JP2006331710A - Method of manufacturing coaxial cable - Google Patents

Method of manufacturing coaxial cable Download PDF

Info

Publication number
JP2006331710A
JP2006331710A JP2005150510A JP2005150510A JP2006331710A JP 2006331710 A JP2006331710 A JP 2006331710A JP 2005150510 A JP2005150510 A JP 2005150510A JP 2005150510 A JP2005150510 A JP 2005150510A JP 2006331710 A JP2006331710 A JP 2006331710A
Authority
JP
Japan
Prior art keywords
coaxial cable
copper
sinking
forming
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150510A
Other languages
Japanese (ja)
Inventor
Yuji Kobayashi
祐児 小林
Kuniaki Kimiga
邦明 公賀
Takashi Kaneko
隆 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2005150510A priority Critical patent/JP2006331710A/en
Publication of JP2006331710A publication Critical patent/JP2006331710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a coaxial cable excellent in softness and flexibility while squeezing the cable into an intended diameter. <P>SOLUTION: The manufacturing method of the coaxial cable comprises a process of forming a winding body 3b by winding a copper tape 3a serving as an outside conductor 3 in cylindrical shape, a process of inserting a core 5 formed by surrounding an inside conductor 1 by an insulator 2 into the winding body 3b of the copper tape 3a, a tube forming process forming the winding body 3b into which the core 5 is inserted into tube shape, a welding process forming a coaxial cable elemental body 6 by welding butted end edges of the copper tapes 3a formed into tube shape, a sinking process reducing the diameter of the coaxial cable elemental body 6 by drawing it, and an annealing process heating the coaxial cable elemental body 6 passed through the sinking process for a prescribed period. The insulator 2 is made of fluororesin having continuous usable temperature of 200°C to 250°C. The crosssection shrinking ratio of copper at sinking process is set to 30% or higher and less than breakage limit of the copper. The annealing temperature is set to 240°C to 250°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外径が2〜3mm程度の小径の同軸ケーブルを製造する方法に関する。   The present invention relates to a method for manufacturing a small-diameter coaxial cable having an outer diameter of about 2 to 3 mm.

小径の同軸ケーブルを製造する方法としては、金属テープを筒状に巻回して巻回体を形成するとともに、内部導体を絶縁体で被覆してなるコアを銅テープの巻回体に挿入し、コアが挿入された巻回体を管状に形成して銅テープの突合せ端部を溶接して同軸ケーブル素体を形成し、溶接工程を経た同軸ケーブル素体を絞り込んで(シンキング)所定の径にまで小径化する方法が知られている(例えば、特許文献1参照)。
特開平6−251648号公報
As a method of manufacturing a small-diameter coaxial cable, a metal tape is wound into a cylindrical shape to form a wound body, and a core formed by covering an inner conductor with an insulator is inserted into a wound body of copper tape, The wound body with the core inserted is formed into a tubular shape, the butt end of the copper tape is welded to form a coaxial cable body, and the coaxial cable body after the welding process is narrowed down (sinking) to a predetermined diameter There is known a method of reducing the diameter to a minimum (for example, see Patent Document 1).
JP-A-6-251648

上記方法によると、製造工程においては銅テープの巻回加工に伴って発生した残留応力、溶接工程における熱ひずみ応力、シンキング工程で発生した残留応力等によって外部導体が硬化して同軸ケーブルの柔軟性、可撓性が低下する。   According to the above method, the outer conductor is hardened by the residual stress generated during the winding process of the copper tape in the manufacturing process, the thermal strain stress in the welding process, the residual stress generated in the sinking process, etc. , Flexibility decreases.

本発明は、このような実情に着目してなされたものであって、絞り込みによって所望の径に小径化しながらも、柔軟性、および、可撓性に優れたものにすることのできる同軸ケーブル製造方法を提供することを目的とする。   The present invention has been made by paying attention to such a situation, and can produce a coaxial cable that can be made excellent in flexibility and flexibility while being reduced to a desired diameter by narrowing down. It aims to provide a method.

上記目的を達成するために、本発明は、外部導体となる銅テープを筒状に巻回して巻回体を形成する工程と、内部導体を絶縁体で被覆してなるコアを前記巻回体に挿入する工程と、コアが挿入された巻回体を管状に成形する造管工程と、管状に成形された前記銅テープの突合せ端縁を溶接して同軸ケーブル素体を形成する溶接工程と、前記同軸ケーブル素体を絞り込んで所定の径にまで小径化するシンキング工程と、シンキング工程を経た前記同軸ケーブル素体を所定時間に亘って加熱する焼鈍工程とを含む。さらには、前記絶縁体に連続使用温度が200℃〜260℃のフッ素樹脂材を用い、前記シンキング工程での断面縮小率を30%以上で銅の破壊限度未満に設定するとともに、焼鈍温度を約240℃〜250℃に設定する。   In order to achieve the above object, the present invention comprises a step of forming a wound body by winding a copper tape as an outer conductor into a cylindrical shape, and a core formed by covering the inner conductor with an insulator. A step of forming the coiled body into which the core is inserted, and a welding step of forming a coaxial cable body by welding the butt edges of the copper tape formed into a tubular shape. And a sinking process for reducing the diameter of the coaxial cable body to a predetermined diameter, and an annealing process for heating the coaxial cable body after the sinking process for a predetermined time. Furthermore, a fluororesin material having a continuous use temperature of 200 ° C. to 260 ° C. is used for the insulator, and the cross-sectional reduction rate in the sinking process is set to 30% or more and less than the copper fracture limit, and the annealing temperature is set to about Set to 240 ° C to 250 ° C.

これによると、シンキング工程を経た同軸ケーブルの外部導体は残留応力によって硬化しているが、焼鈍処理を施すことで外部導体の残留応力が減少あるいは消滅して同軸ケーブルの柔軟性、および、可撓性が高まる。   According to this, the outer conductor of the coaxial cable that has undergone the sinking process is hardened by the residual stress, but the residual stress of the outer conductor is reduced or eliminated by annealing, so that the coaxial cable is flexible and flexible. Increases nature.

この場合、焼鈍工程において絶縁体も約240℃〜250℃に加熱されることになるが、絶縁体としてフッ素樹脂材を用いている。フッ素樹脂材はその連続使用温度が200℃〜260℃であるため、上記加熱処理(240℃〜250℃)によって絶縁体が不当に軟化したり溶融することはない。   In this case, the insulator is also heated to about 240 ° C. to 250 ° C. in the annealing step, but a fluororesin material is used as the insulator. Since the continuous use temperature of the fluororesin material is 200 ° C. to 260 ° C., the insulator is not unduly softened or melted by the heat treatment (240 ° C. to 250 ° C.).

なお、断面縮小率とは、(シンキング処理後の外部導体の断面積/シンキング処理前の外部導体の断面積)を%表示したものである。ここで、断面積とは、内部空間を含まない銅の部分だけの断面積をいう。
例えば、シンキング処理前、
外部導体の外径:3.782mm
外部導体の厚み:0.259mm
シンキング処理後、
外部導体の外径:3.287mm
外部導体の厚み:0.274mm
である場合、断面縮小率は
断面縮小率={(3.782−0.259)×π−(3.287−0.274)×0.274×π}/{(3.782−0.259)×0.259×π}=0.0952≒9.5%となる。
Note that the cross-sectional reduction ratio is expressed by% (cross-sectional area of the external conductor after sinking process / cross-sectional area of the external conductor before sinking process). Here, the cross-sectional area refers to the cross-sectional area of only the copper portion not including the internal space.
For example, before the sinking process,
Outer conductor outer diameter: 3.782 mm
Outer conductor thickness: 0.259 mm
After the sinking process
Outer conductor outer diameter: 3.287 mm
Outer conductor thickness: 0.274mm
, The cross-sectional reduction ratio is the cross-sectional reduction ratio = {(3.782-0.259) × π− (3.287−0.274) × 0.274 × π} / {(3.782-0. 259) × 0.259 × π} = 0.0952≈9.5%.

なお、前記焼鈍処理を不活性ガスの雰囲気中で行うのが好ましい。そうすれば、焼鈍温度(約240℃〜250℃)に加熱された銅テープ(外部導体)やコアの内部導体が酸化することが防止され、信号伝達効率の低下が防止される。   The annealing treatment is preferably performed in an inert gas atmosphere. If it does so, it will prevent that the copper tape (external conductor) heated to the annealing temperature (about 240 degreeC-250 degreeC) and the internal conductor of a core will be oxidized, and the fall of signal transmission efficiency will be prevented.

このように、本発明によれば、シンキング工程を経て所望の径に小径化するものでありながら、外部導体に銅管を用いて製造する同軸ケーブルに匹敵する柔軟性および可撓性を備えた小径の同軸ケーブルを、絶縁体の特性を劣化させることなく得ることができる。   As described above, according to the present invention, although the diameter is reduced to a desired diameter through a sinking process, flexibility and flexibility comparable to a coaxial cable manufactured using a copper tube as an outer conductor are provided. A small-diameter coaxial cable can be obtained without deteriorating the characteristics of the insulator.

図1に、本発明方法によって製造された同軸ケーブルが示されている。この同軸ケーブルAは外径が2〜3mm程度のものであり、銅線からなる内部導体1、樹脂材からなる絶縁体2、銅テープからなる外部導体3を備えている。   FIG. 1 shows a coaxial cable manufactured by the method of the present invention. The coaxial cable A has an outer diameter of about 2 to 3 mm, and includes an inner conductor 1 made of copper wire, an insulator 2 made of a resin material, and an outer conductor 3 made of copper tape.

この同軸ケーブル製造方法は、図2の工程図に示すように、テープ巻回工程、コア挿入工程、造管工程、溶接工程、シンキング工程、焼鈍工程、および、外被形成工程を含んでおり、以下にその手順について説明する。   This coaxial cable manufacturing method includes a tape winding process, a core insertion process, a pipe making process, a welding process, a sinking process, an annealing process, and a jacket forming process, as shown in the process diagram of FIG. The procedure will be described below.

図3に示すように、外部導体3となる銅テープ3aは筒状に巻回され、予め内部導体1を絶縁体2で囲繞してなるコア5が銅テープ巻回体3bに挿入される。ここで、絶縁体2にはフッ素樹脂材を用いる。フッ素樹脂材は、その連続使用温度が200℃〜260℃である。本発明では、フッ素樹脂材の中でも、特に、連続使用温度がその上限値(250℃〜260℃)程度となったフッ素樹脂材を好適に用いることができる。   As shown in FIG. 3, the copper tape 3a which becomes the outer conductor 3 is wound in a cylindrical shape, and a core 5 which encloses the inner conductor 1 with an insulator 2 in advance is inserted into the copper tape wound body 3b. Here, a fluororesin material is used for the insulator 2. The continuous use temperature of the fluororesin material is 200 ° C to 260 ° C. In the present invention, among fluororesin materials, in particular, a fluororesin material whose continuous use temperature is about the upper limit (250 ° C. to 260 ° C.) can be suitably used.

次に、巻回体3bをコア5に挿入しながら巻回体3bはさらに管状に成形され、銅テープ3aの両端縁が付き合わされる。   Next, while inserting the wound body 3b into the core 5, the wound body 3b is further formed into a tubular shape, and both end edges of the copper tape 3a are attached.

その後、図4に示すように、銅テープ3aの突合せ端縁同士がレーザー加工などによって溶接され、コア5を溶接管からなる外部導体3で囲繞した同軸ケーブル素体6が形成される。   Thereafter, as shown in FIG. 4, the butted edges of the copper tape 3a are welded together by laser processing or the like to form a coaxial cable body 6 in which the core 5 is surrounded by the outer conductor 3 made of a welded tube.

このようにして得られた同軸ケーブル素体6は、図5に示すように、ダイス7に挿通されてシンキング(絞り込み)加工され、所定の外径にまで小径化される。   As shown in FIG. 5, the coaxial cable body 6 obtained in this way is inserted into a die 7 and subjected to sinking (squeezing) processing, and the diameter is reduced to a predetermined outer diameter.

次に、シンキング加工された同軸ケーブル素体6aを不活性ガスの雰囲気中において約240℃〜250℃程度の温度で2時間に亘って焼鈍処理する。   Next, the sinked coaxial cable body 6a is annealed at a temperature of about 240 ° C. to 250 ° C. for 2 hours in an inert gas atmosphere.

以下、本発明の技術的考察を示す。図6は、銅テープを造管加工および溶接加工して形成した外径3.8mm、厚さ0.25mmの溶接管にシンキング加工を施して各種サイズに小径化した試料の機械的特性、および、断面縮小率の試験結果を示している。この試験結果から判るように、軽度の絞込み加工によって「伸び」が著しくが低下し、また、絞込み度合いが増大(断面縮小率が増加)するほど「引張強度」が増大することが認識できる。つまり、溶接管にシンキング加工を施すと残留応力で硬くなって柔軟性が低下することを示している。   Hereinafter, technical considerations of the present invention will be described. FIG. 6 shows the mechanical characteristics of a sample obtained by subjecting a welded pipe having an outer diameter of 3.8 mm and a thickness of 0.25 mm formed by pipe-forming and welding of copper tape to various diameters. The cross-sectional reduction rate test results are shown. As can be seen from this test result, it can be recognized that “elongation” is remarkably reduced by mild drawing and that “tensile strength” is increased as the degree of drawing is increased (the cross-sectional reduction ratio is increased). That is, when sinking is performed on the welded pipe, it becomes hard due to residual stress and the flexibility is reduced.

そこで、本発明では、柔軟性が低下する原因である残留応力を焼鈍処理によって減少あるいは消滅させることで溶接管の柔軟性を回復させようとしたものであり、図7に、上記工程に基づいて製造した各種サイズの同軸ケーブル素体6aの試料を3体づつ準備して各種の温度で焼鈍処理、各試料の外部導体3の硬さを測定した結果が示されている。また、図8に、測定値の平均値が焼鈍温度に対応して変化する推移がグラフ化されている。なお、焼鈍時間は2時間とし、硬さ測定にはマイクロビッカース硬さ計を用いて100g/5secの条件で測定した。   Therefore, in the present invention, the flexibility of the welded pipe is recovered by reducing or eliminating the residual stress, which is the cause of the decrease in flexibility, by annealing, and FIG. 7 is based on the above process. 3 shows the results of preparing three samples of the manufactured coaxial cable body 6a of various sizes, annealing at various temperatures, and measuring the hardness of the outer conductor 3 of each sample. Moreover, the transition in which the average value of a measured value changes corresponding to the annealing temperature is graphed in FIG. The annealing time was 2 hours, and the hardness was measured using a micro Vickers hardness meter under the condition of 100 g / 5 sec.

この測定結果によると、いずれの試料も200℃×2hrの焼鈍処理では外部導体3に硬さにほとんど変化は見られないが、シンキング処理が施された試料では、200℃以上の領域での焼鈍処理によって硬さの減少が顕著に表れ、また、外径の小さい(断面縮小率が大きい)試料ほど低温で軟化している。これは、残留応力に基づく歪エネルギーが軟化の駆動力となるため、大きい絞り込み加工を受けたものほど歪エネルギーが多く蓄積され、低い温度でも歪エネルギーが多く開放されて軟化が促進されるためであると推測される。   According to this measurement result, almost no change in the hardness of the outer conductor 3 is observed in the annealing process at 200 ° C. for 2 hours, but in the sample subjected to the sinking process, annealing is performed in the region of 200 ° C. or higher. By the treatment, a decrease in hardness appears remarkably, and a sample having a smaller outer diameter (larger cross-sectional reduction ratio) is softened at a lower temperature. This is because the strain energy based on the residual stress becomes the driving force for softening, so that the larger the processing, the more strain energy is accumulated and the more strain energy is released even at low temperatures, and the softening is promoted. Presumed to be.

本発明では、断面縮小率を30%以上で破壊限度未満(銅では40〜50%程度)に設定し、かつ、焼鈍温度を約240℃〜250℃に設定する。これにより、外部導体に継ぎ目のない銅管を用いた同軸ケーブルにおける柔軟性、すなわち、外部導体での硬さ(80〜70Hv)と同等の柔軟性を得ることができる。さらにはこのような製造方法において、絶縁体2として、焼鈍温度(約240℃〜250℃)より連続使用温度が高いフッ素樹脂材(すなわち、連続使用温度がその上限値付近(250℃〜260℃程度の連続使用温度を有するもの)を用いる。これにより、銅テープ巻回体からなる外部導体を有する同軸ケーブルにおいて、外部導体に継ぎ目のない銅管を用いた同軸ケーブルと同程度の柔軟性(外部導体での硬さ(80〜70Hv))を、絶縁体2の特性を劣化させることなく獲得することができる。   In the present invention, the cross-sectional reduction ratio is set to 30% or more and less than the fracture limit (about 40 to 50% for copper), and the annealing temperature is set to about 240 ° C. to 250 ° C. Thereby, the softness | flexibility in the coaxial cable which used the seamless copper pipe for the outer conductor, ie, the softness | flexibility equivalent to the hardness (80-70Hv) in an outer conductor, can be acquired. Furthermore, in such a manufacturing method, as the insulator 2, a fluororesin material having a continuous use temperature higher than the annealing temperature (about 240 ° C. to 250 ° C.) (that is, the continuous use temperature is near its upper limit (250 ° C. to 260 ° C. As a result, a coaxial cable having an outer conductor made of a copper tape wound body has the same flexibility as a coaxial cable using a seamless copper tube as the outer conductor ( The hardness (80 to 70 Hv) of the outer conductor can be obtained without deteriorating the characteristics of the insulator 2.

同軸ケーブルの斜視図である。It is a perspective view of a coaxial cable. 本発明に係る同軸ケーブル製造方法の工程図である。It is process drawing of the coaxial cable manufacturing method which concerns on this invention. 銅テープ巻回工程およびコア挿入工程を示す概略斜視図である。It is a schematic perspective view which shows a copper tape winding process and a core insertion process. 造管工程および溶接工程を示す概略斜視図である。It is a schematic perspective view which shows a pipe making process and a welding process. シンキング加工を示す概略斜視図である。It is a schematic perspective view which shows a sinking process. シンキング加工を経た溶接管の機械特性と断面縮小率を示す図表である。It is a graph which shows the mechanical characteristic and cross-sectional reduction rate of the welded pipe which passed through the sinking process. 焼鈍温度と外部導体の硬さとの測定結果を示す図表である。It is a graph which shows the measurement result of the annealing temperature and the hardness of an external conductor. 焼鈍温度に対する外部導体の硬さの推移を示す特性線図である。It is a characteristic diagram which shows transition of the hardness of the outer conductor with respect to annealing temperature.

符号の説明Explanation of symbols

1 内部導体
2 絶縁体
3 外部導体
3a 銅テープ
3b 巻回体
5 コア
6 シンキング加工前の同軸ケーブル素体
6a シンキング加工後の同軸ケーブル素体
DESCRIPTION OF SYMBOLS 1 Inner conductor 2 Insulator 3 Outer conductor 3a Copper tape 3b Winding body 5 Core 6 Coaxial cable body before sinking 6a Coaxial cable body after sinking

Claims (2)

外部導体となる銅テープを筒状に巻回して巻回体を形成する工程と、
内部導体を絶縁体で被覆してなるコアを前記巻回体に挿入する工程と、
前記コアが挿入された前記巻回体を管状に成形する造管工程と、
管状に成形された前記銅テープの突合せ端縁を溶接して同軸ケーブル素体を形成する溶接工程と、
前記同軸ケーブル素体を絞り込んで所定の径にまで小径化するシンキング工程と、
シンキング工程を経た前記同軸ケーブル素体を所定時間に亘って加熱する焼鈍工程とを含み、
前記絶縁体にフッ素樹脂材を用い、前記シンキング工程での断面縮小率を30%以上で銅の破壊限度未満に設定するとともに、焼鈍温度を約240℃〜250℃に設定する、
ことを特徴とする同軸ケーブルの製造方法。
A step of forming a wound body by winding a copper tape as an outer conductor into a cylindrical shape;
Inserting a core formed by coating an inner conductor with an insulator into the wound body;
A tube forming step of forming the wound body into which the core is inserted into a tubular shape;
A welding step of welding the butt end of the copper tape formed into a tubular shape to form a coaxial cable body; and
A sinking step of narrowing down the coaxial cable body to a predetermined diameter,
An annealing step of heating the coaxial cable body that has undergone the sinking step over a predetermined time,
Using a fluororesin material for the insulator, setting the cross-sectional reduction rate in the sinking step to 30% or more and less than the copper fracture limit, and setting the annealing temperature to about 240 ° C. to 250 ° C.,
A method for manufacturing a coaxial cable.
前記焼鈍処理を不活性ガスの雰囲気中で行う、
ことを特徴とする請求項1に記載の同軸ケーブルの製造方法。
Performing the annealing treatment in an inert gas atmosphere,
The method for manufacturing a coaxial cable according to claim 1.
JP2005150510A 2005-05-24 2005-05-24 Method of manufacturing coaxial cable Pending JP2006331710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150510A JP2006331710A (en) 2005-05-24 2005-05-24 Method of manufacturing coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150510A JP2006331710A (en) 2005-05-24 2005-05-24 Method of manufacturing coaxial cable

Publications (1)

Publication Number Publication Date
JP2006331710A true JP2006331710A (en) 2006-12-07

Family

ID=37553199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150510A Pending JP2006331710A (en) 2005-05-24 2005-05-24 Method of manufacturing coaxial cable

Country Status (1)

Country Link
JP (1) JP2006331710A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320582A (en) * 1976-08-10 1978-02-24 Fujikura Ltd Annealing process of coaxial cable
JPS5318115B2 (en) * 1972-07-05 1978-06-13
JPH02114410A (en) * 1988-10-25 1990-04-26 Hirakawa Densen Kk Manufacture of coaxial cable
JPH03134142A (en) * 1989-10-18 1991-06-07 Dowa Mining Co Ltd Manufacture of high purity copper wire constituted of coarse crystalline grains
JPH08241633A (en) * 1995-03-02 1996-09-17 Totoku Electric Co Ltd Coaxial cable and manufacture thereof
JP2004111072A (en) * 2002-09-13 2004-04-08 Totoku Electric Co Ltd Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318115B2 (en) * 1972-07-05 1978-06-13
JPS5320582A (en) * 1976-08-10 1978-02-24 Fujikura Ltd Annealing process of coaxial cable
JPH02114410A (en) * 1988-10-25 1990-04-26 Hirakawa Densen Kk Manufacture of coaxial cable
JPH03134142A (en) * 1989-10-18 1991-06-07 Dowa Mining Co Ltd Manufacture of high purity copper wire constituted of coarse crystalline grains
JPH08241633A (en) * 1995-03-02 1996-09-17 Totoku Electric Co Ltd Coaxial cable and manufacture thereof
JP2004111072A (en) * 2002-09-13 2004-04-08 Totoku Electric Co Ltd Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor

Similar Documents

Publication Publication Date Title
KR100576901B1 (en) Tunsten wire, cathode heater, filament for vibration service lamp, probe pin, braun tube, and lamp
JP6611237B2 (en) Hollow stranded wire for operation
JP5472480B2 (en) Manufacturing method of double pipe with braided wire
JP2006331710A (en) Method of manufacturing coaxial cable
JP5268183B2 (en) Titanium long fiber and method for producing the same
JP4233998B2 (en) Manufacturing method of sheathed heater and manufacturing method of glow plug
JP2007325748A (en) Endoscope
JP6152463B1 (en) thermocouple
JP2008107115A (en) Sheathed thermocouple and its manufacturing method
CN115228994B (en) Method for processing metal elbow connector
JP2008113744A (en) Guide wire and its production method
CN111772731B (en) Medical composite wire manufacturing process and stone-taking basket manufactured by composite wires
JP3786256B2 (en) High straight suspension wire and manufacturing method thereof
JPS6363522A (en) Hot working method for reducing diameter of pipe
JPH1186800A (en) Tungsten wire and manufacture thereof, and filament and its manufacture thereof
JP5158838B2 (en) Method for testing oxygen-free copper wire for magnet wire and method for producing oxygen-free copper magnet wire
JP4010080B2 (en) Bending correction method for high temperature superconducting cable core
JP4807201B2 (en) Sheath thermocouple and manufacturing method thereof
JP2007109448A (en) Manufacturing method of sheathed heater
JP6570201B2 (en) Micro heater with non-heat generating part
JP2007296560A (en) Method for manufacturing metallic fiber bundle and metallic fiber bundle
RU2015864C1 (en) Method for joining of ends of bimetallic steel-copper wire with core of low-carbon steel
JP4048237B2 (en) Sheath type thermocouple and manufacturing method thereof
JP2006127853A (en) Coaxial cable and manufacturing method of the same
JP6423374B2 (en) Hollow stranded wire for operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111222