JP2006332228A - Semiconductor element and substrate and epitaxial wafer to form the same, and semiconductor device utilizing the same - Google Patents

Semiconductor element and substrate and epitaxial wafer to form the same, and semiconductor device utilizing the same Download PDF

Info

Publication number
JP2006332228A
JP2006332228A JP2005152050A JP2005152050A JP2006332228A JP 2006332228 A JP2006332228 A JP 2006332228A JP 2005152050 A JP2005152050 A JP 2005152050A JP 2005152050 A JP2005152050 A JP 2005152050A JP 2006332228 A JP2006332228 A JP 2006332228A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
semiconductor element
epitaxial wafer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005152050A
Other languages
Japanese (ja)
Other versions
JP4964430B2 (en
Inventor
Taichi Okano
太一 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005152050A priority Critical patent/JP4964430B2/en
Publication of JP2006332228A publication Critical patent/JP2006332228A/en
Application granted granted Critical
Publication of JP4964430B2 publication Critical patent/JP4964430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for semiconductor element with less through-dislocation to obtain an epitaxial wafer forming an operating layer having excellent crystal characteristic using the same substrate, and moreover to provide a high performance semiconductor element and semiconductor device utilizing the same epitaxial wafer. <P>SOLUTION: A substrate 1 is used having the surface which is polished like a specular surface but still includes level difference in the projected and recessed areas. Such substrate 1 undergoes the surface polishing after a lattice type resist film is previously formed to the substrate surface, and the lattice type grooves are formed with the etching process. In this case, the areas near the grooves are polished deeply and the areas far from the grooves are polished shallowly. Consequently, the areas near the grooves are formed thicker than the other areas to form uneven swelling part at the surface. As a result, the substrate 1 including level-different areas is obtained. When an epitaxial wafer is formed using this substrate 1, a high performance semiconductor element is provided because of its little through-dislocation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子形成用基板及びエピタキシャルウェーハ並びにそれらを利用した半導体素子及び半導体デバイスに関するものである。   The present invention relates to a semiconductor element forming substrate and an epitaxial wafer, and a semiconductor element and a semiconductor device using them.

近年、半導体エピタキシャルウエーハにおいて、その特性と生産性を両立させるため、例えばシリコン基板のような安価な基板上に、これと格子定数の異なる例えばInGaAsのような作動層を形成したエピタキシャルウエーハを製造する必要性が増加している。半導体エピタキシャルウエーハには、例えば電界効果トランジスタ(FET)やヘテロバイポーラトランジスタ(HBT)等の電子デバイスや、あるいはまた、例えば発光ダイオード(LED)やレーザーダイオード(LD)、受光素子等の光デバイスを作成する用途がある。
以下に、LEDに関する従来技術を一例に挙げて説明する。
小型・長寿命という利点を有する発光ダイオード( Light Emitting Diode:LED)を用いた照明機器が期待され、屋外での使用も増えていることからLEDの一層の高輝度化が望まれている。
図5に、従来用いられてきた典型的な格子整合型発光ダイオードの断面構造の一例を示す。
この発光ダイオード30は、GaAsの基板1を使用し、GaAsの基板1上に格子整合するInAlGaP系半導体層3〜5を形成したものである。格子定数が0.5653nmのn型GaAsからなる基板1上に、先ずバッファ層2として格子定数が0.5666nmのIn0.5Al0.5P結晶を厚さ1μm形成し、さらに下クラッド層3としての厚さ1μmで格子定数が0.5666nmのn型In0.5Al0.5P結晶と、発光層4としての厚さ1μmで格子定数が0.5663nmのIn0.5 Al0.25Ga0.25P結晶と、上クラッド層5としての厚さ1μmで格子定数が0.5666nmのp型In0.5Al0.5P結晶を形成した、3層からなるダブルへテロ発光構造9を載置し、最上部に電流拡散層6として厚さ10μmで格子定数が0.5666nmのIn0.5Al0.5P結晶を形成し、上面と底面にそれぞれ金属層からなるn型電極38とp型電極37を形成して構成したものである。この発光ダイオードにおいては、波長610nmの赤色発光が得られる。
また、この発光ダイオードは、作動領域であるダブルへテロ構造発光構造部分の各層の格子定数は、基板であるGaAsの格子定数と一致しているので、発光構造部分の結晶欠陥はエッチピット密度(Etch Pit Density:EPD)が1×10 cm−2程度と少ない良質な結晶のが形成できるので、高性能な発光ダイオードが得られるとされている。
しかしながら、上記従来の発光ダイオードでは、GaAs基板による発光の吸収が起こるため、外部に取り出せる光が内部で発光した光に対して極端に減少してしまう。
In recent years, in order to achieve both the characteristics and productivity of a semiconductor epitaxial wafer, an epitaxial wafer in which an operation layer such as InGaAs having a different lattice constant from that of an inexpensive substrate such as a silicon substrate is formed is manufactured. The need is increasing. For semiconductor epitaxial wafers, for example, electronic devices such as field effect transistors (FETs) and heterobipolar transistors (HBT), or optical devices such as light emitting diodes (LEDs), laser diodes (LDs), and light receiving elements are created. There are uses to do.
Below, the prior art regarding LED is mentioned as an example, and is demonstrated.
A lighting device using a light emitting diode (LED) having an advantage of small size and long life is expected, and since the use in the outdoors is increasing, further enhancement of brightness of the LED is desired.
FIG. 5 shows an example of a cross-sectional structure of a typical lattice-matching light emitting diode that has been conventionally used.
This light-emitting diode 30 uses a GaAs substrate 1 and has InAlGaP-based semiconductor layers 3 to 5 lattice-matched on the GaAs substrate 1. On the substrate 1 made of n-type GaAs having a lattice constant of 0.5653 nm, an In 0.5 Al 0.5 P crystal having a lattice constant of 0.5666 nm is first formed as the buffer layer 2 to a thickness of 1 μm, and the lower cladding layer N-type In 0.5 Al 0.5 P crystal having a thickness of 1 μm and a lattice constant of 0.5666 nm, and In 0.5 Al 0 having a thickness of 1 μm and a lattice constant of 0.5663 nm as the light-emitting layer 4 .25 Ga 0.25 P crystal and a double heterostructure consisting of three layers formed with a p-type In 0.5 Al 0.5 P crystal having a thickness of 1 μm and a lattice constant of 0.5666 nm as the upper cladding layer 5 The light-emitting structure 9 is mounted, and an In 0.5 Al 0.5 P crystal having a thickness of 10 μm and a lattice constant of 0.5666 nm is formed as the current diffusion layer 6 on the uppermost portion, and each includes a metal layer on the top surface and the bottom surface. n-type electrode 3 Is constructed by forming the p-type electrode 37 and. In this light emitting diode, red light emission with a wavelength of 610 nm is obtained.
Further, in this light emitting diode, since the lattice constant of each layer of the double heterostructure light emitting structure portion which is an active region is coincident with the lattice constant of GaAs which is a substrate, crystal defects in the light emitting structure portion are etched pit density ( It is said that a high-performance light-emitting diode can be obtained because a high-quality crystal having a low Etch Pit Density (EPD) of about 1 × 10 5 cm −2 can be formed.
However, in the conventional light emitting diode, since light emission is absorbed by the GaAs substrate, the light that can be extracted to the outside is extremely reduced with respect to the light emitted inside.

そこで、InAlGaPの発光波長に対して透明なGaP基板上にInAlGaP系半導体層を積層し、外部量子効率を向上させる試みがなされている。この場合、格子定数が0.5451nmのGaP基板と0.5663nmのInAlGaP結晶とでは格子定数のミスマッチ度が3.9%以上有るために、GaP基板上に成長させたInAlGaP系半導体層では、基板から上層に伸びる貫通転位が10 /cm 以上と多数存在している。このような多数の転位の存在は、発光層の結晶性の低下を招き、輝度で代表される発光特性は格子整合系の発光半導体素子の場合の百分に一以下にまで低下してしまう。 Therefore, attempts have been made to improve the external quantum efficiency by laminating an InAlGaP-based semiconductor layer on a GaP substrate that is transparent to the emission wavelength of InAlGaP. In this case, a GaP substrate having a lattice constant of 0.5451 nm and an InAlGaP crystal having a 0.5663 nm have a lattice constant mismatch degree of 3.9% or more. Therefore, in an InAlGaP-based semiconductor layer grown on a GaP substrate, Many threading dislocations extending from 10 to the upper layer are present at 10 8 / cm 2 or more. The existence of such a large number of dislocations causes a decrease in crystallinity of the light emitting layer, and the light emission characteristics represented by luminance are reduced to 1 or less in the case of a lattice matching light emitting semiconductor element.

そこで上記のようなInAlGaP系半導体層における転位の上層への伝播を低減する方法として、徐々に組成を変化させる格子緩和バッファ層(リニアグレーテッドバッファ層、以下、LGバッファと呼ぶ。)や、段階的に組成を変化させる格子緩和バッファ層(ステップグレーテッドバッファ層、以下、SGバッファと呼ぶ。)等を使用することが提案されている(例えば、特許文献1、特許文献2等参照。)。   Therefore, as a method for reducing the propagation of dislocations to the upper layer in the InAlGaP-based semiconductor layer as described above, a lattice relaxation buffer layer (linear graded buffer layer, hereinafter referred to as LG buffer) in which the composition is gradually changed, or a step. In particular, it has been proposed to use a lattice relaxation buffer layer (step graded buffer layer, hereinafter referred to as an SG buffer) or the like whose composition is changed (see, for example, Patent Document 1 and Patent Document 2).

図6に、SGバッファ層により格子定数を段階的に変化させて、SGバッファ層最上層と作動領域の格子定数を整合させた発光ダイオードの断面構造の一例を示す。この発光ダイオード40は、GaPからなる基板1を使用し、GaPからなる基板1上に段階的に格子定数の変化するバッファ層2−1から2−5の5層を形成し、その上にバッファ層2−5と格子整合するInAlGaP系半導体層3〜5を形成することにより構成されている。
この発光ダイオード40では、格子定数が0.5451nmのGaPからなる基板1と、格子定数が0.5663nmのIn0.5 Al0.25Ga0.25Pからなる発光層4の間の格子ミスマッチ度は、(0.5663−0.5451)/0.5451=0.039、すなわち3.9%有るものの、最上部のバッファ層2−5と発光層4とは、ほとんど格子整合している。このため発光層のEPDは5×10/cmまで低減され、輝度は基板と発光層とが格子整合している場合の十分の一程度となる。
FIG. 6 shows an example of a cross-sectional structure of a light-emitting diode in which the lattice constant is changed stepwise by the SG buffer layer so that the uppermost layer of the SG buffer layer matches the lattice constant of the operating region. This light-emitting diode 40 uses a substrate 1 made of GaP, and forms five layers of buffer layers 2-1 to 2-5 whose lattice constants are changed in stages on the substrate 1 made of GaP, and the buffer layer thereon. The InAlGaP-based semiconductor layers 3 to 5 that are lattice-matched with the layer 2-5 are formed.
In this light emitting diode 40, a lattice mismatch between the substrate 1 made of GaP having a lattice constant of 0.5451 nm and the light emitting layer 4 made of In 0.5 Al 0.25 Ga 0.25 P having a lattice constant of 0.5663 nm. Although the degree is (0.5663-0.5451) /0.5451=0.039, that is, 3.9%, the uppermost buffer layer 2-5 and the light emitting layer 4 are almost lattice matched. . For this reason, the EPD of the light emitting layer is reduced to 5 × 10 6 / cm 2 , and the luminance is about one tenth when the substrate and the light emitting layer are lattice-matched.

これらのバッファ層を成長する場合、まず、n−GaP基板上にn−InAlPバッファ層を成長させる。このとき、基板としては、面方位が(100)面となった基板か、又は0〜15°off 基板を用いるのが好ましい。Alの混晶比としては、例えば成長開始直後に0.9になるようにするとともに、バッファ層の成長が進むに従って、LGバッファ層の場合はAl混晶比率を連続的に変化させる。また、SGバッファ層の場合はAl混晶比率を段階的に不連続的に減少させ、発光構造の下クラッド層の格子定数と一致させる手段をとる。すなわち、SGバッファ層の場合には格子定数が0.5451nmのn型GaPからなる基板1上に、先ず第1のバッファ層2−1として格子定数が0.5503nmのIn0.1Al0.9P結晶を厚さ0.1μm形成し、次いで第2のバッファ層2−2として格子定数が0.5544nmのIn0.2Al0.8P結晶を厚さ0.1μm形成し、次いで第3のバッファ層2−3として格子定数が0.5584nmのIn0.3 Al0.7P 結晶を厚さ0.1μm形成し、次いで第4のバッファ層2−4として格子定数が0.5625nmのIn0.4Al0.6P結晶を厚さ0.1μm形成し、次いで第5のバッファ層2−5として格子定数が0.5666nmのIn0.5Al0.5P結晶を厚さ1μmに形成する。その上にさらに下クラッド層3としての厚さ1μmで格子定数が0.5666nmのn型In0.5Al0.5P結晶と、発光層4としての厚さ1μmで格子定数が0.5663nmのIn0.5Al0.25Ga0.25P 結晶と、上クラッド層5としての厚さ1μmで格子定数が0.5666nmのp型In0.5Al0.5P結晶の3層からなるダブルへテロ発光構造9を載置し、最上部に電流拡散層6として厚さ10μmで格子定数が0.5666nmのp型In0.5Al0.5P結晶を形成し、上面と底面にそれぞれ金属層からなるn型電極8とp型電極7を形成して構成したものである。このような構造に形成した発光ダイオード40は波長610nmの赤色発光が得られる。
特開昭59−84417号公報 特開平04−257276号公報
When growing these buffer layers, first, an n-InAlP buffer layer is grown on an n-GaP substrate. At this time, it is preferable to use a substrate whose plane orientation is the (100) plane or a 0-15 ° off substrate. For example, the Al mixed crystal ratio is set to 0.9 immediately after the start of growth, and the Al mixed crystal ratio is continuously changed in the case of the LG buffer layer as the growth of the buffer layer proceeds. In the case of the SG buffer layer, means for decreasing the Al mixed crystal ratio stepwise in a discontinuous manner to match the lattice constant of the lower cladding layer of the light emitting structure is taken. That is, in the case of the SG buffer layer, on the substrate 1 made of n-type GaP having a lattice constant of 0.5451 nm, first, In 0.1 Al 0. 5 having a lattice constant of 0.5503 nm as the first buffer layer 2-1 . 9 P crystal is formed to a thickness of 0.1 μm, then an In 0.2 Al 0.8 P crystal having a lattice constant of 0.5544 nm is formed as the second buffer layer 2-2 to a thickness of 0.1 μm, As a buffer layer 2-3, an In 0.3 Al 0.7 P crystal having a lattice constant of 0.5584 nm is formed to a thickness of 0.1 μm, and as a fourth buffer layer 2-4, the lattice constant is 0.5625 nm. In 0.4 Al 0.6 P crystal having a thickness of 0.1 μm was formed, and then an In 0.5 Al 0.5 P crystal having a lattice constant of 0.5666 nm was formed as the fifth buffer layer 2-5. Formed to 1 μm. Furthermore, an n-type In 0.5 Al 0.5 P crystal having a thickness of 1 μm and a lattice constant of 0.5666 nm as the lower cladding layer 3 and a lattice constant of 0.5663 nm and a thickness of 1 μm as the light emitting layer 4 are formed. Three layers of In 0.5 Al 0.25 Ga 0.25 P crystal and p-type In 0.5 Al 0.5 P crystal having a thickness of 1 μm and a lattice constant of 0.5666 nm as the upper cladding layer 5 The p-type In 0.5 Al 0.5 P crystal having a thickness of 10 μm and a lattice constant of 0.5666 nm is formed as the current diffusion layer 6 on the top, and the top and bottom surfaces are mounted. Are formed by forming an n-type electrode 8 and a p-type electrode 7 each made of a metal layer. The light emitting diode 40 formed in such a structure can emit red light having a wavelength of 610 nm.
JP 59-84417 A Japanese Patent Laid-Open No. 04-257276

しかしながら、上記従来の格子定数差異緩和バッファ層では貫通転位を十分に低減させることができず、発光層のEPDが5×(10〜10)cm−2程度存在するため、活性層の結晶性が低下し、貫通転位に沿って流れるリーク電流の発生により発光素子の輝度特性が格子整合させた場合に比較して十分の一から百分の一程度まで低化する。
そこで本発明は、上記問題を解決するために活性層に伝播する貫通転位を低減させて、良好な半導体素子を提供することを目的とする。
However, in the conventional lattice constant difference relaxation buffer layer, threading dislocations cannot be sufficiently reduced, and the EPD of the light emitting layer is about 5 × (10 6 to 10 7 ) cm −2. As a result, the luminance characteristics of the light-emitting element are reduced to about one-hundred to one-hundred compared with the case where the luminance characteristics of the light-emitting element are lattice-matched due to the generation of leakage current flowing along threading dislocations.
Accordingly, an object of the present invention is to provide a good semiconductor device by reducing threading dislocations propagating to an active layer in order to solve the above problem.

上記課題を解決するため、本発明は以下に掲げた
(1) 表面が鏡面研磨されおり、かつ表面に高低差を有する半導体素子形成用基板、
(2) 前記表面の高低差が1μm以上100μm以下である(1)に記載の半導体素子形成用基板、
(3) 前記基板表面の高低差が、作成すべき作動領域の大きさ以下の周期で繰り返されている(1)または(2)に記載の半導体素子形成用基板、
(4) 前記基板が、GaP,GaAs,InP,AlP,AlAs,Siのうちいずれか1種である(1)から(3)のいずれか1つに記載の半導体素子形成用基板、
(5) 基板の結晶と格子定数が異なる半導体結晶からなる動作領域を持つエピタキシャルウェーハであって、該作動領域が前記(1)から(4)のいずれか1つに記載の半導体素子形成用基板上に形成されてなるエピタキシャルウェーハ、
(6) 前記基板結晶の格子定数と動作領域の半導体結晶との格子定数の差異が0.15%以上である(5)に記載のエピタキシャルウェーハ、
(7) 前記動作領域の半導体結晶が、Al,Ga,In,P,As,Sb,Si,Ge,Cのうち少なくとも1種以上の元素を含む(5)または(6)に記載のエピタキシャルウェーハ、
In order to solve the above-mentioned problems, the present invention has the following (1) a substrate for forming a semiconductor element, the surface of which is mirror-polished and the surface has a height difference,
(2) The substrate for forming a semiconductor element according to (1), wherein the height difference of the surface is 1 μm or more and 100 μm or less,
(3) The substrate for forming a semiconductor element according to (1) or (2), wherein the height difference of the substrate surface is repeated at a cycle equal to or less than the size of the working region to be created,
(4) The substrate for forming a semiconductor element according to any one of (1) to (3), wherein the substrate is one of GaP, GaAs, InP, AlP, AlAs, and Si,
(5) An epitaxial wafer having an operation region made of a semiconductor crystal having a lattice constant different from that of the substrate crystal, wherein the operation region is the semiconductor element formation substrate according to any one of (1) to (4) An epitaxial wafer formed thereon,
(6) The epitaxial wafer according to (5), wherein the difference in lattice constant between the substrate crystal and the semiconductor crystal in the operation region is 0.15% or more,
(7) The epitaxial wafer according to (5) or (6), wherein the semiconductor crystal in the operation region contains at least one element selected from Al, Ga, In, P, As, Sb, Si, Ge, and C. ,

(8) 前記(5)から(7)のいずれか1つに記載のエピタキシャルウェーハを使用してなる半導体素子、
(9) 前記半導体素子が発光素子、レーザ素子または電子デバイス素子のいずれかである(8)に記載の半導体素子、
(10) 前記(9)に記載の半導体素子を使用した半導体デバイス、
(11) 前記半導体デバイスが照明装置、表示装置、通信装置、レーダー装置のいずれかである(10)に記載の半導体デバイス、
の各発明を提供する。
(8) A semiconductor device using the epitaxial wafer according to any one of (5) to (7),
(9) The semiconductor element according to (8), wherein the semiconductor element is any one of a light emitting element, a laser element, and an electronic device element.
(10) A semiconductor device using the semiconductor element according to (9),
(11) The semiconductor device according to (10), wherein the semiconductor device is any one of a lighting device, a display device, a communication device, and a radar device,
Each invention is provided.

以上説明したように本発明によれば、次のような優れた効果が得られる。すなわち、本発明で使用する基板は、表面が鏡面研磨してあるがなお高低差を有する基板を使用するので、基板中の結晶欠陥が低部に集中しており、基板と格子定数が異なる動作領域を持つ化合物半導体エピタキシャルウェーハを形成する場合において、動作領域中を通過する貫通転位の数を低減することができる。したがって、本発明のエピタキシャルウェーハを使用した半導体素子は、高性能の半導体素子となり、高性能な半導体デバイスを作成できる。 また、本発明によれは、貫通転位の密度分布をつけることができ、特に電極に近い、より動作の寄与の大きい動作領域の貫通転位密度を低減することができるので、高機能の半導体素子や半導体デバイスを作成することができる。   As described above, according to the present invention, the following excellent effects can be obtained. That is, the substrate used in the present invention is a mirror-polished surface, but still has a difference in height, so that crystal defects in the substrate are concentrated in the low part, and the lattice constant is different from that of the substrate. In the case of forming a compound semiconductor epitaxial wafer having a region, the number of threading dislocations passing through the operation region can be reduced. Therefore, the semiconductor element using the epitaxial wafer of the present invention becomes a high-performance semiconductor element, and a high-performance semiconductor device can be created. Further, according to the present invention, it is possible to provide a density distribution of threading dislocations, and in particular, it is possible to reduce the threading dislocation density in the operation region that is closer to the electrode and more greatly contributes to the operation. Semiconductor devices can be created.

半導体素子を形成するための基板としては、GaAs、GaP、InP、AlP、AlAs、シリコン等の半導体基板の他にも、サファイア、ダイアモンド等各種の材料が使用されている。
シリコン、GaAs、GaP、InP等の半導体基板は、その表面をできるだけ平坦に、さらに研磨によるダメージを低減させるために、大きく分けて(a)単結晶インゴットの方位、外形を整える研削工程、(b)単結晶インゴットを薄く切断するスライス工程、(c)スライスしたウエーハを均等な厚さ、均等なスライスダメージ深さにするラップ工程、(d)ラップしたウエーハの外周を研削するべべリング工程、(e)べべリングしたウエーハをエッチングするエッチング工程、(f)エッチングしたウエーハを研磨する研磨工程、(g)研磨したウエーハを洗浄する洗浄工程、(h)洗浄したウエーハを検査、梱包する検査・梱包工程を経て加工される。
貫通転位を減少させという課題を解決するため、本発明の半導体素子形成用基板は、表面が鏡面研磨されているが平坦ではなく、高低差を有している基板を用いることとした。
As a substrate for forming a semiconductor element, various materials such as sapphire and diamond are used in addition to a semiconductor substrate such as GaAs, GaP, InP, AlP, AlAs, and silicon.
Semiconductor substrates such as silicon, GaAs, GaP, and InP are roughly divided into (a) a grinding step for adjusting the orientation and outer shape of a single crystal ingot in order to make the surface as flat as possible and further reduce damage caused by polishing, (b ) A slicing step for thinly cutting a single crystal ingot, (c) a lapping step for making the sliced wafer to an equal thickness and an equal slice damage depth, (d) a beveling step for grinding the outer periphery of the wrapped wafer, e) Etching process for etching a wafer that has been leveled; (f) Polishing process for polishing an etched wafer; (g) Cleaning process for cleaning a polished wafer; (h) Inspection / packaging for inspecting and packing the cleaned wafer Processed through the process.
In order to solve the problem of reducing threading dislocations, the substrate for forming a semiconductor element of the present invention is a substrate whose surface is mirror-polished but is not flat and has a height difference.

