JP2008107115A - Sheathed thermocouple and its manufacturing method - Google Patents

Sheathed thermocouple and its manufacturing method Download PDF

Info

Publication number
JP2008107115A
JP2008107115A JP2006288008A JP2006288008A JP2008107115A JP 2008107115 A JP2008107115 A JP 2008107115A JP 2006288008 A JP2006288008 A JP 2006288008A JP 2006288008 A JP2006288008 A JP 2006288008A JP 2008107115 A JP2008107115 A JP 2008107115A
Authority
JP
Japan
Prior art keywords
thermocouple
sheath
insulator
pair
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288008A
Other languages
Japanese (ja)
Inventor
Toshihito Nishikawa
豪人 西川
Masaru Yamana
勝 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP2006288008A priority Critical patent/JP2008107115A/en
Publication of JP2008107115A publication Critical patent/JP2008107115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheathed thermocouple hardly generating disconnection of a thermocouple element, having an elongated lifetime, and its manufacturing method. <P>SOLUTION: This sheathed thermocouple 1 has a constitution wherein a pair of thermocouple elements 3, 3 and an insulating material 4 are provided inside a cylindrical metal sheath 2 having a closed tip, and each of the pair of thermocouple elements 3, 3 is formed spirally. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば加熱炉などで炉内温度を測定するために用いられるシース熱電対およびその製造方法に関する。   The present invention relates to a sheathed thermocouple used for measuring the temperature in a furnace, for example, in a heating furnace, and a manufacturing method thereof.

上述したシース熱電対として、図3および図4に示すように金属シース100内に、マグネシア、アルミナ等を材質とする粉末の無機絶縁材101を介在させて一対の熱電対素線102、102を収容したものが知られている(例えば特許文献1など参照)。   As the above-described sheath thermocouple, a pair of thermocouple wires 102 and 102 are formed by interposing a powdered inorganic insulating material 101 made of magnesia, alumina, or the like in a metal sheath 100 as shown in FIGS. What was accommodated is known (see, for example, Patent Document 1).

このようなシース熱電対は、加熱炉などの腐食性雰囲気や酸化雰囲気などの過酷な環境で用いた場合に、金属シース100により熱電対素線102が上記雰囲気から隔離されているために裸線のものに比べて長寿命であるという長所があり、また、絶縁材101を備えることから、金属シース100と熱電対素線102とが接触し難く、設置対象物である加熱炉外皮である鋼材などの金属材との間の絶縁を考慮する必要がないという利点もある。
特開2006−138647号公報
Such a sheathed thermocouple is a bare wire because the thermocouple wire 102 is isolated from the atmosphere by the metal sheath 100 when used in a harsh environment such as a corrosive atmosphere such as a heating furnace or an oxidizing atmosphere. Compared to the steel material, there is an advantage that it has a long life, and since the insulating material 101 is provided, the metal sheath 100 and the thermocouple wire 102 are not easily in contact with each other, and the steel material that is the outer shell of the heating furnace that is the installation object There is also an advantage that it is not necessary to consider the insulation between the metal materials.
JP 2006-138647 A

しかしながら、従来の熱電対素線102が直線状であったため、以下のような場合には熱電対素線102に断線が生じ易いという難点があった。   However, since the conventional thermocouple wire 102 is linear, there is a problem that the thermocouple wire 102 is easily broken in the following cases.

その一つは、シース熱電対に対して急激に加熱と冷却を繰り返し与えた場合である。即ち、シース熱電対を急激に加熱すると、シースが高温で、熱電対素線が未だ低温である状態が過渡的に生じ、シースの熱膨張により熱電対素線には軸方向に引っ張られる応力が働く。逆に急激に冷却されると、過渡的にシースの方が先に冷却されて圧縮応力が働く。このような引っ張り応力と圧縮応力が繰り返し発生することに伴うサイクル疲労により、熱電対素線が断線に至ることがある。このとき、熱電対素線に傷や径寸法ムラが存在したり、或いは、シース熱電対に小さな曲げ半径の曲げ部が存在したりすると、更に熱電対素線が断線し易くなる。その理由は、前者の熱電対素線に傷や径寸法ムラが存在する場合、その傷や径の細い部分に応力が集中するからである。また、後者のシース熱電対に小さな曲げ半径の曲げ部が存在する場合は、上述のように急激な加熱・冷却の繰り返しにより、曲げ部の熱電対素線に応力の集中が起こるからである。   One of the cases is when the sheath thermocouple is repeatedly heated and cooled repeatedly. That is, when the sheath thermocouple is heated rapidly, a state in which the sheath is hot and the thermocouple strand is still cold is transiently generated, and the thermocouple strand is subjected to stress that is pulled in the axial direction due to thermal expansion of the sheath. work. Conversely, when it is rapidly cooled, the sheath is transiently cooled first and compressive stress is applied. Due to cycle fatigue associated with the repeated generation of tensile and compressive stresses, the thermocouple wire may break. At this time, if the thermocouple wire has scratches or uneven dimensional dimensions, or if the sheath thermocouple has a bent portion with a small bending radius, the thermocouple wire is more likely to break. The reason is that when the former thermocouple wire has scratches or dimensional irregularities, the stress concentrates on the scratches or small diameter portions. Further, when the latter sheath thermocouple has a bending portion with a small bending radius, stress concentration occurs on the thermocouple wire in the bending portion due to repeated rapid heating and cooling as described above.

他の一つは、シース熱電対に曲げ力が繰り返し付与される場合である。例えば、シース熱電対を可動部に設置すると、可動部の可動に伴ってシース熱電対が繰り返し曲げられることにより熱電対素線に断線が招来されることがある。   The other is a case where a bending force is repeatedly applied to the sheath thermocouple. For example, when the sheath thermocouple is installed in the movable part, the sheath may be bent repeatedly due to the sheath thermocouple being bent along with the movement of the movable part.

本発明は、このような従来技術の課題を解決するためになされたもので、熱電対素線の断線を発生し難くして長寿命化を図り得るシース熱電対およびそのシース熱電対に好適な製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art, and is suitable for a sheathed thermocouple and a sheathed thermocouple that can prevent the disconnection of the thermocouple wire and prolong the service life. An object is to provide a manufacturing method.

本発明のシース熱電対は、先端が塞がった筒状の金属シースの内部に、一対の熱電対素線と絶縁材とが設けられ、上記一対の熱電対素線のそれぞれがスパイラル状に形成されていることを特徴とする(請求項1)。   In the sheath thermocouple of the present invention, a pair of thermocouple wires and an insulating material are provided inside a cylindrical metal sheath whose tip is closed, and each of the pair of thermocouple wires is formed in a spiral shape. (Claim 1).

本発明のシース熱電対の製造方法は、請求項1に記載のシース熱電対を製造する方法であって、ほぼ円柱状をした、無機絶縁材を素材とする碍子の表面に、一対の熱電対素線のそれぞれを逆方向に巻き付ける工程と、上記一対の熱電対素線が巻き付けられた上記碍子をシース用金属管の内部に挿入し、上記シース用金属管と上記碍子との間に絶縁材用の粉末を充填する工程と、上記シース用金属管に対して引抜き加工を施して、シース用金属管を縮径させるとともに一対の熱電対素線を引き延ばし、かつ上記碍子を粉砕させる工程とを含むことを特徴とする。   A method for manufacturing a sheathed thermocouple according to the present invention is a method for manufacturing a sheathed thermocouple according to claim 1, wherein a pair of thermocouples is formed on a surface of an insulator made of an inorganic insulating material and having a substantially cylindrical shape. A step of winding each of the strands in the opposite direction; and the insulator around which the pair of thermocouple strands are wound is inserted into a sheath metal tube, and an insulating material is interposed between the sheath metal tube and the insulator A step of filling the sheath metal tube, a step of drawing the sheath metal tube, reducing the diameter of the sheath metal tube, stretching a pair of thermocouple wires, and crushing the insulator It is characterized by including.

本発明のシース熱電対による場合には、先端が塞がった筒状の金属シースの内部に設ける一対の熱電対素線がスパイラル状になっていてコイルバネのように働くので、シース熱電対に対して急激に加熱と冷却が繰り返し与えられても、或いは、シース熱電対に曲げ力が繰り返し付与されても、熱電対素線に断線が発生し難くなり、これによりシース熱電対の長寿命化を図り得る。   In the case of the sheath thermocouple according to the present invention, the pair of thermocouple wires provided inside the cylindrical metal sheath whose tip is closed are spiral and act like a coil spring. Even if heating and cooling are suddenly repeatedly applied or bending force is repeatedly applied to the sheath thermocouple, it is difficult for the thermocouple element to break, thereby extending the life of the sheath thermocouple. obtain.

本発明のシース熱電対の製造方法による場合には、無機絶縁材を素材とする碍子に一対の熱電対素線のそれぞれを逆方向に巻き付け、粉末の無機絶縁材をシース用金属管と上記碍子との間に充填し、その後の引抜き加工により各熱電対素線を引き延ばすことで、1ターンの軸方向長さ(L)を所望寸法としたスパイラル状の一対の熱電対素線を簡単に作製することができる。また、碍子は、引抜き加工により粉砕されて粉末化するので、シース熱電対の曲げ性が失われることはない。   In the case of the sheath thermocouple manufacturing method of the present invention, each of the pair of thermocouple wires is wound around an insulator made of an inorganic insulating material in the opposite direction, and the powdered inorganic insulating material is used as the sheath metal tube and the above insulator. A pair of spiral thermocouple wires with a desired dimension of the axial length (L) of one turn can be easily produced by extending each thermocouple wire by drawing after that. can do. Further, since the insulator is pulverized and powdered by drawing, the bendability of the sheath thermocouple is not lost.

以下に、本発明に係るシース熱電対を具体的に説明する。図1は、本発明の一実施形態に係るシース熱電対を示す断面図である。   The sheath thermocouple according to the present invention will be specifically described below. FIG. 1 is a cross-sectional view showing a sheath thermocouple according to an embodiment of the present invention.

このシース熱電対1は、先端が塞がった筒状の金属シース2と、その金属シース2の内部に設けられた一対の熱電対素線3、3と、上記金属シース2の内部に設けられた絶縁材4と、上記金属シース2の開口側に固着された筒状スリーブ5と、スリーブ5の内部に設けられたシール材6と、スリーブ5の内部で両熱電対素線3、3のそれぞれと接続された補償導線7、7とを具備する。   This sheath thermocouple 1 is provided inside a cylindrical metal sheath 2 whose tip is closed, a pair of thermocouple wires 3 and 3 provided inside the metal sheath 2, and the metal sheath 2. The insulating material 4, the cylindrical sleeve 5 fixed to the opening side of the metal sheath 2, the sealing material 6 provided inside the sleeve 5, and the thermocouple wires 3 and 3 inside the sleeve 5, respectively. Compensation conductors 7 and 7 connected to each other.

上記金属シース2は、例えばSUS304、SUS316等のステンレス鋼、或いはインコネル600などの材料が用いられる。シース2の外径は4.8mmφ、シース2の肉厚は0.72mmである。なお、シース2の材質は、上記ステンレス鋼やインコネル600に限らず、他の材料でも構わない。また、シース2の外径および肉厚も、上記寸法に限らない。   The metal sheath 2 is made of, for example, stainless steel such as SUS304 or SUS316, or a material such as Inconel 600. The outer diameter of the sheath 2 is 4.8 mmφ, and the thickness of the sheath 2 is 0.72 mm. The material of the sheath 2 is not limited to the stainless steel or Inconel 600, but may be other materials. Further, the outer diameter and thickness of the sheath 2 are not limited to the above dimensions.

各熱電対素線3は、スパイラル状に形成されていて、これらの先端側には互いに接続された測温接点3aが設けられている。つまり、各熱電対素線3の形状は、測温接点3aを除いて、軸心に対する離間距離をほぼ一定とし、かつ1ターンの軸方向長さ(L)を同一としたスパイラル状をしている。各熱電対素線3の基端側(先端とは反対側)には、それぞれ補償導線7が接続されている。各補償導線7の外側には、絶縁被覆8が設けられていて、互いの間が絶縁状態となっている。熱電対素線3の材質としては、例えばプラス側ではクロメルが用いられ、マイナス側ではアルメルが用いられている。素線3の直径は、例えば0.76mmに設定されている。素線3の材質および直径も、上記のものに限らず、他の材質や直径のものを使用することができる。   Each thermocouple wire 3 is formed in a spiral shape, and a temperature measuring contact 3a connected to each other is provided on the tip side thereof. That is, the shape of each thermocouple wire 3 is a spiral shape in which the distance from the axis is substantially constant and the axial length (L) of one turn is the same except for the temperature measuring contact 3a. Yes. Compensation lead wires 7 are connected to the base end side (opposite the tip) of each thermocouple wire 3. An insulating coating 8 is provided on the outer side of each compensation lead wire 7 so that they are insulated from each other. As the material of the thermocouple wire 3, for example, chromel is used on the plus side and alumel is used on the minus side. The diameter of the strand 3 is set to 0.76 mm, for example. The material and diameter of the strand 3 are not limited to those described above, and other materials and diameters can be used.

スパイラル状の熱電対素線3における1ターンの軸方向長さ(L)は、例えば5mmにしてある。但し、1ターンの軸方向長さ(L)は、他の寸法でも構わず、また全長にわたって異なっていてもよく、更には、各熱電対素線3において異なっていてもよい。   The axial length (L) of one turn in the spiral thermocouple element 3 is, for example, 5 mm. However, the length (L) of one turn in the axial direction may be other dimensions, may be different over the entire length, and may be different in each thermocouple wire 3.

絶縁材4は、熱電対素線3とシース2とが接触し難くするためのものであり、例えばマグネシア等の無機材料からなる粉末である。   The insulating material 4 is for preventing the thermocouple wire 3 and the sheath 2 from coming into contact with each other, and is a powder made of an inorganic material such as magnesia, for example.

このような構成の本実施形態に係るシース熱電対は、例えば以下のように作製される。
シース2の外径が4.8mmφで、スパイラル状の熱電対素線3の1ターンの軸方向長さ(L)が5mmであるシース熱電対を作製する場合を例に挙げる。図2(a)に示すように、例えばマグネシアからなる無機絶縁材を素材とし、外径が約3mmφの円柱状の碍子10を用い、その碍子10の表面に、先端を接合して測温接点3aとした熱電対素線3を、5mmの1ターンの軸方向長さ(L)よりも短い1ターンの軸方向長さ(L')でスパイラル状に巻き付けたものを作る。このとき、測温接点3aを碍子10の端に位置させ、かつ各熱電対素線3が逆方向となるように巻き付ける。
The sheath thermocouple according to the present embodiment having such a configuration is manufactured as follows, for example.
As an example, a sheath thermocouple in which the outer diameter of the sheath 2 is 4.8 mmφ and the one-turn axial length (L) of the spiral thermocouple element 3 is 5 mm will be described. As shown in FIG. 2 (a), for example, an inorganic insulating material made of magnesia is used as a raw material, and a cylindrical insulator 10 having an outer diameter of about 3 mmφ is used, and the tip is joined to the surface of the insulator 10 to measure the temperature. A thermocouple wire 3a 3a is wound in a spiral shape with an axial length (L ′) of one turn shorter than an axial length (L) of one turn of 5 mm. At this time, the temperature measuring contact 3a is positioned at the end of the insulator 10, and each thermocouple element 3 is wound in the opposite direction.

次に、図2(b)に示すように、シース2よりも外径が6mmφと太く、長さが短いシース2用金属管2'を用い、この金属管2'に対し上記碍子10を挿入する。このとき、碍子10の軸心と金属管2'の軸心とを一致させるのが好ましい。続いて、金属管2'の内部に、粉末の無機絶縁材4を充填する。なお、金属管2'は両端が開口したものである。   Next, as shown in FIG. 2 (b), a sheath 2 metal tube 2 'having an outer diameter of 6 mmφ and a shorter length than the sheath 2 is used, and the insulator 10 is inserted into the metal tube 2'. To do. At this time, it is preferable to make the axial center of the insulator 10 and the axial center of the metal tube 2 ′ coincide. Subsequently, the powdered inorganic insulating material 4 is filled into the metal tube 2 ′. The metal tube 2 'is open at both ends.

次に、この状態の金属管2'を、図2(c)に示すように、ダイス11を用いた引抜き加工で細径化および長尺化する。ダイス11としては、穴ダイスまたはローラーダイスなどが用いられる。この引抜き加工により、外径が4.8mmφであるシース2内に、1ターンの軸方向長さ(L)が5mmのスパイラル状の熱電対素線3と絶縁材4とを備えた棒状のものが作製される。なお、引抜き加工の際に、碍子10は粉砕されて粉末化し、絶縁材4の一部となる。   Next, as shown in FIG. 2C, the metal tube 2 ′ in this state is reduced in diameter and length by drawing using a die 11. As the die 11, a hole die or a roller die is used. By this drawing process, a rod-shaped body having a spiral thermocouple element 3 and an insulating material 4 having a one-turn axial length (L) of 5 mm in a sheath 2 having an outer diameter of 4.8 mmφ. Is produced. In the drawing process, the insulator 10 is pulverized and powdered to become a part of the insulating material 4.

続いて、図示を省略するが、両端が開口した状態のシース2に対し、測温接点3a側の開口を封じる加工と、シース2の他端側の加工(つまり筒状スリーブ5とシール材6と補償導線7と絶縁被覆8とを取付けること)を行い、図1に示すシース熱電対1が作製される。   Subsequently, although not shown in the figure, for the sheath 2 in which both ends are open, a process for sealing the opening on the temperature measuring contact 3a side and a process on the other end side of the sheath 2 (that is, the cylindrical sleeve 5 and the sealing material 6). Then, the sheathing thermocouple 1 shown in FIG. 1 is manufactured.

なお、測温接点3aを接合するタイミングは、引抜き加工後であって、シース2の測温接点3a側開口を封じる加工の際に行うようにしてもよい。また、碍子10の表面に熱電対素線3をスパイラル状に巻き付ける際の測温接点3aの位置を端ではなく他の位置とすることにより、例えば碍子10の長さ方向の途中に測温接点3aを位置させることにより、軸方向の望む位置に測温接点3aがあるシース熱電対1を作製することも可能である。   Note that the timing of joining the temperature measuring contact 3a may be performed after the drawing process and in the process of sealing the temperature measurement contact 3a side opening of the sheath 2. Further, by setting the position of the temperature measuring contact 3a when the thermocouple wire 3 is spirally wound around the surface of the insulator 10 to a position other than the end, for example, the temperature measuring contact in the middle of the length of the insulator 10 By positioning 3a, it is also possible to produce a sheathed thermocouple 1 having a temperature measuring contact 3a at a desired position in the axial direction.

この構成の本実施形態に係るシース熱電対による場合には、スパイラル状に形成された熱電対素線3を用いているので、熱電対素線に断線が発生し難くい。以下に、このことを詳述する。   In the case of the sheathed thermocouple according to this embodiment having this configuration, since the thermocouple element 3 formed in a spiral shape is used, disconnection hardly occurs in the thermocouple element. This will be described in detail below.

スパイラル状の熱電対素線3は、コイルバネのように働く。よって、急激な加熱・冷却を繰り返し与えても、熱電対素線3が受ける引張・圧縮力は小さいため、熱電対素線3に傷や径寸法ムラが存在しても断線が生じ難い。また、シース熱電対に小さな曲げ半径の曲げ部が存在する場合には、その曲げ部の熱電対素線3にある程度の応力集中が起こるものの、曲げ部においても熱電対素線3はスパイラル状であり、曲げ部の長さに対してスパイラル状素線の1ターンの軸方向長さ(L)を、上記のように5mm程度と十分に短く設定すれば、応力が1箇所に集中して発生することは無く、分散し、急激な加熱・冷却の繰り返しに対して熱電対素線3は断線が生じ難い。また、シース熱電対に曲げ力が繰り返し付与される場合にも、曲げ部における熱電対素線の応力も分散されるため、熱電対素線3は断線が生じ難い。   The spiral thermocouple element 3 works like a coil spring. Therefore, even if rapid heating / cooling is repeatedly applied, the tensile / compressive force received by the thermocouple wire 3 is small, so that even if the thermocouple wire 3 has scratches or uneven dimensional dimensions, disconnection hardly occurs. Further, when the sheath thermocouple has a bent portion having a small bending radius, a certain amount of stress concentration occurs in the thermocouple wire 3 of the bent portion, but the thermocouple wire 3 is also spiral in the bent portion. Yes, if the axial length (L) of one turn of the spiral wire is set to a sufficiently short length of about 5 mm as described above with respect to the length of the bent portion, stress is concentrated in one place. The thermocouple wire 3 is not easily broken due to dispersion and rapid heating / cooling repetition. Further, even when a bending force is repeatedly applied to the sheath thermocouple, the thermocouple wire 3 is not easily broken because the stress of the thermocouple wire in the bent portion is also dispersed.

なお、上述した実施形態では熱電対素線3のプラス側にはクロメルを用い、マイナス側にはアルメルを用いた、JIS1602に示されるK熱電対に対して適用しているが、本発明はこれに限らず、同じくR熱電対、N熱電対など、他のタイプの熱電対に対しても同様に適用することができる。   In the above-described embodiment, the thermocouple element 3 is applied to the K thermocouple shown in JIS1602 using chromel on the plus side and alumel on the minus side. The invention can be similarly applied to other types of thermocouples such as R thermocouples and N thermocouples.

また、上述した実施形態では無機絶縁碍子10および粉末の無機絶縁材4として、マグネシアを用いた例を挙げているが、本発明はこれに限らず、アルミナやシリカ等、他の無機絶縁材を用いてもよい、更には、無機絶縁碍子10と無機絶縁材4は、異なる無機絶縁材を用いてもよい。   Moreover, although the example which used magnesia is given as the inorganic insulator 10 and the powdered inorganic insulating material 4 in the above-described embodiment, the present invention is not limited thereto, and other inorganic insulating materials such as alumina and silica are used. Further, different inorganic insulators may be used for the inorganic insulator 10 and the inorganic insulator 4.

本発明の一実施形態に係るシース熱電対を示す断面図である。It is sectional drawing which shows the sheath thermocouple which concerns on one Embodiment of this invention. 図1のシース熱電対の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the sheath thermocouple of FIG. 従来のシース熱電対を示す断面図である。It is sectional drawing which shows the conventional sheathed thermocouple. 図3のIV−IV線による断面図である。It is sectional drawing by the IV-IV line of FIG.

符号の説明Explanation of symbols

1 シース熱電対
2 金属シース
3 熱電対素線
4 粉末の無機絶縁材
2' シース用金属管
10 碍子
11 ダイス
DESCRIPTION OF SYMBOLS 1 Sheath thermocouple 2 Metal sheath 3 Thermocouple strand 4 Powdered inorganic insulating material 2 'Metal tube for sheaths 10 Insulator 11 Dice

Claims (2)

先端が塞がった筒状の金属シースの内部に、一対の熱電対素線と絶縁材とが設けられ、上記一対の熱電対素線のそれぞれがスパイラル状に形成されていることを特徴とするシース熱電対。   A sheath in which a pair of thermocouple wires and an insulating material are provided inside a cylindrical metal sheath whose tip is closed, and each of the pair of thermocouple wires is formed in a spiral shape thermocouple. 請求項1に記載のシース熱電対を製造する方法であって、
ほぼ円柱状をした、無機絶縁材を素材とする碍子の表面に、一対の熱電対素線のそれぞれを逆方向に巻き付ける工程と、
上記一対の熱電対素線が巻き付けられた上記碍子をシース用金属管の内部に挿入し、上記シース用金属管と上記碍子との間に絶縁材用の粉末を充填する工程と、
上記シース用金属管に対して引抜き加工を施して、シース用金属管を縮径させるとともに一対の熱電対素線を引き延ばし、かつ上記碍子を粉砕させる工程とを含むことを特徴とするシース熱電対の製造方法。
A method for manufacturing a sheathed thermocouple according to claim 1, comprising:
A step of winding each of a pair of thermocouple wires in opposite directions around the surface of an insulator made of an inorganic insulating material, which is substantially cylindrical,
Inserting the insulator around which the pair of thermocouple strands are wound into a sheath metal tube and filling a powder for an insulating material between the sheath metal tube and the insulator;
A step of drawing the sheath metal tube to reduce the diameter of the sheath metal tube, extending a pair of thermocouple strands, and crushing the insulator. Manufacturing method.
JP2006288008A 2006-10-23 2006-10-23 Sheathed thermocouple and its manufacturing method Pending JP2008107115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288008A JP2008107115A (en) 2006-10-23 2006-10-23 Sheathed thermocouple and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288008A JP2008107115A (en) 2006-10-23 2006-10-23 Sheathed thermocouple and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008107115A true JP2008107115A (en) 2008-05-08

Family

ID=39440590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288008A Pending JP2008107115A (en) 2006-10-23 2006-10-23 Sheathed thermocouple and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008107115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025914A (en) * 2008-06-18 2010-02-04 Bridgestone Corp Thermocouple
JP2013170846A (en) * 2012-02-17 2013-09-02 Taiyo Nippon Sanso Corp Element wire position regulating member and temperature detector
CN110763362A (en) * 2019-11-14 2020-02-07 中国计量科学研究院 Pressure-controlled twisted platinum resistance thermometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366278A (en) * 1976-11-25 1978-06-13 Matsushita Electric Ind Co Ltd High temperature detector used thermister
JPH05223648A (en) * 1992-02-14 1993-08-31 Okutetsuku Kk Temperature measuring sensor
JPH0882557A (en) * 1994-09-13 1996-03-26 Chino Corp Sheathed thermocouple
JPH08271350A (en) * 1995-03-31 1996-10-18 Ngk Spark Plug Co Ltd Temperature measuring glow plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366278A (en) * 1976-11-25 1978-06-13 Matsushita Electric Ind Co Ltd High temperature detector used thermister
JPH05223648A (en) * 1992-02-14 1993-08-31 Okutetsuku Kk Temperature measuring sensor
JPH0882557A (en) * 1994-09-13 1996-03-26 Chino Corp Sheathed thermocouple
JPH08271350A (en) * 1995-03-31 1996-10-18 Ngk Spark Plug Co Ltd Temperature measuring glow plug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025914A (en) * 2008-06-18 2010-02-04 Bridgestone Corp Thermocouple
JP2013170846A (en) * 2012-02-17 2013-09-02 Taiyo Nippon Sanso Corp Element wire position regulating member and temperature detector
CN110763362A (en) * 2019-11-14 2020-02-07 中国计量科学研究院 Pressure-controlled twisted platinum resistance thermometer
CN110763362B (en) * 2019-11-14 2021-01-15 中国计量科学研究院 Pressure-controlled twisted platinum resistance thermometer

Similar Documents

Publication Publication Date Title
US5901900A (en) Thermocouple assemblies
JP5322128B2 (en) Turbocharger overheat protection device and method for manufacturing the turbocharger overheat protection device
US3317353A (en) Thermocouple comprising intimately twisted wires
US7771116B2 (en) Ceramic thermocouple
CN102435330A (en) Temperature sensor
JP2008107115A (en) Sheathed thermocouple and its manufacturing method
CN102361522B (en) A kind of variable cross-section termination not armoured heating heater and preparation method thereof
JPH08271350A (en) Temperature measuring glow plug
US4998341A (en) Method for making mineral insulated metal sheathed cables
JP4747145B2 (en) Sheathed thermocouple
JP6219068B2 (en) Temperature measuring device
US20090183892A1 (en) Temperature-resistant electrical line
KR20190017966A (en) thermocouple
US6448502B2 (en) Lead wire for oxygen sensor
CN110470408A (en) Shield thermocouple
JP6335125B2 (en) Sheath type thermocouple and manufacturing method thereof
JP2013170846A (en) Element wire position regulating member and temperature detector
RU105441U1 (en) THERMOELECTRIC CONVERTER FOR HIGH TEMPERATURE AND AGGRESSIVE MEDIA
JP6570201B2 (en) Micro heater with non-heat generating part
GB2472758A (en) Improved Insulator and Thermocouple
JP2008089494A (en) Sheathed thermocouple and its manufacturing method
JP4048237B2 (en) Sheath type thermocouple and manufacturing method thereof
JP2010244786A (en) Sheathed heater, and heating method using the same
KR200371643Y1 (en) Temperature sensor for high temperature used in the gas atmosphere
RU20608U1 (en) THERMOCOUPLING CABLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A02