculating equation (3).

ステップ603では左右前輪ブレーキ油圧の推定値P 
FL+  P FRよりブレーキ圧着の推定値1ΔP1
=IPFRPFLIを算出し、ステップ604でこの1
ΔP1をパラメータとする基本後輪操舵角θR5IIを
算出する。第7図にIΔP1とθR51lの関係の−例
を示す。この例では、ブレーキ圧着lΔPIが大きくな
る程、基本後輪操舵角θ□8を単調に大きくしである。
In step 603, the estimated value P of the left and right front wheel brake oil pressure is
FL+ P Estimated brake pressure value 1ΔP1 from FR
=IPFRPFLI is calculated, and in step 604 this 1
A basic rear wheel steering angle θR5II is calculated using ΔP1 as a parameter. FIG. 7 shows an example of the relationship between IΔP1 and θR51l. In this example, as the brake pressure lΔPI increases, the basic rear wheel steering angle θ□8 increases monotonically.

但し、θR5Bがむやみに大きくならない様にθ□SB
+でガードがかかっている。また、1ΔP1が極く小さ
い部分では、ノイズ等を考慮して不感帯ΔP、が設定し
である。゛この関係は計算式で記憶しておいても、何点
かの値をメモリマツプとして記憶しておき、補間演算よ
り算出してもどちらでも良い。
However, to prevent θR5B from becoming unnecessarily large, θ□SB
Guard is applied with +. Further, in a portion where 1ΔP1 is extremely small, a dead zone ΔP is set in consideration of noise and the like. ``This relationship may be stored as a calculation formula, or may be calculated by interpolation by storing values at several points as a memory map.

ステップ605では車速■□によるθR3Bの補正を行
うべく、車速補正係数Kvを算出するもので、ここでは
例えば第8図に示す様に車速か小さくなる程Kvは大き
な値(Iに近づく値)を持つように設定しである。ステ
ップ606では最終的な後輪操舵角指令値θNSをθR
s=KyXθ□SBとして算出する。車輪の操舵方向は
ブレーキ圧の低い方の車輪側に車両が進行する様に操舵
する。これは、前記ブレーキ制御によって各輪独立にブ
レーキ圧が制御され、ブレーキ圧の低い側のタイヤが接
地している路面は摩擦係数μが低く、車両を高μ路側に
まわそうとするヨーモーメントが発生するため、このヨ
ーモーメントを打ち消すために行っている。即ち、後輪
を操舵しない場合、高μ路側に車両の進路が変えられて
しまうが、上述の手順で後輪を操舵すると、車両を低μ
路側にまねそうとするヨーモーメントが発生し、車両を
高μ路側にまねそうとするヨーモーメントを打ち消して
車両を直進させることができる。
In step 605, a vehicle speed correction coefficient Kv is calculated in order to correct θR3B based on the vehicle speed. Here, for example, as shown in FIG. 8, the smaller the vehicle speed, the larger the value of Kv (the value that approaches I). It is set to have. In step 606, the final rear wheel steering angle command value θNS is set to θR.
Calculate as s=KyXθ□SB. The wheels are steered so that the vehicle moves toward the wheel with lower brake pressure. This is because the brake pressure is controlled independently for each wheel by the brake control described above, and the road surface on which the tire with the lower brake pressure is in contact has a lower coefficient of friction μ, and the yaw moment that tries to turn the vehicle toward the side of the road with a higher μ is generated. This is done to cancel out this yaw moment. In other words, if the rear wheels are not steered, the course of the vehicle will be changed to the side of a high-μ road, but if the rear wheels are steered using the procedure described above, the vehicle will be diverted to a low-μ road.
A yaw moment that the vehicle tries to imitate on the road side is generated, and the yaw moment that the vehicle tries to imitate on the high μ road side is canceled out, allowing the vehicle to move straight.

第4図に戻り、ステップ506では、後輪操舵角センサ
S7.S8より左右後輪の実操舵角を算出し、ステップ
507でステップ504で求めた後輪操舵角指令値と各
実操舵角とを比較し、ステップ508でその誤差を小さ
くする方向に後輪操舵制御用電磁弁15〜1日へ流す電
流値を算出し、110ユニ・ントの出力回路に信号を出
力する(ステップ509)。
Returning to FIG. 4, in step 506, rear wheel steering angle sensor S7. In step S8, the actual steering angles of the left and right rear wheels are calculated, and in step 507, the rear wheel steering angle command value obtained in step 504 is compared with each actual steering angle, and in step 508, the rear wheels are steered in a direction that reduces the error. The current value to be passed through the control solenoid valves 15 to 1 is calculated, and a signal is output to the output circuit of the 110 unit (step 509).

このように、左右前輪のブレーキ圧力の差に応じて後輪
をそれぞれ独立に位置決めすることで、左右輪の接地す
る路面の摩擦係数μの違いによる車両の運動特性の変化
を最小限に抑えて、車両を安定に制御することができる
In this way, by positioning the rear wheels independently according to the difference in brake pressure between the left and right front wheels, changes in the vehicle's dynamic characteristics due to the difference in the friction coefficient μ of the road surface that the left and right wheels contact can be minimized. , the vehicle can be controlled stably.

(他の実施例) 前述の例ではブレーキ圧制御用電磁弁の開時間に対し、
油圧の増加は線形、減少は指数的であるとしてブレーキ
圧の推定を行ったが、油圧の増加減少特性がこれとは異
なる場合でも、その特性が理論上あるいは実験等によっ
て明らかである場合にはブレーキ圧の推定が可能である
のでそれを用いて制御を行うことができる。
(Other Examples) In the above example, the opening time of the solenoid valve for brake pressure control is
Brake pressure was estimated assuming that the increase in oil pressure is linear and the decrease is exponential. However, even if the increase/decrease characteristics of oil pressure are different from this, if the characteristics are clear theoretically or experimentally, Since brake pressure can be estimated, control can be performed using it.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明は、左右輪の接地する路面の摩擦
係数μが異なるまたぎ路で急制動を行った場合において
も、車両の進路が偏向してしまうことがなく、安全に制
動できるという優れた効果を有する。
As described above, the present invention has the advantage that even when sudden braking is performed on a cross road where the friction coefficient μ of the road surface on which the left and right wheels contact differs, the course of the vehicle will not be deflected and braking can be performed safely. It has a good effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
電子制御回路の構成を示すブロック図、第3図は操舵制
御装置の構成を示す模式図、第4図、第5図は後輪操舵
制御の処理手順を示すフローチャート、第6図、第7図
、第8図は後輪操舵制御の説明に供する特性図である。 81〜S4・・・車輪速センサ、11〜ト4・・・ブレ
ーキ圧用電磁弁、15〜18・・・操舵用電磁弁、35
・・・操舵用アクチュエータ、ECUI、ECU2・・
・電子制御回路。 代理人弁理士  岡 部   隆 第1図 第2図 第8図
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of an electronic control circuit, FIG. 3 is a schematic diagram showing the configuration of a steering control device, and FIGS. The figure is a flowchart showing a processing procedure for rear wheel steering control, and FIGS. 6, 7, and 8 are characteristic diagrams for explaining the rear wheel steering control. 81-S4... Wheel speed sensor, 11-G4... Brake pressure solenoid valve, 15-18... Steering solenoid valve, 35
...Steering actuator, ECUI, ECU2...
・Electronic control circuit. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)車両の左右の車輪速度を検出する車輪速センサと
、 車輪に加わるブレーキ圧を制御する電磁弁と、車両のブ
レーキ時に前記車輪速センサの検出信号に基づいて、前
記電磁弁を制御し、スキッドを防止するブレーキ圧制御
手段と、 前記電磁弁を制御する信号に基づいて左右の車輪のブレ
ーキ圧推定値を算出する推定手段と、左右の車輪の前記
ブレーキ圧推定値の差から後輪の補正操舵角を算出する
操舵角算出手段と、補正操舵角に応じて後輪を操舵する
後輪操舵手段と を備えたことを特徴とする車両の補助操舵装置。
(1) A wheel speed sensor that detects the left and right wheel speeds of the vehicle, a solenoid valve that controls brake pressure applied to the wheels, and a solenoid valve that controls the solenoid valve based on the detection signal of the wheel speed sensor when the vehicle is braked. , a brake pressure control means for preventing skidding; an estimating means for calculating an estimated brake pressure value for the left and right wheels based on a signal for controlling the solenoid valve; 1. An auxiliary steering device for a vehicle, comprising: a steering angle calculation means for calculating a corrected steering angle; and a rear wheel steering means for steering a rear wheel according to the corrected steering angle.
(2)前記電磁弁の開時間を算出し、前記ブレーキ圧制
御手段によるブレーキ制御中のブレーキ圧の変化量を、
この開時間から逐次算出して前記ブレーキ圧推定値を算
出することを特徴とする車両の補助操舵装置。
(2) Calculate the opening time of the solenoid valve, and calculate the amount of change in brake pressure during brake control by the brake pressure control means,
An auxiliary steering system for a vehicle, characterized in that the estimated brake pressure value is calculated sequentially from the opening time.
JP62331033A 1987-08-10 1987-12-26 Auxiliary steering system for vehicles Expired - Lifetime JP2596030B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62331033A JP2596030B2 (en) 1987-12-26 1987-12-26 Auxiliary steering system for vehicles
DE3826982A DE3826982C2 (en) 1987-08-10 1988-08-09 Auxiliary steering system connected to an anti-lock control system for use in motor vehicles
US07/569,579 US5089967A (en) 1987-08-10 1990-08-20 Auxiliary steering system associated with anti-skid control system for use in motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331033A JP2596030B2 (en) 1987-12-26 1987-12-26 Auxiliary steering system for vehicles

Publications (2)

Publication Number Publication Date
JPH01172070A true JPH01172070A (en) 1989-07-06
JP2596030B2 JP2596030B2 (en) 1997-04-02

Family

ID=18239075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331033A Expired - Lifetime JP2596030B2 (en) 1987-08-10 1987-12-26 Auxiliary steering system for vehicles

Country Status (1)

Country Link
JP (1) JP2596030B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647077A1 (en) * 1989-05-19 1990-11-23 Daimler Benz Ag STEERING CONTROL SYSTEM FOR A VEHICLE WITH FRONT AXLE DIRECTED AND REAR AXLE DIRECTED
JP2006335229A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Vehicle with suppressed driving slip of wheel on split road surface
JP2008001118A (en) * 2006-06-20 2008-01-10 Advics:Kk Brake fluid pressure controller of vehicle
CN115257669A (en) * 2022-06-30 2022-11-01 中国第一汽车股份有限公司 Vehicle control method, device, electronic device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148891A (en) * 2002-10-29 2004-05-27 Nissan Motor Co Ltd Steering angle controlling device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173372A (en) * 1986-01-23 1987-07-30 Toyota Motor Corp Rear wheel controller for front and rear wheel steering car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173372A (en) * 1986-01-23 1987-07-30 Toyota Motor Corp Rear wheel controller for front and rear wheel steering car

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647077A1 (en) * 1989-05-19 1990-11-23 Daimler Benz Ag STEERING CONTROL SYSTEM FOR A VEHICLE WITH FRONT AXLE DIRECTED AND REAR AXLE DIRECTED
JP2006335229A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Vehicle with suppressed driving slip of wheel on split road surface
JP4600161B2 (en) * 2005-06-02 2010-12-15 トヨタ自動車株式会社 Vehicle that suppresses driving slip of wheels on split road surface
JP2008001118A (en) * 2006-06-20 2008-01-10 Advics:Kk Brake fluid pressure controller of vehicle
CN115257669A (en) * 2022-06-30 2022-11-01 中国第一汽车股份有限公司 Vehicle control method, device, electronic device and storage medium

Also Published As

Publication number Publication date
JP2596030B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
EP3057848B1 (en) Method in order to control vehicle behaviour
US6547343B1 (en) Brake system control
JP3463622B2 (en) Vehicle behavior control device
US6125319A (en) Brake system control method responsive to measured vehicle acceleration
EP1418104B1 (en) Vehicle braking control device
US5388896A (en) Method for braking motor vehicle wheels while reducing a yawing moment of an antilock braking system
US5829847A (en) Vehicle motion control system
US20020101116A1 (en) Steering and braking stability program
JP2004513010A (en) How to control driving stability
US7775608B2 (en) Method for controlling a brake pressure
EP0416480B1 (en) Rear wheel steering control system for vehicle
EP1209060B1 (en) Control of an electric power steering system
US20060129293A1 (en) Method for determining a steering-wheel torque
JP3425727B2 (en) Automatic braking system for vehicles
JPH01172070A (en) Auxiliary steering device for car
JP2540742B2 (en) Vehicle auxiliary steering system
JP3705077B2 (en) Vehicle motion control device
JP2003519046A (en) Wheel slip control device and method
US5390991A (en) Anti-skid control system
US20190135337A1 (en) Method for control of a rear-axle steering of a motor vehicle
JP3039071B2 (en) Vehicle turning limit judgment device
JPH07186989A (en) Auxiliary steering angle controller for vehicle
JP3945594B2 (en) Brake fluid pressure control device for vehicle
JP3166472B2 (en) Road friction coefficient detector
JP3353576B2 (en) Vehicle behavior control device