表面が鏡面研磨されているが平坦ではなく高低差を有している基板とは、一つの半導体動作領域を形成する部分の中心部の厚さが厚く、一つの半導体動作領域を形成する部分の周辺部分の厚さが薄い基板を意味する。一般に半導体素子は1枚の基板上に多数個の素子が形成されるので、本発明の基板は表面に多数の微小な高低差を有する凹凸部を具備したものとなっている。
図1に、本発明の一つである半導体素子の断面構造の一例を示す。なお、以下の図においては説明を判り易くするために、縮尺は必ずしも正確には描かれていない。
図1に示す半導体素子10は、表面が鏡面研磨されているが平坦ではなく高低差を有している半導体基板の表面に、格子整合させるためのバッファ層を介してダブルヘテロ構造のInAlGaP系発光構造を形成した半導体発光素子である。
図1において、1は格子定数が5.451nmのGaPからなる基板で、2−1〜2−5は格子定数が段階的に変化するIn1−xAlPからなるバッファ層で、基板1と接するバッファ層2−1は格子定数が5.503nmのIn0.1Al0.9P結晶からなっている。バッファ層2−1〜2−5の格子定数は次第に大きくなり、バッファ層2−2〜バッファ層2−4の組成はそれぞれIn0.2Al0.8P、In0.3Al0.7P、In0.4Al0.6Pとし、格子定数はそれぞれ0.5544,0.5584,0.5625となる。
そして最上部のバッファ層2−5は格子定数が5.666nmのIn0.5Al0.5P結晶からなっていて、ダブルヘテロ発光構造部の下クラッド層3と格子整合している。このため下クラッド層3と格子整合している発光層4は、転位等の結晶欠陥の少ない良質の結晶が得られる。
A substrate whose surface is mirror-polished but is not flat but has a height difference is that the thickness of the central portion of a portion forming one semiconductor operating region is thick, and the portion forming one semiconductor operating region is It means a substrate having a thin peripheral part. In general, since a large number of elements are formed on a single substrate, the substrate of the present invention has a large number of concavo-convex portions having minute height differences on the surface.
FIG. 1 shows an example of a cross-sectional structure of a semiconductor element which is one of the present invention. In the following drawings, the scale is not necessarily drawn accurately in order to make the explanation easy to understand.
The semiconductor element 10 shown in FIG. 1 has a double heterostructure InAlGaP-based light emission through a buffer layer for lattice matching with the surface of a semiconductor substrate having a mirror-polished surface but not flat and having a height difference. A semiconductor light emitting device having a structure.
In FIG. 1, 1 is a substrate made of GaP having a lattice constant of 5.451 nm, 2-1 to 2-5 are buffer layers made of In 1-x Al x P, the lattice constant of which changes stepwise, and the substrate 1 The buffer layer 2-1 in contact with the electrode is made of In 0.1 Al 0.9 P crystal having a lattice constant of 5.503 nm. The lattice constants of the buffer layers 2-1 to 2-5 gradually increase, and the compositions of the buffer layers 2-2 to 2-4 are In 0.2 Al 0.8 P and In 0.3 Al 0.7 , respectively. P and In 0.4 Al 0.6 P, respectively, and the lattice constants are 0.5544, 0.5584, and 0.5625, respectively.
The uppermost buffer layer 2-5 is made of In 0.5 Al 0.5 P crystal having a lattice constant of 5.666 nm and lattice-matched with the lower cladding layer 3 of the double hetero light-emitting structure portion. Therefore, the light emitting layer 4 lattice-matched with the lower cladding layer 3 can obtain a high quality crystal with few crystal defects such as dislocations.

ダブルヘテロ発光構造部9は、厚さが1μmで格子定数が0.5666nmのn型In0.5Al0.5P結晶からなる下クラッド層3と、厚さが1μmで格子定数が5.663nmのIn0.5Al0.25Ga0.25P 結晶からなる発光層4、及び厚さが0.1μmで格子定数が5.666nmのp型In0.5Al0.5P結晶からなる上クラッド層5の3層からなっている。ここで、基板1のGaPの格子定数は5.451nmであり、In0.5Al0.25Ga0.25P 結晶からなる発光層4の格子定数は5.663nmであるから、基板1と発光層4との間の格子定数ミスマッチ度は(5.663−5.451)/5.451=0.039、すなわち3.9%となる。 The double hetero light emitting structure 9 has a lower cladding layer 3 made of an n-type In 0.5 Al 0.5 P crystal having a thickness of 1 μm and a lattice constant of 0.5666 nm, a thickness of 1 μm and a lattice constant of 5. From the light-emitting layer 4 made of 663 nm In 0.5 Al 0.25 Ga 0.25 P crystal and the p-type In 0.5 Al 0.5 P crystal having a thickness of 0.1 μm and a lattice constant of 5.666 nm The upper clad layer 5 is composed of three layers. Here, the lattice constant of GaP of the substrate 1 is 5.451 nm, and the lattice constant of the light emitting layer 4 made of In 0.5 Al 0.25 Ga 0.25 P crystal is 5.663 nm. The degree of lattice constant mismatch with the light-emitting layer 4 is (5.663-5.451) /5.451=0.039, that is, 3.9%.

上記の構造の半導体発光素子において、GaPからなる基板1の表面は鏡面研磨されているが平坦ではなく、図1に示すように、中央部の厚さh が周辺部の厚さh よりも僅かに大きく、動作領域を形成する部分に高低差(h −h )を有している。この高低差(h −h )は、厚さ0.6mmの基板に対して1μm以上100μm以下程度とするのが適する。 In the semiconductor light emitting device having the above structure, the surface of the substrate 1 made of GaP is mirror-polished but is not flat. As shown in FIG. 1, the thickness h 1 at the central portion is greater than the thickness h 2 at the peripheral portion. Is slightly larger and has a difference in height (h 1 −h 2 ) in the portion forming the operation region. This height difference (h 1 -h 2 ) is suitably about 1 μm or more and 100 μm or less for a substrate having a thickness of 0.6 mm.

通常、半導体素子は1枚の基板の表面に多数の作動領域を形成して、1枚の基板上の多数の作動領域に対して同時に必要な処理を施して多数の半導体素子を形成した後、最後に各半導体素子を切り離して使用するのが一般的である。
図2に、基板1の表面に図1に示す構造の半導体発光素子を多数形成して切断分離する前のエピタキシャルウェーハ20の断面構造の一部を示す。図2では、図1に示す構造の半導体発光素子10が4個連なった状態を示している。平面的には半導体発光素子が格子状に多数連なって形成されている。
エピタキシャルウェーハ20では、基板1の作動領域を形成する領域が上に凸状に盛り上がって厚くなっている。このように基板の表面の形状を整えておくと、厚さの薄い部分に結晶欠陥が集中して、厚さの厚い部分では基板から上層に伸びる貫通転位が少なくなるので、この基板上にエピタキシャル成長させて形成した半導体結晶は、転位等の結晶欠陥の少ない良質の結晶が得られ、高性能な作動特性を有する半導体素子が得られる。
Usually, a semiconductor element forms a large number of working areas on the surface of a single substrate, and performs a necessary process on a large number of working areas on a single substrate simultaneously to form a large number of semiconductor elements. Finally, it is common to use each semiconductor element separately.
FIG. 2 shows a part of a cross-sectional structure of the epitaxial wafer 20 before a large number of semiconductor light emitting elements having the structure shown in FIG. FIG. 2 shows a state where four semiconductor light emitting elements 10 having the structure shown in FIG. 1 are connected. In plan view, a large number of semiconductor light emitting elements are formed in a lattice pattern.
In the epitaxial wafer 20, the region for forming the working region of the substrate 1 is raised upward and becomes thicker. If the surface shape of the substrate is adjusted in this way, crystal defects are concentrated in the thin portion, and threading dislocations extending from the substrate to the upper layer are reduced in the thick portion, so that epitaxial growth is performed on this substrate. The semiconductor crystal formed in this way provides a high-quality crystal with few crystal defects such as dislocations, and a semiconductor element having high-performance operating characteristics.

ここで、表面が研磨されているが高低差を有し、平坦でない基板の製造方法について半導体基板を例に挙げて説明する。
先ず、平滑な半導体基材を準備する。ここで、平滑な半導体基材の表面ダーメージ深さは、後の研磨で除去できる深さまでであれば、多少残留していても問題ない。通常の半導体基板製造工程で、単結晶インゴットからスライス工程、ラップ工程、べべリング工程等を経て得られた基材が利用できる。
この平滑な半導体基材表面の所定部分に、フォトリソグラフィー技術により例えば耐薬品性レジストからなるエッチングマスクを形成する。エッチングマスクは、例えば製造する素子の間隔が0.3mmであれば、0.3mm間隔の格子状とし、レジストには一般に市販されているネガタイプまたはポジタイプのフォトレジストを用いることが可能である。ここでレジストをエッチングマスクとして使用する場合は、レジストはエッチングで使用するエッチング゛方法に対し、安定性が高いことが望ましい。
また、酸化珪素薄膜をエッチングマスクとして使用する場合は、基板の上にプラズマCVDなどの方法で酸化珪素薄膜を形成し、フォトリソグラフィー技術を用いてレジストをパターニングして、酸化珪素薄膜をフッ化水素酸系のエッチャントでエッチングしてレジストを除去することにより、酸化珪素のエッチングマスクを作成することもできる。
Here, a method for manufacturing a non-flat substrate having a polished surface but having a height difference will be described by taking a semiconductor substrate as an example.
First, a smooth semiconductor substrate is prepared. Here, there is no problem even if the surface dermage depth of the smooth semiconductor substrate remains up to a depth that can be removed by subsequent polishing. In a normal semiconductor substrate manufacturing process, a base material obtained from a single crystal ingot through a slicing process, a lapping process, a beveling process, and the like can be used.
An etching mask made of, for example, a chemical resistant resist is formed on a predetermined portion of the smooth semiconductor substrate surface by a photolithography technique. For example, if an element to be manufactured has an interval of 0.3 mm, the etching mask has a lattice shape with an interval of 0.3 mm, and a commercially available negative type or positive type photoresist can be used as the resist. Here, when the resist is used as an etching mask, it is desirable that the resist has high stability with respect to the etching method used for etching.
In addition, when using a silicon oxide thin film as an etching mask, a silicon oxide thin film is formed on a substrate by a method such as plasma CVD, and a resist is patterned using a photolithography technique, and the silicon oxide thin film is formed into hydrogen fluoride. By etching with an acid-based etchant to remove the resist, a silicon oxide etching mask can be formed.

次に、図3及び図4に示すように、表面及び裏面に図示省略の格子状のエッチングマスクを施した基材11の一方の表面を化学的エッチング、例えば酸、アルカリ、その他の薬液によるエッチング、あるいは物理的エッチング、例えばプラズマドライエッチング、塩化水素ガスによるエッチング等により、所定の格子状の溝12を形成する。図3に格子状の溝12を形成する基材11の平面図の一部分を、図4には図3の線A−A’に沿った断面図を示す。図中13は個々の作動領域を形成する部分である。溝12は作動領域を形成する部分13を取り囲むように、格子状に形成する。作動領域を形成する部分13の大きさは1辺Wが0.3mm程度の正方形とする場合が多い。この場合、溝12の幅Lはおおむね0.3mm程度とするのがよい。溝12の深さDは、すなわちエッチング量は、後工程の研磨条件等にも依存するが、おおむね1〜100μm程度が適当である。   Next, as shown in FIGS. 3 and 4, one surface of the base material 11 with a lattice-like etching mask (not shown) on the front and back surfaces is chemically etched, for example, etching with acid, alkali, or other chemicals. Alternatively, the predetermined lattice-shaped grooves 12 are formed by physical etching such as plasma dry etching or etching with hydrogen chloride gas. FIG. 3 shows a part of a plan view of the base material 11 forming the lattice-like grooves 12, and FIG. 4 shows a cross-sectional view taken along line A-A 'of FIG. In the figure, reference numeral 13 denotes a portion that forms individual operating regions. The grooves 12 are formed in a lattice shape so as to surround the portion 13 that forms the operating region. In many cases, the size of the portion 13 forming the operating region is a square having a side W of about 0.3 mm. In this case, the width L of the groove 12 is preferably about 0.3 mm. The depth D of the groove 12, that is, the etching amount, which depends on the polishing conditions in the subsequent process, is generally about 1 to 100 μm.

GaP基板の化学的エッチング薬液の代表例としては、塩酸と硝酸及び純水の混合液が挙げられる。エッチング速度を大きくしたい場合は、濃度を上げたり温度を上げる等の方法が使用できる。
GaAs基板に対する化学エッチング薬液の代表例としては、フッ化水素酸と過酸化水素水及び純水の混合液や、硫酸と過酸化水素及び純水の混合液、さらには燐酸と過酸化水素水及び純水の混合液等、半導体加工分野で基板の材質に応じて通常使用されているエッチャントが挙げられる。
InP基板に対する化学的エッチング薬液の代表例としては、塩酸もしくは塩酸と過酸化水素水及び純水の混合液が挙げられる。
Si基板に対する化学的エッチング薬液の代表例としては、フッ化水素酸と純水の混合液が挙げられる。
A representative example of the chemical etching chemical solution for the GaP substrate is a mixed solution of hydrochloric acid, nitric acid and pure water. In order to increase the etching rate, methods such as increasing the concentration or increasing the temperature can be used.
Typical examples of chemical etching chemicals for GaAs substrates include a mixture of hydrofluoric acid, hydrogen peroxide and pure water, a mixture of sulfuric acid, hydrogen peroxide and pure water, and phosphoric acid and hydrogen peroxide. Examples of the etchant that are usually used in the semiconductor processing field according to the material of the substrate, such as a mixed solution of pure water.
As a typical example of the chemical etching chemical solution for the InP substrate, hydrochloric acid or a mixed solution of hydrochloric acid, hydrogen peroxide water and pure water can be given.
A typical example of the chemical etching chemical solution for the Si substrate is a mixed solution of hydrofluoric acid and pure water.

化学的エッチングの場合は、裏面も同様にエッチングされる場合が多く、裏面のエッチングを必要としない場合は、裏面にもエッチングマスクを作成する必要がある。
ドライエッチングでは、主に酸化珪素薄膜をエッチングマスクとして用い、反応性ガスとして塩化水素等を用いてエッチングすることができる。裏面を保護するために、裏面にもエッチングマスクを付ける方法もある。
エッチングの後に、エッチングマスクとして使用したレジストや酸化珪素を、アセトン等の有機溶剤による洗浄や酸洗浄により除去する。
In the case of chemical etching, the back surface is often etched in the same manner. When etching on the back surface is not required, it is necessary to create an etching mask on the back surface.
In dry etching, etching can be performed mainly using a silicon oxide thin film as an etching mask and using hydrogen chloride or the like as a reactive gas. In order to protect the back surface, there is also a method of attaching an etching mask to the back surface.
After the etching, the resist and silicon oxide used as the etching mask are removed by cleaning with an organic solvent such as acetone or acid cleaning.

次に、化学−機械式研磨(CMP)による研磨を行い、表面が滑らかな曲面となるように仕上げる。すなわち、図4に示すように溝12を形成した基材11の表面に化学−機械式研磨(CMP)を施し、断面形状で基材11の表面Sが破線で示すS’となるまで研磨し、基材表面に高さD(=h −h )の高低差を形成する。ここで、機械式研磨の割合が高い場合は、平坦性は向上するが、研磨によるダメージが残り易い問題がある。これに対し、化学式研磨の割合が高い場合は、平坦性向上の度合いは機械式研磨に比べ劣るが、研磨ダメージが少ないという特徴がある。
化学−機械式研磨(CMP)は微細な砥粒を懸濁させた研磨液(スラリー)を基板表面に流しながら、スピンドルに貼り付けた基板を回転テーブル表面の研磨パッドに圧着させて研磨する方法であって、スラリーで研磨すべき基板の表面を酸化させるという化学的メカニズムと、酸化層を機械的に削り取るという機械的メカニズムの両方を利用して、基板の凸部を優先的に除去する技術である。スラリーとしては、シリカ微粒子やアルミナ微粒子をアルカリ溶液や酸化剤の水溶液中に懸濁させたものが使用される。また、研磨パッドとしては不織布を基材とし、その繊維交絡体中に種々の樹脂を含浸させて発泡構造を形成させたものである。研磨パッドは対象とする基板の種類や研磨目的に応じて様々な改良が加えられたものが多数採用されている。
Next, polishing by chemical-mechanical polishing (CMP) is performed to finish the surface to be a smooth curved surface. That is, chemical-mechanical polishing (CMP) is performed on the surface of the base material 11 on which the grooves 12 are formed as shown in FIG. 4, and polishing is performed until the surface S of the base material 11 becomes S ′ indicated by a broken line in a cross-sectional shape. A height difference of height D (= h 1 −h 2 ) is formed on the substrate surface. Here, when the ratio of mechanical polishing is high, the flatness is improved, but there is a problem that damage due to polishing tends to remain. On the other hand, when the rate of chemical polishing is high, the degree of improvement in flatness is inferior to mechanical polishing, but there is a feature that polishing damage is small.
In chemical-mechanical polishing (CMP), a polishing liquid (slurry) in which fine abrasive grains are suspended is flowed to the surface of the substrate, and the substrate attached to the spindle is pressed against the polishing pad on the surface of the rotary table for polishing. A technology that preferentially removes protrusions on the substrate using both a chemical mechanism that oxidizes the surface of the substrate to be polished with the slurry and a mechanical mechanism that mechanically scrapes the oxide layer. It is. As the slurry, silica fine particles or alumina fine particles suspended in an alkaline solution or an oxidizing agent aqueous solution are used. Moreover, as a polishing pad, a nonwoven fabric is used as a base material, and the fiber entangled body is impregnated with various resins to form a foam structure. A large number of polishing pads with various improvements added according to the type of the target substrate and the purpose of polishing are employed.

化学式研磨の割合が多い条件の一例として、研磨布に不織布タイプの軟質研磨パッド、例えば富士紡績株式会社製POLYPAS#27を使用し、研磨剤に40%シリカ、例えば(株)フジミインコーポレーテッド製コンポール80に酸化剤として5vol%の次亜塩素酸ナトリウムを添加した水溶液を使用し、研磨圧力2N/cm の研磨条件が挙げられる。
機械式研磨の割合の多い条件の一例として、研磨布に不織布タイプの硬質研磨パッド、例えば富士紡績株式会社製POLYPAS#194を使用し、研磨剤に40%のシリカを懸濁させたアルカリ水溶液、例えば(株)フジミインコーポレーテッド製コンポール80を使用し、研磨圧力3N/cm の研磨条件が挙げられる。この場合には酸化剤は使用しない。
本発明では、化学式研磨の割合が多い条件の下で研磨を続ければ、基板表面に設けた溝の周辺部分の研磨が進んで低くなり、溝から離れた部分は高くなって、全体として多数の微小な高低差を有する凹凸部を具備した基板が得られる。
As an example of conditions where the ratio of chemical polishing is high, a nonwoven fabric type soft polishing pad, such as POLYPAS # 27 manufactured by Fuji Boseki Co., Ltd., is used as the polishing cloth, and 40% silica is used as the polishing agent. An aqueous solution in which 5 vol% sodium hypochlorite is added as an oxidizing agent to 80 is used, and polishing conditions with a polishing pressure of 2 N / cm 2 are mentioned.
As an example of conditions with a high ratio of mechanical polishing, a non-woven fabric type hard polishing pad, for example, POLYPAS # 194 manufactured by Fuji Boseki Co., Ltd., and an aqueous alkaline solution in which 40% silica is suspended in an abrasive, For example, a polishing condition with a polishing pressure of 3 N / cm 2 using a Fujimi Incorporated Compol 80 is used. In this case, no oxidizing agent is used.
In the present invention, if polishing is continued under a condition where the ratio of chemical polishing is large, the polishing of the peripheral portion of the groove provided on the substrate surface proceeds and becomes low, and the portion away from the groove becomes high, so that a large number as a whole. A substrate having a concavo-convex portion having a minute height difference is obtained.

化学的研磨の割合が多い研磨条件で研磨を進めると、溝の近傍の角が次第に取れ、基板表面全体としては凹凸を有していて平坦ではないが、微視的には鏡面状態に研磨された基板を製造することができる。研磨の量としては、エッチングにより作成した溝のおおよそ20〜100%の量が妥当である。
このようにして、使用する基材に必要な間隔で必要な深さの微少な高低差を有していながら、エピタキシャル成長用基板として十分に研磨ダメージが少なくなった鏡面研磨された半導体基板を製造することができる。
When polishing is carried out under polishing conditions with a high ratio of chemical polishing, the corners near the grooves are gradually removed, and the entire substrate surface has irregularities and is not flat, but is microscopically polished to a mirror surface state. Substrate can be manufactured. As an amount of polishing, an amount of about 20 to 100% of a groove formed by etching is appropriate.
In this way, a mirror-polished semiconductor substrate is manufactured which has a slight difference in height at a necessary depth at a necessary interval for a base material to be used and has sufficiently reduced polishing damage as an epitaxial growth substrate. be able to.

次に、この基板の上にMOCVD法やMBE法によりエピタキシャル成長させて、LGバッファ層またはSGバッファ層、さらには目的とする半導体素子(例えば電界効果トランジスタ(FET)、ヘテロバイポーラトランジスタ(HBT)、発光ダイオード(LED)、レーザーダイオード(LD)、受光素子)等を形成する。その後、電極形成、素子分離、配線接続等を行い電子デバイスや光デバイスを作製する。作動領域の半導体層としては特に制限はなく、目的に応じて公知のIn1−x−yGaAlAs1−a−bSb系半導体(ただし、0≦x,y,a,b≦1)や、SiGeC系半導体結晶が必要により利用できる。
これらの半導体結晶の製造方法は特に制限されるものではなく、半導体製造分野で使用されている公知の各種方法が利用できる。
基板上に目的とする半導体結晶層からなる作動領域をエピタキシャル成長させれば、本発明のエピタキシャルウエーハが得られる。
本発明のエピタキシャルウエーハは、バッファ層を成長する際に格子不整合により歪みが発生し、この歪みにより発生する転位は、表面形状変化の大きい表面凹部に集中する。この特性を利用して貫通転位等の結晶欠陥が少ない作動領域が形成され、特性の優れた素子を形成することができる。
Next, the substrate is epitaxially grown on this substrate by MOCVD or MBE, and the LG buffer layer or SG buffer layer, and the target semiconductor device (for example, field effect transistor (FET), heterobipolar transistor (HBT), light emission) A diode (LED), a laser diode (LD), a light receiving element), and the like are formed. Then, an electrode formation, element isolation, wiring connection, etc. are performed and an electronic device and an optical device are produced. There are no particular limitations on the semiconductor layer of the working area, known In 1-x-y Ga x Al y As 1-a-b Sb a P b based semiconductor (although depending on the purpose, 0 ≦ x, y, a , B ≦ 1) and SiGeC based semiconductor crystals can be used if necessary.
The manufacturing method of these semiconductor crystals is not particularly limited, and various known methods used in the semiconductor manufacturing field can be used.
The epitaxial wafer of the present invention can be obtained by epitaxially growing a working region comprising a target semiconductor crystal layer on a substrate.
In the epitaxial wafer of the present invention, strain is generated due to lattice mismatch when the buffer layer is grown, and dislocations generated by this strain are concentrated on the surface recess having a large surface shape change. Using this characteristic, an operating region with few crystal defects such as threading dislocations is formed, and an element having excellent characteristics can be formed.

本発明の半導体素子は、上記本発明のエピタキシャルウエーハを使用して形成したものである。本発明の半導体素子の代表例としては、電界効果トランジスタ、ヘテロバイポーラトランジスタ、発光素子あるいはレーザ素子等が挙げられる。これらの半導体素子の作動領域は、基板内の貫通転位等の結晶欠陥の少ない領域に形成されているので結晶欠陥の少ない半導体結晶となっており、高性能な素子機能を発揮することができる。
また、本発明の半導体デバイスは、上記本発明の導体素子を使用して形成したものである。本発明の半導体デバイスの代表例としては、照明装置、表示装置、通信装置、レーダー装置等が挙げられる。本発明の半導体デバイスは結晶性の優れた半導体作動領域を有する半導体素子を使用しているので、高性能で安定した動作を発揮することができる。
The semiconductor element of the present invention is formed using the above epitaxial wafer of the present invention. Representative examples of the semiconductor element of the present invention include a field effect transistor, a heterobipolar transistor, a light emitting element, a laser element, and the like. Since the operation region of these semiconductor elements is formed in a region with few crystal defects such as threading dislocations in the substrate, it becomes a semiconductor crystal with few crystal defects and can exhibit a high-performance element function.
The semiconductor device of the present invention is formed using the conductor element of the present invention. Representative examples of the semiconductor device of the present invention include a lighting device, a display device, a communication device, a radar device, and the like. Since the semiconductor device of the present invention uses a semiconductor element having a semiconductor operation region with excellent crystallinity, it can exhibit high performance and stable operation.

GaP基板上にエピタキシャル成長により図1に示す断面構造を有する半導体発光素子を形成した。
基板には格子定数が0.5451nmで面方位(100)のSiドープn型−GaP基板を用い、フォトリソグラフィー技術により、基板上に耐薬品性のエッチングマスクを形成した。エッチングマスクは、素子間隔と同じ0.3mmピッチ、幅0.05mmの格子状パターンを用いた。裏面はエッチング不要なので、全面にエッチングマスクを形成した。エッチングマスク形成後、塩酸、硝酸、純水の混合液よりなるエッチャントにより、GaP基板表面の露出した部分を約10μmの厚さでエッチングした。
その後、エッチングマスクをリムーバーとしてアセトンを使用して除去した。
次に、化学−機械式研磨による研磨により、厚さにして5μm研磨した。この際、研磨剤に40質量%のシリカ微粒子を懸濁させた水溶液である(株)フジミインコーポレーテッド製コンポール80を使用した。そして化学的研磨の割合を強くするため、酸化剤として5vol%の次亜塩素酸ナトリウムを添加した。研磨パッドとしては、富士紡績株式会社製POLYPAS#27の軟質研磨パッドを使用した。研磨圧力としては2N/cm とした。この結果、GaP基板の表面に間隔0.3mm、深さ5μmの周期的な格子状の窪みを持ち、研磨ダメージの無いn型GaP基板が得られた。
A semiconductor light emitting device having a cross-sectional structure shown in FIG. 1 was formed on the GaP substrate by epitaxial growth.
A Si-doped n-type GaP substrate having a lattice constant of 0.5451 nm and a plane orientation (100) was used as the substrate, and a chemical-resistant etching mask was formed on the substrate by photolithography. As the etching mask, a lattice pattern having a pitch of 0.3 mm and a width of 0.05 mm, which is the same as the element interval, was used. Since the back surface does not require etching, an etching mask was formed on the entire surface. After forming the etching mask, the exposed portion of the GaP substrate surface was etched to a thickness of about 10 μm with an etchant composed of a mixture of hydrochloric acid, nitric acid, and pure water.
Thereafter, the etching mask was removed using acetone as a remover.
Next, it was polished to a thickness of 5 μm by chemical-mechanical polishing. At this time, Compil 80 manufactured by Fujimi Incorporated, which is an aqueous solution in which 40% by mass of silica fine particles were suspended in an abrasive, was used. And 5 vol% sodium hypochlorite was added as an oxidizing agent in order to strengthen the ratio of chemical polishing. As the polishing pad, a soft polishing pad of POLYPAS # 27 manufactured by Fuji Boseki Co., Ltd. was used. The polishing pressure was 2 N / cm 2 . As a result, an n-type GaP substrate having periodic lattice-like depressions with a gap of 0.3 mm and a depth of 5 μm on the surface of the GaP substrate and having no polishing damage was obtained.

次に、この基板上にInAlP結晶からなるSGバッファ構造を介して、InAlGaP格子不整合型LEDを形成した。各結晶層の成長はMOCVD法により、有機金属(MO)原料に、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMAl)、トルメチルインジウム(TMI)、アルシン(AsH )、ホスフィン(PH )を用いた。成長温度は700℃とした。
SGバッファのAlの混晶比は、成長開始直後に0.9になるようにしてバッファ層の成長が進むに従って、Al混晶比率を段階的に不連続に減少させた。すなわち、5層のバッファ層の組成は順次In0.1Al0.9P、In0.2Al0.8P、In0.3Al0.7P、In0.4Al0.6P、In0.5Al0.5Pとし、格子定数はそれぞれ0.5503nm、0.5544nm、0.5584nm、0.5625nm、0.5666nmとなった。つぎに、バッファ層の最上部と格子整合するn型−In0.5Al0.5Pからなる下部クラッド層を1.0μm成長させた。つぎに、下部クラッド層の上に下部クラッド層と格子整合するundoped-In0.5Ga0.25Al0.25Pからなる発光層を厚さ1.0μm成長させた。
つぎに発光層の上に下部クラッド層と同じAl混晶比のp型−In0.5Al0.5Pからなる上部クラッド層を厚さ1.0μm成長させた。さらに、電流拡散層として厚さ10μmで格子定数が0.5666のp型In0.5Al0.5P層を形成した後、透明電極、金属電極を形成してLEDを作製した。
Next, an InAlGaP lattice mismatched LED was formed on this substrate via an SG buffer structure made of InAlP crystal. Each crystal layer is grown by MOCVD using trimethylgallium (TMG), trimethylaluminum (TMAl), tolmethylindium (TMI), arsine (AsH 3 ), and phosphine (PH 3 ) as the organic metal (MO) raw material. It was. The growth temperature was 700 ° C.
The Al mixed crystal ratio of the SG buffer was set to 0.9 immediately after the start of growth, and the Al mixed crystal ratio was decreased stepwise discontinuously as the growth of the buffer layer progressed. That is, the composition of the five buffer layers is In 0.1 Al 0.9 P, In 0.2 Al 0.8 P, In 0.3 Al 0.7 P, In 0.4 Al 0.6 P sequentially. In 0.5 Al 0.5 P, and the lattice constants were 0.5503 nm, 0.5544 nm, 0.5584 nm, 0.5625 nm, and 0.5666 nm, respectively. Next, a lower cladding layer made of n-type In 0.5 Al 0.5 P lattice-matched with the uppermost portion of the buffer layer was grown by 1.0 μm. Next, a light emitting layer made of undoped-In 0.5 Ga 0.25 Al 0.25 P lattice-matched with the lower cladding layer was grown on the lower cladding layer to a thickness of 1.0 μm.
Next, an upper clad layer made of p-type-In 0.5 Al 0.5 P having the same Al mixed crystal ratio as that of the lower clad layer was grown on the light emitting layer by a thickness of 1.0 μm. Further, after forming a p-type In 0.5 Al 0.5 P layer having a thickness of 10 μm and a lattice constant of 0.5666 as a current diffusion layer, a transparent electrode and a metal electrode were formed to produce an LED.

上記の格子不整合型LEDのEPDは1×10 cm−2で、LEDの輝度は500(任意単位)であった。
本発明により、LEDの最も重要な特性である輝度は、格子整合系LEDや、本法を用いない従来のSGバッファ層を使用した格子不整合系LEDに比べ、大幅な改善が確認された。
The lattice mismatched LED had an EPD of 1 × 10 5 cm −2 and an LED brightness of 500 (arbitrary unit).
According to the present invention, the luminance, which is the most important characteristic of the LED, has been confirmed to be greatly improved as compared with the lattice matching LED and the lattice mismatching LED using the conventional SG buffer layer not using this method.

本発明の半導体素子の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the semiconductor element of this invention. 本発明のエピタキシャルウェーハの断面構造の一部を示す図である。It is a figure which shows a part of cross-sectional structure of the epitaxial wafer of this invention. 本発明の基板の製造方法を説明する図である。It is a figure explaining the manufacturing method of the board | substrate of this invention. 図3の線A−A’に沿った断面図である。FIG. 4 is a sectional view taken along line A-A ′ of FIG. 3. 従来の半導体素子の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the conventional semiconductor element. 従来の半導体素子の断面構造の他の例を示す図である。It is a figure which shows the other example of the cross-section of the conventional semiconductor element.

符号の説明Explanation of symbols

1・・・・・・基板、2・・・・・・バッファ層、3・・・・・・下クラッド層、4・・・・・・ 発光層、5・・・・・・上クラッド層、6・・・・・・電流拡散層、7・・・・・・p型電極、8・・・・・・n型電極、9・・・・・・発光構造、10,20,30,40・・・・・・発光素子、11・・・・・・基材、12・・・・・・溝、13・・・・・・作動領域を形成する部分
1 .... substrate, 2 .... buffer layer, 3 .... lower cladding layer, 4 .... light emitting layer, 5 .... upper cladding layer , 6... Current spreading layer, 7... P-type electrode, 8... N-type electrode, 9. 40... Light emitting element, 11... Base material, 12.

Claims (11)

表面が鏡面研磨されおり、かつ表面に高低差を有することを特徴とする半導体素子形成用基板。   A substrate for forming a semiconductor element, characterized in that the surface is mirror-polished and the surface has a height difference. 前記表面の高低差が1μm以上100μm以下であることを特徴とする請求項1に記載の半導体素子形成用基板。   The semiconductor element forming substrate according to claim 1, wherein a difference in height of the surface is 1 μm or more and 100 μm or less. 前記基板表面の高低差が、作成すべき作動領域の大きさ以下の周期で繰り返されていることを特徴とする請求項1または請求項2に記載の半導体素子形成用基板。   The substrate for forming a semiconductor element according to claim 1, wherein the difference in height of the surface of the substrate is repeated with a period equal to or less than the size of the operation region to be created. 前記基板が、GaP,GaAs,InP,AlP,AlAs,Siのうちいずれか1種であることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体素子形成用基板。   4. The substrate for forming a semiconductor element according to claim 1, wherein the substrate is any one of GaP, GaAs, InP, AlP, AlAs, and Si. 基板の結晶と格子定数が異なる半導体結晶からなる動作領域を持つエピタキシャルウェーハであって、該作動領域が前記請求項1から請求項4のいずれか1項に記載の半導体素子形成用基板上に形成されてなることを特徴とするエピタキシャルウェーハ。   An epitaxial wafer having an operation region made of a semiconductor crystal having a lattice constant different from that of the substrate crystal, wherein the operation region is formed on the semiconductor element formation substrate according to any one of claims 1 to 4. An epitaxial wafer characterized by being made. 前記基板結晶の格子定数と動作領域の半導体結晶との格子定数の差異が0.15%以上であることを特徴とする請求項5に記載のエピタキシャルウェーハ。   6. The epitaxial wafer according to claim 5, wherein a difference between a lattice constant of the substrate crystal and a semiconductor crystal in an operation region is 0.15% or more. 前記動作領域の半導体結晶が、Al,Ga,In,P,As,Sb,Si,Ge,Cのうち少なくとも1種以上の元素を含むことを特徴とする請求項5または請求項6に記載のエピタキシャルウェーハ。   The semiconductor crystal of the said operation area | region contains at least 1 or more types of element among Al, Ga, In, P, As, Sb, Si, Ge, and C, The Claim 5 or Claim 6 characterized by the above-mentioned. Epitaxial wafer. 請求項5から請求項7のいずれか1項に記載のエピタキシャルウェーハを使用してなることを特徴とする半導体素子。   A semiconductor device comprising the epitaxial wafer according to any one of claims 5 to 7. 前記半導体素子が発光素子、レーザ素子または電子デバイス素子のいずれかであることを特徴とする請求項8に記載の半導体素子。   The semiconductor element according to claim 8, wherein the semiconductor element is any one of a light emitting element, a laser element, and an electronic device element. 請求項9に記載の半導体素子を使用したことを特徴とする半導体デバイス。   A semiconductor device comprising the semiconductor element according to claim 9. 前記半導体デバイスが照明装置、表示装置、通信装置、レーダー装置のいずれかであることを特徴とする請求項10に記載の半導体デバイス。
The semiconductor device according to claim 10, wherein the semiconductor device is one of a lighting device, a display device, a communication device, and a radar device.
JP2005152050A 2005-05-25 2005-05-25 Semiconductor element forming substrate, epitaxial wafer, and semiconductor element and semiconductor device using them Expired - Fee Related JP4964430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152050A JP4964430B2 (en) 2005-05-25 2005-05-25 Semiconductor element forming substrate, epitaxial wafer, and semiconductor element and semiconductor device using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152050A JP4964430B2 (en) 2005-05-25 2005-05-25 Semiconductor element forming substrate, epitaxial wafer, and semiconductor element and semiconductor device using them

Publications (2)

Publication Number Publication Date
JP2006332228A true JP2006332228A (en) 2006-12-07
JP4964430B2 JP4964430B2 (en) 2012-06-27

Family

ID=37553623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152050A Expired - Fee Related JP4964430B2 (en) 2005-05-25 2005-05-25 Semiconductor element forming substrate, epitaxial wafer, and semiconductor element and semiconductor device using them

Country Status (1)

Country Link
JP (1) JP4964430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579902A (en) * 2013-10-25 2014-02-12 中国科学院半导体研究所 Method for manufacturing silicon substrate microcavity laser device
JP2014503985A (en) * 2010-10-12 2014-02-13 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー III-V compounds with large band gaps for highly efficient optoelectronics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304618A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Semiconductor wafer and manufacture thereof
JPH07193007A (en) * 1993-12-27 1995-07-28 Nec Kansai Ltd Epitaxial growth method
JP2001210598A (en) * 1999-11-17 2001-08-03 Ngk Insulators Ltd Substrate for epitaxial growth and manufacturing method
JP2002008985A (en) * 2000-06-21 2002-01-11 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor, and nitride semiconductor substrate
JP2003218033A (en) * 2002-01-21 2003-07-31 Nikko Materials Co Ltd Method for epitaxial growth
JP2003249694A (en) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304618A (en) * 1987-06-03 1988-12-12 Hitachi Cable Ltd Semiconductor wafer and manufacture thereof
JPH07193007A (en) * 1993-12-27 1995-07-28 Nec Kansai Ltd Epitaxial growth method
JP2001210598A (en) * 1999-11-17 2001-08-03 Ngk Insulators Ltd Substrate for epitaxial growth and manufacturing method
JP2002008985A (en) * 2000-06-21 2002-01-11 Nichia Chem Ind Ltd Method of manufacturing nitride semiconductor, and nitride semiconductor substrate
JP2003218033A (en) * 2002-01-21 2003-07-31 Nikko Materials Co Ltd Method for epitaxial growth
JP2003249694A (en) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503985A (en) * 2010-10-12 2014-02-13 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー III-V compounds with large band gaps for highly efficient optoelectronics
US9543468B2 (en) 2010-10-12 2017-01-10 Alliance For Sustainable Energy, Llc High bandgap III-V alloys for high efficiency optoelectronics
CN103579902A (en) * 2013-10-25 2014-02-12 中国科学院半导体研究所 Method for manufacturing silicon substrate microcavity laser device
CN103579902B (en) * 2013-10-25 2016-07-13 中国科学院半导体研究所 A kind of manufacture method of silicon substrate microcavity laser device

Also Published As

Publication number Publication date
JP4964430B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
CN100517583C (en) Production method of compound semiconductor device wafer, wafer produced thereby and device
JP5556657B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP3471685B2 (en) Semiconductor substrate and manufacturing method thereof
KR101020961B1 (en) Semiconductor light emitting device and fabrication method thereof
JP5250856B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP4660453B2 (en) Gallium nitride compound semiconductor light emitting device
JP4244542B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
KR101060830B1 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device, gallium nitride compound semiconductor light emitting device and lamp using same
US20050156175A1 (en) High quality nitride semiconductor thin film and method for growing the same
JP2001210598A (en) Substrate for epitaxial growth and manufacturing method
JP4593890B2 (en) Manufacturing method of semiconductor light emitting device
JPH07273367A (en) Manufacture of semiconductor substrate and light-emitting device
JP2005064492A (en) Single-crystal sapphire substrate, manufacturing method therefor, and semiconductor light-emitting element
JP3441415B2 (en) Manufacturing method of semiconductor crystal
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP2003282551A (en) Single-crystal sapphire substrate and its manufacturing method
US7151045B2 (en) Method for separating sapphire wafer into chips using dry-etching
JP4964430B2 (en) Semiconductor element forming substrate, epitaxial wafer, and semiconductor element and semiconductor device using them
US8124969B2 (en) Semiconductor light emitting element and method for manufacturing the same
JP4583060B2 (en) Method for manufacturing single crystal sapphire substrate and method for manufacturing nitride semiconductor light emitting device
TW201320330A (en) Manufacturing method of nitride semiconductor structure
TW201332139A (en) Semiconductor element and manufacturing method thereof
JP2008282942A (en) Semiconductor element, and manufacturing method thereof
KR20020060617A (en) Nitride semiconductor chip and method for manufacturing nitride semiconductor chip
KR101323274B1 (en) Method of recycling a substrate used for depositng iii-nitride semiconductor thereon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees