JP4048237B2 - Sheath type thermocouple and manufacturing method thereof - Google Patents

Sheath type thermocouple and manufacturing method thereof Download PDF

Info

Publication number
JP4048237B2
JP4048237B2 JP11299698A JP11299698A JP4048237B2 JP 4048237 B2 JP4048237 B2 JP 4048237B2 JP 11299698 A JP11299698 A JP 11299698A JP 11299698 A JP11299698 A JP 11299698A JP 4048237 B2 JP4048237 B2 JP 4048237B2
Authority
JP
Japan
Prior art keywords
thermocouple
sheath
insulating member
ceramic
strength insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11299698A
Other languages
Japanese (ja)
Other versions
JPH11304596A (en
Inventor
真一 依田
裕二 早坂
和幸 東野
安秀 阿部
利幸 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP11299698A priority Critical patent/JP4048237B2/en
Publication of JPH11304596A publication Critical patent/JPH11304596A/en
Application granted granted Critical
Publication of JP4048237B2 publication Critical patent/JP4048237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容易に曲げ加工ができかつ曲げ加工による断線が少ないシース型熱電対とその製造方法に関する。
【0002】
【従来の技術】
二種の金属線の両端を接合し、両接合点の温度を異なる温度に保つとき、この閉回路に起電力が発生する。このように二種の金属線を組み合わせたものを熱電対という。熱電対の熱起電力は組み合わせた金属線の種類と両接合点の温度によって決まる。熱電対の一方の接合点を一定の基準温度に保つとき、起電力は他方の接合点の温度により決まる。そのため熱起電力を測定すれば温度を知ることができる。
図4は、測定回路の一例を示している。補償導線は、使用する熱電対とほぼ同一の熱電的特性をもっており、熱電対の端子と基準接点との間をこれによって接続し、熱電対の端子部分の温度変化によって生ずる誤差を補償するために使用する。
【0003】
熱電対の素線は、一般に細く使用中に断線等するおそれがある。このため、図5に例示するように、熱電対の素線をシースと呼ぶ金属製の保護管(シース管)内に収納したシース型熱電対が広く用いられている。シース型熱電対は、被測定部への設置時にシース管を装置構成に合わせて適宜曲げて用いられる。そのためシース型熱電対は、曲げ加工が可能なように絶縁材としてセラミック粉末が用いられ、熱電対の素線同士及び素線とシース管の間の絶縁を確保するために高密度にセラミック粉末が充填されている。
【0004】
【発明が解決しようとする課題】
上述したシース型熱電対の製造において、細いシース管内に高密度にセラミック粉末を充填することは困難であるため、ドローイングアニール法と呼ぶ製造方法が従来から用いられている。この方法は、製品径より大きな径のスターティングチューブ内にセラミック粉末の成形体と熱電対素線をセットし、加熱・引張を繰り返しながら全体を同時に縮径して、熱電対の細径化と絶縁材の充填率を上昇させるものである。
【0005】
しかし、かかる製造方法によるシース型熱電対では、曲げ加工の際に保護管内部で素線が断線する不具合が多発する問題点があった。すなわち、従来の製造方法では、素線が引き伸ばされる過程において絶縁材が素線表面と擦り合わされ、素線表面に無数の傷が形成されるために、完成したシース型熱電対内の素線が見掛け上延性低下を起こしている。また、引き伸ばし加工の際、絶縁材はシース管によって圧縮され素線に強く押付けられているため、完成したシース型熱電対の曲げ加工の際に素線の伸びる範囲が曲げ部近傍に限定されている。従って、素線の延性低下と局部的な伸びのため、素線が断線しやすい問題点があった。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、熱電対素線の延性低下を引き起こすことなく、かつシース管の曲げ時に熱電対素線の局部的な伸びを回避することができ、これにより、容易に曲げ加工ができ、かつ曲げ加工による断線が生じにくいシース型熱電対とその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、1対の熱電対素線(1)を互いに間隔を隔てて保持する相対的に強度の高い複数の高強度絶縁部材(2)と、長さ方向に隣接する高強度絶縁部材の間に挟持され相対的に強度の低い複数の低強度絶縁部材(4)と、高強度絶縁部材と低強度絶縁部材を囲む細長いシース管(6)と、からなることを特徴とするシース型熱電対が提供される。
【0008】
本発明の構成によれば、シース管(6)と熱電対素線(1)は別々に所定の製品径に加工され、絶縁部材は高強度部材(2)と低強度部材(4)が交互に繰り返し配置された構造となる。絶縁部材の高強度部材(2)は従来のセラミック粉末と違い、細い保護管(シース管)内にも比較的容易に挿入することができる。また、低強度部材(4)は、外力によって崩壊することにより変形可能であるので、熱電対のシース管の曲げ加工に対して容易に追従することができる。更に、繰り返し配置された高強度部部材(2)により、熱電対素線同士を所定の間隔を保って保持するので、低強度部材(4)の密度が低くても短絡の心配はない。従って、この構成により、熱電対素線の延性低下と、絶縁部材による熱電対素線の圧迫の両方を回避することができる。
【0009】
本発明の好ましい実施形態によれば、前記高強度絶縁部材(2)及び低強度絶縁部材(4)は共に、円筒形のセラミック部材であり、1対の熱電対素線(1)を互いに間隔を隔てて長さ方向に通す1対の貫通孔(2a,4a)を有する。
この構成により、例えば、熱電対素線(1)が通る貫通孔(2a,4a)の径を素線径よりわずかに大きく設計することにより、絶縁部材による熱電対素線の拘束は更に小さくなる。そのため、曲げ加工を行ったときに熱電対素線が広い領域で伸びを生じ、曲げ加工に対する耐久性が向上する。絶縁部材(2,4)の強度は、例えばセラミック部品の密度を変えることによって制御できる。
【0010】
また、前記高強度絶縁部材(2)は円筒形のセラミック部材であり、かつ2本の熱電対素線を互いに間隔を隔てて長さ方向に通す1対の貫通孔(2)を有し、前記低強度絶縁部材(4)は、高強度絶縁部材の間に充填し硬化処理されたセラミック接着剤であってもよい。
高強度絶縁部材(2)の間をセラミック接着剤で充填し硬化処理を行うことにより、実質的に低強度絶縁部材(4)としてセラミック部材を用いた場合と同様の構造を得ることができる。セラミック接着剤は外力によって破壊するときに微細な粉末状となるので、熱電対シース管の曲げ加工時の熱電対素線の損傷の危険性が低減される。
【0011】
また、本発明によれば、(a)互いに間隔を隔てた1対の長さ方向貫通孔(2a)を有する複数の円筒形セラミック部材(2)を準備し、(b)セラミック部材の各貫通孔に1対の熱電対素線(1)のそれぞれを通し、(c)各セラミック部材を所定の間隔を隔てて位置決めし、その間にセラミックス接着剤(4)を充填して硬化処理し、これにより、セラミック部材、セラミックス接着剤及び熱電対素線からなる熱電対コンポーネント(8)を製造し、(d)次いで、熱電対コンポーネントを細長いシース管(6)に挿入する、ことを特徴とするシース型熱電対の製造方法が提供される。
【0012】
この製造方法により、従来のドローイングアニール法のように熱電対素線の延性低下を引き起こすことなく、熱電対の素線同士及び素線とシース管の間の絶縁を確保したシース型熱電対を容易に製造することができ、かつ、シース管の曲げ時に熱電対素線の局部的な伸びを回避することができる。
【0013】
【発明の実施の態様】
以下、本発明の好ましい実施形態を図面を参照しつつ説明する。なお、共通する部分には同一の符号を付し、重複した説明を省略する。
図1は、本発明によるシース型熱電対の構成図である。この図に示すように、本発明のシース型熱電対は、1対の熱電対素線1を互いに間隔を隔てて保持する相対的に強度の高い複数の高強度絶縁部材2と、長さ方向に隣接する高強度絶縁部材の間に挟持され相対的に強度の低い複数の低強度絶縁部材4と、高強度絶縁部材と低強度絶縁部材を囲む細長いシース管6とからなる。
【0014】
図2は、本発明の高強度絶縁部材又は低強度絶縁部材の斜視図である。この図に示すように、高強度絶縁部材2及び低強度絶縁部材4は共に、円筒形のセラミック部材であり、1対の熱電対素線1を互いに間隔を隔てて長さ方向に通す1対の貫通孔2a,4aを有している。
【0015】
図2に模式的に示すように、絶縁部材2,4の外径Dはシース管6の内径よりわずかに小さく設計する。また、熱電対素線1が通る孔の径dは素線径より大きくする。これらのクリアランスは大きい方が熱電対の製造が容易になるが、シース径や高強度部材2と低強度部材4の繰り返しのピッチを考慮し、熱電対シース管6の曲げ加工を行っても絶縁不良が起こらないような間隔を熱電対素線同士あるいは熱電対素線とシースの間に確保できるように設計しなければならない。
【0016】
高強度絶縁部材2の長さBは、保証したい曲げ半径によって規定される。長さBが広すぎると高強度絶縁部材2が芯材となって小さい半径の曲げができなくなる。
【0017】
低強度部材4にも図2に示す形状のセラミック部材を用いることができる。低強度絶縁部材4の長さBは、曲げ加工に対する追従性と絶縁性を考慮して決定する必要がある。低強度絶縁部材4の長さが高強度絶縁部材2の長さに比べて短すぎると、小さい曲げ半径への追従性が悪くなる。一方、低強度絶縁部材4の長さが長すぎると、曲げ加工によって低強度絶縁部材4が破壊した時に、熱電対素線同士あるいは熱電対素線とシース管の接触のおそれがある。また、低強度絶縁部材4は熱電対素線を保持する機能は必要としないため、ハンドリング可能である範囲でできるだけ低強度である方がよい。
【0018】
以上のことを配慮して作製した高強度絶縁部材2と低強度絶縁部材4を一対の熱電対素線1に交互に通し、図1のような構造を所定の長さ製造する。これを、あらかじめ所定の長さに切断したシース管6に挿入し、従来の方法で温接点の形成及び補償導線のつなぎ込みを行うことにより本発明によるシース型熱電対が得られる。
【0019】
次に、絶縁部材の低強度部分にセラミック接着剤を用いる場合について述べる。この場合、高強度絶縁部材2は、前述の通り、円筒形のセラミック部材であり、かつ2本の熱電対素線を互いに間隔を隔てて長さ方向に通す1対の貫通孔2を有しているが、低強度絶縁部材4は、高強度絶縁部材2の間に充填し硬化処理されたセラミック接着剤である。
【0020】
このシース型熱電対は、次のステップで製造する。
(a)まず、互いに間隔を隔てた1対の長さ方向貫通孔2aを有する複数の円筒形セラミック部材2を準備する。
(b)次いで、セラミック部材2の各貫通孔2aに1対の熱電対素線1のそれぞれを通す。
(c)次に、各セラミック部材2を所定の間隔を隔てて位置決めし、その間にセラミックス接着剤4を充填して硬化処理する。これにより、セラミック部材2、セラミックス接着剤4及び熱電対素線1からなる熱電対コンポーネント8が完成する。
(d)次いで、熱電対コンポーネント8を細長いシース管6に挿入して本発明によるシース型熱電対が完成する。
【0021】
すなわち、まず、図2の形状を持つ高強度絶縁部材2を一対の熱電対素線1に通し、所定の間隔をおいて配置する。次に、高強度絶縁部材2の間をセラミック接着剤で埋めていき、低強度部分を形成する。なお、高強度部材2と低強度部材4の寸法は、ともにセラミック部材を用いる場合と同様に決定される。また、セラミック接着剤は熱電対の使用温度までの範囲でガス発生や熱電対の構成材料との反応がなく、導電性のないものを選択しなければならない。セラミック接着剤が充分乾燥したならば、サンドペーパーを用いるなどして外径が高強度絶縁部材2の外径以下になるように余分な接着剤を取り除く。その後、使用した接着剤に指定された硬化処理を行い、硬化反応に伴うガス発生などを完全に終了させる。
【0022】
このようにして得られた熱電対コンポーネント8の構造は、絶縁材の高強度部材2及び低強度部材4がともにセラミック部材からなる図2に示した構造と実質的に同じである。これを、シース管6に挿入し、従来と同様に温接点の形成及び補償導線のつなぎ込みを行うことによりシース型熱電対として用いることができる。
【0023】
なお、本発明によるシース型熱電対は高強度部材2と低強度部材4が繰り返し配置された構造を持つものであり、上記の製造方法に限定されるものではない。また、実使用時の曲げ加工部位が限定される場合、曲げ加工を行わない部分を高強度セラミックの二孔直管で形成し、曲げ部位付近にのみ本発明の構造を用いても良い。
【0024】
【実施例】
以下に、低強度絶縁部材4にセラミック接着剤を用いた場合の本発明の実施例を説明する。
製造したシース型熱電対は、外径1mmのTaシースW−Re熱電対であり、シース内径は0.7mm、熱電対素線径は0.2inchである。高強度絶縁部材2は、図2における絶縁部材の長さBを0.55mmとして、相対密度97%以上、純度99%以上のアルミナ焼結体で形成した。これに熱電対素線1を通したうえで0.55mm間隔で配置し、アルミナ系セラミック接着剤4を用いて低強度絶縁部材4を形成した。この構造を120mm作製し、24時間以上自然乾燥させた後、サンドペーパーを用いて余分な接着剤を除去した。接着剤で形成した低強度部材4は、独立した構造体として熱電対素線1に沿って動かすことも可能であり、低強度部材にセラミック部材を用いる場合と実質的に同じ構造となっている。
【0025】
このようにして製造した120mmの熱電対内部構造(熱電対コンポーネント8)を約90℃で2時間乾燥させた後、約150℃で1時間硬化処理した。さらに、これを120mmのTaシース管6に挿入し、シース型熱電対を得た。これに、温接点を形成し補償導線を接続することにより通常の熱電対と同様に使用することができる。
【0026】
更に、本発明の効果を検証するために、上述したとおり作製した120mmの本体構造に曲げ試験を実施した。曲げ半径R1mmで図3に示した形状に、図中の番号順に6ケ所の曲げ加工を行ったが、熱電対素線1の断線は発生しなかった。一方、従来のシース型熱電対を120mm切り取り同様の曲げ試験を行ったところ、図4中5番目の曲げを行ったときに熱電対素線の断線が起こった。これにより、本発明によるシース型熱電対が従来のシース型熱電対と比較して優れた耐曲げ加工性を有することが確認された。
【0027】
また、上記と同じ方法で150mmのシース型熱電対を作製し、従来行われている方法で温接点の形成と補償導線の接続を行った後、動作確認をし、本発明のシース型熱電対が従来品と同様の測温機能を有することを確認した。
【0028】
なお、本発明は、上述した実施形態及び実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更できることは勿論である。例えば、本発明のシース型熱電対は、実施例に示したW−Re熱電対に限定されるものではなく、シース型熱電対全般にその効果が期待できることは明らかである。
【0029】
【発明の効果】
以上に説明したように、本発明によるシース型熱電対は下記の如き優れた機能を有する。
▲1▼細いシース径であっても確実な絶縁材の配置が可能であるため、従来のように熱電対素線を延性低下させる工程をとる必要がない。その結果、曲げ加工時の断線の危険が少ない。
▲2▼絶縁部材による熱電対素線の拘束が少ないため、曲げ加工時の熱電対素線の長さ変化を広い領域の伸びで吸収することができ、断線の危険が少ない。
【0030】
上述したように、本発明のシース型熱電対とその製造方法は、熱電対素線の延性低下を引き起こすことなく、かつシース管の曲げ時に熱電対素線の局部的な伸びを回避することができ、これにより、容易に曲げ加工ができ、かつ曲げ加工による断線が生じにくい、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明によるシース型熱電対の構成図である。
【図2】本発明の高強度絶縁部材又は低強度絶縁部材の斜視図である。
【図3】本発明の実施例を示す折り曲げ図である。
【図4】熱電対の使用例を示す図である。
【図5】従来のシース型熱電対の構造図である。
【符号の説明】
1 熱電対素線
2 高強度絶縁部材
2a 貫通孔
4 低強度絶縁部材(セラミック接着剤)
4a 貫通孔
6 シース管
8 熱電対コンポーネント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheath type thermocouple that can be easily bent and has few breaks due to bending, and a method for manufacturing the same.
[0002]
[Prior art]
When both ends of the two kinds of metal wires are joined and the temperature at both junctions is kept different, an electromotive force is generated in this closed circuit. A combination of two types of metal wires is called a thermocouple. The thermoelectromotive force of a thermocouple is determined by the type of metal wire combined and the temperature at both junctions. When one junction of the thermocouple is kept at a constant reference temperature, the electromotive force is determined by the temperature of the other junction. Therefore, the temperature can be known by measuring the thermoelectromotive force.
FIG. 4 shows an example of the measurement circuit. The compensating conductor has approximately the same thermoelectric characteristics as the thermocouple used, and this connects between the thermocouple terminal and the reference junction to compensate for errors caused by temperature changes in the thermocouple terminal. use.
[0003]
Thermocouple strands are generally thin and may break during use. For this reason, as illustrated in FIG. 5, a sheath type thermocouple in which a thermocouple element wire is housed in a metal protective tube (sheath tube) called a sheath is widely used. The sheath type thermocouple is used by appropriately bending the sheath tube in accordance with the device configuration at the time of installation on the measurement target part. For this reason, ceramic powder is used as an insulating material for sheathed thermocouples so that bending can be performed, and ceramic powder is densely packed to ensure insulation between the wires of the thermocouple and between the wires and the sheath tube. Filled.
[0004]
[Problems to be solved by the invention]
In the production of the above-described sheath type thermocouple, it is difficult to fill a thin sheath tube with ceramic powder at a high density, and therefore a production method called a drawing annealing method has been conventionally used. In this method, a ceramic powder compact and a thermocouple wire are set in a starting tube having a diameter larger than the product diameter, and the entire diameter is simultaneously reduced while repeating heating and tension, thereby reducing the diameter of the thermocouple. This increases the filling rate of the insulating material.
[0005]
However, the sheath-type thermocouple manufactured by such a manufacturing method has a problem that the wire breaks frequently in the protective tube during bending. In other words, in the conventional manufacturing method, the insulating material is rubbed against the surface of the strand in the process of stretching the strand, and innumerable scratches are formed on the surface of the strand, so that the strand in the completed sheath type thermocouple is apparent. The ductility is reduced. In addition, since the insulating material is compressed by the sheath tube and strongly pressed against the strands during the stretching process, the extension range of the strands when bending the completed sheath type thermocouple is limited to the vicinity of the bend. Yes. Therefore, there has been a problem that the strands are likely to break due to a decrease in ductility and local elongation of the strands.
[0006]
The present invention has been made to solve such problems. That is, the object of the present invention is to prevent the ductility of the thermocouple strands from decreasing and to avoid local elongation of the thermocouple strands when the sheath tube is bent. An object of the present invention is to provide a sheath-type thermocouple that can be cut and that is not easily broken by bending, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
According to the present invention, a plurality of relatively high strength insulating members (2) that hold a pair of thermocouple wires (1) spaced apart from each other, and a high strength insulation adjacent in the length direction. A sheath comprising a plurality of low strength insulating members (4) sandwiched between members and having relatively low strength, and a high strength insulating member and an elongated sheath tube (6) surrounding the low strength insulating member. A mold thermocouple is provided.
[0008]
According to the configuration of the present invention, the sheath tube (6) and the thermocouple wire (1) are separately processed to a predetermined product diameter, and the high strength member (2) and the low strength member (4) are alternately used as the insulating member. It becomes the structure arranged repeatedly. Unlike the conventional ceramic powder, the high strength member (2) of the insulating member can be relatively easily inserted into a thin protective tube (sheath tube). Further, since the low-strength member (4) can be deformed by collapsing with an external force, it can easily follow the bending process of the thermocouple sheath tube. Furthermore, since the thermocouple wires are held at a predetermined interval by the repeatedly disposed high strength member (2), there is no fear of a short circuit even if the density of the low strength member (4) is low. Therefore, with this configuration, it is possible to avoid both the decrease in ductility of the thermocouple element and the compression of the thermocouple element by the insulating member.
[0009]
According to a preferred embodiment of the present invention, the high-strength insulating member (2) and the low-strength insulating member (4) are both cylindrical ceramic members, and the pair of thermocouple wires (1) are spaced from each other. A pair of through-holes (2a, 4a) that pass through in the lengthwise direction are provided.
With this configuration, for example, by designing the diameter of the through hole (2a, 4a) through which the thermocouple element (1) passes slightly larger than the element diameter, the constraint of the thermocouple element by the insulating member is further reduced. . For this reason, when bending is performed, the thermocouple strands are stretched in a wide area, and durability against bending is improved. The strength of the insulating members (2, 4) can be controlled, for example, by changing the density of the ceramic parts.
[0010]
The high-strength insulating member (2) is a cylindrical ceramic member, and has a pair of through-holes (2) through which two thermocouple wires are passed in the longitudinal direction with a space therebetween. The low-strength insulating member (4) may be a ceramic adhesive that is filled and cured between high-strength insulating members.
By filling the space between the high-strength insulating members (2) with a ceramic adhesive and performing a curing process, a structure substantially the same as when a ceramic member is used as the low-strength insulating member (4) can be obtained. Since the ceramic adhesive becomes a fine powder when it is broken by an external force, the risk of damage to the thermocouple wire during bending of the thermocouple sheath tube is reduced.
[0011]
In addition, according to the present invention, (a) a plurality of cylindrical ceramic members (2) having a pair of longitudinal through holes (2a) spaced apart from each other are prepared, and (b) each through-hole of the ceramic member. Each of the pair of thermocouple wires (1) is passed through the holes, (c) each ceramic member is positioned at a predetermined interval, and a ceramic adhesive (4) is filled between them to be cured. Manufacturing a thermocouple component (8) comprising a ceramic member, a ceramic adhesive and a thermocouple wire, and (d) then inserting the thermocouple component into an elongated sheath tube (6) A method of manufacturing a mold thermocouple is provided.
[0012]
This manufacturing method makes it easy to make a sheathed thermocouple that secures insulation between the wires of the thermocouple and between the wires and the sheath tube without causing a drop in the ductility of the thermocouple wires as in the conventional drawing annealing method. And local elongation of the thermocouple wire can be avoided when the sheath tube is bent.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to a common part and the overlapping description is abbreviate | omitted.
FIG. 1 is a configuration diagram of a sheathed thermocouple according to the present invention. As shown in this figure, the sheath-type thermocouple of the present invention includes a plurality of high-strength insulating members 2 having relatively high strength that hold a pair of thermocouple wires 1 at intervals, and a length direction. A plurality of low-strength insulating members 4 sandwiched between adjacent high-strength insulating members and a relatively low strength, and an elongated sheath tube 6 surrounding the high-strength insulating member and the low-strength insulating member.
[0014]
FIG. 2 is a perspective view of the high-strength insulating member or the low-strength insulating member of the present invention. As shown in this figure, both the high-strength insulating member 2 and the low-strength insulating member 4 are cylindrical ceramic members, and a pair of thermocouple wires 1 are passed through the pair of thermocouple strands 1 in the length direction at intervals. Through-holes 2a and 4a.
[0015]
As schematically shown in FIG. 2, the outer diameter D of the insulating members 2 and 4 is designed to be slightly smaller than the inner diameter of the sheath tube 6. The diameter d of the hole through which the thermocouple wire 1 passes is made larger than the wire diameter. The larger the clearance, the easier the manufacture of the thermocouple. However, in consideration of the sheath diameter and the repeated pitch of the high-strength member 2 and the low-strength member 4, the thermocouple sheath tube 6 can be insulated even if it is bent. It must be designed so as to ensure an interval between the thermocouple wires or between the thermocouple wires and the sheath so that no defect occurs.
[0016]
The length B of the high-strength insulating member 2 is defined by the bending radius to be guaranteed. If the length B is too wide, the high-strength insulating member 2 becomes a core material and bending with a small radius cannot be performed.
[0017]
As the low-strength member 4, a ceramic member having the shape shown in FIG. The length B of the low-strength insulating member 4 needs to be determined in consideration of followability to the bending process and insulation. If the length of the low-strength insulating member 4 is too short compared to the length of the high-strength insulating member 2, the followability to a small bending radius is deteriorated. On the other hand, if the length of the low-strength insulating member 4 is too long, there is a risk of contact between the thermocouple wires or between the thermocouple wires and the sheath tube when the low-strength insulating member 4 is broken by bending. Further, since the low-strength insulating member 4 does not need a function of holding the thermocouple element, it is preferable that the strength is as low as possible within the range that can be handled.
[0018]
The high-strength insulating member 2 and the low-strength insulating member 4 manufactured in consideration of the above are alternately passed through the pair of thermocouple wires 1 to manufacture a structure as shown in FIG. 1 to a predetermined length. The sheath-type thermocouple according to the present invention is obtained by inserting this into a sheath tube 6 that has been cut to a predetermined length in advance and forming a hot junction and connecting a compensating lead wire by a conventional method.
[0019]
Next, the case where a ceramic adhesive is used for the low strength portion of the insulating member will be described. In this case, as described above, the high-strength insulating member 2 is a cylindrical ceramic member and has a pair of through-holes 2 through which two thermocouple wires are passed in the length direction with a distance from each other. However, the low-strength insulating member 4 is a ceramic adhesive that is filled and cured between the high-strength insulating members 2.
[0020]
This sheath type thermocouple is manufactured in the following steps.
(A) First, a plurality of cylindrical ceramic members 2 having a pair of longitudinal through-holes 2a spaced from each other are prepared.
(B) Next, each of the pair of thermocouple wires 1 is passed through each through hole 2 a of the ceramic member 2.
(C) Next, the ceramic members 2 are positioned at a predetermined interval, and the ceramic adhesive 4 is filled between them to be hardened. Thereby, the thermocouple component 8 which consists of the ceramic member 2, the ceramic adhesive agent 4, and the thermocouple strand 1 is completed.
(D) Next, the thermocouple component 8 is inserted into the elongated sheath tube 6 to complete the sheath type thermocouple according to the present invention.
[0021]
That is, first, the high-strength insulating member 2 having the shape of FIG. 2 is passed through the pair of thermocouple wires 1 and arranged at a predetermined interval. Next, the space between the high strength insulating members 2 is filled with a ceramic adhesive to form a low strength portion. Note that the dimensions of the high-strength member 2 and the low-strength member 4 are both determined in the same manner as when a ceramic member is used. In addition, a ceramic adhesive that does not generate gas and does not react with the constituent material of the thermocouple within the range up to the service temperature of the thermocouple must be selected. When the ceramic adhesive is sufficiently dried, the excess adhesive is removed so that the outer diameter is equal to or smaller than the outer diameter of the high-strength insulating member 2 by using sandpaper or the like. Thereafter, the curing treatment specified for the used adhesive is performed, and gas generation associated with the curing reaction is completely terminated.
[0022]
The structure of the thermocouple component 8 obtained in this way is substantially the same as the structure shown in FIG. 2 in which the high-strength member 2 and the low-strength member 4 are both ceramic members. This can be used as a sheathed thermocouple by inserting it into the sheath tube 6 and forming a hot junction and connecting a compensating lead wire as in the conventional case.
[0023]
The sheath-type thermocouple according to the present invention has a structure in which the high-strength member 2 and the low-strength member 4 are repeatedly arranged, and is not limited to the above manufacturing method. In addition, when the bending portion at the time of actual use is limited, a portion where bending is not performed may be formed by a high-strength ceramic two-hole straight pipe, and the structure of the present invention may be used only in the vicinity of the bending portion.
[0024]
【Example】
Below, the Example of this invention at the time of using a ceramic adhesive agent for the low intensity | strength insulating member 4 is described.
The manufactured sheath-type thermocouple is a Ta-sheath W-Re thermocouple having an outer diameter of 1 mm, the sheath inner diameter is 0.7 mm, and the thermocouple wire diameter is 0.2 inch. The high-strength insulating member 2 was formed of an alumina sintered body having a relative density of 97% or more and a purity of 99% or more with the length B of the insulating member in FIG. The thermocouple element wire 1 was passed through this and arranged at intervals of 0.55 mm, and a low-strength insulating member 4 was formed using an alumina-based ceramic adhesive 4. After 120 mm of this structure was produced and allowed to air dry for 24 hours or longer, excess adhesive was removed using sandpaper. The low-strength member 4 formed of an adhesive can be moved along the thermocouple wire 1 as an independent structure, and has substantially the same structure as the case where a ceramic member is used as the low-strength member. .
[0025]
The 120 mm thermocouple internal structure (thermocouple component 8) thus produced was dried at about 90 ° C. for 2 hours and then cured at about 150 ° C. for 1 hour. Further, this was inserted into a 120 mm Ta sheath tube 6 to obtain a sheath type thermocouple. It can be used in the same manner as a normal thermocouple by forming a hot junction and connecting a compensating lead wire.
[0026]
Furthermore, in order to verify the effect of the present invention, a bending test was performed on a 120 mm body structure manufactured as described above. The bending shown in FIG. 3 with a bending radius of R1 mm was subjected to bending at six places in the order of the numbers in the figure, but no breakage of the thermocouple wire 1 occurred. On the other hand, when a conventional sheath type thermocouple was cut out by 120 mm and subjected to the same bending test, the thermocouple element was broken when the fifth bending in FIG. 4 was performed. Thereby, it was confirmed that the sheath type thermocouple according to the present invention has superior bending resistance as compared with the conventional sheath type thermocouple.
[0027]
In addition, a 150 mm sheathed thermocouple was prepared by the same method as described above, and after forming a hot junction and connecting a compensating lead wire by a conventional method, the operation was confirmed and the sheathed thermocouple of the present invention was used. Was confirmed to have the same temperature measuring function as the conventional product.
[0028]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and can of course be changed without departing from the gist of the present invention. For example, the sheath-type thermocouple of the present invention is not limited to the W-Re thermocouple shown in the examples, and it is obvious that the effect can be expected for all sheath-type thermocouples.
[0029]
【The invention's effect】
As described above, the sheathed thermocouple according to the present invention has the following excellent functions.
{Circle around (1)} Even if the sheath diameter is small, it is possible to arrange the insulating material reliably, so that it is not necessary to take a step of reducing the ductility of the thermocouple wire as in the prior art. As a result, there is little risk of disconnection during bending.
(2) Since the thermocouple element is not restrained by the insulating member, changes in the length of the thermocouple element during bending can be absorbed by a wide area, and there is little risk of disconnection.
[0030]
As described above, the sheath-type thermocouple and the manufacturing method thereof according to the present invention can avoid the local elongation of the thermocouple wire without bending the duct of the thermocouple wire and bending the sheath tube. Thus, there are excellent effects such that bending can be easily performed and disconnection due to bending is less likely to occur.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a sheathed thermocouple according to the present invention.
FIG. 2 is a perspective view of a high-strength insulating member or a low-strength insulating member according to the present invention.
FIG. 3 is a bent view showing an embodiment of the present invention.
FIG. 4 is a diagram showing an example of using a thermocouple.
FIG. 5 is a structural diagram of a conventional sheathed thermocouple.
[Explanation of symbols]
1 Thermocouple Wire 2 High Strength Insulating Member 2a Through Hole 4 Low Strength Insulating Member (Ceramic Adhesive)
4a Through hole 6 Sheath tube 8 Thermocouple component

Claims (4)

1対の熱電対素線(1)を互いに間隔を隔てて保持する相対的に強度の高い複数の高強度絶縁部材(2)と、長さ方向に隣接する高強度絶縁部材の間に挟持され相対的に強度の低い複数の低強度絶縁部材(4)と、高強度絶縁部材と低強度絶縁部材を囲む細長いシース管(6)と、からなることを特徴とするシース型熱電対。It is sandwiched between a plurality of high strength insulating members (2) having relatively high strength and holding a pair of thermocouple wires (1) spaced apart from each other and a high strength insulating member adjacent in the length direction. A sheath type thermocouple comprising a plurality of low strength insulating members (4) having relatively low strength and a high strength insulating member and an elongated sheath tube (6) surrounding the low strength insulating member. 前記高強度絶縁部材(2)及び低強度絶縁部材(4)は共に、円筒形のセラミック部材であり、1対の熱電対素線(1)を互いに間隔を隔てて長さ方向に通す1対の貫通孔(2a,4a)を有する、ことを特徴とする請求項1に記載のシース型熱電対。The high-strength insulating member (2) and the low-strength insulating member (4) are both cylindrical ceramic members, and pass a pair of thermocouple wires (1) in the lengthwise direction at a distance from each other. The sheath-type thermocouple according to claim 1, wherein the sheath-type thermocouple has a through hole (2 a, 4 a). 前記高強度絶縁部材(2)は円筒形のセラミック部材であり、かつ2本の熱電対素線を互いに間隔を隔てて長さ方向に通す1対の貫通孔(2)を有し、前記低強度絶縁部材(4)は、高強度絶縁部材の間に充填し硬化処理されたセラミック接着剤である、ことを特徴とする請求項1に記載のシース型熱電対。The high-strength insulating member (2) is a cylindrical ceramic member, and has a pair of through-holes (2) through which two thermocouple wires are spaced apart from each other in the length direction. The sheath-type thermocouple according to claim 1, wherein the strength insulating member (4) is a ceramic adhesive filled and cured between high strength insulating members. (a)互いに間隔を隔てた1対の長さ方向貫通孔(2a)を有する複数の円筒形セラミック部材(2)を準備し、
(b)セラミック部材の各貫通孔に1対の熱電対素線(1)のそれぞれを通し、(c)各セラミック部材を所定の間隔を隔てて位置決めし、その間にセラミックス接着剤(4)を充填して硬化処理し、これにより、セラミック部材、セラミックス接着剤及び熱電対素線からなる熱電対コンポーネント(8)を製造し、
(d)次いで、熱電対コンポーネントを細長いシース管(6)に挿入する、ことを特徴とするシース型熱電対の製造方法。
(A) preparing a plurality of cylindrical ceramic members (2) having a pair of longitudinal through holes (2a) spaced apart from each other;
(B) Each of the pair of thermocouple wires (1) is passed through each through hole of the ceramic member, (c) each ceramic member is positioned at a predetermined interval, and the ceramic adhesive (4) is interposed therebetween. Fill and cure, thereby producing a thermocouple component (8) comprising a ceramic member, a ceramic adhesive and a thermocouple strand,
(D) Next, a method of manufacturing a sheath type thermocouple, wherein the thermocouple component is inserted into an elongated sheath tube (6).
JP11299698A 1998-04-23 1998-04-23 Sheath type thermocouple and manufacturing method thereof Expired - Fee Related JP4048237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11299698A JP4048237B2 (en) 1998-04-23 1998-04-23 Sheath type thermocouple and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11299698A JP4048237B2 (en) 1998-04-23 1998-04-23 Sheath type thermocouple and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11304596A JPH11304596A (en) 1999-11-05
JP4048237B2 true JP4048237B2 (en) 2008-02-20

Family

ID=14600824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11299698A Expired - Fee Related JP4048237B2 (en) 1998-04-23 1998-04-23 Sheath type thermocouple and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4048237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517377B1 (en) * 2013-10-28 2015-05-06 한국원자력연구원 High temperature measurement instrument in molten material with long-term durability

Also Published As

Publication number Publication date
JPH11304596A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US7997795B2 (en) Temperature sensors and methods of manufacture thereof
JPH09105677A (en) Ceramic sheath type component and manufacture thereof
US3646322A (en) Electric resistance heating cable
US3317353A (en) Thermocouple comprising intimately twisted wires
JP3434721B2 (en) Sealed terminal
JP4048237B2 (en) Sheath type thermocouple and manufacturing method thereof
JPS63111683A (en) Insulated wire thermocouple
US2516930A (en) Filament forming method
JP7096587B2 (en) Seeds heater
CN107004475B (en) Wire-wound resistor and method for manufacturing the same
JP2761537B2 (en) Wire harness and manufacturing method thereof
US8286335B2 (en) Method of assembling a thermal expansion compensator
JP2008312352A (en) Method for forming meandering annular coil and meandering annular coil
JP3646912B2 (en) Heater encapsulated heater
JP2008151601A (en) Platinum temperature measuring resistor with element and insulating resin having the same diameter, and manufacturing method therefor
WO2018020696A1 (en) Thermocouple
JP2008089494A (en) Sheathed thermocouple and its manufacturing method
JP4807201B2 (en) Sheath thermocouple and manufacturing method thereof
US20050184056A1 (en) Tubular heater and method of manufacture
CN111490362A (en) Terminal-equipped electric wire, method for manufacturing terminal-equipped electric wire, and terminal provided in terminal-equipped electric wire
KR920002071B1 (en) Heating sensor manufacturing method using liquid state measure
JP2010244786A (en) Sheathed heater, and heating method using the same
US3638303A (en) Method of making sensing elements for resistance-temperature probes
CN111313633B (en) Coil forming method and wire member
JPH09198929A (en) Wire harness and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees