JP4353011B2 - Vehicle steering control device - Google Patents

Vehicle steering control device Download PDF

Info

Publication number
JP4353011B2
JP4353011B2 JP2004200162A JP2004200162A JP4353011B2 JP 4353011 B2 JP4353011 B2 JP 4353011B2 JP 2004200162 A JP2004200162 A JP 2004200162A JP 2004200162 A JP2004200162 A JP 2004200162A JP 4353011 B2 JP4353011 B2 JP 4353011B2
Authority
JP
Japan
Prior art keywords
vehicle
braking
yaw moment
steering
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004200162A
Other languages
Japanese (ja)
Other versions
JP2006021589A (en
Inventor
明彦 小澤
史 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004200162A priority Critical patent/JP4353011B2/en
Publication of JP2006021589A publication Critical patent/JP2006021589A/en
Application granted granted Critical
Publication of JP4353011B2 publication Critical patent/JP4353011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、車輌の操舵制御装置に係り、更に詳細には操舵輪を操舵することにより車輌にヨーモーメントを付与する操舵手段と、左右の車輪の制駆動力に差を与えて車輌にヨーモーメントを付与する制駆動力差付与手段とを有する操舵制御装置に係る。   The present invention relates to a vehicle steering control device, and more specifically, a steering means for applying a yaw moment to a vehicle by steering a steering wheel, and a yaw moment to a vehicle by giving a difference between braking / driving forces of left and right wheels. The present invention relates to a steering control device having braking / driving force difference applying means for applying

自動車等の車輌の操舵制御装置の一つとして、例えば下記の特許文献1に記載されている如く、操舵輪を操舵する操舵手段と、左右の車輪の制駆動力に差を与える制駆動力差付与手段とを有し、車速が所定値以下であるときには左右の車輪の制駆動力差により車輌を旋回させるよう構成された操舵制御装置が既に知られている。   As one of the steering control devices for vehicles such as automobiles, for example, as described in Patent Document 1 below, the braking / driving force difference that gives a difference between the steering means for steering the steering wheel and the braking / driving force of the left and right wheels There is already known a steering control device that includes an imparting unit and is configured to turn the vehicle by a difference in braking / driving force between the left and right wheels when the vehicle speed is equal to or less than a predetermined value.

かかる操舵制御装置によれば、例えば車輌を先行車に追従するよう自動走行させるような場合に、操舵手段を駆動することなく左右の車輪の制駆動力の制御のみによって車輌を自動的に走行させることができる。
特開平6−227283号公報
According to this steering control device, for example, when the vehicle is automatically driven to follow the preceding vehicle, the vehicle is automatically driven only by controlling the braking / driving force of the left and right wheels without driving the steering means. be able to.
JP-A-6-227283

一般に、運転者がステアリングホイールを操作して車輌を直進状態より旋回させる場合には、車輌がゆっくりと旋回し始めることが好ましい。しかるに上述の如き従来の操舵制御装置に於いては、かかる旋回応答特性が達成されるよう左右輪に制駆動力差が与えられるようにはなっておらず、この点で改善の余地がある。   In general, when the driver operates the steering wheel to turn the vehicle from a straight traveling state, it is preferable that the vehicle starts to turn slowly. However, in the conventional steering control device as described above, a braking / driving force difference is not given to the left and right wheels so that the turning response characteristic is achieved, and there is room for improvement in this respect.

本発明は、操舵手段による操舵輪の操舵に加えて左右輪の制駆動力差により車輌が旋回されるよう構成された従来の操舵制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、操舵輪の操舵により車輌にヨーモーメントが付与される状況に於いて左右輪の制駆動力差によるヨーモーメントによって車輌に付与されるヨーモーメントを修正することにより、上記好ましい旋回応答特性を達成することである。   The present invention has been made in view of the above-described problems in the conventional steering control device configured to turn the vehicle by the difference in braking / driving force between the left and right wheels in addition to the steering of the steered wheels by the steering means. The main problem of the present invention is to correct the yaw moment applied to the vehicle due to the yaw moment caused by the braking / driving force difference between the left and right wheels in a situation where the yaw moment is applied to the vehicle by steering the steering wheel. The above-mentioned preferable turning response characteristic is achieved.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち操舵輪を操舵することにより車輌にヨーモーメントを付与する操舵手段と、左右の車輪の制駆動力に差を与えて車輌にヨーモーメントを付与する制駆動力差付与手段とを有し、前記操舵輪が前記操舵手段により直進位置と旋回位置との間に操舵される際に、非制動時には前記制駆動力差付与手段により与えられる前記左右の車輪の駆動力差による逆方向のヨーモーメントにより、制動時には前記制駆動力差付与手段により与えられる前記左右の車輪の制動力差による逆方向のヨーモーメントにより、前記操舵手段によるヨーモーメントを少なくとも部分的に相殺し、前記操舵輪が直進位置より旋回位置へ操舵される際の前記ヨーモーメントの相殺の度合は前記操舵輪が旋回位置より直進位置へ操舵される際の前記ヨーモーメントの相殺の度合に比して大きいことを特徴とする車輌の操舵制御装、又は請求項2の構成、即ち操舵輪を操舵することにより車輌にヨーモーメントを付与する操舵手段と、左右の車輪の制駆動力に差を与えて車輌にヨーモーメントを付与する制駆動力差付与手段とを有し、前記操舵輪が前記操舵手段により直進位置と旋回位置との間に操舵される際に前記操舵手段によるヨーモーメントを前記制駆動力差付与手段による逆方向のヨーモーメントにより少なくとも部分的に相殺し、前記操舵輪が直進位置より旋回位置へ操舵される際の前記ヨーモーメントの相殺の度合は前記操舵輪が旋回位置より直進位置へ操舵される際の前記ヨーモーメントの相殺の度合に比して大きいことを特徴とする車輌の操舵制御装置によって達成される。 According to the present invention, the main problem described above is that the configuration of claim 1, that is, the steering means that gives the vehicle a yaw moment by steering the steering wheel, and the braking / driving force of the left and right wheels are given a difference. A braking / driving force difference imparting means for imparting a yaw moment to the vehicle, and when the steering wheel is steered between a straight traveling position and a turning position by the steering means, the braking / driving force difference is imparted during non-braking. The steering by the yaw moment in the reverse direction due to the driving force difference between the left and right wheels given by the means, and the yaw moment in the reverse direction due to the braking force difference between the left and right wheels given by the braking / driving force difference giving means during braking at least partially offset the yaw moment by means, the degree of offset of the yaw moment is the steering wheel turning position when the steering wheel is steered to the turning position from the straight position Straight steering control instrumentation of the vehicle, characterized in that larger than the degree of offset of the yaw moment when steered to the location, or the second aspect, i.e. the yaw moment to the vehicle by steering the steering wheel Steering means for imparting a braking force and a braking / driving force difference imparting means for imparting a yaw moment to the vehicle by giving a difference between the braking / driving forces of the left and right wheels, and the steered wheels are moved straight and turned by the steering means. When the steering wheel is steered between, the yaw moment by the steering means is at least partially offset by the yaw moment in the reverse direction by the braking / driving force difference applying means, and the steered wheel is steered from the straight traveling position to the turning position. The degree of cancellation of the yaw moment at the time of the vehicle is larger than the degree of cancellation of the yaw moment when the steered wheel is steered from the turning position to the straight traveling position. It is accomplished by rudder controller.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記ヨーモーメントの相殺は前記操舵輪が前記直進位置を含む所定の操舵角度範囲内にあるときに行われるよう構成される(請求項の構成)。 According to the present invention, in order to effectively achieve the above-mentioned main problem, in the configuration of the above-described claim 1 or 2 , the yaw moment is canceled by a predetermined steering operation in which the steered wheel includes the rectilinear position. It is comprised so that it may be performed when it exists in an angle range (structure of Claim 3 ).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、前記ヨーモーメントの相殺の度合は前記操舵輪の操舵角度の大きさが大きいときには前記操舵輪の操舵角度の大きさが小さいときに比して小さいよう構成される(請求項の構成)。 According to the invention, to the aspect of the effective, in the configuration of the claims 1 to 3, the degree of offset of the yaw moment is the magnitude of the steering angle of the steering wheel configured smaller than that when the magnitude of the steering angle of the steering wheel is smaller when a large (the fourth aspect).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至の構成に於いて、前記ヨーモーメントの相殺の度合は車速が高いときには車速が低いときには比して大きいよう構成される(請求項の構成)。 According to the invention, to the aspect of the effective, in the configuration of the claims 1 to 4, the degree of offset of the yaw moment than when the vehicle speed is low when the vehicle speed is high It is comprised so that it may be large (structure of Claim 5 ).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至の構成に於いて、前記ヨーモーメントの相殺は車速が中高車速域判定の基準値よりも高いときに行われるよう構成される(請求項の構成)。 According to the present invention, in order to effectively achieve the main problems described above, in the configuration of the above-described claims 1 to 5 , the yaw moment cancellation is such that the vehicle speed is higher than a reference value for determining the middle and high vehicle speed range. It is comprised so that it may be performed from time to time (structure of Claim 6 ).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至の構成に於いて、車速が低車速域判定の基準値以下であるときには前記操舵手段によるヨーモーメントと同一方向に前記制駆動力差付与手段によるヨーモーメントを発生させるよう構成される(請求項の構成)。 Further, according to the present invention, in order to effectively achieve the main problems described above, in the configuration of the first to sixth aspects, when the vehicle speed is equal to or less than the reference value for the low vehicle speed range determination, the yaw by the steering means is obtained. It is comprised so that the yaw moment by the said braking / driving force difference provision means may be generated in the same direction as a moment (structure of Claim 7 ).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項の構成に於いて、前記制駆動力差付与手段によるヨーモーメントの大きさは車速が低いときには車速が高いときに比して大きいよう構成される(請求項の構成)。 According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 7 , the magnitude of the yaw moment by the braking / driving force difference applying means is such that the vehicle speed is low when the vehicle speed is low. It is configured to be larger than when it is high (structure of claim 8 ).

上記請求項1及び2の構成によれば、操舵輪が操舵手段により直進位置と旋回位置との間に操舵される際に操舵手段によるヨーモーメントが制駆動力差付与手段による逆方向のヨーモーメントにより少なくとも部分的に相殺されるので、操舵手段によるヨーモーメントが制駆動力差付与手段による逆方向のヨーモーメントにより相殺されない場合に比して、運転者により操舵された際にゆっくりと車輌の旋回を開始させることができる。
また上記請求項1の構成によれば、逆方向のヨーモーメントは非制動時には制駆動力差付与手段により与えられる左右の車輪の駆動力差により発生され、制動時には制駆動力差付与手段により与えられる左右の車輪の制動力差により発生されるので、逆方向のヨーモーメントが左右の車輪の駆動力差又は左右輪の制動力差のみにより発生される場合に比して、車輌の制駆動の状況に拘らず車輌の旋回応答性を好ましい応答性に制御することができる。
また上記請求項1及び2の構成によれば、操舵輪が直進位置より旋回位置へ操舵される際のヨーモーメントの相殺の度合は操舵輪が旋回位置より直進位置へ操舵される際のヨーモーメントの相殺の度合に比して大きいので、車輌が直進状態より旋回を開始する際にゆっくりと旋回を開始させると共に、車輌が旋回状態より直進状態に戻る際に車輌が直進状態より旋回を開始する場合よりも車輌の旋回応答性を高くすることができる。
According to the first and second aspects of the present invention, when the steered wheel is steered between the straight travel position and the turning position by the steering means, the yaw moment by the steering means is the reverse yaw moment by the braking / driving force difference providing means. Therefore, the vehicle turns more slowly when it is steered by the driver than when the yaw moment by the steering means is not canceled by the reverse yaw moment by the braking / driving force difference applying means. Can be started.
According to the first aspect of the present invention, the yaw moment in the reverse direction is generated by the driving force difference between the left and right wheels given by the braking / driving force difference applying means during non-braking, and given by the braking / driving force difference applying means during braking. As a result, the yaw moment in the opposite direction is generated by the difference in braking force between the left and right wheels or the difference in braking force between the left and right wheels. Regardless of the situation, the turning response of the vehicle can be controlled to a preferable response.
According to the first and second aspects of the present invention, the degree of yaw moment cancellation when the steered wheel is steered from the straight drive position to the turning position is the yaw moment when the steered wheel is steered from the turn position to the straight drive position. Therefore, when the vehicle starts turning from the straight traveling state, the vehicle slowly starts turning, and when the vehicle returns from the turning state to the straight traveling state, the vehicle starts turning from the straight traveling state. The turning response of the vehicle can be made higher than the case.

また上記請求項の構成によれば、ヨーモーメントの相殺は操舵輪が直進位置を含む所定の操舵角度範囲内にあるときに行われるので、運転者による操舵操作量が大きく操舵輪の操舵角度が大きい領域に於いて車輌の旋回応答性が悪化することを確実に防止しつつ、操舵輪の操舵角度が小さい領域に於いて確実にゆっくりと車輌の旋回を開始させることができる。 According to the third aspect of the present invention, since the yaw moment is canceled when the steered wheel is within a predetermined steered angle range including the straight traveling position, the steering operation amount by the driver is large, and the steered wheel steer angle. It is possible to reliably start the turning of the vehicle slowly and reliably in the region where the steering angle of the steering wheel is small, while reliably preventing the turning response of the vehicle from deteriorating in the region where the steering wheel is large.

また上記請求項の構成によれば、ヨーモーメントの相殺の度合は操舵輪の操舵角度の大きさが大きいときには操舵輪の操舵角度の大きさが小さいときに比して小さいので、操舵輪の操舵角度の大きさが小さい領域に於いて確実にゆっくりと車輌の旋回を開始させると共に、操舵輪の操舵角度の大きさが大きいほど車輌の旋回応答性をヨーモーメントの相殺が行われない旋回応答性に近づけ、これにより操舵輪の操舵角度の変化に伴う旋回応答性の変化を低減することができる。 According to the fourth aspect of the present invention, the degree of cancellation of the yaw moment is smaller when the steering angle of the steering wheel is large than when the steering angle of the steering wheel is small. The vehicle starts turning slowly and surely in a region where the steering angle is small, and the turning response of the vehicle does not cancel the yaw moment as the steering angle of the steering wheel increases. Thus, it is possible to reduce the change in turn response due to the change in the steering angle of the steered wheels.

また上記請求項の構成によれば、ヨーモーメントの相殺の度合は車速が高いときには車速が低いときに比して大きいので、車速が低い場合の車輌の旋回応答性を犠牲にすることなく、車速が高いほど車輌の旋回応答性を低くし、これにより車速に拘らず車輌の旋回フィーリングを向上させることができる。 Further, according to the configuration of claim 5 , the degree of yaw moment cancellation is greater when the vehicle speed is higher than when the vehicle speed is low, so without sacrificing the turning response of the vehicle when the vehicle speed is low, As the vehicle speed increases, the turning response of the vehicle is lowered, and thereby the turning feeling of the vehicle can be improved regardless of the vehicle speed.

また上記請求項の構成によれば、ヨーモーメントの相殺は車速が中高車速域判定の基準値よりも高いときに行われるので、低車速域に於いて車輌の旋回応答性が悪化することを確実に防止することができる。 Further, according to the configuration of the sixth aspect , the yaw moment is canceled when the vehicle speed is higher than the reference value for the determination of the middle / high vehicle speed range, so that the turning responsiveness of the vehicle deteriorates in the low vehicle speed range. It can be surely prevented.

また上記請求項の構成によれば、車速が低車速域判定の基準値以下であるときには操舵手段によるヨーモーメントと同一方向に制駆動力差付与手段によるヨーモーメントが発生されるので、車速が低車速域判定の基準値以下であるときにも操舵手段によるヨーモーメントと逆方向に制駆動力差付与手段によるヨーモーメントが発生される場合や操舵手段によるヨーモーメントと同一方向に制駆動力差付与手段によるヨーモーメントが発生されない場合に比して、車速が低車速域判定の基準値以下であるときの車輌の旋回応答性を高くすることができ、これにより車輌の据え切りや幅寄せを容易に行い得るようにすることができる。 According to the seventh aspect of the present invention, when the vehicle speed is equal to or lower than the reference value for the low vehicle speed range determination, the yaw moment by the braking / driving force difference applying means is generated in the same direction as the yaw moment by the steering means. When the yaw moment by the braking / driving force difference applying means is generated in the opposite direction to the yaw moment by the steering means even when the vehicle speed is below the reference value for the low vehicle speed range determination, or the braking / driving force difference in the same direction as the yaw moment by the steering means Compared to the case where the yaw moment is not generated by the applying means, the turning response of the vehicle when the vehicle speed is lower than the reference value for the low vehicle speed range determination can be increased, and thereby the vehicle can be stationary and widened. It can be done easily.

また上記請求項の構成によれば、制駆動力差付与手段によるヨーモーメントの大きさは車速が低いときには車速が高いときに比して大きいので、車速が低いほど車輌の旋回応答性を高くし車輌を旋回させ易くすることができる。 Further, according to the configuration of the eighth aspect , the magnitude of the yaw moment by the braking / driving force difference applying means is larger when the vehicle speed is low than when the vehicle speed is high. Therefore, the lower the vehicle speed, the higher the turning response of the vehicle. However, the vehicle can be easily turned.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1乃至の構成に於いて、制駆動力差付与手段は少なくとも左右前輪の制駆動力を制御することにより左右前輪の制駆動力差を付与するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferred aspect of the present invention, in the configuration of the first to eighth aspects, the braking / driving force difference applying means controls the braking / driving force difference between the left and right front wheels by controlling at least the braking / driving force between the left and right front wheels. It is comprised so that it may provide (the preferable aspect 1).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至の構成に於いて、運転者の制駆動操作に基づいて各車輪の基本目標制駆動力を演算し、制駆動力差付与手段による逆方向の目標ヨーモーメントを演算し、目標ヨーモーメントを達成するための各車輪の制駆動力の補正値を演算し、基本目標制駆動力を制駆動力の補正値にて補正することにより各車輪の目標制駆動力を演算し、各車輪の制駆動力が目標制駆動力になるよう制御するよう構成される(好ましい態様2)。 According to another preferred aspect of the present invention, the basic target braking / driving force of each wheel is calculated based on the braking / driving operation of the driver in the configuration of the above-described claims 1 to 8 , and the braking / driving force difference is calculated. Calculate the target yaw moment in the reverse direction by the applying means, calculate the braking / driving force correction value of each wheel to achieve the target yaw moment, and correct the basic target braking / driving force with the braking / driving force correction value Accordingly, the target braking / driving force of each wheel is calculated, and control is performed so that the braking / driving force of each wheel becomes the target braking / driving force (preferred aspect 2).

本発明の他の一つの好ましい態様によれば、上記好ましい態様2の構成に於いて、少なくとも操舵角に基づいて制駆動力差付与手段による逆方向の目標ヨーモーメントを演算するよう構成される(好ましい態様3)。   According to another preferable aspect of the present invention, in the configuration of the preferable aspect 2, the target yaw moment in the reverse direction by the braking / driving force difference applying means is calculated based on at least the steering angle ( Preferred embodiment 3).

本発明の他の一つの好ましい態様によれば、上記好ましい態様3の構成に於いて、操舵角及び車速に基づいて制駆動力差付与手段による逆方向の目標ヨーモーメントを演算するよう構成される(好ましい態様4)。   According to another preferable aspect of the present invention, in the configuration of the preferable aspect 3, the reverse target yaw moment is calculated by the braking / driving force difference applying means based on the steering angle and the vehicle speed. (Preferred embodiment 4).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至の構成に於いて、制駆動力差付与手段は各車輪に対応して設けられ対応する車輪を他の車輪とは独立して駆動する電動機を含むよう構成される(好ましい態様5)。 According to the aspect of the present invention, independent of the claims In the structure of claim 1 to 8, longitudinal force difference providing means corresponding wheel the other wheel provided corresponding to each wheel (Embodiment 5).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至の構成に於いて、制駆動力差付与手段は各車輪に対応して設けられ対応する車輪を他の車輪とは独立して制動する制動装置を含むよう構成される(好ましい態様6)。 According to the aspect of the present invention, independent of the claims In the structure of claim 1 to 8, longitudinal force difference providing means corresponding wheel the other wheel provided corresponding to each wheel Thus, it is configured to include a braking device for braking (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記好ましい態様5の構成に於いて、各電動機は対応する車輪を他の車輪とは独立して回生制動する回生制動装置として機能するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration of the preferred aspect 5, each electric motor is configured to function as a regenerative braking device that regeneratively brakes the corresponding wheel independently of the other wheels. (Preferred embodiment 7)

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1はホイールインモータ式の四輪駆動車に適用された本発明による操舵制御装置の一つの実施例を示す概略構成図である。   FIG. 1 is a schematic diagram showing one embodiment of a steering control device according to the present invention applied to a wheel-in-motor four-wheel drive vehicle.

図1に於いて、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L及び18Rを介して操舵される。   In FIG. 1, 10FL and 10FR represent the left and right front wheels of the vehicle 12, respectively, and 10RL and 10RR represent the left and right rear wheels, respectively. The left and right front wheels 10FL and 10FR, which are steered wheels, are steered via tie rods 18L and 18R by a rack and pinion type power steering device 16 that is driven in response to turning of the steering wheel 14 by the driver.

左右の前輪10FL及び10FRにはそれぞれホイールインモータである電動発電機22FL及び22FRが組み込まれており、左右の前輪10FL及び10FRは電動発電機22FL及び22FRにより駆動され、電動発電機22FL及び22FRは駆動力制御用電子制御装置24により制御される。電動発電機22FL及び22FRはそれぞれ左右前輪の発電機としても機能し、回生発電機としての機能(回生駆動)も駆動力制御用電子制御装置24により制御される。   Motor generators 22FL and 22FR, which are wheel-in motors, are incorporated in the left and right front wheels 10FL and 10FR, respectively. The left and right front wheels 10FL and 10FR are driven by the motor generators 22FL and 22FR, and the motor generators 22FL and 22FR are It is controlled by the driving force control electronic control unit 24. The motor generators 22FL and 22FR also function as left and right front wheel generators, respectively, and the function as a regenerative generator (regenerative drive) is also controlled by the driving force control electronic control unit 24.

同様に、左右の後輪10RL及び10RRにはそれぞれホイールインモータである電動発電機22RL及び22RRが組み込まれており、左右の前輪10RL及び10RRは電動発電機22RL及び22RRにより駆動され、電動発電機22RL及び22RRも駆動力制御用電子制御装置24により制御される。電動発電機22RL及び22RRはそれぞれ左右後輪の発電機としても機能し、回生発電機としての機能も駆動力制御用電子制御装置24により制御される。   Similarly, motor generators 22RL and 22RR, which are wheel-in motors, are incorporated in the left and right rear wheels 10RL and 10RR, respectively. The left and right front wheels 10RL and 10RR are driven by the motor generators 22RL and 22RR, and the motor generator 22RL and 22RR are also controlled by the driving force control electronic control unit 24. The motor generators 22RL and 22RR also function as left and right rear wheel generators, respectively, and the function as a regenerative generator is also controlled by the driving force control electronic control unit 24.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置24はマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えば中央処理ユニット(CPU)と、リードオンリメモリ(ROM)と、ランダムアクセスメモリ(RAM)と、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。また通常走行時には図1には示されていないバッテリに充電された電力が駆動回路を経て各電動発電機22FL〜22RRへ供給され、車輌の減速制動時には各電動発電機22FL〜22RRによる回生制動により発電された電力が駆動回路を経てバッテリに充電される。   Although not shown in detail in FIG. 1, the driving force control electronic control unit 24 includes a microcomputer and a drive circuit. The microcomputer includes, for example, a central processing unit (CPU), a read only memory (ROM), and the like. It may have a general configuration including a random access memory (RAM) and an input / output port device, which are connected to each other by a bidirectional common bus. Further, during normal traveling, electric power charged in a battery (not shown in FIG. 1) is supplied to each motor generator 22FL to 22RR through a drive circuit. During deceleration braking of the vehicle, regenerative braking is performed by each motor generator 22FL to 22RR. The generated power is charged to the battery via the drive circuit.

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置26の油圧回路28により対応するホイールシリンダ30FL、30FR、30RL、30RRの制動圧が制御されることによっても制御される。図には示されていないが、油圧回路28はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力はブレーキペダル32の踏み込みに応じて駆動されるマスタシリンダ34の圧力に応じてオイルポンプや種々の弁装置が制動力制御用電子制御装置36によって制御されることにより制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is also controlled by controlling the braking pressure of the corresponding wheel cylinders 30FL, 30FR, 30RL, 30RR by the hydraulic circuit 28 of the friction braking device 26. Is done. Although not shown in the drawing, the hydraulic circuit 28 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is set to the pressure of the master cylinder 34 that is driven in response to depression of the brake pedal 32. Accordingly, the oil pump and various valve devices are controlled by being controlled by the braking force control electronic control device 36.

尚図1には詳細に示されていないが、制動力制御用電子制御装置36もマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えば中央処理ユニット(CPU)と、リードオンリメモリ(ROM)と、ランダムアクセスメモリ(RAM)と、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the braking force control electronic control unit 36 also includes a microcomputer and a drive circuit. The microcomputer includes, for example, a central processing unit (CPU), a read-only memory (ROM), and the like. It may have a general configuration including a random access memory (RAM) and an input / output port device, which are connected to each other by a bidirectional common bus.

駆動力制御用電子制御装置24には、車速センサ38より車速Vを示す信号、アクセル開度センサ40より運転者によって操作される図には示されていないアクセルペダルの踏み込み量としてのアクセル開度φを示す信号、操舵角センサ42より操舵角θを示す信号が入力される。   The driving force control electronic control device 24 includes a signal indicating the vehicle speed V from the vehicle speed sensor 38, and an accelerator opening as an accelerator pedal depression amount not shown in the figure operated by the driver from the accelerator opening sensor 40. A signal indicating φ and a signal indicating the steering angle θ are input from the steering angle sensor 42.

制動力制御用電子制御装置36には、圧力センサ44よりマスタシリンダ圧力Pmを示す信号が入力され、また圧力センサ46FL〜46RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pi(i=fl、fr、rl、rr)を示す信号が入力される。図示の如く、駆動力制御用電子制御装置24及び制動力制御用電子制御装置36は必要に応じて相互に信号の授受を行う。   A signal indicating the master cylinder pressure Pm is input from the pressure sensor 44 to the braking force control electronic control device 36, and the corresponding wheel braking pressure (wheel cylinder pressure) Pi (i = fl, fr, rl, rr) are input. As shown in the figure, the driving force control electronic control device 24 and the braking force control electronic control device 36 exchange signals with each other as necessary.

駆動力制御用電子制御装置24は、図3乃至図5に示されたフローチャートに従って車輌の駆動時には電動発電機12FL〜12RRによる各車輪の駆動トルクを制御し、車輌の制動時には電動発電機12FL〜12RRによる各車輪の回生制動トルク若しくは摩擦制動装置26による各車輪の制動力を制御し、これによりパワーステアリング装置16を介して行われる運転者の左右前輪10FL、10FRの操舵によるヨーモーメントを左右前輪の制駆動力差による逆方向のヨーモーメントにより少なくとも部分的に相殺する。   The driving force control electronic control unit 24 controls the driving torque of each wheel by the motor generators 12FL to 12RR when the vehicle is driven according to the flowcharts shown in FIGS. 3 to 5, and the motor generators 12FL to 12FL when the vehicle is braked. The regenerative braking torque of each wheel by 12RR or the braking force of each wheel by the friction braking device 26 is controlled, and thereby the yaw moment by the steering of the left and right front wheels 10FL and 10FR of the driver performed via the power steering device 16 is changed to the left and right front wheels. At least partially offset by the yaw moment in the reverse direction due to the braking / driving force difference.

尚操舵角センサ42は車輌の左旋回時の方向を正として操舵角θを検出し、車輌のヨーモーメントは車輌の左旋回方向が正であるものとする。   The steering angle sensor 42 detects the steering angle θ with the direction of the vehicle turning left as positive, and the vehicle yaw moment is assumed to be positive in the vehicle left turn direction.

次に図2に示されたフローチャートを参照して実施例に於ける操舵制御による制駆動トルクの制御について説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチが閉成されることにより開始され、イグニッションスイッチが開成されるまで所定の時間毎に繰返し実行される。   Next, the braking / driving torque control by the steering control in the embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started when an ignition switch (not shown) is closed, and is repeatedly executed every predetermined time until the ignition switch is opened.

まずステップ10に於いては車速センサ38により検出された車速Vを示す信号等の読み込みが行われ、ステップ20に於いては例えばマスタシリンダ圧力Pmに基づき車輌が制動状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ90へ進み、否定判別が行われたときにはステップ30へ進む。   First, at step 10, a signal indicating the vehicle speed V detected by the vehicle speed sensor 38 is read. At step 20, it is determined whether the vehicle is in a braking state based on, for example, the master cylinder pressure Pm. When a positive determination is made, the process proceeds to step 90. When a negative determination is made, the process proceeds to step 30.

ステップ30に於いては例えば各車輪に対する駆動トルクの配分変換係数をKdi(i=fl、fr、rl、rr)として、アクセル開度φに基づき各車輪の基本駆動トルクTdbi(i=fl、fr、rl、rr)がそれぞれ配分変換係数Kdiとアクセル開度φとの積に演算され、ステップ40に於いては後述の図3に示されたフローチャートに従って左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算される。   In step 30, for example, the drive torque distribution conversion coefficient for each wheel is Kdi (i = fl, fr, rl, rr), and the basic drive torque Tdbi (i = fl, fr) of each wheel based on the accelerator opening φ. , Rl, and rr) are respectively calculated as products of the distribution conversion coefficient Kdi and the accelerator opening φ, and are applied to the vehicle by the driving force difference between the left and right front wheels in step 40 according to the flowchart shown in FIG. The power yaw moment Yd is calculated.

ステップ60に於いては例えば車輌のトレッドをTrとして下記の式1及び2に従ってヨーモーメントYdを達成するための左前輪及び右前輪の補正駆動トルクTdafl及びTdafrが演算される。
Tdafl=−2Yd/Tr ……(1)
Tdafr=2Yd/Tr ……(2)
In step 60, for example, corrected driving torques Tdafl and Tdafr for the left front wheel and the right front wheel for achieving the yaw moment Yd according to the following equations 1 and 2 are calculated using Tr as the vehicle tread.
Tdafl = -2Yd / Tr (1)
Tdafr = 2Yd / Tr (2)

ステップ70に於いては下記の式3乃至6に従って各車輪の目標駆動トルクTdti(i=fl、fr、rl、rr)が演算され、ステップ80に於いては各車輪の駆動トルクTdi(i=fl、fr、rl、rr)がそれぞれ目標駆動トルクTdtiになるよう、電動発電機12FL〜12RRが制御される。尚Tdbfl又はTdbfrの大きさよりもTdafl又はTdafrの大きさが大きい場合にはTdtfl又はTdtfrが負の値、即ち制動トルクになるので、その場合には電動発電機12FL〜12RRは回生制動を行うよう制御される。   In step 70, the target drive torque Tdti (i = fl, fr, rl, rr) of each wheel is calculated according to the following equations 3 to 6, and in step 80, the drive torque Tdi (i = The motor generators 12FL to 12RR are controlled so that fl, fr, rl, and rr) become the target drive torque Tdti. When Tdafl or Tdafr is larger than Tdbfl or Tdbfr, Tdtfl or Tdtfr becomes a negative value, that is, braking torque. In this case, the motor generators 12FL to 12RR are configured to perform regenerative braking. Be controlled.

Tdtfl=Tdbfl+Tdafl ……(3)
Tdtfr=Tdbfr+Tdafr ……(4)
Tdtrl=Tdbrl ……(5)
Tdtrr=Tdbrr ……(6)
Tdtfl = Tdbfl + Tdafl (3)
Tdtfr = Tdbfr + Tdafr (4)
Tdtrl = Tdbrl (5)
Tdtrr = Tdbrr (6)

ステップ90に於いては例えば各車輪に対する制動トルクの配分変換係数をKbi(i=fl、fr、rl、rr)として、マスタシリンダ圧力Pmに基づき各車輪の基本制動トルクTbbi(i=fl、fr、rl、rr)がそれぞれ配分変換係数Kbiとマスタシリンダ圧力Pmとの積に演算され、ステップ100に於いては後述の図4に示されたフローチャートに従って左右後輪の制動力差により車輌に付与すべきヨーモーメントYbが演算される。   In step 90, for example, the distribution conversion coefficient of braking torque for each wheel is set to Kbi (i = fl, fr, rl, rr), and the basic braking torque Tbbi (i = fl, fr) of each wheel based on the master cylinder pressure Pm. , Rl, rr) are respectively calculated as products of the distribution conversion coefficient Kbi and the master cylinder pressure Pm, and are applied to the vehicle by the difference in braking force between the left and right rear wheels in step 100 in accordance with the flowchart shown in FIG. The yaw moment Yb to be calculated is calculated.

ステップ120に於いては例えば下記の式7及び8に従ってヨーモーメントYbを達成するための左前輪及び右前輪の補正制動トルクTbafl及びTbafrが演算される。
Tbafl=2Yb/Tr ……(7)
Tbafr=−2Yb/Tr ……(8)
In step 120, for example, corrected braking torques Tbafl and Tbafr of the left front wheel and the right front wheel for achieving the yaw moment Yb are calculated according to the following equations 7 and 8.
Tbafl = 2Yb / Tr (7)
Tbafr = -2Yb / Tr (8)

ステップ130に於いては下記の式9乃至10に従って各車輪の目標制動トルクTbti(i=fl、fr、rl、rr)が演算され、ステップ140に於いては各車輪の制動トルクTbi(i=fl、fr、rl、rr)がそれぞれ目標制動トルクTbtiになるよう、後述の図5に示されたフローチャートに従って電動発電機12FL〜12RR若しくは摩擦制動装置26が制御される。尚Tbbfl又はTbbfrの大きさよりもTbafl又はTbafrの大きさが大きい場合にはTbtfl又はTbtfrが負の値、即ち駆動トルクになるので、その場合には電動発電機12FL〜12RRは駆動トルクを発生するよう制御される。
Tbtfl=Tbbfl+Tbafl ……(9)
Tbtfr=Tbbfr+Tbafr ……(10)
Tbtrl=Tbbrl ……(11)
Tbtrr=Tbbrr ……(12)
In step 130, the target braking torque Tbti (i = fl, fr, rl, rr) of each wheel is calculated according to the following formulas 9 to 10, and in step 140, the braking torque Tbi (i = The motor generators 12FL to 12RR or the friction braking device 26 are controlled according to a flowchart shown in FIG. 5 described later so that fl, fr, rl, and rr) become the target braking torque Tbti. When Tbafl or Tbafr is larger than Tbbfl or Tbbfr, Tbtfl or Tbtfr becomes a negative value, that is, driving torque. In this case, the motor generators 12FL to 12RR generate driving torque. It is controlled as follows.
Tbtfl = Tbbfl + Tbafl ...... (9)
Tbtfr = Tbbfr + Tbafr (10)
Tbtrl = Tbbrl (11)
Tbtrr = Tbbrr (12)

次に図3に示されたフローチャートを参照して上記ステップ40に於ける駆動力差ヨーモーメントYd演算ルーチンについて説明する。   Next, the driving force difference yaw moment Yd calculation routine in step 40 will be described with reference to the flowchart shown in FIG.

ステップ42に於いては車速Vが加速時の低車速判定の基準値Vdo(正の定数)以下であるか否かの判別が行われ、否定判別が行われたときにはステップ46へ進み、肯定判別が行われたときにはステップ44に於いて操舵角θ及び車速Vに基づき図6に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算され、しかる後ステップ60へ進む。   In step 42, it is determined whether or not the vehicle speed V is equal to or less than a reference value Vdo (positive constant) for determining a low vehicle speed during acceleration. If a negative determination is made, the process proceeds to step 46, where an affirmative determination is made. In step 44, the yaw moment Yd to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG. 6 on the basis of the steering angle θ and the vehicle speed V based on the driving force difference between the left and right front wheels. Proceed to step 60.

ステップ46に於いては例えば操舵角θの符号及び操舵角θの変化率θdの符号が同一であるか否かの判別により、運転者による操舵の方向が切り込み方向であるか否かの判別が行われ、肯定判別が行われたときにはステップ48に於いて操舵角θ及び車速Vに基づき図7に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算され、否定判別が行われたときにはステップ50に於いて操舵角θ及び車速Vに基づき図8に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算され、ステップ48又は50が完了するとステップ60へ進む。   In step 46, for example, by determining whether or not the sign of the steering angle θ and the sign of the rate of change θd of the steering angle θ are the same, it is determined whether or not the steering direction by the driver is the cutting direction. If the determination is affirmative, the yaw moment Yd to be applied to the vehicle due to the difference in driving force between the left and right front wheels from the map corresponding to the graph shown in FIG. 7 based on the steering angle θ and the vehicle speed V in step 48. When a negative determination is made in step 50, the yaw moment to be applied to the vehicle due to the difference in driving force between the left and right front wheels from the map corresponding to the graph shown in FIG. 8 based on the steering angle θ and the vehicle speed V in step 50. When Yd is calculated and step 48 or 50 is completed, the routine proceeds to step 60.

次に図4に示されたフローチャートを参照して上記ステップ100に於ける制動力差ヨーモーメントYb演算ルーチンについて説明する。   Next, the braking force difference yaw moment Yb calculation routine in step 100 will be described with reference to the flowchart shown in FIG.

ステップ102に於いては車速Vが制動時の低車速判定の基準値Vbo(正の定数)以下であるか否かの判別が行われ、否定判別が行われたときにはステップ106へ進み、肯定判別が行われたときにはステップ104に於いて操舵角θ及び車速Vに基づき図9に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算され、しかる後ステップ120へ進む。   In step 102, it is determined whether or not the vehicle speed V is equal to or less than a reference value Vbo (positive constant) for determining the low vehicle speed during braking. If a negative determination is made, the process proceeds to step 106, where an affirmative determination is made. In step 104, the yaw moment Yb to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG. 9 based on the steering angle θ and the vehicle speed V, based on the braking force difference between the left and right front wheels. Proceed to step 120.

ステップ106に於いては上記ステップ46の場合と同一の要領にて運転者による操舵の方向が切り込み方向であるか否かの判別が行われ、肯定判別が行われたときにはステップ108に於いて操舵角θ及び車速Vに基づき図10に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算され、否定判別が行われたときにはステップ110に於いて操舵角θ及び車速Vに基づき図11に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算され、ステップ108又は110が完了するとステップ120へ進む。   In step 106, it is determined whether or not the steering direction by the driver is the cutting direction in the same manner as in step 46. If an affirmative determination is made, steering is performed in step 108. Based on the angle θ and the vehicle speed V, the yaw moment Yb to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG. Based on the steering angle θ and the vehicle speed V, the yaw moment Yb to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG. 11 based on the braking force difference between the left and right front wheels, and when step 108 or 110 is completed, the routine proceeds to step 120. .

次に図5に示されたフローチャートを参照して上記ステップ140に於ける制駆動トルク制御ルーチンについて説明する。   Next, the braking / driving torque control routine in step 140 will be described with reference to the flowchart shown in FIG.

ステップ122に於いては左前輪の目標制動トルクTbtflが左前輪の電動発電機12FLの最大回生制動トルクTfmaxよりも大きいか否かの判別、即ち左前輪について摩擦制動装置26による制動も必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ126へ進み、否定判別が行われたときにはステップ124に於いて左前輪の目標制動圧Pbtflが0に設定された後ステップ132へ進む。   In step 122, it is necessary to determine whether the target braking torque Tbtfl of the left front wheel is larger than the maximum regenerative braking torque Tfmax of the motor generator 12FL of the left front wheel, that is, the left front wheel must be braked by the friction braking device 26. If a positive determination is made, the process proceeds to step 126. If a negative determination is made, the target braking pressure Pbtfl of the left front wheel is set to 0 in step 124, and then the process proceeds to step 132. move on.

ステップ126に於いては左前輪の目標回生制動トルクTrtflが最大回生制動トルクTfmaxに設定され、ステップ128に於いては左前輪の制動トルク−制動圧変換係数をKpflとして左前輪の目標制動圧PbtflがKpfl(Tbtfl−Tfmax)に設定された後ステップ132へ進む。   In step 126, the target regenerative braking torque Trtfl for the left front wheel is set to the maximum regenerative braking torque Tfmax. In step 128, the braking torque-braking pressure conversion coefficient for the left front wheel is set to Kpfl, and the target braking pressure Pbtfl for the left front wheel. Is set to Kpfl (Tbtfl−Tfmax), then the routine proceeds to step 132.

ステップ132に於いては右前輪の目標制動トルクTbtfrが右前輪の電動発電機12FRの最大回生制動トルクTfmaxよりも大きいか否かの判別、即ち右前輪について摩擦制動装置26による制動も必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ136へ進み、否定判別が行われたときにはステップ134に於いて右前輪の目標制動圧Pbtfrが0に設定された後ステップ142へ進む。   In step 132, it is necessary to determine whether the target braking torque Tbtfr for the right front wheel is larger than the maximum regenerative braking torque Tfmax of the motor generator 12FR for the right front wheel, that is, the right front wheel must be braked by the friction braking device 26. If the determination is affirmative, the process proceeds to step 136. If the determination is negative, the target braking pressure Pbtfr of the right front wheel is set to 0 in step 134 and then the process proceeds to step 142. move on.

ステップ136に於いては右前輪の目標回生制動トルクTrtfrが最大回生制動トルクTfmaxに設定され、ステップ138に於いては右前輪の制動トルク−制動圧変換係数をKpfrとして右前輪の目標制動圧PbtfrがKpfr(Tbtfr−Tfmax)に設定された後ステップ142へ進む。   In step 136, the target regenerative braking torque Trtfr for the right front wheel is set to the maximum regenerative braking torque Tfmax. In step 138, the braking torque-braking pressure conversion coefficient for the right front wheel is set to Kpfr, and the target braking pressure Pbtfr for the right front wheel. Is set to Kpfr (Tbtfr-Tfmax), then the routine proceeds to step 142.

ステップ142に於いては左後輪の目標制動トルクTbtrlが左後輪の電動発電機12RLの最大回生制動トルクTrmaxよりも大きいか否かの判別、即ち左後輪について摩擦制動装置26による制動も必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ146へ進み、否定判別が行われたときにはステップ144に於いて左後輪の目標制動圧Pbtrlが0に設定された後ステップ152へ進む。   In step 142, it is determined whether the left rear wheel target braking torque Tbtrl is larger than the maximum regenerative braking torque Trmax of the left rear wheel motor generator 12RL, that is, the left rear wheel is also braked by the friction braking device 26. Whether or not it is necessary is determined. When an affirmative determination is made, the process proceeds to step 146. When a negative determination is made, the target braking pressure Pbtrl of the left rear wheel is set to 0 in step 144. Proceed to step 152.

ステップ146に於いては左後輪の目標回生制動トルクTrtrlが最大回生制動トルクTrmaxに設定され、ステップ148に於いては左後輪の制動トルク−制動圧変換係数をKprlとして左後輪の目標制動圧PbtrlがKprl(Tbtrl−Trmax)に設定された後ステップ152へ進む。   In step 146, the target regenerative braking torque Trtrl for the left rear wheel is set to the maximum regenerative braking torque Trmax, and in step 148, the left rear wheel braking torque-braking pressure conversion coefficient is set to Kprl. After the braking pressure Pbtrl is set to Kprl (Tbtrl−Trmax), the routine proceeds to step 152.

ステップ152に於いては右後輪の目標制動トルクTbtrrが右後輪の電動発電機12RRの最大回生制動トルクTrmaxよりも大きいか否かの判別、即ち右後輪について摩擦制動装置26による制動も必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ156へ進み、否定判別が行われたときにはステップ154に於いて右後輪の目標制動圧Pbtrrが0に設定された後ステップ160へ進む。   In step 152, it is determined whether or not the target braking torque Tbtrr for the right rear wheel is larger than the maximum regenerative braking torque Trmax of the motor generator 12RR for the right rear wheel, that is, the right rear wheel is also braked by the friction braking device 26. If the determination is affirmative, the process proceeds to step 156. If the determination is negative, the target braking pressure Pbtrr for the right rear wheel is set to 0 in step 154. Proceed to step 160.

ステップ156に於いては右後輪の目標回生制動トルクTrtrrが最大回生制動トルクTrmaxに設定され、ステップ158に於いては右後輪の制動トルク−制動圧変換係数をKprrとして右後輪の目標制動圧PbtrrがKprr(Tbtrr−Trmax)に設定された後ステップ160へ進む。   In step 156, the target regenerative braking torque Trtrr for the right rear wheel is set to the maximum regenerative braking torque Trmax. In step 158, the braking torque-braking pressure conversion coefficient for the right rear wheel is set to Kprr and the target for the right rear wheel is set. After the braking pressure Pbtrr is set to Kprr (Tbtrr-Trmax), the routine proceeds to step 160.

ステップ160に於いては各車輪の回生制動トルクTri(i=fl、fr、rl、rr)がそれぞれ目標回生制動トルクTrtiになるよう電動発電機12FL〜12RRが制御され、ステップ162に於いては各車輪の制動圧Pi(i=fl、fr、rl、rr)がそれぞれ目標制動圧Pbtiになるよう摩擦制動装置26が制御される。   In step 160, the motor generators 12FL to 12RR are controlled so that the regenerative braking torque Tri (i = fl, fr, rl, rr) of each wheel becomes the target regenerative braking torque Trti. The friction braking device 26 is controlled so that the braking pressure Pi (i = fl, fr, rl, rr) of each wheel becomes the target braking pressure Pbti.

次に上述の如く構成された実施例の操舵制御装置の作動を車輌の種々の走行状態について場合分けして説明する。   Next, the operation of the steering control device of the embodiment configured as described above will be described for each of various traveling states of the vehicle.

(1)中高車速の非制動走行時に於ける切り込み操舵時
車輌が基準車速Voよりも高い車速にて非制動走行している状況に於いて運転者により切り込み操舵が行われた場合には、ステップ20に於いて否定判別が行われ、ステップ30に於いてアクセル開度φに基づき各車輪の基本駆動トルクTdbiが演算され、ステップ42に於いて否定判別が行われ、ステップ46に於いて肯定判別が行われるので、ステップ48に於いて図7に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算される。
(1) At the time of cutting steering during non-braking traveling at medium and high vehicle speeds When the driver performs cutting steering at a vehicle speed that is not braking at a vehicle speed higher than the reference vehicle speed Vo, a step is performed. In step 30, a negative determination is made. In step 30, the basic driving torque Tdbi of each wheel is calculated based on the accelerator opening .phi., A negative determination is made in step 42, and an affirmative determination is made in step 46. Therefore, in step 48, the yaw moment Yd to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG.

そしてステップ60に於いてヨーモーメントYdを達成するための左前輪及び右前輪の補正駆動トルクTdafl及びTdafrが演算され、ステップ70に於いて基本駆動トルクTdbiと補正駆動トルクTdafl、Tdafrとの和として各車輪の目標駆動トルクTdtiが演算され、ステップ80に於いて各車輪の駆動トルクTdiがそれぞれ目標駆動トルクTdtiになるよう、電動発電機12FL〜12RRが制御される。   In step 60, the corrected driving torques Tdafl and Tdafr for the left front wheel and the right front wheel for achieving the yaw moment Yd are calculated. In step 70, the sum of the basic driving torque Tdbi and the corrected driving torques Tdafl and Tdafr is calculated. The target drive torque Tdti of each wheel is calculated, and in step 80, the motor generators 12FL to 12RR are controlled so that the drive torque Tdi of each wheel becomes the target drive torque Tdti.

従って操舵角θの大きさが小さく車速Vが高いほど旋回抑制方向の左右前輪の駆動力差を大きくし、これにより操舵方向とは逆方向のヨーモーメントを大きくすることができるので、操舵角θの大きさが小さく車速Vが高いほど車輌が直進状態より旋回状態に移行する際に車輌の旋回をゆっくりと開始させることができ、車輌の旋回応答フィーリングを向上させると共に車輌の中高速走行時の走行安定性を向上させることができる。   Therefore, the smaller the magnitude of the steering angle θ and the higher the vehicle speed V, the larger the difference in driving force between the left and right front wheels in the turning suppression direction, and thereby the yaw moment in the direction opposite to the steering direction can be increased. The smaller the size of the vehicle and the higher the vehicle speed V, the slower the vehicle can start when the vehicle moves from the straight traveling state to the turning state, improving the turning response feeling of the vehicle and at the time of medium speed traveling of the vehicle The running stability of the vehicle can be improved.

例えば図12(A)は車輌12が基準車速Voよりも高い車速にて非制動走行している状況に於いて運転者により切り込み操舵が行われた場合に於ける各車輪10FL〜10RRの駆動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の駆動力差によるヨーモーメントYdを示している。図12(A)より、ヨーモーメントYdはヨーモーメントYsとは逆方向に作用することが解る。   For example, FIG. 12A shows the driving force of each of the wheels 10FL to 10RR when the driver performs cutting steering while the vehicle 12 is running without braking at a vehicle speed higher than the reference vehicle speed Vo. The yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the yaw moment Yd due to the difference in driving force between the left and right front wheels are shown. From FIG. 12A, it can be seen that the yaw moment Yd acts in the opposite direction to the yaw moment Ys.

(2)中高車速の非制動走行時に於ける切り戻し操舵時
車輌が基準車速Voよりも高い車速にて非制動走行している状況に於いて運転者により切り戻し操舵が行われた場合には、上記(1)の場合と同様ステップ20に於いて否定判別が行われ、ステップ30に於いてアクセル開度φに基づき各車輪の基本駆動トルクTdbiが演算され、ステップ42に於いて否定判別が行われるが、ステップ46に於いても否定判別が行われるので、ステップ50に於いて図8に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算され、上記(1)の場合と同様ステップ60〜80により電動発電機12FL〜12RRが制御される。
(2) At the time of switchback steering at the time of non-braking driving at medium and high vehicle speeds When the driver performs the switchback steering at the time of vehicle non-braking driving at a vehicle speed higher than the reference vehicle speed Vo. As in the case of (1) above, a negative determination is made in step 20, the basic drive torque Tdbi of each wheel is calculated based on the accelerator opening φ in step 30, and a negative determination is made in step 42. However, since a negative determination is also made in step 46, the yaw moment Yd to be applied to the vehicle due to the difference in driving force between the left and right front wheels is determined in step 50 from the map corresponding to the graph shown in FIG. The motor generators 12FL to 12RR are controlled by steps 60 to 80 as in the case of (1) above.

従って操舵角θの大きさが小さく車速Vが高いほど旋回抑制方向の左右前輪の駆動力差を大きくし、これにより操舵方向とは逆方向のヨーモーメントを大きくすることができるので、操舵角θの大きさが小さく車速Vが高いほど車輌が旋回状態より直進状態に移行する際に車輌の旋回をゆっくりと開始させることができ、車輌の旋回応答フィーリングを向上させると共に車輌の中高速走行時の走行安定性を向上させることができ、また切り込み時よりも車輌の旋回応答性を若干高くすることができる。   Therefore, the smaller the magnitude of the steering angle θ and the higher the vehicle speed V, the larger the difference in driving force between the left and right front wheels in the turning suppression direction, and thereby the yaw moment in the direction opposite to the steering direction can be increased. The smaller the size of the vehicle and the higher the vehicle speed V, the slower the vehicle can start when the vehicle changes from the turning state to the straight-ahead state. The running stability of the vehicle can be improved, and the turning response of the vehicle can be made slightly higher than when the vehicle is cut.

例えば図12(B)は車輌12が基準車速Voよりも高い車速にて非制動走行している状況に於いて運転者により切り戻し操舵が行われた場合に於ける各車輪10FL〜10RRの駆動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の駆動力差によるヨーモーメントYdを示している。図12(A)と図12(B)との比較より解る如く、左右前輪の駆動力差及びヨーモーメントYdは図12(A)の場合よりも小さい。   For example, FIG. 12 (B) shows the driving of the wheels 10FL to 10RR when the driver performs switching back steering in a situation where the vehicle 12 is running without braking at a vehicle speed higher than the reference vehicle speed Vo. A yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and a yaw moment Yd due to a difference in driving force between the left and right front wheels are shown together with the magnitude relationship of the forces. As understood from the comparison between FIG. 12A and FIG. 12B, the driving force difference and the yaw moment Yd between the left and right front wheels are smaller than those in FIG.

(3)低車速の非制動走行時に於ける操舵時
車輌が基準車速Vo以下の車速にて非制動走行している状況に於いて運転者により操舵が行われた場合には、上記(1)の場合と同様ステップ20に於いて否定判別が行われ、ステップ30に於いてアクセル開度φに基づき各車輪の基本駆動トルクTdbiが演算されるが、ステップ42に於いて肯定判別が行われるので、ステップ44に於いて図6に示されたグラフに対応するマップより左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdが演算され、上記(1)の場合と同様ステップ60〜80により電動発電機12FL〜12RRが制御される。
(3) Steering during non-braking travel at low vehicle speed When steering is performed by the driver in a situation where the vehicle is traveling without braking at a vehicle speed equal to or lower than the reference vehicle speed Vo, (1) As in the case of, a negative determination is made at step 20, and the basic drive torque Tdbi of each wheel is calculated based on the accelerator opening φ at step 30, but an affirmative determination is made at step 42. In step 44, the yaw moment Yd to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG. 6 based on the driving force difference between the left and right front wheels, and in the same manner as in the case (1), the steps 60 to 80 are performed. Motor generators 12FL to 12RR are controlled.

従って操舵角θの大きさが小さく車速Vが低いほど旋回補助方向の左右前輪の駆動力差を大きくし、これにより操舵方向と同一方向のヨーモーメントを大きくすることができるので、操舵角θの大きさが小さく車速Vが低いほど車輌が直進状態と旋回状態との間に移行する際に車輌の旋回を容易に行わせることができ、車輌の旋回応答フィーリングを向上させると共に据え切り時や幅寄せ時に於ける運転者の操舵負担を軽減することができる。   Therefore, the smaller the magnitude of the steering angle θ and the lower the vehicle speed V, the larger the difference in driving force between the left and right front wheels in the direction of turning assistance, thereby increasing the yaw moment in the same direction as the steering direction. The smaller the size and the lower the vehicle speed V, the easier the vehicle can turn when the vehicle moves between the straight traveling state and the turning state, improving the turning response feeling of the vehicle, It is possible to reduce the driver's steering burden during the width adjustment.

例えば図12(C)は車輌12が基準車速Vo以下の車速にて非制動走行している状況に於いて運転者により切り込み操舵が行われた場合に於ける各車輪10FL〜10RRの駆動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の駆動力差によるヨーモーメントYdを示している。図12(C)より、ヨーモーメントYdはヨーモーメントYsと同一方向に作用することが解る。   For example, FIG. 12C shows the driving force of each of the wheels 10FL to 10RR when the vehicle 12 is not braked at a vehicle speed equal to or lower than the reference vehicle speed Vo and the driver performs the turning steering. Along with the magnitude relationship, the yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the yaw moment Yd due to the difference in driving force between the left and right front wheels are shown. From FIG. 12C, it can be seen that the yaw moment Yd acts in the same direction as the yaw moment Ys.

(4)中高車速の制動走行時に於ける切り込み操舵時
車輌が基準車速Voよりも高い車速にて制動走行している状況に於いて運転者により切り込み操舵が行われた場合には、ステップ20に於いて肯定判別が行われ、ステップ90に於いてマスタシリンダ圧力Pmに基づき各車輪の基本制動トルクTbbiが演算され、ステップ102に於いて否定判別が行われ、ステップ106に於いて肯定判別が行われるので、ステップ108に於いて図10に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算される。
(4) At the time of cutting steering during braking at medium and high vehicle speeds When the vehicle is braking at a vehicle speed higher than the reference vehicle speed Vo and the steering is performed by the driver, step 20 is executed. In step 90, the basic braking torque Tbbi of each wheel is calculated based on the master cylinder pressure Pm. In step 102, a negative determination is made. In step 106, an affirmative determination is made. Therefore, in step 108, the yaw moment Yb to be applied to the vehicle is calculated from the map corresponding to the graph shown in FIG.

そしてステップ120に於いてヨーモーメントYdを達成するための左前輪及び右前輪の補正制動トルクTbafl及びTbafrが演算され、ステップ130に於いて基本制動トルクTbbiと補正制動トルクTbafl、Tbafrとの和として各車輪の目標制動トルクTbtiが演算され、ステップ140に於いて各車輪の制動トルクTbiがそれぞれ目標制動トルクTbtiになるよう、電動発電機12FL〜12RR若しくは摩擦制動装置26が制御される。   In step 120, corrected braking torques Tbafl and Tbafr for the left front wheel and right front wheel for achieving the yaw moment Yd are calculated. In step 130, the sum of the basic braking torque Tbbi and the corrected braking torques Tbafl and Tbafr is calculated. The target braking torque Tbti for each wheel is calculated, and in step 140, the motor generators 12FL to 12RR or the friction braking device 26 are controlled so that the braking torque Tbi for each wheel becomes the target braking torque Tbti.

従って操舵角θの大きさが小さく車速Vが高いほど旋回抑制方向の左右前輪の制動力差を大きくし、これにより操舵方向とは逆方向のヨーモーメントを大きくすることができるので、上記(1)の場合と同様、操舵角θの大きさが小さく車速Vが高いほど車輌が直進状態より旋回状態に移行する際に車輌の旋回をゆっくりと開始させることができ、車輌の旋回応答フィーリングを向上させると共に車輌の中高速走行時の走行安定性を向上させることができる。   Accordingly, the smaller the steering angle θ is and the higher the vehicle speed V is, the larger the braking force difference between the left and right front wheels in the turning restraining direction can be increased, so that the yaw moment in the direction opposite to the steering direction can be increased. As in the case of), the smaller the steering angle θ is and the higher the vehicle speed V is, the more slowly the vehicle can start turning when the vehicle moves from the straight traveling state to the turning state. It is possible to improve the running stability during medium and high speed running of the vehicle.

例えば図12(D)は車輌12が基準車速Voよりも高い車速にて制動走行している状況に於いて運転者により切り込み操舵が行われた場合に於ける各車輪10FL〜10RRの制動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の制動力差によるヨーモーメントYdを示している。図12(D)より、ヨーモーメントYdはヨーモーメントYsとは逆方向に作用することが解る。   For example, FIG. 12D shows the braking force of each of the wheels 10FL to 10RR when the vehicle 12 is braked at a vehicle speed higher than the reference vehicle speed Vo and the driver performs the turning steering. Along with the magnitude relationship, the yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the yaw moment Yd due to the braking force difference between the left and right front wheels are shown. From FIG. 12D, it can be seen that the yaw moment Yd acts in the opposite direction to the yaw moment Ys.

(5)中高車速の制動走行時に於ける切り戻し操舵時
車輌が基準車速Voよりも高い車速にて制動走行している状況に於いて運転者により切り戻し操舵が行われた場合には、上記(4)の場合と同様ステップ20に於いて肯定判別が行われ、ステップ90に於いてマスタシリンダ圧力Pmに基づき各車輪の基本制動トルクTbbiが演算され、ステップ102に於いて否定判別が行われるが、ステップ106に於いても否定判別が行われるので、ステップ110に於いて図11に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算され、上記(4)の場合と同様ステップ120〜140により電動発電機12FL〜12RR若しくは摩擦制動装置26が制御される。
(5) At the time of switchback steering at the time of braking driving at medium and high vehicle speeds When the vehicle is braking at a vehicle speed higher than the reference vehicle speed Vo and the driver performs switchback steering, As in the case of (4), an affirmative determination is made at step 20, a basic braking torque Tbbi for each wheel is calculated based on the master cylinder pressure Pm at step 90, and a negative determination is made at step 102. However, since a negative determination is made at step 106, the yaw moment Yb to be applied to the vehicle is calculated at step 110 from the map corresponding to the graph shown in FIG. The motor generators 12FL to 12RR or the friction braking device 26 are controlled by steps 120 to 140 as in the case of (4) above.

従って操舵角θの大きさが小さく車速Vが高いほど旋回抑制方向の左右前輪の制動力差を大きくし、これにより操舵方向とは逆方向のヨーモーメントを大きくすることができるので、上記(2)の場合と同様、操舵角θの大きさが小さく車速Vが高いほど車輌が旋回状態より直進状態に移行する際に車輌の旋回をゆっくりと開始させることができ、車輌の旋回応答フィーリングを向上させると共に車輌の中高速走行時の走行安定性を向上させることができ、また切り込み時よりも車輌の旋回応答性を若干高くすることができる。   Accordingly, the smaller the steering angle θ is and the higher the vehicle speed V is, the larger the difference in braking force between the left and right front wheels in the turning restraining direction is, so that the yaw moment in the direction opposite to the steering direction can be increased. As in the case of), the smaller the steering angle θ is and the higher the vehicle speed V is, the more slowly the vehicle can be started when the vehicle moves from the turning state to the straight traveling state, and the turning response feeling of the vehicle is improved. As well as improving the running stability of the vehicle at medium and high speeds, the turning response of the vehicle can be made slightly higher than when the vehicle is cut.

例えば図12(E)は車輌12が基準車速Voよりも高い車速にて制動走行している状況に於いて運転者により切り戻し操舵が行われた場合に於ける各車輪10FL〜10RRの制動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の制動力差によるヨーモーメントYdを示している。図12(D)と図12(E)との比較より解る如く、左右前輪の制動力差及びヨーモーメントYdは図12(D)の場合よりも小さい。   For example, FIG. 12E shows the braking force of each of the wheels 10FL to 10RR when the driver performs switching back steering in a situation where the vehicle 12 is braking at a vehicle speed higher than the reference vehicle speed Vo. The yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the yaw moment Yd due to the difference in braking force between the left and right front wheels are shown. As understood from the comparison between FIG. 12D and FIG. 12E, the braking force difference and the yaw moment Yd between the left and right front wheels are smaller than those in FIG.

(6)低車速の制動走行時に於ける操舵時
車輌が基準車速Vo以下の車速にて制動走行している状況に於いて運転者により操舵が行われた場合には、上記(4)の場合と同様ステップ20に於いて肯定判別が行われ、ステップ90に於いてマスタシリンダ圧力Pmに基づき各車輪の基本制動トルクTbbiが演算されるが、ステップ102に於いて肯定判別が行われるので、ステップ104に於いて図9に示されたグラフに対応するマップより左右前輪の制動力差により車輌に付与すべきヨーモーメントYbが演算され、上記(4)の場合と同様ステップ120〜140により電動発電機12FL〜12RR若しくは摩擦制動装置26が制御される。
(6) At the time of steering at the time of braking at a low vehicle speed When steering is performed by the driver in a situation where the vehicle is braking at a vehicle speed below the reference vehicle speed Vo, As in step S20, an affirmative determination is made in step 20, and in step 90 the basic braking torque Tbbi of each wheel is calculated based on the master cylinder pressure Pm, but in step 102 an affirmative determination is made. In 104, the yaw moment Yb to be applied to the vehicle is calculated based on the braking force difference between the left and right front wheels from the map corresponding to the graph shown in FIG. 9, and the motor generation is performed in steps 120 to 140 as in the case of (4) above. The machines 12FL to 12RR or the friction braking device 26 are controlled.

従って操舵角θの大きさが小さく車速Vが低いほど旋回補助方向の左右前輪の制動力差を大きくし、これにより操舵方向と同一方向のヨーモーメントを大きくすることができるので、操舵角θの大きさが小さく車速Vが低いほど車輌が直進状態と旋回状態との間に移行する際に車輌の旋回を容易に行わせることができ、車輌の旋回応答フィーリングを向上させると共に据え切り時や幅寄せ時に於ける運転者の操舵負担を軽減することができる。   Therefore, the smaller the steering angle θ is and the lower the vehicle speed V is, the larger the braking force difference between the left and right front wheels in the direction of turning assistance is, which can increase the yaw moment in the same direction as the steering direction. The smaller the size and the lower the vehicle speed V, the easier the vehicle can turn when the vehicle moves between the straight traveling state and the turning state, improving the turning response feeling of the vehicle, It is possible to reduce the driver's steering burden during the width adjustment.

例えば図12(F)は車輌12が基準車速Vo以下の車速にて制動走行している状況に於いて運転者により切り込み操舵が行われた場合に於ける各車輪10FL〜10RRの制動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の制動力差によるヨーモーメントYdを示している。図12(F)より、ヨーモーメントYdはヨーモーメントYsと同一方向に作用することが解る。   For example, FIG. 12 (F) shows the magnitude of the braking force of each of the wheels 10FL to 10RR when the driver performs cutting steering in a situation where the vehicle 12 is braked at a vehicle speed equal to or lower than the reference vehicle speed Vo. The yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the yaw moment Yd due to the difference in braking force between the left and right front wheels are shown. From FIG. 12F, it can be seen that the yaw moment Yd acts in the same direction as the yaw moment Ys.

以上の説明より解る如く、車輌が中高速にて走行する場合には操舵角θの大きさが小さい領域に於ける車輌の旋回応答を穏やかにし、車輌が低速にて走行する場合には操舵角θの大きさが小さい領域に於ける車輌の旋回応答を高くし、これにより車輌の様々な走行状態に於いて車輌の旋回応答のフィーリングを向上させることができる。   As can be seen from the above description, when the vehicle travels at medium and high speeds, the turning response of the vehicle in a region where the steering angle θ is small is moderated, and when the vehicle travels at low speed, the steering angle It is possible to increase the turning response of the vehicle in the region where the magnitude of θ is small, thereby improving the feeling of the turning response of the vehicle in various traveling states of the vehicle.

例えば図13は車輌が中高速にて走行する場合(太い実線)及び車輌が低速にて走行する場合(太い破線)について、従来の車輌が中高速にて走行する場合(細い実線)と比較して車輌の旋回応答特性を示すグラフである。図13より、図示の実施例によれば、従来の車輌の場合に比して車輌が中高速にて走行する状況に於ける車輌の初期旋回応答を穏やかにすると共に、車輌が低速にて走行する状況に於ける車輌の初期旋回応答性を高くすることができることが解る。   For example, FIG. 13 shows a case where the vehicle travels at medium and high speed (thick solid line) and a case where the vehicle travels at low speed (thick broken line) compared to the case where the conventional vehicle travels at medium and high speed (thin solid line). It is a graph which shows the turning response characteristic of a vehicle. As shown in FIG. 13, according to the illustrated embodiment, the initial turning response of the vehicle is moderated and the vehicle is driven at a low speed when the vehicle is traveling at a medium to high speed as compared with the conventional vehicle. It can be seen that the initial turning response of the vehicle in the situation can be improved.

また図示の実施例によれば、車輌が中高速にて走行する場合には旋回抑制方向に作用し車輌が低速にて走行する場合には旋回補助方向に作用するヨーモーメントYdは、車輌の非制動時には左右前輪の駆動力差により発生され、車輌の制動時には左右前輪の制動力差により発生されるので、ヨーモーメントYdが左右輪の駆動力差又は左右輪の制動力差のみにより発生される場合に比して、車輌の制駆動の状況に拘らず車輌の旋回応答性を好ましい応答性に制御することができる。   Further, according to the illustrated embodiment, the yaw moment Yd acting in the turning restraining direction when the vehicle travels at medium and high speed and acting in the turning assist direction when the vehicle travels at low speed is Yaw moment Yd is generated only by the driving force difference between the left and right wheels or the braking force difference between the left and right wheels because the braking force is generated by the driving force difference between the left and right front wheels. Compared to the case, the turning response of the vehicle can be controlled to a preferable response regardless of the braking / driving state of the vehicle.

また図示の実施例によれば、ヨーモーメントYdを発生させるために必要な制動力が高い場合には回生制動力に加えて摩擦制動装置26による摩擦制動力も発生されるので、電動発電機12FL〜12RRが高い回生制動力を発生可能な高出力のものである必要がなく、また車輌の制動時にも確実に必要なヨーモーメントYdを発生させることができる。   Further, according to the illustrated embodiment, when the braking force necessary for generating the yaw moment Yd is high, the friction braking force by the friction braking device 26 is also generated in addition to the regenerative braking force. -12RR need not be a high output capable of generating a high regenerative braking force, and the necessary yaw moment Yd can be reliably generated even during braking of the vehicle.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例に於いては、ヨーモーメントYdを達成するための補正制駆動トルクは左右前輪についてのみ演算されるようになっているが、ヨーモーメントYdを達成するための補正制駆動トルクは左右後輪について演算されてもよく、また左右前輪及び左右後輪について演算されてもよい。   For example, in the above embodiment, the corrected braking / driving torque for achieving the yaw moment Yd is calculated only for the left and right front wheels, but the corrected braking / driving torque for achieving the yaw moment Yd is It may be calculated for the left and right rear wheels, or may be calculated for the left and right front wheels and the left and right rear wheels.

また上述の実施例に於いては、車輌の非制動走行時及び制動走行時の何れについても左右輪の制駆動力差によるヨーモーメントYdが演算され、左右輪の駆動力又は制動力が制御されるようになっているが、車輌の非制動走行時又は制動走行時にのみ左右輪の制駆動力差によるヨーモーメントYdが演算され、左右輪の駆動力又は制動力が制御されるよう修正されてもよい。   In the above-described embodiment, the yaw moment Yd due to the braking / driving force difference between the left and right wheels is calculated to control the driving force or braking force of the left and right wheels, both when the vehicle is not braking and when braking. However, the yaw moment Yd due to the braking / driving force difference between the left and right wheels is calculated only when the vehicle is unbraking or braking, and is corrected so that the driving force or braking force of the left and right wheels is controlled. Also good.

また上述の実施例に於いては、車輪10FL〜10RRはそれぞれ電動発電機12FL〜12RRにより直接駆動されるようになっているが、車輪10FL〜10RRはそれぞれ歯車減速機構の如き減速機構を介して電動発電機12FL〜12RRにより直接駆動されるようになっていてもよい。   Further, in the above-described embodiment, the wheels 10FL to 10RR are directly driven by the motor generators 12FL to 12RR, respectively, but the wheels 10FL to 10RR are respectively connected via a speed reduction mechanism such as a gear speed reduction mechanism. The motor generators 12FL to 12RR may be directly driven.

また上述の実施例に於いては、電動発電機は各車輪に組み込まれたホイールインモータであるが、電動発電機は各車輪を駆動し得る限り車体に支持された電動発電機であってもよく、また上述の実施例に於ける電動発電機は車輌の制動時に回生制動を行う電動発電機であるが、電動発電機が回生制動を行わず、制動力が摩擦制動装置のみにより発生されるよう修正されてもよい。   In the above-described embodiments, the motor generator is a wheel-in motor incorporated in each wheel, but the motor generator may be a motor generator supported on the vehicle body as long as it can drive each wheel. The motor generator in the above embodiment is a motor generator that performs regenerative braking when the vehicle is braked, but the motor generator does not perform regenerative braking, and the braking force is generated only by the friction braking device. It may be modified as follows.

ホイールインモータ式の四輪駆動車に適用された本発明による操舵制御装置の一つの実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the steering control apparatus by this invention applied to the wheel-in-motor type four-wheel drive vehicle. 実施例に於ける操舵制御による制駆動トルク制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of the braking / driving torque control by the steering control in an Example. 図2のステップ40に於ける駆動力差ヨーモーメントYd演算ルーチンを示すフローチャートである。4 is a flowchart showing a driving force difference yaw moment Yd calculation routine in step 40 of FIG. 図2のステップ100に於ける制動力差ヨーモーメントYb演算ルーチンを示すフローチャートである。3 is a flowchart showing a braking force difference yaw moment Yb calculation routine in step 100 of FIG. 2. 図2のステップ140に於ける制駆動トルク制御ルーチンを示すフローチャートである。3 is a flowchart showing a braking / driving torque control routine in step 140 of FIG. 2. 車輌が低車速にて加速走行する際の操舵角θ及び車速Vと左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdとの間の関係を示すグラフである。5 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is accelerated at a low vehicle speed and a yaw moment Yd to be applied to the vehicle due to a driving force difference between left and right front wheels. 車輌が中高速にて加速走行し切り込み操舵が行われる際の操舵角θ及び車速Vと左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdとの間の関係を示すグラフである。4 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is accelerated at medium and high speeds and a cutting steering is performed, and a yaw moment Yd to be applied to the vehicle due to a driving force difference between left and right front wheels. 車輌が中高速にて加速走行し切り戻し操舵が行われる際の操舵角θ及び車速Vと左右前輪の駆動力差により車輌に付与すべきヨーモーメントYdとの間の関係を示すグラフである。4 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is accelerated at medium and high speeds and a return steering is performed, and a yaw moment Yd to be applied to the vehicle due to a driving force difference between left and right front wheels. 車輌が低車速にて制動走行する際の操舵角θ及び車速Vと左右前輪の制動力差により車輌に付与すべきヨーモーメントYbとの間の関係を示すグラフである。6 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is braked at a low vehicle speed and a yaw moment Yb to be applied to the vehicle due to a difference in braking force between left and right front wheels. 車輌が中高速にて制動走行し切り込み操舵が行われる際の操舵角θ及び車速Vと左右前輪の制動力差により車輌に付与すべきヨーモーメントYbとの間の関係を示すグラフである。5 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is braked at medium and high speeds and a cutting steering is performed, and a yaw moment Yb to be applied to the vehicle due to a braking force difference between left and right front wheels. 車輌が中高速にて制動走行し切り戻し操舵が行われる際の操舵角θ及び車速Vと左右前輪の制動力差により車輌に付与すべきヨーモーメントYbとの間の関係を示すグラフである。6 is a graph showing a relationship between a steering angle θ and a vehicle speed V when a vehicle is driven at a medium and high speed and a return steering is performed, and a yaw moment Yb to be applied to the vehicle due to a braking force difference between left and right front wheels. 車輌の種々の走行状況について運転者により操舵が行われた場合に於ける各車輪の制駆動力の大小関係と共に車輌に作用する左右前輪の操舵によるヨーモーメントYs及び左右前輪の制駆動力差によるヨーモーメントYdを示す説明図である。Depending on the magnitude of the braking / driving force of each wheel when the driver is steering in various driving situations of the vehicle, the yaw moment Ys due to the steering of the left and right front wheels acting on the vehicle and the braking / driving force difference between the left and right front wheels It is explanatory drawing which shows the yaw moment Yd. 車輌が中高速にて走行する場合(太い実線)及び車輌が低速にて走行する場合(太い破線)について、従来の車輌が中高速にて走行する場合(細い実線)と比較して車輌の旋回応答特性を示すグラフである。When the vehicle travels at medium to high speed (thick solid line) and when the vehicle travels at low speed (thick broken line), the vehicle turns compared to the conventional vehicle traveling at medium to high speed (thin solid line) It is a graph which shows a response characteristic.

符号の説明Explanation of symbols

14 ステアリングホイール
16 パワーステアリング装置
22FL〜22RR 電動発電機
24 駆動力制御用電子制御装置
26 摩擦制動装置
32 ブレーキペダル
36 制動力制御用電子制御装置
38 車速センサ
40 アクセル開度センサ
42、44FL〜44RR 圧力センサ
DESCRIPTION OF SYMBOLS 14 Steering wheel 16 Power steering apparatus 22FL-22RR Motor generator 24 Electronic controller for driving force control 26 Friction brake device 32 Brake pedal 36 Electronic controller for braking force control 38 Vehicle speed sensor 40 Accelerator opening sensor 42, 44FL-44RR Pressure Sensor

Claims (8)

操舵輪を操舵することにより車輌にヨーモーメントを付与する操舵手段と、左右の車輪の制駆動力に差を与えて車輌にヨーモーメントを付与する制駆動力差付与手段とを有し、前記操舵輪が前記操舵手段により直進位置と旋回位置との間に操舵される際に、非制動時には前記制駆動力差付与手段により与えられる前記左右の車輪の駆動力差による逆方向のヨーモーメントにより、制動時には前記制駆動力差付与手段により与えられる前記左右の車輪の制動力差による逆方向のヨーモーメントにより、前記操舵手段によるヨーモーメントを少なくとも部分的に相殺し、前記操舵輪が直進位置より旋回位置へ操舵される際の前記ヨーモーメントの相殺の度合は前記操舵輪が旋回位置より直進位置へ操舵される際の前記ヨーモーメントの相殺の度合に比して大きいことを特徴とする車輌の操舵制御装置。 Steering means for applying a yaw moment to the vehicle by steering a steered wheel; and a braking / driving force difference providing unit for providing a yaw moment to the vehicle by giving a difference to the braking / driving force of the left and right wheels. When the wheel is steered between the straight driving position and the turning position by the steering means, the yaw moment in the reverse direction due to the driving force difference between the left and right wheels given by the braking / driving force difference applying means at the time of non-braking, During braking, the yaw moment in the reverse direction due to the difference in braking force between the left and right wheels given by the braking / driving force difference applying means at least partially cancels the yaw moment by the steering means , and the steering wheel turns from a straight traveling position. The degree of cancellation of the yaw moment when steered to a position is the degree of cancellation of the yaw moment when the steered wheel is steered from a turning position to a straight position. Steering control apparatus of the vehicle, characterized in that larger than. 操舵輪を操舵することにより車輌にヨーモーメントを付与する操舵手段と、左右の車輪の制駆動力に差を与えて車輌にヨーモーメントを付与する制駆動力差付与手段とを有し、前記操舵輪が前記操舵手段により直進位置と旋回位置との間に操舵される際に前記操舵手段によるヨーモーメントを前記制駆動力差付与手段による逆方向のヨーモーメントにより少なくとも部分的に相殺し、前記操舵輪が直進位置より旋回位置へ操舵される際の前記ヨーモーメントの相殺の度合は前記操舵輪が旋回位置より直進位置へ操舵される際の前記ヨーモーメントの相殺の度合に比して大きいことを特徴とする車輌の操舵制御装置。   Steering means for applying a yaw moment to the vehicle by steering a steered wheel; and a braking / driving force difference providing unit for providing a yaw moment to the vehicle by giving a difference to the braking / driving force of the left and right wheels. When the wheel is steered between the straight traveling position and the turning position by the steering means, the yaw moment by the steering means is at least partially offset by the yaw moment in the reverse direction by the braking / driving force difference providing means, and the steering The degree of cancellation of the yaw moment when the wheel is steered from the straight position to the turning position is greater than the degree of cancellation of the yaw moment when the steering wheel is steered from the turning position to the straight position. A vehicle steering control device. 前記ヨーモーメントの相殺は前記操舵輪が前記直進位置を含む所定の操舵角度範囲内にあるときに行われることを特徴とする請求項1又は2に記載の車輌の操舵制御装置。   The vehicle steering control device according to claim 1 or 2, wherein the canceling of the yaw moment is performed when the steering wheel is within a predetermined steering angle range including the rectilinear position. 前記ヨーモーメントの相殺の度合は前記操舵輪の操舵角度の大きさが大きいときには前記操舵輪の操舵角度の大きさが小さいときに比して小さいことを特徴とする請求項1乃至3に記載の車輌の操舵制御装置。   The degree of cancellation of the yaw moment is smaller when the steering angle of the steering wheel is large than when the steering angle of the steering wheel is small. Vehicle steering control device. 前記ヨーモーメントの相殺の度合は車速が高いときには車速が低いときに比して大きいことを特徴とする請求項1乃至に記載の車輌の操舵制御装置。 Vehicle steering control apparatus according to any one of claims 1 to 4 degree of offset of the yaw moment being greater than when the vehicle speed is low when the vehicle speed is high. 前記ヨーモーメントの相殺は車速が中高車速域判定の基準値よりも高いときに行われることを特徴とする請求項1乃至に記載の車輌の操舵制御装置。 Vehicle steering control apparatus according to any one of claims 1 to 5 offset of the yaw moment is characterized to be performed when the vehicle speed is higher than the reference value of the determination medium and high speed range. 車速が低車速域判定の基準値以下であるときには前記操舵手段によるヨーモーメントと同一方向に前記制駆動力差付与手段によるヨーモーメントを発生させることを特徴とする請求項1乃至に記載の車輌の操舵制御装置。 The vehicle according to any one of claims 1 to 6 , wherein a yaw moment is generated by the braking / driving force difference applying means in the same direction as a yaw moment by the steering means when the vehicle speed is equal to or less than a reference value for low vehicle speed range determination. Steering control device. 前記制駆動力差付与手段によるヨーモーメントの大きさは車速が低いときには車速が高いときに比して大きいことを特徴とする請求項7に記載の車輌の操舵制御装置。   8. The vehicle steering control device according to claim 7, wherein the magnitude of the yaw moment by the braking / driving force difference applying means is larger when the vehicle speed is low than when the vehicle speed is high.
JP2004200162A 2004-07-07 2004-07-07 Vehicle steering control device Expired - Fee Related JP4353011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200162A JP4353011B2 (en) 2004-07-07 2004-07-07 Vehicle steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200162A JP4353011B2 (en) 2004-07-07 2004-07-07 Vehicle steering control device

Publications (2)

Publication Number Publication Date
JP2006021589A JP2006021589A (en) 2006-01-26
JP4353011B2 true JP4353011B2 (en) 2009-10-28

Family

ID=35795182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200162A Expired - Fee Related JP4353011B2 (en) 2004-07-07 2004-07-07 Vehicle steering control device

Country Status (1)

Country Link
JP (1) JP4353011B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2528800B1 (en) * 2010-01-25 2015-10-21 BorgWarner TorqTransfer Systems AB A method for controlling the yaw moment of a vehicle
JP6496588B2 (en) * 2015-03-26 2019-04-03 株式会社Subaru Vehicle behavior control device
CN109849898B (en) * 2018-12-27 2020-06-26 合肥工业大学 Vehicle yaw stability control method based on genetic algorithm hybrid optimization GPC

Also Published As

Publication number Publication date
JP2006021589A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
EP1418104B1 (en) Vehicle braking control device
JP4003627B2 (en) Steering control device for vehicle
EP1510438B1 (en) Control device for vehicle power steering
JP4636062B2 (en) Vehicle behavior control device
JP4131269B2 (en) Vehicle braking / driving force control device
US20100191423A1 (en) Vehicle rollover prevention control apparatus and vehicle rollover prevention control method
JP4464970B2 (en) Vehicle steering control device with limited target steering angle
JP6844500B2 (en) Vehicle behavior control device
JP2006240397A (en) Driving/braking force controller for vehicle
US20050205339A1 (en) Steering control apparatus for a vehicle
JP2006240395A (en) Driving/braking force controller for vehicle
JP2006111210A (en) Control device of vehicle
JP4172361B2 (en) Control device for electric power steering device
JP4765552B2 (en) Driving force control device for electric vehicle
JP3551132B2 (en) Vehicle braking force control type behavior control device
JP4412476B2 (en) Travel control device for a four-wheel independent drive vehicle
JP4353011B2 (en) Vehicle steering control device
JP4296970B2 (en) Vehicle behavior control device
JP2004255943A (en) Control device of vehicle
JP2005343256A (en) Vehicle behavior controlling device
JP4178948B2 (en) Vehicle behavior control device
JP4172360B2 (en) Control device for electric power steering device
JP4685407B2 (en) Vehicle behavior control device
JP4155246B2 (en) Vehicle motion control device
JP4238707B2 (en) Driving force control device for electric motor driven vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees